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PARTIALLY TIME-VARYING COEFFICIENT PROPORTIONAL
HAZARDS MODELS WITH ERROR-PRONE TIME-DEPENDENT

COVARIATES—AN APPLICATION TO THE AIDS CLINICAL
TRIAL GROUP 175 DATA
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University of Georgia and Iowa State University

Due to cost and time considerations, interest has focused on identifying
surrogate markers that could be substituted for the clinical endpoint, time to
an event of interest, in evaluation of treatment efficacy. Joint models are often
used to assess the effect of surrogate markers and treatment. Motivated by
recent works studying the AIDS Clinical Trial Group (ACTG) 175 data, we
propose a partially time-varying coefficient proportional hazards model for
modeling the relationship between the hazard of failure and time-dependent
and time-independent covariates. The time-varying coefficients are approxi-
mated by polynomial splines, and the corrected score and conditional score
approaches are adopted to estimate the regression coefficients. The proposed
estimators are consistent, and the asymptotic normality is established for
the constant coefficients, which enables us to construct confidence intervals
and permits joint inference. The finite-sample performance of the proposed
method is assessed by Monte Carlo simulation studies. The proposed model
is applied to ACTG 175 data to assess the temporal dynamics of the effect of
treatment and CD4 count on time to AIDS or death.

1. Introduction. In biomedical studies, it is often of interest to characterize
the relationship between survival time (time to an event of interest) and a set of
covariates. Some of the covariates may vary over time and are measured intermit-
tently through the studies. An example is the AIDS Clinical Trial Group (ACTG)
175 [Hammer et al. (1996)], a randomized clinical trial to compare four antiretro-
viral therapies, zidovudine alone, zidovudine plus didanosine, zidovudine plus zal-
citabine or didanosine alone, in HIV infected subjects. During the study, 2467 sub-
jects were recruited between December 1991 and October 1992 and followed until
November 1994. CD4 count, a reflection of immune status, was measured about
every 12 months. The survival time was time to progression to AIDS or death. The
main objective of the study was to compare the treatments. A subsequent objective
was to elucidate the relationship between prognosis and CD4 count and to investi-
gate it as a potential surrogate marker for time to AIDS or death. Because of time
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and cost issues, interest has focused on identifying surrogate markers that could be
substituted for the clinical endpoint in evaluation of treatment efficacy. As the sur-
rogate markers can be measured earlier than the clinical endpoints, it may reduce
both time and cost for clinical trials. According to Prentice (1989), a surrogate
marker should be prognostic for clinical outcome and the risk of progression given
the marker should be independent of treatment. Thus, we need to assess the effect
of treatment and CD4 count on time to AIDS or death. The (Cox) proportional
hazards model may be used for this purpose. The partial likelihood approach is
generally used to estimate the regression coefficients in the proportional hazards
model, but it requires observations of the true covariate values at the event times for
all at-risk subjects. However, since CD4 count was only measured intermittently,
it was not available at the event times for all at-risk subjects; in addition, the mea-
surements of CD4 count were subjected to potential measurement error. Naive ap-
proaches impute in the partial likelihood either the last observed values before the
failure time (last value carried forward) or the least square estimates from the co-
variate profile (naive regression), which lead to biased estimation [Prentice (1982),
Tsiatis and Davidian (2001)]. A popular approach is to use a joint model, which
assumes that the longitudinal observations follow a mixed-effects model and the
survival time depends on the random effects of the mixed-effects model through a
proportional hazards model.

Various approaches have been proposed under the joint model framework.
The regression calibration approach [Bycott and Taylor (1998), Dafni and Tsi-
atis (1998), Pawitan and Self (1993), Tsiatis, DeGruttola and Wulfsohn (1995)]
reduces bias relative to naive approaches, but it may still give erroneous results
[Tsiatis and Davidian (2001)]. The likelihood-based approaches [DeGruttola and
Tu (1994), Faucett and Thomas (1996), Henderson, Diggle and Dobson (2000),
Song, Davidian and Tsiatis (2002b), Wulfsohn and Tsiatis (1997), Xu and Zeger
(2001)] are consistent, and they may be robust to misspecification of the ran-
dom effect distribution when there is rich enough longitudinal information [Hsieh,
Tseng and Wang (2006)]. However, they can be infeasible in the case of multiple
time-dependent covariates and a large number of regression coefficients. In addi-
tion, they require the censoring time to be independent of the survival time, which
may be too restricted in practice. Two attractive alternatives are the conditional
score approach [Song, Davidian and Tsiatis (2002a), Tsiatis and Davidian (2001)]
and the corrected score approach [Wang (2006)]. These estimating equation-based
methods are easy to implement, and the estimators are consistent without distribu-
tional assumptions on the underlying true covariates. The censoring time is only
assumed to be independent of the survival time given the covariates, as in the stan-
dard inference for the proportional hazards model.

However, the proportional hazards assumption may not hold for the ACTG 175
data. Song and Wang (2008) adopted the varying coefficient proportional hazards
model, which allows the effect of coefficients to vary over time, and proposed a
local conditional score approach; a related model is the additive coefficient model,
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FIG. 1. Local estimates (center curves) and 95% pointwise confidence intervals (outer curves) of
regression coefficient for the ACTG 175 data under the varying coefficient model including log(CD4)

and treatment with bandwidth h = 60. The left panel is for the coefficient of treatment, and the right
panel is for the coefficient of log(CD4). NR, naive regression; CDS, conditional score.

which is particularly helpful for studying nonlinear interaction effects of variables
[Gu et al. (2014), Liu and Yang (2010), Xue and Liang (2010), Xue and Yang
(2006)]. Figure 1 shows the local naive and conditional score estimates of the effect
of treatment and log(CD4) [Hsieh, Tseng and Wang (2006)], where the logarithmic
transformation is adopted to achieve approximate within-subject normality and
constant variances. Although the effect of log(CD4) does vary over time, the effect
of treatment seems stable after adjustment of log(CD4). This indicates that the
coefficient of treatment may be a constant. Treating it as a time-varying coefficient
may cause loss in efficiency; if log(CD4) is a surrogate marker, the treatment effect
should be a constant zero after adjustment of log(CD4).

In addition, the kernel-based approach in Song and Wang (2008) is computa-
tionally intensive and has a number of undesirable features that severely impede
its use in practice. First, time-varying coefficients may vary in different ways. It is
desirable to allow a separate level of smoothing for each coefficient to achieve op-
timal efficiency. However, restricted by a single smoothing parameter (bandwidth),
the kernel approach cannot provide different smoothing levels for the coefficients.
Second, to obtain an estimate of the coefficient function, the estimating equations
need to be solved at each time point of a dense time grid and can be computation-
ally intensive. Third, to select the bandwidth, cross-validation is usually adopted,
which imposes additional burden in computation. Fourth, when some coefficients
are constant, backfitting may be adopted to estimate these coefficients. However,
it will induce further complexity and intensity in computation.

This motivates an effort to develop a more flexible and efficient method to assess
the effect of surrogate markers and treatment in biomedical studies. In this paper
we propose using a partially time-varying coefficient proportional hazards model



PARTIALLY TIME-VARYING PROPORTIONAL HAZARDS MODELS 277

which allows inclusion of both constant and time-varying covariates in the pres-
ence of measurement error. This hybrid model attempts to preserve the simplicity
and efficiency when some covariates are time independent, and offers flexibility in
assessing both constant and varying covariate effects on survival times. A BIC-type
criterion is proposed to determine if the coefficients are constant or time varying.

We consider estimation of the coefficients using a polynomial spline approach
[Nan et al. (2005)], where each time-varying coefficient is approximated by a B-
spline function. To deal with the measurement error, we adopt the corrected score
and conditional score approaches for their robustness and computational easiness.
The polynomial spline-based estimators are global in terms of optimization, and
thus it is enough to solve only one estimating equation to obtain the spline esti-
mator. By taking advantage of spline approximation, our method is much more
efficient in computation without solving the estimating equations at every time
point as in kernel-based procedures, and allows different amounts of smoothing
for different time-varying coefficients; see more advantages of the spline approach
in Huang (1999), Huang and Liu (2006) and Wang and Yang (2007).

To our knowledge, our method represents the first attempt at investigation of the
partially time-varying coefficient model for the analysis of intermittently measured
longitudinal data and survival data under the joint model framework, although this
model has been studied when all covariates are observed entirely at the failure
times and without errors [Cai et al. (2008)]. Methodology proposed in this paper
would have immediate applicability in a wide range of biomedical and epidemio-
logical studies for dealing with survival data with longitudinal covariates measured
with errors.

The rest of the article is organized as follows. We define the model in Section 2.
The corrected score and conditional score estimators are proposed in Section 3
based on B-spline basis expansions. The performance of the estimators is assessed
by simulations in Section 4, and illustrated by an application to the ACTG 175
data in Section 5. Section 6 investigates the misspecification issue of the hazard
model. The paper concludes with a discussion in Section 7. The asymptotic prop-
erties of the proposed estimators and the corresponding proofs are provided in the
Supplementary Material [Song and Wang (2017), Web Appendices A and B].

2. Model.

2.1. Model definition. Assume that the survival time T of an individual is
subject to right censoring, and C is the underlying censoring time. Denote the
observed survival or censoring time by V = min(T ,C), and � = I (T ≤ C) is
the indicator for failure, where I (·) is the indicator function. Suppose the survival
time depends on K possible time-dependent covariates with the value H(u) =
(H1(u), . . . ,HK(u))T at time u. The kth covariate process Hk(u) (k = 1, . . . ,K)
is only observed at mk time points tk = (tk1, . . . , tkmk

) with the measures denoted
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by Wk = (Wk1, . . . ,Wkmk
)T . This general setting allows including error-free time-

independent covariates with mk = 1 and Wk = Xk . For example, in the ACTG
175, treatment was time-independent, and CD4 count was measured about every
12 weeks. Let W = (WT

1 , . . . ,WT
K)T denote the longitudinal observations of the K

covariates, and let t = (t1, . . . , tK), m = (m1, . . . ,mK) be the observation times.
Using subscript i to denote variables for the ith subject, the observed dataset is
{(Vi,�i,W i , t i ,mi ) : i = 1, . . . , n}.

We assume the longitudinal covariate processes such as log(CD4) follow the
linear mixed-effects models. Specifically, for k = 1, . . . ,K and j = 1, . . . ,mik ,

(2.1) Wikj = Hik(tikj ) + eikj , Hik(u) = ζ T
ikfk(u),

where fk(u) is a known qk-dimensional function of u, and ζik is a qk-dimensional
random effect. We allow fk and ζik to be different for each k, and no distributional
assumption is placed on ζik . This allows flexible modeling of the time trajectory
of each covariate. For time-independent covariates such as treatment, fk(u) = 1,
and eikj = 0. The errors eikj are assumed to be normally distributed with mean
zero and variance σkk . For simplicity, we assume the errors are independent across
time; however, this assumption can be relaxed as discussed in Section 7. We allow
measurements on different covariates at the same time to be correlated. Let σkk′ be
the covariance between errors from covariates k and k′ measured at the same time
point. Let ei = (eT

i1, . . . , e
T
iK)T , where eik = (eik1, . . . , eikmik

)T , and define ζi and
ti similarly. We assume that ei is independent of (Ti,Ci, ζi) given ti .

Without loss of generality, suppose the first K1 covariates X(u) have constant
effects on survival, and the rest of the K2 covariates Z(u) have time-varying effect
on survival; that is, H(u) = (XT (u),ZT (u))T , and K = K1 + K2. For example,
in the ACTG 175 data, the covariate X(u) may be treatment and Z(u) may be
log(CD4). We assume a partially time-varying coefficient proportional hazards
model for the relationship between the hazard of failure and the covariates, under
which the hazard for subject i:

λi(u|H) = lim
du→0

du−1 Pr
(
u ≤ Ti < u + du|Ti ≥ u, ζi,Ci, ti(u), ei(u)

)
(2.2)

= λ0(u) exp
{
βT

0 Xi(u) + αT
0 (u)Zi(u)

}
.

Here λ0(u) is an unspecified baseline hazard; β0 is a length-K1 vector of regression
parameters, and α0(u) is a length-K2 vector of smooth functions; ti(u) = {tikj :
tikj < u, k = 1, . . . ,K, j = 1, . . . ,mik(u)} denotes the observation times by time
u with mik(u) being the number of observation times before u for the ith subject
and kth covariate; and ei(u) = {eikj : tikj < u, k = 1, . . . ,K, j = 1, . . . ,mik(u)}.
Model (2.2) subsumes the standard proportional hazards model (K2 = 0) and the
varying-coefficient model (K1 = 0). It implicitly assumes that censoring, timing of
measurements, and covariate measurement errors are noninformative. Our interest
focuses on estimation of η0(u) = (βT

0 , αT
0 (u))T . Estimation of the cumulative haz-

ard function is discussed in Section 7.
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3. Approaches. For now, we assume the error variances and covariances
σkk′ : k, k′ = 1, . . . ,K are known. Let α0k(u) be the kth component of α0(u). To
estimate α0(u), a smoothing technique such as basis expansion is usually adopted.
Various basis systems, including the Fourier bases, polynomial bases and B-spline
bases, can be used in the basis expansion. For simplicity of implementation and
fast computation, we use the B-spline basis expansion to do the approximation. Let
nk be the number of interior knots, and let p be the order of spline. Then α0k(u)

can be approximated well by a spline function so that α0k(u) ≈ ∑Lk

l=1 γ0klBkl(u),

where {Bkl(u)}Lk

l=1 is a set of basis functions, and Lk = nk + p is the number of
basis functions in approximating the function α0k(u). Then model (2.2) becomes

(3.1) λi(u) ≈ λ0(u) exp

{
βT

0 Xi(u) +
K2∑
k=1

Lk∑
l=1

γ0klBkl(u)Zik(u)

}
.

The right side of (3.1) has a form of the standard proportional hazards model. Thus
joint modeling approaches under the standard proportional hazards model could be
applied to obtain an estimate θ̂ of θ0 = (βT

0 , γ T
0 )T , where γ0 = (γ T

01, . . . , γ
T
0K2

)T ,
and γ0k = (γ0k1, . . . , γ0kLk

) for k = 1, . . . ,K2. Then an estimate of α0k(u) is
α̂k(u) = ∑Lk

l=1 γ̂klBkl(u).
The polynomial splines were also used by Huang (1999) in the partially lin-

ear Cox models. The interior knots of the splines can be either equally spaced or
placed on the sample quantiles of the failed events so that there are about the same
numbers of failed events between any two adjacent knots.

Using the basis expansion, the approximated model (3.1) has a standard pro-
portional hazards form. Thus approaches under the standard proportional hazards
model could be applied. Here we focus on the corrected score [Song and Wang
(2008), Wang (2006)] and conditional score [Song, Davidian and Tsiatis (2002a),
Tsiatis and Davidian (2001)] approaches, as they are easy to compute and require
no distributional assumptions on the random effects.

Corrected score. Let R(u) = (XT (u),ZT (u)B(u))T be the vector of “covari-
ates” in (3.1), where

B(u) =

⎡
⎢⎢⎢⎢⎣
B11(u) · · · B1L1(u) 0 · · · 0 0 · · · 0

0 · · · 0 B21(u) · · · B2L2(u) 0 · · · 0
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 BK21(u) · · · BK2LK2
(u)

⎤
⎥⎥⎥⎥⎦

is a K2 × L matrix and L = ∑K2
k=1 Lk . Let Ĥik(u) be the least square estima-

tor of Hik(u) using the observations Wikj by time u, X̂(u) = (Ĥi1(u), . . . , ĤiK1),
Ẑ(u) = (Ĥi(K1+1)(u), . . . , ĤiK), and Ĥ (u) = (X̂T (u), ẐT (u))T . Define Ni(u) =
I (Vi ≤ u,�i = 1,mik(u) ≥ qk, k = 1, . . . ,K) as the counting process for the fail-
ure events, and define Yi(u) = I (Vi ≥ u,mik(u) ≥ qk, k = 1, . . . ,K) the “at-risk”
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process. Let η(u) = (βT , γ T BT (u))T , and let θ = (βT , γ T )T . The corrected score
estimating equation for θ can be written as

(3.2) Uc
n(θ) = n−1

n∑
i=1

∫ τ

0

[
R̂i(u) + �Ri

(u)θ − Sc
n(u, η)[R̂]

Sc
n(u, η)[1]

]
dNi(u) = 0

for a fixed time τ . Here R̂(u) = (X̂T (u), ẐT (u)B(u))T is the least square es-
timator of Ri(u) using all the observations by time u; �Ri

(u) is the variance
of R̂(u) conditional on ti(u); and for a scalar, vector or matrix g, Sc

n(t, η)[g] =
n−1 ∑n

i=1 Sc
ni(t, η)[g] with

Sc
ni(t, η)[g] = Yi(t)gi exp

{
ηT (u)Ĥi(u)−ηT (u)�Hi

(u)η(u)/2
}
.

The corrected score estimating function can be viewed as a “correction” of
the naive regression function with the correction term �Ri

(u)θ . The variance
�Ri

(u) = BT∗ (u)�Hi
(u)B∗(u), where �Hi

(u) is the variance of Ĥi(u) conditional
on ti(u), and

B∗(u) =
(
IK1×K1 0K1×L

0K2×K1 B(u)

)

with IK1×K1 denoting a K1 ×K1 identity matrix and 0r×s denoting an (r × s) zero
matrix.

Conditional score. The conditional score estimating equation [Song, Davidian
and Tsiatis (2002a)] for θ can be written as

(3.3) Ud
n (θ) = n−1

n∑
i=1

∫ τ

0

[
R̂∗

i (u) − Sd
n (u, η)[R̂∗

i ]
Sd

n (u, η)[1]
]
dNi(u) = 0,

where R̂∗
i (u) = R̂i(u) + �Ri

(u)θ dNi(u) is a “ sufficient statistic” for Ri(u), for a
scalar, vector or matrix g, Sd

n (u, η)[g] = n−1 ∑n
i=1 Sd

ni(u, η)[g] with

Sd
ni(u, η)[g] = Yi(u)gi exp

{
ηT (u)Ĥ ∗

i (u) − ηT (u)�Hi
(u)η(u)/2

}
and Ĥ ∗

i (u) = Ĥi(u) + �Hi
(u)η(u)dNi(u). Noting that R̂∗

i (u) dNi(u) = {R̂i(u) +
�Ri

(u)θ}dNi(u), the estimating function (3.3) differs from (3.2) only in the ratio
term with Sd

n (u, η)[R̂∗
i ]/Sd

n (u, η)[1] versus Sc
n(u, η)[R̂]/Sc

n(u, η)[1].
As the standard conditional score and corrected score approaches, once the

spline basis functions are chosen, the proposed conditional score and corrected
score estimators can be obtained by solving the corresponding estimating equation
via efficient Newton–Raphson methods with an appropriate starting point such as
the naive regression estimator.

Under some regularity conditions, we can show that the corrected score estima-
tor η̂c(u) = (β̂cT , γ̂ cT BT (u))T solving (3.2) and the conditional score estimator
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η̂d(u) = (β̂dT , γ̂ dT BT (u))T solving (3.3) are consistent. In addition, β̂c and β̂d

are asymptotically normal. The details and the proofs are outlined in the Sup-
plementary Material [Song and Wang (2017), Web Appendices A and B]. The
asymptotic distribution result enables us to construct confidence intervals for the
coefficients simultaneously.

When �Hi
(u) is unknown, it can be estimated by the method of moments esti-

mator �̂Hi
(u) as in Song, Davidian and Tsiatis (2002a). The corrected score and

conditional score estimates can be obtained by substituting �̂Hi
(u) for �Hi

(u) in
(3.2) and (3.3). It can be easily shown that �̂Hi

(u) is a root-n consistent estimator
of �Hi

(u). Replacing �Hi
(u) with �̂Hi

(u) does not affect the convergence rate of
the corrected score and conditional score estimators and the asymptotic normality.
The asymptotic variance can be estimated by stacking the estimating function for
�Hi

(u) and the estimating function for (3.2) or (3.3).

4. Simulation studies. Simulation studies were conducted to evaluate the per-
formance of the approaches. We considered the case of three covariates Xi(u) =
ζi10, Zi1(u) = ζi20 + ζi21u, and Zi2(u) = ζi30 + ζi31

√
u, where

(ζi10, ζi20, ζi21, ζi30, ζi31) had a normal distribution or a mixture of two normal
distributions [mixing proportion p = 0.3, and the distance between the means
(1,μ,−0.01,4,−0.01) and (1,−μ,−0.01,4,−0.01) was 2 times the common
standard deviation], with mean (1,5,−0.01,4,−0.01), variance (1,1,0.004,

1,0.003) and a common correlation corr = 0.25 between any two compo-
nents. The covariates Zi1(u) and Zi2(u) were measured longitudinally at times
0,2,4,8,12,24,36, . . . ,180 with normal measurement errors. The variances of
the errors σ11 = σ22 were 0.08 or 0.16. The true regression coefficients were
β0 = −1.5, α01(u) = −0.5 sin(uπ/90)−1.8, and α02(u) = 0.3 log(u/5+1)−1.5.
The baseline hazard was taken to be λ0(u) = I (u > 8)u0.8 exp(−u0.01 + 3). Cen-
soring time was generated from an exponential distribution with mean 800 and
truncated at u = 180, leading to a censoring rate of 48%.

We used quadratic splines and equally spaced knots in the simulations. The
number of knots was selected by a BIC-type criterion, specifically, by minimizing
−2Ln(θ) + nplog(n), where np is the number of parameters, and

Ln(θ) = n−1
∫ τ

0

{
θT (u)Ri(u) − logSn(u, η)[1]}dNi(u)

is the log partial likelihood function, where Sn(t, η)[1] = n−1 ∑n
i=1 Sni(t, η)[1]

with Sni(t, η)[1] = Yi(t) exp{ηT (u)Hi(u)}. For corrected score and conditional
score approaches, we used the corrected log partial likelihood function

(4.1) Lc
n(θ) = n−1

∫ τ

0

{
θT (u)R̂i(u) − logSc

n(u, η)[1]}dNi(u).

For each scenario, we generated 500 simulated datasets with sample size n =
500 or 1000. For each dataset, the regression coefficients α01(u) and α02(u) were
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approximated by the B-spline and estimated in five ways: (i) using the “ideal” ap-
proach (Ideal) where the true values of Xi(u) were used; (ii) using the naive regres-
sion (NR) approach; (iii) using the risk set regression calibration (RC) approach
[Tsiatis and Davidian (2001)]; (iv) using the conditional score (CDS) approach;
and (v) using the corrected score (CRS) approach. Ideally, implementation of the
RC approach requires one to fit a linear mixed-effects model at each event time.
This is prohibitive in simulations as the number of linear mixed-effects model fit-
ting will be overwhelming. Instead, we used a strategy that has been used in Tsiatis
and Davidian (2001) and only fitted the linear mixed-effects model using available
data up to the 10th, 20th, . . . , and 100th percentiles. Our preliminary studies in-
dicate that the difference between the full risk set regression calibration and the
simplified modification is negligible.

To evaluate the performance of the approaches, for each time-varying coeffi-
cient, we calculated the average of the mean absolute bias (bias) at equally spaced
grids between the 5th and 95th percentiles of the observed survival times with in-
crement 1, where the absolute bias at time u equals |α̂k(u) − α0(u)| (k = 1,2),
across the simulated datasets. Similarly, we calculated the average of the mean
standard deviation (SD), mean standard error (SE) and mean coverage probability
(CP) of 95% Wald confidence intervals based on the approximated model (3.1).
For the constant coefficient, we gave the same statistics except replacing the mean
absolute bias by the bias. We also report the nonconvergence (NC) rate for each
estimation approach.

The results for the normal covariates are shown in Table 1, and the results for the
mixture of normal covariates are given in Table 2. The CDS estimates have bias and
coverage probabilities close to the ideal estimates, and the performance improves
with the sample size increasing. In contrast, the NR and RC estimates are biased,
and the coverage probabilities are way below the nominal level, which worsen
with increased sample size. This is more dramatic for the NR approach. The CRS
approach does not converge or has outlier estimates for some simulated datasets,
especially when the measurement error is relatively large and the sample size is
relatively small. The nonconvergence rates are more than 70% for n = 500 and
σkk = 0.16. The estimates have larger bias and standard deviations than the CDS
estimates, although the discrepancy decreases with the sample size increasing. In
Figures 2 and 3, the true time-varying coefficients α1(u) and α2(u) are overlaid by
the estimates and the 95% pointwise Wald confidence intervals, which conform to
the results in Tables 1 and 2.

To assess the impact of the correlations between the covariates, we also ran
simulations under different correlations between the random effects. Table 3 shows
the results for corr = 0,0.25,0.5,0.75 in the case of normal random effects with
sample size n = 1000 and σkk = 0.16, which indicate that the empirical standard
deviations increase with the increase of correlations. The results for the CRS are
not presented due to the high rate of nonconvergence.



PA
R

T
IA

L
LY

T
IM

E
-V

A
R

Y
IN

G
PR

O
PO

R
T

IO
N

A
L

H
A

Z
A

R
D

S
M

O
D

E
L

S
283

TABLE 1
Simulation results in the case of normal random effects

β α1 α2

bias SD SE CP bias SD SE CP bias SD SE CP NC (%)

n = 500
ideal −0.021 0.097 0.102 0.960 0.036 0.136 0.132 0.940 0.021 0.130 0.123 0.942 0

σkk = 0.08 NR 0.109 0.096 0.097 0.784 0.141 0.131 0.120 0.706 0.058 0.128 0.118 0.878 0
RC 0.096 0.097 0.097 0.820 0.117 0.132 0.123 0.771 0.045 0.131 0.121 0.904 0

CDS −0.045 0.127 0.119 0.926 0.069 0.179 0.152 0.900 0.036 0.159 0.135 0.908 0
CRS −0.128 0.160 0.152 0.901 0.176 0.229 0.209 0.905 0.077 0.180 0.159 0.918 4.8

σkk = 0.16 NR 0.199 0.097 0.094 0.428 0.265 0.126 0.113 0.407 0.110 0.127 0.115 0.739 0
RC 0.178 0.097 0.094 0.518 0.224 0.130 0.117 0.487 0.083 0.131 0.120 0.824 0

CDS −0.064 0.155 0.136 0.906 0.097 0.219 0.176 0.882 0.048 0.188 0.154 0.899 0
CRS −0.172 0.209 0.375 0.974 0.214 0.287 0.509 0.960 0.086 0.209 0.270 0.944 77.0

n = 1000
ideal −0.011 0.072 0.070 0.946 0.018 0.093 0.089 0.939 0.012 0.085 0.083 0.945 0

σkk = 0.08 NR 0.130 0.068 0.066 0.488 0.172 0.088 0.081 0.469 0.071 0.085 0.080 0.779 0
RC 0.115 0.069 0.067 0.580 0.148 0.089 0.082 0.552 0.056 0.087 0.081 0.829 0

CDS −0.017 0.091 0.084 0.926 0.028 0.124 0.107 0.910 0.015 0.107 0.094 0.921 0
CRS −0.056 0.102 0.092 0.904 0.078 0.145 0.122 0.892 0.035 0.115 0.100 0.912 0

σkk = 0.16 NR 0.222 0.067 0.064 0.076 0.299 0.085 0.075 0.196 0.126 0.084 0.078 0.558 0
RC 0.199 0.067 0.064 0.136 0.256 0.086 0.078 0.240 0.098 0.087 0.081 0.671 0

CDS −0.028 0.113 0.098 0.910 0.044 0.157 0.127 0.891 0.021 0.128 0.109 0.910 0
CRS −0.115 0.145 0.148 0.911 0.142 0.195 0.207 0.926 0.055 0.147 0.142 0.934 36.8

NR, naive regression; RC, regression calibration; CDS, conditional score; CRS, corrected score; bias, average of estimated bias or absolute bias for β or
α(u); SD, empirical standard deviation across simulated datasets; SE, average of estimated standard errors; CP, coverage probability of the 95% Wald
confidence interval; NC, nonconvergence rate.
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TABLE 2
Simulation results in the case of mixture of normal random effects

β α1 α2

bias SD SE CP bias SD SE CP bias SD SE CP NC (%)

n = 500
ideal −0.021 0.107 0.103 0.946 0.035 0.164 0.154 0.936 0.021 0.146 0.141 0.941 0

σkk = 0.08 NR 0.115 0.100 0.097 0.740 0.181 0.152 0.139 0.672 0.093 0.153 0.135 0.852 0
RC 0.104 0.100 0.097 0.786 0.144 0.156 0.143 0.745 0.075 0.153 0.138 0.879 0

CDS −0.034 0.130 0.118 0.932 0.064 0.221 0.183 0.908 0.027 0.198 0.161 0.899 0
CRS −0.111 0.162 0.152 0.909 0.155 0.226 0.214 0.916 0.061 0.179 0.160 0.917 5.4

σkk = 0.16 NR 0.204 0.099 0.094 0.424 0.323 0.147 0.128 0.348 0.156 0.151 0.131 0.700 0
RC 0.186 0.100 0.094 0.488 0.260 0.154 0.136 0.461 0.120 0.154 0.136 0.790 0

CDS −0.050 0.158 0.134 0.912 0.095 0.281 0.216 0.891 0.038 0.242 0.186 0.887 0
CRS −0.175 0.203 0.266 0.971 0.204 0.312 0.510 0.971 0.067 0.251 0.308 0.934 72.6

n = 1000
ideal −0.017 0.071 0.071 0.948 0.024 0.092 0.090 0.939 0.009 0.086 0.083 0.941 0

σkk = 0.08 NR 0.120 0.071 0.067 0.540 0.167 0.088 0.081 0.476 0.073 0.086 0.080 0.788 0
RC 0.107 0.071 0.067 0.622 0.142 0.089 0.083 0.560 0.059 0.087 0.082 0.842 0

CDS 0.033 0.096 0.085 0.912 0.039 0.124 0.108 0.910 0.014 0.107 0.095 0.920 0
CRS −0.075 0.108 0.093 0.874 0.092 0.144 0.122 0.876 0.034 0.116 0.101 0.914 0.2

σkk = 0.16 NR 0.211 0.071 0.064 0.136 0.294 0.085 0.076 0.204 0.126 0.086 0.078 0.560 0
RC 0.191 0.070 0.065 0.200 0.252 0.087 0.079 0.253 0.100 0.088 0.081 0.675 0

CDS 0.048 0.119 0.099 0.886 0.057 0.156 0.127 0.892 0.022 0.128 0.110 0.913 0
CRS 0.154 0.156 0.167 0.915 0.171 0.203 0.226 0.917 0.060 0.155 0.148 0.932 41.0

NR, naive regression; RC, regression calibration; CDS, conditional score; CRS, corrected score; bias, average of estimated bias or absolute bias for β or
α(u); SD, empirical standard deviation across simulated datasets; SE, average of estimated standard errors; CP, coverage probability of the 95% Wald
confidence interval; NC, nonconvergence rate.
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FIG. 2. Estimates (center curves) of α1(u) and α2(u) with 95% pointwise confidence intervals
(outer curves) in the case of normal random effects. NR, naive regression; RC, regression calibration;
CDS, conditional score; CRS, corrected score.



286 X. SONG AND L. WANG

FIG. 3. Estimates (center curves) of α1(u) and α2(u) with 95% pointwise confidence intervals
(outer curves) in the case of mixture of normal random effects. NR, naive regression; RC, regression
calibration; CDS, conditional score; CRS, corrected score.
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TABLE 3
Simulation results under various correlation values (corr) between the random effects in the case of normal covariates with n = 1000 and σkk = 0.16

β α1 α2

bias SD SE CP bias SD SE CP bias SD SE CP

corr = 0.00 ideal −0.013 0.069 0.067 0.952 0.021 0.085 0.084 0.945 0.006 0.080 0.077 0.948
NR 0.225 0.067 0.061 0.076 0.274 0.078 0.072 0.194 0.127 0.080 0.074 0.534
RC 0.211 0.067 0.061 0.086 0.246 0.079 0.074 0.228 0.096 0.082 0.076 0.695

CDS −0.028 0.107 0.094 0.908 0.041 0.133 0.117 0.916 0.015 0.115 0.100 0.910

corr = 0.25 ideal −0.011 0.072 0.070 0.946 0.018 0.093 0.089 0.939 0.012 0.085 0.083 0.945
NR 0.222 0.067 0.064 0.076 0.299 0.085 0.075 0.196 0.126 0.084 0.078 0.558
RC 0.199 0.067 0.064 0.136 0.256 0.086 0.078 0.240 0.098 0.087 0.081 0.671

CDS −0.028 0.113 0.098 0.910 0.044 0.157 0.127 0.891 0.021 0.128 0.109 0.910

corr = 0.50 ideal −0.010 0.081 0.077 0.944 0.017 0.099 0.096 0.943 0.011 0.102 0.096 0.937
NR 0.203 0.080 0.072 0.234 0.315 0.092 0.081 0.237 0.129 0.098 0.089 0.584
RC 0.174 0.080 0.072 0.348 0.259 0.093 0.085 0.285 0.103 0.102 0.092 0.691

CDS −0.028 0.129 0.108 0.888 0.047 0.176 0.141 0.895 0.025 0.151 0.128 0.911

corr = 0.75 ideal 0.006 0.099 0.095 0.930 0.037 0.150 0.135 0.929 0.022 0.130 0.125 0.940
NR 0.137 0.098 0.091 0.670 0.248 0.140 0.119 0.451 0.135 0.127 0.114 0.662
RC 0.120 0.098 0.091 0.716 0.194 0.142 0.123 0.497 0.109 0.130 0.119 0.761

CDS −0.015 0.149 0.130 0.916 0.075 0.234 0.182 0.888 0.035 0.209 0.177 0.915

NR, naive regression; RC, regression calibration; CDS, conditional score; bias, average of estimated bias or absolute bias for β or α(u); SD, empirical
standard deviation across simulated datasets; SE, average of estimated standard errors; CP, coverage probability of the 95% Wald confidence interval.
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In the simulation studies, for each method and each time-varying coefficient,
three knots were selected for more than 90% of the simulated datasets. To evaluate
the effect on the estimation of the variance of the estimators due to ignoring of the
variability induced by the choice of the number of knots, we compared the results
with those when the number of knots are fixed at three. There is only slight inflation
in the empirical standard deviations when the number of knots are selected by BIC.

In the ACTG 175 study, the error seems short tailed compared to the normal
and close to a scaled t-distribution with degrees of freedom 4 (see Section 5).
Thus we conducted simulations under the same scenario as for Table 1 except that
the error for Zi1(u) was generated from a scaled t-distribution with degree 4. We
show the results for n = 500 in Table 4. The results are mostly similar to those in
Table 1. The CDS approach has slightly lower coverage probability when the error
variances equal 0.16.

We also conducted simulations to compare the proposed spline-based ap-
proaches and the kernel-based approaches in Song and Wang (2008). Since the
latter cannot be directly applied to the partially time-varying coefficient model
with constant coefficients, we only considered the simpler time-varying coeffi-
cient model without constant coefficients. The simulation setting was taken to
be the same as in Song and Wang (2008) with a single time-dependent covari-
ate Zi(u) = ζi0 + ζi1u, error variance 0.4, the true regression coefficient α0(u) =
0.3 log(u/5 + 1) − 1.5, and the observed survival time between [0,80]. Differ-
ent from the spline-based approaches, the kernel-based approaches require sep-
arate runs to get the estimates of α0(u) at different time points. In addition, the
threefold cross-validation was used to select the bandwidth which requires esti-
mation of α0(u) at each failure time for each “fold.” We calculated the “ideal,”
NR and CDS estimates with either spline or kernel approximation at a grid of
points u = 20,30, . . . ,60. The results from 100 simulated datasets with n = 600
are shown in Table 5, which indicates that the spline approaches are comparable
to the kernel-based approaches in estimation of α0(u). However, the spline-based
approaches are much more computationally efficient. For each dataset, it took on
average about 22 seconds to obtain the spline-based estimates on a PC with Intel
Xeon CPU X5355 @ 2.66GHz, while about 41 minutes to obtain the kernel-based
estimates. All approaches were implemented in C++.

5. Application. We applied the approaches to the ACTG 175 data. We were
interested in evaluating CD4 count as a potential surrogate marker, and thus needed
to assess the effect of treatment on time to AIDS or death adjusted for CD4 count.
According to Prentice (1989), a surrogate marker should satisfy two conditions: (i)
the marker should be prognostic for clinical outcome; (ii) the risk of progression
given the marker should be independent of treatment.

In the ACTG 175 study, there were 308 events with an average of 8.2 CD4
measurements per subject. Figure 4 presents log10 transformed CD4 profiles for 10
randomly selected subjects and shows an initial increase, with a peak at week 12,
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TABLE 4
Simulation results in the case of nonnormal error

β α1 α2

bias SD SE CP bias SD SE CP bias SD SE CP NC (%)

n = 500
ideal −0.023 0.100 0.103 0.962 0.031 0.129 0.131 0.954 0.012 0.124 0.121 0.944 0

σkk = 0.08 NR 0.112 0.105 0.097 0.744 0.155 0.133 0.119 0.685 0.068 0.124 0.117 0.865 0
RC 0.097 0.106 0.097 0.778 0.130 0.134 0.121 0.753 0.053 0.126 0.119 0.894 0

CDS −0.031 0.139 0.119 0.918 0.037 0.191 0.152 0.903 0.016 0.154 0.134 0.910 0.2
CRS −0.113 0.170 0.159 0.914 0.140 0.249 0.224 0.918 0.057 0.178 0.163 0.921 4.2

σkk = 0.16 NR 0.203 0.110 0.094 0.408 0.282 0.136 0.111 0.374 0.123 0.124 0.114 0.729 0
RC 0.181 0.111 0.094 0.512 0.240 0.139 0.115 0.465 0.094 0.128 0.118 0.805 0

CDS −0.036 0.180 0.136 0.876 0.046 0.275 0.182 0.858 0.026 0.204 0.155 0.889 0.2
CRS −0.127 0.230 0.254 0.942 0.119 0.326 0.342 0.912 0.055 0.218 0.220 0.923 58.8

NR, naive regression; RC, regression calibration; CDS, conditional score; CRS, corrected score; bias, average of estimated bias or absolute bias for β or
α(u); SD, empirical standard deviation across simulated datasets; SE, average of estimated standard errors; CP, coverage probability of the 95% Wald
confidence interval; NC, nonconvergence rate.



290 X. SONG AND L. WANG

TABLE 5
Simulation results comparing the spline- and kernel-based approaches

α

bias SD SE CP

Kernel ideal 0.016 0.060 0.059 0.958
NR 0.074 0.059 0.056 0.658

CDS 0.030 0.099 0.085 0.934

Spline ideal 0.007 0.069 0.072 0.976
NR 0.061 0.069 0.066 0.796

CDS 0.012 0.104 0.091 0.934

NR, naive regression; CDS, conditional score; bias, absolute bias; SD, empirical standard deviation
across simulated datasets; SE, average of estimated standard errors; CP, coverage probability of the
95% Wald confidence interval.

followed by an approximate linear decline. Because only nine events occurred
before week 12, for simplicity, we considered the data including and after week 12.
These included 2266 subjects with at least one CD4 observation, among which
there were 286 events with 273 events occurring after two CD4 measurements.

To achieve approximate within-subject normality and constant variance, we ap-
plied base-10 logarithmic transformation to CD4 measurements. The trajectory
of log(CD4) seemed approximately linear after week 12. Thus we assumed that
Zi(u) = αi10 + αi11u represented the inherent log(CD4) count for subject i at
time u. Figure 5 shows the residual plots from the least square estimates and the
corresponding normal Q–Q plot and t Q–Q plot with degrees of freedom 4. It
seems reasonable to assume constant error variance, and the error distribution may
be short tailed relative to the normal and close to the scaled t-distribution with

FIG. 4. Trajectories of log(CD4) for 10 randomly selected subjects.
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FIG. 5. Left: residual plot; right, Q–Q plot of the residuals.

degrees of freedom 4. The estimated error variance was 0.011, which was about
42% of the estimated baseline CD4 variance.

As the original analysis found that zidovudine alone was inferior to the other
three therapies [Hammer et al. (1996)], we focused on two treatment groups, zi-
dovudine alone and the combination of the other three. Let Xi = I (treatment 	=
zidovudine alone). We proceeded to the main analysis below.

To assess the association of log(CD4) as a surrogate marker, we fitted three
models: (1) the hazard model with the treatment Xi only; (2) the hazard model
with the log(CD4) Zi(u) only; (3) the hazard model with both the treatment and
log(CD4). For each model, we used the BIC criterion described in Section 4 to
determine if the coefficients are constant or time varying and to select the number
of knots for spline smoothing.

Model (1) included only a time-independent covariate (treatment), and it was
fitted via the standard partial likelihood approach after the spline approximation.
Models (2) and (3) included a time-dependent covariate log(CD4), and we fitted
them using the NR, RC and CDS approaches. BIC is used for model selection with
the number of deaths used as effective sample size. For models (1) and (2), BIC is
smallest when the coefficient is time varying with one interior knot. For model (3),
BIC is smallest when the coefficient for treatment is constant and the coefficient
for log(CD4) is time varying with one interior knot; this conforms to what we have
observed in Figure 1. The CRS estimates were unstable and are not shown.

The estimated regression coefficients and the 95% pointwise confidence inter-
vals are shown in Figure 6. Treatment alone [model (1)] shows a significant effect,
and the magnitude of effect seems attenuated toward zero over time and may dis-
appear eventually around week 130. For model (2), the results from the CDS, NR
and RC approaches all show that log(CD4) alone has a significant effect over time,
indicating larger log(CD4) is associated with longer time to AIDS or death, which
confirms Prentice’s condition (i) that log(CD4) is prognostic for survival time.
However, the results differ considerably; the CDS estimate suggests the effect of
log(CD4) decreases obviously before 80 weeks and levels off afterward; the NR
shows a similar trend but the decrease is more modest before 80 weeks; in contrast,
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FIG. 6. (a) Estimation of regression coefficients (center curves) and 95% pointwise confidence
intervals (outer curves) for the ACTG 175 data under the partially varying coefficient proportional
hazards models including (a) treatment only; (b) log(CD4) only; (c) treatment and log(CD4); and
(d) under the standard proportional hazard model including treatment and log(CD4). The left panel
is for the coefficient of treatment, and the right panel is for the coefficient of log(CD4). NR, naive
regression; RC, regression calibration; CDS, conditional score.
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the RC suggests an almost linear trend in decreasing with the rate intermediate be-
tween those of the CDS and NR estimates before week 80. For model (3), both the
NR and CDS results show that the treatment effect is no longer significant after ad-
justment for log(CD4), which supports Prentice’s condition (ii) that the effect of
treatment is mediated through log(CD4). The confidence bands are narrower than
those in Figure 1, which implies possible improvement of efficiency, although the
kernel estimates lead to the same inference. These results are in marked contrast
to the conclusion that would be reached from the RC approach, which shows a
significant treatment effect even after adjustment.

As for comparison, we also show the estimated coefficients under the stan-
dard proportional hazards model; see Figure 6(d). For each approach, the effect
of log(CD4) looks like some kind of average of the effect under model (3), and
the effect of treatment is similar. Thus we reach the same conclusion in assessing
the surrogacy of log(CD4) even though the hazard model may be misspecified.
A possible explanation is given in Section 6.

The proposed spline approach and the kernel approach in Song and Wang (2008)
were both implemented in C++. The computing time to get the NR and CDS es-
timates in Figure 6(c) was 27 seconds on a PC with Intel Xeon CPU X5355 @
2.66GHz. In contrast, it took 24 minutes to get the kernel estimates in Figure 1
at time points 1,2, . . . ,170 weeks, which would be longer if the time points were
denser. This indicates that the spline approach is much more efficient in computa-
tion.

6. Misspecification of standard proportional hazards model. Consider the
ideal case that all covariates are observed without error through the time. If the
time-varying coefficients in model (2.2) are misspecified as constants, which re-
duce to the standard proportional hazards model, it can be shown that there is
a unique solution η̂mis to the partial likelihood estimating equation based on the
misspecified model, and η̂mis converges to a constant vector ηmis; see Web Ap-
pendix C for the convergence result. However, the limit may be far off from the
truth. Consider a hypothetical example of a clinical trial comparing an interven-
tion with a control. Suppose that Xi∼binomial(0.5) is an indicator of treatment
group, which equals 0 if i is in the control group and 1 otherwise, and a surro-
gate marker Zi(u) = ζi0 + ζi1u, where ζi = (ζi0, ζi1) is normally distributed. The
hazard of event is λi(u) = λ0(u) exp{β0Xi(u)+α0(u)Zi(u)}, where λ0(u) = 0.4I

(u ≥ 5) represents the case that the hazard can be ignored at the beginning of the
study, β0 = 0 indicates that the treatment effect is mediated through the surrogate
marker, and α0(u) = 0.5log{(uI (u < 90) + 90I (u ≥ 90))/5 + 1} − 1.5 shows a
marker effect that diminishes before u = 90 and becomes stable afterward (Fig-
ure 7).

We consider two cases: (1) The mean of the random effect ζi equals (2.5915,

−0.00315I (Xi = 0)−0.00198I (Xi = 1)), and the variance of ζi equals (0.02408,

0.000014) with covariance −0.00008 [obtained by fitting a mixed-effects model
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FIG. 7. Misspecification of partially time-varying proportional hazards model. Left: time-varying
coefficient; right, constant coefficient.

to log(CD4) in the ACTG175 data]; that is, the means are the same for the control
and intervention due to the randomization and the slopes are different. Under the
misspecified model assuming constant coefficients for both covariates, η̂mis con-
verges to ηmis ≈ (−0.7,0.0), which may still reveal the marker surrogacy although
the estimation of the marker effect is quite off. (2) The variance of ζi is the same
and the mean equals (2.5915,−0.00315I (Xi = 0) + 0.15I (Xi = 1)), which only
differs from case (1) in the slope for the intervention. The estimator η̂mis converges
to ηmis ≈ (−0.2,−1.4), which may mask the surrogacy of Zi(u).

7. Discussion. Due to time and cost considerations, it is of interest to identify
surrogate markers that could be substituted for the clinical endpoint, time to an
event of interest, in evaluation of treatment efficacy. In practice, the effect of the
marker may be time varying, and the effect of treatment after adjustment of the
marker is a constant. Using a standard proportional hazards model with constant
covariate effects may lead to erroneous inference. On the other hand, adopting a
time-varying coefficient model with all time-varying covariate effects may cause
loss of efficiency. A partially varying coefficient model strikes a delicate balance
between the simplicity of the standard proportional hazard model and the flexibil-
ity of the time-varying coefficient model.

In this article we have adopted polynomial spline approximation for the par-
tially varying-coefficient proportional hazards model with intermittently measured
time-dependent covariates. Although both corrected score and conditional score
approaches are asymptotically equivalent, we recommend the conditional score ap-
proach for its better finite sample performance. The ratio term in (3.3) is a weighted
average of the pseudo “observations” R̂∗

i (u), while the ratio term in (3.2) is a
weighted average of the unadjusted estimated covariates R̂i(u). In fact, as shown
in Song and Huang (2005), the conditional score estimating equation is unbiased,
which might account for the superiority of this estimator.

The model as presented can be extended to more general cases. For simplicity,
we have focused on the case when the errors are independent across time. This
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can be generalized to other error correlation structure, such as the exponential
correlation [Diggle et al. (2002)]. In addition, the proportional hazards model may
be generalized to include functions of the random effects by analogy to Song,
Davidian and Tsiatis (2002a).

In summary, survival data with error-prone time-dependent covariates are com-
monly encountered in biomedical studies, econometrics, environmental studies
and epidemiology. The method developed in this paper provides a mechanism for
analyzing this type of data and closes multiple gaps among the areas of survival
analysis, joint modeling and measurement error.

SUPPLEMENTARY MATERIAL

Supplementary materials for Partially time-varying coefficient propor-
tional hazards models with error-prone time-dependent covariates—an ap-
plication to the AIDS Clinical Trial Group 175 data (DOI: 10.1214/16-
AOAS1003SUPP; .pdf). This supplement consists of four web appendices. Web
Appendix A gives the asymptotic properties, the regularity conditions and the
proofs of the asymptotic properties. Web Appendix B lists the lemmas used in the
proofs. Web Appendix C derives the convergence result when the Hazard model is
misspecified. Web Appendix D shows the analysis results of the ACTG 175 data
including both log(CD4) and log(CD8).
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