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National health insurance schemes are generally impractical in low-
income countries due to limited resources and low organizational capacity.
In response to such obstacles, community-based health insurance (CBHI)
schemes have emerged over the past 20 years. CBHIs are designed to re-
duce the financial burden generated by unanticipated treatment cost among
individuals falling sick, and thus are expected to make health care more af-
fordable. In this paper, we investigate whether CBHI schemes effectively pro-
tect individuals against large financial shocks using a stepped-wedge cluster-
randomized design on data from a CBHI program rolled out in rural Burk-
ina Faso. We investigate statistical properties of the stepped-wedge design
following the parametric mixed model approach proposed by Hussey and
Hughes in 2007. We find that testing for the treatment effect is generally
sensitive to specification of the parametric model. For instance, if we fail to
account for cluster-by-time interactions present in the data, the Type I error
rate is severely inflated. We develop a more robust and efficient strategy—
randomization inference. We demonstrate how to apply randomization infer-
ence to test for constant treatment effects and discuss test statistics suitable
for the stepped-wedge design. Randomization inference guarantees a valid
Type I error rate; simulation studies show that randomization inference test
statistics also have power that is comparable to the currently used procedures
that do not guarantee a valid Type I error rate. Finally, we apply our proposed
method to the Burkina Faso CBHI dataset. We conclude that the insurance
had limited effects on reducing the likelihood of low to moderate levels of
catastrophic health expenditure, but substantially reduced the likelihood of
extremely high health expenditure that exceeds half of a person’s monthly
income.

1. Introduction.

1.1. Community-based health insurance. The design of adequate health fi-
nancing systems in low-income countries is a subject of significant debate. Due
to low or modest economic growth, limited public tax resources and low organi-
zational capacity, national health insurance schemes are generally impractical. In
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response to such obstacles, community-based health insurance (CBHI) schemes,
which are comparatively easier to set up, have emerged over the past 20 years
[Asenso-Okyere et al. (1997), Devadasan et al. (2006), De Allegri et al. (2006),
Ekman (2004), Wang et al. (2009)].

CBHI schemes are micro-insurance schemes that are voluntary, not-for-profit
health insurance schemes organized at the community level. Under CBHI schemes,
members of a community, often defined by geographical proximity or through
employment-based relationships, pool resources in order to provide support for
covering health expenditure [Robyn et al. (2012)]. CBHI schemes seek to reduce
the financial burden generated by unanticipated treatment cost among individuals
falling sick, and are thus expected to make health care more affordable. A natural
question that emerges then is as follows: do CBHI schemes work as intended and
in fact enhance universal financial protection?

We consider a study of a CBHI program in rural Burkina Faso that was imple-
mented by the Ministry of Health and Nouna Health Research Center in collabora-
tion with the University of Heidelberg, Institute of Public Health using a stepped-
wedge cluster-randomized trial [De Allegri et al. (2008), Fink et al. (2013)]. We
discuss properties of stepped-wedge cluster-randomized trials and problems with
the currently used analysis methods for stepped-wedge cluster-randomized trials,
present solutions to these problems, and analyze the study of the CBHI program
in Burkina Faso.

1.2. Stepped-wedge cluster-randomized trials. A stepped-wedge cluster-ran-
domized trial is a one-way crossover trial in which all clusters start out in the con-
trol and then clusters are randomized to cross over to the treatment at staggered
times [Hall et al. (1987), Hussey and Hughes (2007)]. Figure 1 illustrates the treat-
ment schedule for a stepped-wedge trial; the name “stepped-wedge” refers to the
series of steps of the treatment schedule, which results in a wedge shape.

The stepped-wedge design has been gaining popularity in recent years because
of a number of attractive features [Mdege et al. (2011)]. First, the stepped-wedge
design is useful for settings in which limited resources or geographical constraints
make it financially or logistically difficult to start the intervention in many clusters
at once [e.g., Brown and Lilford (2006), Hall et al. (1987), Mdege et al. (2011),
Moulton et al. (2007)]. For example, in a parallel design (randomize half the clus-
ters to treatment during a single calendar period) or a traditional crossover design
(randomize half the clusters to treatment at baseline and then switch these clus-
ters to control and the other clusters to treatment midway through the trial), the
intervention must be implemented in half of the clusters simultaneously, while
the stepped-wedge design allows researchers to implement the intervention in
a smaller fraction of clusters during each calendar period [Hussey and Hughes
(2007)]. Second, the stepped-wedge design (as with a traditional crossover design)
allows clusters to serve as their own controls, which increases power when there
are substantial cluster effects [Woertman et al. (2013)]. The stepped-wedge design
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FIG. 1. Illustration of a stepped-wedge design where different groups of clusters switch from con-
trol to treatment during different calendar periods.

differs from a traditional crossover design, however, in that the crossovers are only
in one direction; in particular, the intervention is never removed once it has been
implemented (at least over the course of the trial). Third, because all clusters re-
ceive the treatment by the end of the trial and a cluster is never withdrawn from
receiving the treatment, the stepped-wedge design is particularly useful for settings
in which it would not be ethical, healthy or practical to withdraw the treatment or
in which it would be difficult for participants to quickly revert to their pretreatment
condition quickly after the withdrawal [Rhoda et al. (2011)]. The stepped-wedge
design is also useful for evaluating the population-level impact of an intervention
that has been shown to be effective in an individually randomized trial or for which
there is a majority opinion that the intervention will be effective so that equipoise
does not exist [Hussey and Hughes (2007)].

All these features made the stepped-wedge design ideal for studying the benefits
of the CBHI program in Burkina Faso. Because the CBHI program was expected
to confer benefits, every village in the study area wanted to be enrolled in the
program at the early stage. However, it takes time to scale up the program, and
so the CBHI management team and the health district had no option but to roll
out the program in a progressive manner. The stepped-wedge design allowed the
program to be rolled out in a fair manner and the effect of the program to be studied
through a randomized trial. The stepped-wedge nature of the trial also helped to
alleviate the spillover effect, as the incentive to migrate to a different area just to
benefit from the intervention was counterbalanced by the fact that this very same
intervention was going to be implemented in the entire study area within the next
few years.
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1.3. Analysis methods. In line with the increasing interest in employing and
implementing the stepped-wedge design, a handful of pivotal articles on testing in-
tervention effects, sample size calculations and analytical methods for continuous
or dichotomous outcomes have emerged in the literature [e.g., Dimairo, Bradburn
and Walters (2011), Hussey and Hughes (2007), Moulton et al. (2007), Woertman
et al. (2013)]. Most of them have adopted the linear mixed model approach pro-
posed by Hussey and Hughes (2007).

Hussey and Hughes (2007) considered the linear mixed model

(1.1) Yijk = μ + αi + βj + Zij θ + eijk,

where Yijk is the observed response corresponding to individual k during calendar
period j from cluster i and Zij denotes whether cluster i has been assigned the
treatment by calendar period j . αi is a random effect for cluster i such that αi are
i.i.d. N(0, τ 2), βj is a fixed effect corresponding to time interval j (j in 1, . . . , T −
1, βT = 0 for identifiability), θ is the treatment effect and eijk are individual, time-
period-specific effects that are assumed to be i.i.d. N(0, σ 2

e ) and independent of αi .
One possible violation of assumptions in the linear mixed model (1.1) is the

existence of cluster-by-time interactions, which are prevalent in a number of set-
tings. For example, cluster-by-time interactions were a concern in a recent proposal
for using the stepped-wedge design to study a vaccine for Ebola while the Ebola
epidemic was going on because the Ebola epidemic, like other pandemics, was
spreading from place to place over time [Bellan et al. (2015), van der Tweel and
van der Graaf (2013)]. In the CBHI study we are considering, cluster-by-time in-
teractions are a concern because the clusters are communities that are affected by
different local economic and political developments.

Including all cluster-by-time interactions into the model as fixed effects would
make the treatment effect unidentifiable. Hussey and Hughes (2007) proposed one
strategy to deal with cluster-by-time interactions and still be able to estimate the
treatment effect: create strata of clusters with similar expected time trends and
then include stratum-by-time interaction as a factor in the model. This strategy re-
quires some knowledge of the expected time trends before the trial and runs the
risk of overfitting if interactions do not exist or are negligible. Without strong a
priori knowledge of the pattern of cluster-by-time interactions, a better approach
is needed to gauge the treatment effect than either excluding cluster-by-time inter-
actions or including a specific pattern of them.

1.4. Randomization inference. In this paper, we develop another approach for
the analysis of stepped-wedge cluster-randomized trials that accounts for poten-
tial cluster-by-time interactions—randomization inference. In randomization in-
ference as developed by Fisher (1935), hypotheses are tested using only the as-
sumption that the randomization has been properly carried out. Fisher said that
randomization inference is “reasoned basis for inference” because it uses only
the physical act of randomization as a basis for inference, and is exact and
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distribution-free. Tukey (1993) said that randomization inference is the “platinum
standard” inference. For discussion and examples of randomization inference, see
Welch (1937), Raz (1990), Gail et al. (1996), Braun and Feng (2001), Rosenbaum
(2002a, 2002b), Greevy et al. (2004), Ho and Imai (2006), Small, Ten Have and
Rosenbaum (2008), Hansen and Bowers (2009).

Randomization inference can be applied to any test statistic of treatment effects.
Here we consider Wald test statistics based on model (1.1) or other generalized
linear mixed models. Because the randomization procedure adds an extra layer of
security to the inference, the Type I error rate is valid even if parametric mod-
els for responses are misspecified such as failing to account for cluster-by-time
interactions.

We contribute to the literature by applying randomization inference to stepped-
wedge cluster-randomized trials. We build a unified framework to develop the
randomization distribution for any test statistic, which can be used to calculate
p-values and construct confidence intervals. Regarding our specific question, to
what extent do CBHI schemes enhance universal financial protection, we use the
data from the Burkina Faso study [Fink et al. (2013)] to examine whether CBHI
schemes help to reduce the likelihood of catastrophic health expenditure. Our fi-
nal results show that the insurance had limited effects on reducing the likelihood
of low to moderate levels of catastrophic health expenditure, but substantially re-
duced the likelihood of extremely high health expenditure that exceeds half of a
person’s monthly income.

The outline of our paper is as follows. In Section 2, we introduce the potential
outcomes notation and setup that will be used throughout the paper. In Section 3,
we discuss consequences of failing to consider cluster-by-time interactions. In Sec-
tion 4, we develop our randomization inference approach for the stepped-wedge
design. In Section 5, we conduct simulation studies comparing the randomization
inference approach to other analytical approaches for the stepped-wedge design.
In Section 6, we apply randomization inference for stepped-wedge trials to a study
of a community-based insurance program in rural Burkina Faso [Fink et al. (2013),
Robyn et al. (2012)]. In Section 7, we provide a summary.

2. Notation and set up. There are I clusters, T calendar periods and nij

individuals sampled from cluster i during calendar period j . N = ∑I
i

∑T
j nij is

the total number of observations in the study design. Let ijk index individual k

in cluster i during calendar period j . An individual might be sampled at multi-
ple time points; the indices k = 1, . . . , nij are time specific so that the same in-
dividual might have index k and k′ �= k at different times. During calendar pe-
riod j , mj clusters are randomized to start treatment, where m1 + · · · + mT = I ,
so that each cluster eventually starts treatment. m1,m2, . . . ,mT are prespecified
before the start of the trial. Let Zij be the treatment corresponding to cluster i

during calendar period j , where Zij = 1 for the active treatment and 0 for the
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control. Since the trial is cluster-randomized, we index the treatment status for
clusters rather than individuals. Let Z be the vector of all treatment assignments,
Z = (Z11,Z12, . . . ,ZIT ). Write � for the set containing |�| = ( I

m1,...,mT

)
possible

values z of Z. Let Yijk be the observed response and Y be the vector of all ob-
served responses, Y = (Y111, Y112, . . . , YIT nIT

). In case of a possible lag between
the time of treatment assignments and the time that responses are observed, we as-
sume that if individual k in cluster i enters the trial during calendar period j , so is
assigned treatment Zij , then that individual will continue to receive treatment Zij

until response Yijk is recorded. Each individual has a (row) vector of pretreatment
covariates Xijk . X is the matrix whose rows are Xijk .

We define the causal effect of interest under the potential outcomes frame-
work. We extend the notation of Speed (1990) and Rubin (1974) by representing
each potential outcome as a function of the vector of all treatment assignments z
[Rosenbaum (2007)]. Write Y

(z)
ijk as the response that the kth individual in cluster i

during calendar period j would have if the treatment assignment Z = z for z ∈ �.
Y

(z)
ijk indicates that each individual has |�| possible outcomes, only one of which is

observed, namely Y
(Z)
ijk . Fisher’s sharp null hypothesis of no-treatment effect says

that every unit would exhibit the same response under all treatment assignments,

Y
(z)
ijk = Y

(z′)
ijk for all z, z′ ∈ �. Under the alternative hypothesis, observed outcomes

may exhibit arbitrary dependence.
We let F = 〈Y,X〉, where Y is the unobserved array with N rows and |�|

columns having entries Y
(z)
ijk . F does not change as the treatment assignments, Z,

change, whereas Y is a function of F and Z, and so may change with Z. To employ
the cluster-randomized inference, as shown in Section 4, we assume the following
assumptions hold for F :

Assumption I: (a) there are no hidden variations of treatments and (b) Y
(z)
ijk =

Y
(z′)
ijk whenever zij = z′

ij . Assumption I(a) is part of the Stable Unit Treatment
Value Assumption [Imbens and Rubin (2015), Rubin (1980)] and says that an in-
dividual receiving level z of the treatment cannot receive different forms of the
treatment which have different effects. The assumption is implicit in the notation
Y

(z)
ijk which says that there is a single potential outcome for level z of the treat-

ment. Assumption I(b) asserts that the potential outcomes would not be affected
by treatment assignments in other clusters or subjects in different clusters do not
interfere. Note that this assumption still allows for the possibility that units within
a cluster at a given time interfere with each other. Assumption I(b) can be seen
as a relaxation of the usual no interference part of the stable unit treatment value
assumption (SUTVA) in the sense that a group of concentrated individuals are al-
lowed to interfere with each other at a given time but interference is not allowed
between groups or time points. This assumption also implies no carry-over effect,
that is, a previous treatment for one subject does not affect later responses of this
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same subject and also treatments for other subjects in the same cluster at previous
times do not affect the response of the given subject at this time.

Assumption II: Pr(Z = z|F) = 1
|�| = 1

( I
m1,...,mT

)
. This assumption says that the

clusters are randomly assigned as to when to start treatment according to the
stepped-wedge design, and the conditional distribution of treatment assignments
given the potential responses and covariates is a fixed known constant. This as-
sumption guarantees that tests derived solely from the randomization have the cor-
rect level whether or not potential responses within the same cluster are subject to
interference [Fisher (1935), Welch (1937)].

Assumption III: If z and z′ are the same except that zij = 1 while z′
ij = 0,

then Y
(z)
ijk − Y

(z′)
ijk = θ . This assumption implies that the treatment effect is con-

stant across population and over time. By removing the treatment effect from the
whole cluster during a calendar period, the observed responses would be the same
as if there were no treatments assigned. This constant effect θ is the causal effect
of interest.

3. The importance of cluster-by-time interactions. To motivate the need
for accounting for cluster-by-time interactions, we assume that Yijk is generated
by the model

(3.1) Yijk = μ + αi + βj + γij + Zij θ + eijk.

For simplicity, we assume the eijk are independent, but correlation among the eijk

(as might arise if individuals are observed multiple times) can be accommodated.
Both models (1.1) and (3.1) are observed data models that are consistent with

Assumptions I and II. Compared to model (1.1), model (3.1) has an additional
term γij that accounts for cluster-by-time interactions. γij ’s are assumed to be
i.i.d. N(0, η2) and independent of α and e. Using matrix notation, model (3.1) can
be rewritten as

(3.2) Y ∼ N
(
M
,� = σ 2I + τ 2A + η2B

)
,

where Y = (Y111, . . . , Y112, . . . , YIT nIT
), 
 = (μ,β1, . . . , βT , θ)T , and M is the

N × (T + 2) design matrix. Let Yp denote the pth element in the vector Y which
corresponds to a value of ijk. Then Mpq = 1 if (1) q = 1 or (2) 2 ≤ j ≤ T + 1
and Yp is observed during calendar period q − 1 or (3) q = T + 2 and Yp is both
observed and treated. Mpq = 0 otherwise. A and B are symmetric positive definite
matrices corresponding to cluster and cluster-by-time interactions, respectively:

A = diag
(
1n1.

1T
n1.

, . . . ,1nI.
1T
nI.

)
,(3.3)

B = diag
(
1n111T

n11
,1n121T

n12
, . . . ,1nIT

1T
nIT

)
,(3.4)

where 1n1 denotes a column vector of 1’s with length n1 and ni. = ∑T
j=1 nij is the

size of cluster i.
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Given σ 2, τ 2, η2, the covariance matrix � is known. The best linear unbiased
estimator of 
 is the Generalized Least Squares (GLS) estimator, which asymptot-
ically has a normal distribution:


̂GLS = (
M ′�−1M

)−1
M ′�−1Y,(3.5)


̂GLS
d−→ N

(

,

(
M ′�−1M

)−1)
.(3.6)

If σ 2, τ 2, η2 are not known, an implementable version of the GLS estimator is
the Feasible Generalized Least Squares (FGLS) estimator, which requires a con-
sistent estimate of �, say �̂:

(3.7) 
̂FGLS = (
M ′�̂−1M

)−1
M ′�̂−1Y.

One common strategy to find a consistent estimate �̂ is to start by finding 
̂OLS
or another consistent (but inefficient) estimator, take the residuals from OLS to
build a consistent estimator of the error covariance matrix �, update the FGLS
estimation, and then apply the same idea iteratively until the estimators vary less
than some tolerance. Under regularity conditions, such a FGLS estimator has the
same asymptotic distribution as a GLS estimator:

(3.8) 
̂FGLS
d−→ N

(

,

(
M ′�−1M

)−1)
.

For finite samples, the estimated covariance matrix of 
̂FGLS is

V̂ar[
̂] = (
M ′�̂−1M

)−1
,(3.9)

which converges to the asymptotic covariance matrix (M ′�−1M)−1 given that �̂

converges to � [Greene (2003)].
However, it is not always the case that we can find a consistent estimator of the

covariance matrix �. The convergence of �̂ to � relies on the correct specifica-
tion of matrix structure and normality assumptions [Jacqmin-Gadda et al. (2007)].
In the process of iteratively computing �̂, any deviation from the correct model
would lead to an inconsistent version of �̂. In particular, if we failed to account for
cluster-by-time interactions in the case of stepped-wedge cluster-randomized tri-
als, then we would specify the structure of the covariance matrix in a different form
from the actual covariance matrix, that is, we would assume the consistent estimate
of � to be �̂ = σ̂ 2I + τ̂ 2A while the actual covariance matrix is in the form of
� = σ 2I + τ 2A+η2B . Since B is a positive definite matrix as defined in (3.4), no
values of σ̂ 2 and τ̂ 2 would satisfy the equation σ̂ 2I + τ̂ 2A = σ 2I + τ 2A + η2B .
Consequently, any computed �̂ would be inconsistent, even if it maximizes the
likelihood. Therefore, inferences based on �̂ using the asymptotic distribution
would be invalid.

We use a simulation study to examine this difference between the estimated
variance of the treatment effect, which is the last diagonal element of �̂, and the
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Monte Carlo simulation of the true variance, which is the last diagonal element
of �.

In the simulation, I and T are set to be 30 and 4, respectively. All clusters start
with control at T = 1 and during each calendar period starting from T = 2, 10
clusters in the control group are randomly selected to be assigned to treatment. All
clusters have equal size 100 and the true treatment effect θ = 0. The magnitude of
clustering is calibrated by the intracluster correlation coefficient (ICC), which is
the proportion of the total variation explained by the respective blocking factor. In
particular, the correlation between two randomly selected observations in the same
cluster is

ICCI = τ 2

τ 2 + η2 + σ 2 .(3.10)

The correlation between two randomly selected observations in the same cluster
and during the same calendar period is

ICCIT = τ 2 + η2

τ 2 + η2 + σ 2 .(3.11)

As a result, the magnitude of interaction can be calibrated by ICCIT − ICCI =
η2

τ 2+η2+σ 2 , which is the extra correlation from the same cluster and calendar period
compared to just the cluster.

In Figure 2, we compare the distribution of estimated variances V̂ar[θ̂ ] over
10,000 simulations with the Monte Carlo simulation of the true variance. When

(a) No cluster-by-time interactions (b) With cluster-by-time interactions

FIG. 2. Comparison of estimated and true variances of the treatment effect in different settings of

cluster-by-time interactions. In (a), there are no cluster-by-time interactions, ICCI := τ 2

τ 2+σ 2 = 0.02.

In (b), there are cluster-by-time interactions, ICCI := τ 2

τ 2+σ 2 = 0.02, ICCIT := τ 2+η2

τ 2+η2+σ 2 = 0.025

(upper) and 0.04 (lower).
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TABLE 1
Properties of the estimated treatment effect given by the Feasible Generalized Least Square

estimator

dim(M) α γ ε E[θ̂] Var[θ̂] E(̂Var[θ̂]) SD(̂Var[θ̂])
N(0,1) Zero N(0,49) −0.0031 0.0544 0.0548 0.0012

I = 30 N(0,1) Zero 7/
√

3t (3) −3.4e−5 0.0544 0.0545 0.0080
N(0,1) N(0,0.25) N(0,48.75) −0.0008 0.0816 0.0549 0.0012

T = 4 N(0,1) N(0,0.5) N(0,48.5) −0.0008 0.1083 0.0550 0.0012
N(0,1) N(0,1) N(0,48) −0.0008 0.1626 0.0552 0.0011

there are no cluster-by-time interactions, that is, model (1.1) is correctly specified,
the left plot in Figure 2 indicates that the distribution of V̂ar[θ̂] is centered around
the true variance, marked by the red vertical line. However, when interactions do
exist, the estimated variances are far off the true variance. The right plot describes
two scenarios with different magnitudes of interactions. Neither of the distributions
is close to the true variance.

Table 1 gives a more detailed summary of the estimated treatment effect θ̂ given
by the FGLS estimator when the cluster-by-time interactions are not included in
the model. As shown by column E[θ̂ ], θ̂ is consistent in all settings. When there are
no cluster-by-time interactions as shown by the first two rows, the average of the
estimated variances E(V̂ar[θ̂ ]) is almost the same as the Monte Carlo simulation
of the true variance Var[θ̂]. But this is not the case when the interaction term γ

is nonzero. The last column SD(V̂ar[θ̂]) describes the dispersion of the estimated
variances, which is of a much smaller order than its average.

The above simulation results show that fitting a linear mixed model for the
stepped-wedge design while ignoring cluster-by-time interactions can lead to
severely wrong standard errors, and this leads to poor control of Type I error rate,
as shown by Table 2.

4. Randomization inference for stepped-wedge cluster-randomized trials.
We would like to develop a strategy that accounts for cluster-by-time interactions if

TABLE 2
Type I error of linear mixed models not accounting for cluster-by-time interactions

dim(M) α γ ε ICCI ICCIT Type I error

N(0,1) Zero N(0,49) 0.02 0.02 0.052
I = 30 N(0,1) Zero 7/

√
3t (3) 0.02 0.02 0.054

N(0,1) N(0,0.25) N(0,48.75) 0.02 0.025 0.511
T = 4 N(0,1) N(0,0.5) N(0,48.5) 0.02 0.03 0.658

N(0,1) N(0,1) N(0,48) 0.02 0.04 0.756
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they exist. We will consider randomization inference. In randomization inference
as developed by Fisher (1935), hypotheses are tested using only the assumption
that the randomization has been properly carried out and randomization inference
provides exact, distribution-free inferences. The significance level is always guar-
anteed regardless of the underlying mechanism that generates the data.

4.1. A general setup. There are I clusters and T calendar periods. At time
t , mt clusters are randomized to start treatment, where m1 + · · · + mT = I , so
that each cluster eventually starts treatment. Collect all possible values z of the
treatment assignments Z in a set �, |�| = ( I

m1,...,mT

)
. Because random numbers

are used to assign which clusters start treatment at which times, P(Z = z) = 1/|�|
for each z ∈ �.

Let e be a function of F = 〈Y,X〉, and let t (Z, e,X) be any function of Z, e,X.
Because e and X are functions of F and randomization ensures P(Z|F) = 1/|�|,
it follows that, for all v,

(4.1) P
(
t (Z, e,X) ≥ v|F) = |{z ∈ � : t (z, e,X) ≥ v}|

|�| ,

which is the randomization distribution of t (Z, e,X). In words, given F , the
chance that t (Z, e,X) ≥ v is simply the proportion of treatment assignments z ∈ �

such that t (Z, e,X) ≥ v. Moreover, (4.1) is the distribution of t (Z, e,X) given F
no matter what process produced F . Fisher’s (1935) description of randomization
inference as the “reasoned basis for inference” refers to the fact that randomization
creates the distribution (4.1) for every function e of F without further assumptions.

4.2. Test of no effect. The sharp null hypothesis of no effect asserts that the
response of each individual is unchanged by receiving the treatment, H0 : ∀z, z′ ∈
�,Y

(z)
ijk = Y

(z′)
ijk for i = 1, . . . , I , t = 1, . . . , T , k = 1, . . . , nit , that is, Y(z) = Y(z′).

If H0 were true, then randomization would label clusters treated or control but
the observed outcomes would be unchanged. If H0 were true, then the observed
response Y(Z) would equal Y(0), a special case where all clusters are under con-
trol. Thus, under the null hypothesis of no treatment effect, the randomization
distribution of t (Z,Y,X) = t (Z,Y(0),X) would be given by (4.1) with e = Y(0),
where both t (Z,Y(0),X) and its null distribution (4.1) would be calculated from
the observed data when H0 were true. For instance, in completely randomized
experiments, Welch (1937) tested the null hypothesis of no effect using the ran-
domization distribution of a test statistic suggested by analysis of variance and
Raz (1990) used the randomization distribution of a test statistic that adjusted for
X using a data smoother.

4.3. Test of constant treatment effect. The above method can be directly ex-
tended to test for constant treatment effect

H0 : θ = θ0 vs. H1 : θ = θ1.
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Under the null hypothesis of θ = θ0, Y(0) = Y−Zθ0. If e = Y(0), then t (Z, e,X) =
t (Z,Y − Zθ0,X) = t ′(Z,Y,X), where t ′ is a function on Z,Y,X. This is to say
t ′(Z,Y,X) would also have the randomization distribution given by (4.1).

Because of the randomization procedure, any function t on Z,Y(0),X is a valid
test statistic with the Type I error controlled by the prespecified significance level.
However, it does not mean that any arbitrarily chosen t is a good test statistic. We
need to consider power. In the next section, we will discuss test statistics suitable
for stepped-wedge cluster-randomized experiments.

4.4. Wald randomization test. A natural choice of t is the Wald statistic based
on the maximum likelihood estimation of the treatment effect under model (1.1)
or (3.1). Under the null hypothesis H0 : θ = θ0, Y−Zθ0 = Y(0) = e. The maximum
likelihood estimator of L(θ |Z,Y,X) = L(θ |Z, e + Zθ0,X) is a function on Z, e
and X. t (Z, e,X) can be chosen as the Wald statistic of the null hypothesis H0 :
θ = θ0 over the alternate hypothesis H1 : θ �= θ0:

(4.2) t (Z, e,X) = (θ̂ − θ0)
2

V̂ar(θ̂)
.

Instead of using its asymptotic distribution, which is a χ2 distribution under the
null hypothesis, the level is calculated using the randomization distribution given
by (4.1). We can also investigate the power by randomly generating numerous
data sets under a pre-specific alternative hypothesis. For each of these data sets,
randomization inference is carried out and the evidence for or against the null
hypothesis is recorded.

The Wald randomization test is applicable to a wide range of parametric models
corresponding to different distributions of observed outcomes and can be imple-
mented using standard functions in R, such as lmer() in the lme4 package for linear
mixed models, glm() for generalized linear models and censReg() in the censReg
package for censored regression models.

4.5. Other randomization tests. Instead of calculating the maximum likeli-
hood estimate and its standard deviation, other test statistics are available for
stepped-wedge cluster-randomized trials. For example, because the design is es-
sentially a two-way layout, we can first eliminate row and column effects by esti-
mating their values or using the median polish method if robustness is a concern
[Hoaglin, Mosteller and Tukey (2000)]. We then carry out the aligned rank test
to compare the adjusted responses between clusters with different interventions
[Sen (1968)]. If responses have heavy-tailed distributions, we may consider test
statistics involving ranks to avoid bias caused by extreme values.

4.6. Covariates adjustment. The discussion in Sections 4.2 and 4.3 make no
use of the covariates X, but it is straightforward to incorporate them, with no
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change in the logic; see Rosenbaum (2002a). Instead of letting e = Y(0), e could
also be a function on X. For example, e could be residuals when Y(0)is regressed
on X by any method of regression. The randomization distribution of t (Z, e,X)

would still be given by (4.1).

5. Simulation study. We use a simulation study to investigate the level and
the power of the Wald test statistic with usual asymptotic inference and with ran-
domization inference in the stepped-wedge design. For demonstration purposes,
we assume responses are normal and continuous. In all simulation settings, I = 30
and T = 4. When t = 0, all clusters are in the control group. When t = 1, 10 out of
30 clusters are randomly selected to receive treatment. When t = 2, 10 out of the
remaining 20 untreated clusters are randomly selected to receive treatment. When
t = 3, all clusters are assigned to treatment. Cluster sizes are randomly sampled
between 1000 and 2000 and fixed over time. The true treatment effect θ0 is set
to be 0 and the power is calculated under the alternative θ1 = 0.25,0.5,1,1.5,2.

ICCI = τ 2

τ 2+η2+σ 2 is the intracluster correlation coefficient corresponding to clus-

ters. ICCIT = τ 2+η2

τ 2+η2+σ 2 is the intracluster correlation coefficient corresponding to
both clusters and interactions. All numbers reported are the average over 1000 sets
of randomly simulated data set.

We first examine the Type I error rate in several scenarios. Waldasy and Waldrand
are obtained under model (1.1) with usual asymptotic inference and with random-
ization inference. Wald∗

asy and Wald∗
rand are obtained under model (3.1) with usual

asymptotic inference and with randomization inference.
It can be seen from Table 3 that both randomization procedures Waldrand and

Wald∗
rand guarantee the correct Type I error rate in all settings. When the interaction

γ is zero, the Type I error rate is well controlled by both tests with usual asymp-
totic inference. However, when γ has a stand normal distribution, which leads to a
small intracluster correlation coefficient ICCIT = 0.04, the Type I error rate given
by Waldasy is inflated to 0.315 and 0.342 when e follows a normal and a t distribu-

TABLE 3
Type I error rate of the Wald test statistic based on the asymptotic distribution and the

randomization distribution

α γ e Waldasy Waldrand Wald∗
asy Wald∗

rand

N(0,1) Zero N(0,49) 0.045 0.061 0.044 0.061
N(0,1) Zero 7/

√
3t (3) 0.042 0.055 0.042 0.054

N(0,1) Zero Cauchy 0.055 0.050 0.051 0.053
N(0,1) N(0,1) N(0,48) 0.315 0.055 0.069 0.059
N(0,1) N(0,1) 4

√
3t (3) 0.342 0.051 0.069 0.054

N(0,1) N(0,1) Cauchy 0.056 0.054 0.063 0.060
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TABLE 4
Power of the Wald test statistic for linear mixed models based on the asymptotic distribution and the

randomization distribution

θ1 α γ e ICCI ICCIT Waldasy Waldrand Wald∗
asy Wald∗

rand

0.25 N(0,1) Zero N(0,49) 0.02 0.02 0.254 0.275 0.254 0.276
0.5 N(0,1) Zero N(0,49) 0.02 0.02 0.723 0.715 0.721 0.725
1 N(0,1) Zero N(0,49) 0.02 0.02 0.999 0.999 0.999 0.999
1.5 N(0,1) Zero N(0,49) 0.02 0.02 1 1 1 1
2 N(0,1) Zero N(0,49) 0.02 0.02 1 1 1 1

0.25 N(0,1) N(0,1) N(0,48) 0.02 0.04 0.427 0.096 0.136 0.108
0.5 N(0,1) N(0,1) N(0,48) 0.02 0.04 0.636 0.253 0.335 0.277
1 N(0,1) N(0,1) N(0,48) 0.02 0.04 0.941 0.726 0.798 0.752
1.5 N(0,1) N(0,1) N(0,48) 0.02 0.04 0.999 0.969 0.982 0.975
2 N(0,1) N(0,1) N(0,48) 0.02 0.04 1 1 1 1

0.25 N(0,1) Zero 7/
√

3t (3) 0.02 0.02 0.266 0.272 0.261 0.280
0.5 N(0,1) Zero 7/

√
3t (3) 0.02 0.02 0.751 0.734 0.740 0.744

1 N(0,1) Zero 7/
√

3t (3) 0.02 0.02 0.998 0.999 0.998 0.999
1.5 N(0,1) Zero 7/

√
3t (3) 0.02 0.02 1 1 1 1

2 N(0,1) Zero 7/
√

3t (3) 0.02 0.02 1 1 1 1

0.25 N(0,1) N(0,1) 4
√

3t (3) 0.02 0.04 0.416 0.107 0.124 0.115
0.5 N(0,1) N(0,1) 4

√
3t (3) 0.02 0.04 0.630 0.240 0.310 0.272

1 N(0,1) N(0,1) 4
√

3t (3) 0.02 0.04 0.942 0.718 0.786 0.786
1.5 N(0,1) N(0,1) 4

√
3t (3) 0.02 0.04 0.999 0.971 0.999 0.992

2 N(0,1) N(0,1) 4
√

3t (3) 0.02 0.04 1 1 1 1

tion, respectively. The Wald∗
asy test performs better than Waldasy as it incorporates

cluster-by-time interactions, but its Type I error rate is still slightly higher than
its randomized version. Such a phenomenon disappears when e follows a Cauchy
distribution. This might be explained by the fact that the Cauchy distribution is so
heavy tailed that it dominates the small interaction term γ .

We next examine power. According to results in Table 4, when there are no
cluster-by-time interactions, the randomization tests have comparable power with
the tests using the asymptotic distribution. When there are cluster-by-time inter-
actions, we ignore the power calculated from Waldasy and Wald∗

asy as the level is
no longer valid, but only focus on their randomized versions, which give sufficient
power to detect wrong values of the treatment effect.

We also carry out a set of simulations for dichotomous outcomes according to
the model

(5.1) logit
(
E(Yijk)

) = μ + αi + βj + γij + Zij θ.

Results are summarized in Table 5, showing similar advantages of using ran-
domization inference for the stepped-wedge cluster-randomized trials.
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TABLE 5
Power of the Wald test statistic for generalized linear mixed models based on the asymptotic

distribution and the randomization distribution

θ1 α γ e ICCI ICCIT Waldasy Waldrand Wald∗
asy Wald∗

rand

0 N(0,1) Zero N(0,49) 0.02 0.02 0.043 0.051 0.044 0.051
0.5 N(0,1) Zero N(0,49) 0.02 0.02 0.223 0.208 0.216 0.195
1 N(0,1) Zero N(0,49) 0.02 0.02 0.791 0.747 0.773 0.740
1.5 N(0,1) Zero N(0,49) 0.02 0.02 1 0.999 0.998 0.998

0 N(0,1) N(0,1) N(0,48) 0.02 0.04 0.217 0.060 0.091 0.048
0.5 N(0,1) N(0,1) N(0,48) 0.02 0.04 0.412 0.172 0.318 0.159
1 N(0,1) N(0,1) N(0,48) 0.02 0.04 0.726 0.448 0.544 0.377
1.5 N(0,1) N(0,1) N(0,48) 0.02 0.04 0.922 0.681 0.837 0.572

6. Application to study of community-based health insurance program.

6.1. Background. The Ministry of Health and Nouna Health Research Cen-
ter in Nouna District, Burkina Faso implemented a CBHI scheme from 2004 to
2006 that aimed to make health care more affordable and to protect local com-
munities from large health expenditure shocks [Fink et al. (2013), Robyn et al.
(2012)]. To allow for a proper evaluation, the rollout of the program followed a
stepped-wedge cluster-randomized design, enrolling randomly selected communi-
ties in three phases. In order to investigate the effect of CBHI schemes on house-
hold welfare, we follow Fink et al. (2013) to analyze the effect of CBHI schemes
on catastrophic expenditure.

6.2. Data. The data we use is the Nouna Health and Demographic Surveil-
lance Site (HDSS) survey data collected from 2003 to 2008. Data from year 2003
are the baseline prior to the intervention and data from years 2007 and 2008 are
controls after the final rollout phase. There are 48 areas in the health district and
each of them is considered a cluster. Due to residential mobility and migration,
the study population is dynamic with an attrition rate of 59% from 2003 to 2008.
There are 59,905 records in total and the number of individuals targeted by the in-
surance program in phase I, II and III are 27,696, 14,292 and 17,917, respectively.
Equal mean test indicates that these three rollout groups have balanced covariates
of age, gender, years of education, literacy, religion, marital status, household size
and wealth index; see Table 4 in Fink et al. (2013).

Since the primary objective of CBHI schemes is to protect individuals against
large financial shocks, we investigate the probabilities of facing health expenditure
greater than 5%, 10%, 15%, 25% and 50% of monthly income. The catastrophic
expenditure is a dichotomous outcome, which is coded as one if the total health
expenditure is greater than a certain percentage of the monthly income. For exam-
ple, the 2003 data suggest that about 10.4% of individuals faced health expenditure
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TABLE 6
Distribution of catastrophic expenditure over time, Nouna HDSS Household Survey, 2003–2008

Expenditure cutoffPopulation
sizeYear ≥5% ≥10% ≥15% ≥25% ≥50%

2003 7796 814 610 460 347 207
2004 8619 1037 716 577 361 191
2005 6875 1402 977 742 519 311
2006 10,712 925 576 481 306 224
2007 13,784 1316 939 690 377 211
2008 12,118 950 663 452 291 141

larger than 5% of their monthly income in the sample, and 2.7% of individuals had
to cover health expenditure of more than half their monthly income. See Table 6
for a detailed year-by-year summary of the data.

6.3. Model. The models (1.1) and (3.1) assume the continuity of observed re-
sponses and the normality of random components. In our data, catastrophic health
expenditure is binary, and so we use the generalized linear mixed model and then
apply the Wald randomization test. In particular, we use Pijk to denote the proba-
bility of facing catastrophic expenditure for individual k during calendar period j

from cluster i; the observed response Yijk follows the model

Yijk ∼ Bernoulli(Pijk),
(6.1)

logit(Pijk) = μ + αi + βj + Zij θ + XT
ijkγ + eijk,

where αi, βj ,Zij and θ are defined the same as in model (1.1) and Xijk is a vector
of covariates that we adjust for, which are age, gender, years of education, liter-
acy, religion, marital status, household size and wealth index. Because we have
repeated observations on people and there might be unmeasured covariates not
included in Xijk , eijk could be correlated for j ∈ {1,2, . . . , T }. As a result, we
include person-level random effects to allow for correlation between eijk and eij ′k .

6.4. Results. We first investigate catastrophic expenditure that is greater than
5% of monthly income. We use the function lmer() from the package lme4 to solve
for the maximum likelihood estimate of θ in (6.1), which has mean value −0.3966
and standard deviation 0.0554. Hence, the Wald test statistic for the actual insur-
ance rollout is 51.093 with p-value < 0.001, indicating that there is significant
evidence that the CBHI insurance program helped to reduce the likelihood of fac-
ing health expenditure greater than 5% of monthly income. We then carry out the
Wald randomization test by assuming that there was no such effect. The p-value
given by (4.1) is 0.117, indicating that there is no strong evidence that insurance
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TABLE 7
CBHI impact on catastrophic health expenditure based on generalized linear mixed models

p-valueExpenditure
cutoff Waldasy Waldrand Wald∗

asy Wald∗
rand

≥5% <0.001 0.117 0.135 0.115
≥10% <0.001 0.339 0.351 0.331
≥15% <0.001 0.431 0.463 0.427
≥25% <0.001 0.442 0.422 0.410
≥50% 0.009 0.041 0.014 0.038

had an effect on the catastrophic expenditure. We also consider an expanded ver-
sion of model (6.1) that includes cluster-by-time interactions:

Yijk ∼ Bernoulli(Pijk),
(6.2)

logit(Pijk) = μ + αi + βj + γij + Zij θ + XT
ijkγ + eijk.

The Wald statistic based on this model for the actual insurance rollout is 2.229
with p-value 0.135 and the Wald randomization test gives p-value 0.115.

We repeat the same analysis for expenditure cutoffs 10%, 15%, 25% and 50%
and summarize results in Table 7. P -values in columns Waldasy and Waldrand are
obtained under model (6.1) with usual asymptotic inference and with random-
ization inference. P -values in columns Wald∗

asy and Wald∗
rand are obtained under

model (6.2) with usual asymptotic inference and with randomization inference.

6.5. Conclusion. Based on randomization inference that controls the Type I
error rate properly, there is no strong evidence that the CBHI program carried out
in Nouna District, Burkina Faso affected catastrophic expenditure that are defined
to be greater than 5%, 10%, 15% and 25% of monthly income. The CBHI program,
however, conferred a large benefit to people facing extremely high health expen-
diture that exceeds half of their monthly income. We see discrepancy between
results from model (6.1) and model (6.2) using asymptotic inference. The model
(6.1) would conclude that the CBHI program substantially reduced the likelihood
of all levels of catastrophic health expenditure, but model (6.2) would conclude so
only for the 50% cutoff.

Table 7 suggests that conclusions given by the asymptotic inference and the
randomization inference are consistent only for model (6.2), which is an indica-
tion of the presence of cluster-by-time interactions. If we failed to consider the
cluster-by-time interactions, the standard asymptotic inference is likely to greatly
overestimate the protective effects of the insurance program.
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7. Summary. There is a lack of literature on the theoretical aspects of analyz-
ing the stepped-wedge cluster-randomized trials. We focus on statistical properties
of the stepped-wedge design following the linear mixed model approach proposed
by Hussey and Hughes [Hussey and Hughes (2007)]. Our simulations raise a red
flag about using model-based inference for stepped-wedge trials. Specifically, the
results can be very sensitive to model misspecification. As a result, bias can be in-
troduced by cluster-by-time interactions and any other violations of assumptions.

We thus propose a new approach to the analysis of stepped-wedge cluster-
randomized trials—using randomization inference to test for constant interven-
tions. We introduce a unified framework to develop the randomization distribu-
tion for any test statistic, which can be used to calculate p-values and construct
confidence intervals. Simulations based on linear mixed models show that ran-
domization inference always guarantees the valid Type I error rate and has power
comparable to the usual asymptotic inference.

We demonstrate our method using the Burkina Faso CBHI dataset to investi-
gate whether CBHI schemes protect individuals against large financial shocks. We
conclude that the insurance had limited effects on reducing the likelihood of low
to moderate levels of catastrophic health expenditure in the target areas, but sub-
stantially benefited people facing extremely high health expenditure that exceeds
half of their monthly income.

We hope that this paper serves as a valuable contribution to the literature on
statistical properties of stepped-wedge cluster-randomized trials and its practical
implementation in health economics, education, public health and other fields in
which cluster-randomized trials are of interest. Our goal in this paper is to empha-
size the value of randomization inference for stepped-wedge cluster-randomized
trials and provide methods for implementing such randomization inference. With
a strong belief in a parametric model, one can make inferences and calculate power
and sample size based on asymptotic distributions, but these inferences can be sen-
sitive to the model; randomization inference can deliver similar power while the
inferences remain valid regardless of whether the parametric model holds or not.
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