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BOOTSTRAP AGGREGATING CONTINUAL REASSESSMENT
METHOD FOR DOSE FINDING IN DRUG-COMBINATION TRIALS1

BY RUITAO LIN AND GUOSHENG YIN

University of Hong Kong

Phase I drug-combination trials are becoming commonplace in oncology.
Most of the current dose-finding designs aim to quantify the toxicity proba-
bility space using certain prespecified yet complicated models. These models
need to characterize not only each individual drug’s toxicity profile, but also
their interaction effects, which often leads to multi-parameter models. We
propose a novel Bayesian adaptive design for drug-combination trials based
on a robust dimension-reduction method. We continuously update the order
of dose combinations and reduce the two-dimensional searching space to a
one-dimensional line based on the estimated order. As a result, the common
approaches to single-agent dose finding, such as the continual reassessment
method (CRM), can be applied to drug-combination trials. We further utilize
the ensemble technique in machine learning, the so-called bootstrap aggre-
gating (bagging) in conjunction with Bayesian model averaging, to enhance
the efficiency and reduce the variability of the proposed method. We conduct
extensive simulation studies to examine the operating characteristics of the
proposed method under various scenarios. Compared with existing competi-
tive designs, the bagging CRM demonstrates its precision and robustness in
terms of pinning down the correct dose combination. We apply the proposed
bagging CRM to two recent cancer clinical trials with combined drugs for
dose finding.

1. Introduction. In oncology, effective treatments through combining multi-
ple drugs are becoming a routine practice. A combination of drugs can induce treat-
ment synergy, target cancer cells with different drug susceptibilities, and achieve
higher dose intensity and thus improve cure rates. A phase I drug-combination
trial in cancer research often focuses on identifying the maximum tolerated dose
(MTD) combination, which is defined as the one that has a dose-limiting toxicity
(DLT) probability closest to the target toxicity rate. Unlike single-agent trials, dose
finding for drug combinations faces many challenges due to complicated drug–
drug interactions and a multiplicatively increasing number of dose pairs. More
importantly, the toxicity order of the combined doses is only partially known, that
is, the toxicity probability increases with the dose level of one drug when fixing
that of the other drug.
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These new challenges in drug-combination trials have stimulated extensive de-
velopment of statistical methods, most of which are built upon the continual re-
assessment method (CRM) [O’Quigley, Pepe and Fisher (1990)]. Existing model-
based designs often rely on complicated and heavily parameterized statistical
models. Korn and Simon (1991) described a mathematical model for combination
therapies, which can account for the differing toxicity profiles of multiple drugs.
Thall et al. (2003) proposed a six-parameter regression model to characterize a
two-dimensional dose space. Wang and Ivanova (2005) introduced a relatively par-
simonious working model for the dose–toxicity relationship. Yin and Yuan (2009a)
linked the individual toxicity rates of the two agents using a Clayton-type copula
function. Houede et al. (2010) formulated a generalized Aranda-Ordaz model to
facilitate dose finding in two-agent phase I–II trials. Hirakawa et al. (2013) devel-
oped a shrinkage logistic regression model to estimate the joint toxicity probabili-
ties, and the logistic model is also considered in Riviere et al. (2014). Tighiouart et
al. (2014) reparameterized the logistic regression model to simplify the model in-
terpretation. In contrast to the model-based methods, algorithm-based methods can
locate the MTD combination in a “nonparametric” way without imposing any para-
metric assumption on the underlying dose–toxicity relationship. Conaway, Dunbar
and Peddada (2004) proposed to use the pool-adjacent-violators algorithm (PAVA)
to determine the dose allocation in a drug-combination trial. Huang et al. (2007)
applied the traditional 3 + 3 method to drug-combination trials by partitioning the
dose space into zones along the diagonal direction from the lowest to the highest
dose level. Fan et al. (2009) proposed a searching strategy to locate the MTDs in
a two-agent toxicity space. Mander and Sweeting (2015) assigned a product of
independent beta priors to the toxicity probabilities, and then developed a curve-
free method for a dual-agent dose-finding trial. Lin and Yin (2016) proposed an
algorithm-based two-agent Bayesian optimal interval design. For comprehensive
reviews and comparisons on the existing designs for drug-combination trials, see
Thall (2010), Harrington et al. (2013), Mandrekar (2014), Riviere et al. (2015a)
and Hirakawa et al. (2015).

Iasonos and O’Quigley (2014) recently conducted a comprehensive review of
adaptive phase I clinical trials in oncology, and they promoted the wide usage of
model-based designs in practice. Not only is this true for single-agent trials, but
it is also sensible with drug-combination trials due to limited sample size yet a
larger dose searching space. Riviere et al. (2015b) reviewed 162 published arti-
cles, and concluded that the designs of current phase I drug-combination trials in
oncology can be improved by utilizing more model-based methods. Most of the
model-based methods directly quantify the toxicity profile based on the partial or-
der information. However, the sample size in a phase I dose-finding trial is rather
small relative to the number of unknown parameters, which usually leads to un-
stable estimation for the model parameters, especially at the beginning of a trial.
To increase the stability as well as to reduce the number of unknown parameters,
a common approach is to reduce the dimensionality of the dose searching space to
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a one-dimensional searching line. Nevertheless, very limited work has been car-
ried out along the line of dimension reduction, which is in fact a major theme of
high-dimensional modeling. To overcome the challenge of multi-dimension, Korn
and Simon (1993) constructed a tolerable-dose diagram to target specific MTD
combinations. Kramar et al. (1999) studied a selected subset of drug combinations
that are monotonically ordered. Yuan and Yin (2008) proposed a simple sequen-
tial design based on the partial orders of the joint toxicities. Wages et al. (2011)
introduced a partial ordering continual reassessment method (POCRM) by laying
out several possible orders for the joint toxicity rates and then selecting the best
order based on the data. Recognizing the limitation of eliciting a fixed number
of initial orders, we propose to estimate the toxicity order based on isotonic re-
gression and then reduce the two-dimensional space to one dimension so that the
standard CRM can be applied directly. By doing so, the toxicity order is not pre-
fixed but can be adjusted dynamically during the trial. To enhance the robustness of
the proposed method, we further incorporate novel ensemble methods in machine
learning to our dose-finding procedure. Specifically, we estimate the toxicity or-
der of the reduced one-dimensional space through the bootstrap aggregating (bag-
ging) approach [Breiman (1996), Hastie, Tibshirani and Friedman (2009)] and the
Bayesian model averaging procedure [Raftery et al. (1997), Hoeting et al. (1999)].
Our proposed dimension reduction technique and estimation procedure are novel
and fundamentally different from the POCRM which prespecifies a fixed number
of orders and uses model selection for dose finding. Not only can the proposed
design pin down the MTD more accurately, but it is also much safer in terms of
preventing patients from unnecessary toxicities.

The rest of the paper is organized as follows. In Section 2, we present two re-
cent cancer clinical trials that have motivated the proposed method, and the trend
of more drug-combination trials is also discussed. In Section 3, we develop the
bagging CRM by incorporating both bagging and Bayesian model averaging tech-
niques. In addition, we formulate the decision rules and the dose-finding algorithm.
In Section 4, we examine the operating characteristics of the new designs based on
simulation studies and sensitivity analysis. We illustrate the proposed method with
two clinical trials in Section 5, and Section 6 provides some concluding remarks.

2. Motivating trials.

2.1. Neratinib and temsirolimus combination trial. Gandhi et al. (2014) con-
ducted a phase I dose-finding trial for the combination of neratinib and tem-
sirolimus in patients with human epidermal growth factor receptor 2 (HER2),
which plays an important role in the development and progression of breast and
lung cancers. HER2 activation via overexpression or kinase domain mutation is
oncogenic in vitro and in vivo. Neratinib is a small-molecule irreversible pan-
HER tyrosine kinase inhibitor. However, preclinical studies showed that neratinib
alone is insufficient for complete extinguishing of mammalian target of rapamycin
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(mTOR) activity and may cause both primary and acquired resistances. The ad-
dition of an mTOR inhibitor to a HER2 inhibitor has been demonstrated via in
vivo models to result in synergistic tumor growth inhibition and regression. The
primary goal of the trial is to study the synergistic benefits of the combined drugs
of neratinib and temsirolimus (an mTOR inhibitor) in HER2-driven tumors as well
as to identify the MTD combination with a target DLT rate of 33%. The inability
to maintain the prescribed doses during the first 28 days is considered as a DLT.
In the trial, 60 patients were treated by possible dosing combinations of four dose
levels of neratinib and four dose levels of temsirolimus.

The dose assignment of this trial is determined by a modified up-and-down de-
sign [Ivanova and Wang (2004)], and at the end of the trial two MTD combinations
were identified. However, the up-and-down design for drug-combination trials suf-
fers from several limitations. First, the cohort size cannot be easily adapted due to
the one-to-one correspondent relationship between the cohort size and the target
toxicity rate. Second, the allocation rule is ad hoc and is strictly bundled with the
cohort size. Last but not least, only the cumulative information of the current dose
level is utilized in determining the next assigned dose level, which indicates the in-
efficiency of the design as it does not fully utilize the information across different
dose levels. As a result, the up-and-down design may not be able to identify the
true MTD combinations accurately, and it has been demonstrated by simulations
to be inferior to existing model-based methods [Riviere et al. (2015a)].

2.2. Capecitabine and bosutinib combination trial. Capecitabine, an oral 5-
fluorouracil (5-FU) prodrug, has been shown to be effective in treating metastatic
colorectal cancer and metastatic breast cancer. Unfortunately, resistance to cape-
citabine has been observed in several solid tumor models. Preclinical studies
showed that the combined therapy of a Src inhibitor and a 5-FU inhibitor would
result in synergistic tumor growth inhibition and regression. Isakoff et al. (2014)
conducted a phase I trial to study the safety and efficacy of the dosing combinations
of capecitabine and bosutinib (a Src inhibitor). The primary objective of the trial
is to investigate the MTD dose levels among nine dose combinations consisting
of three dose levels of capecitabine and three dose levels of bosutinib. Tumor as-
sessments were performed for all patients at the screening stage, and response was
evaluated every six weeks until disease progression or treatment discontinuation.
The target toxicity rate was 33%, and each cohort contained two patients. A total
of thirty-two patients were enrolled with twenty-four patients assessed in the dose
escalation stage, which was guided by an up-and-down design, to determine the
MTD.

2.3. Trend of drug-combination trials. In the era of precision medicine, com-
bination therapies are becoming more and more popular since the benefit with
single-agent treatment is generally modest [Papadatos-Pastos et al. (2015)]. Most
of the real trials in practice used inefficient designs, such as the conventional
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3 + 3 design, to determine the dose escalation strategy. For example, Wilky et al.
(2015) applied a 3 + 3 design to study the combined treatment of cixutumumab
and selumetinib. Saura et al. (2014) enrolled 33 patients in a multinational, open-
label, phase I/II trial to determine the MTD among the dosing combinations with
neratinib (three levels) and capecitabine (two levels). A modified 3 + 3 design
was utilized in dose assignment, which led to approximately one-third of the pa-
tients being treated at the over-toxic dose levels. Ullenhag et al. (2015) studied the
lenalidomide in combination with gemcitabine in patients with advanced pancre-
atic cancer based on an ad hoc dose-escalation rule. Siegel et al. (2014) used the
3+3 design to determine the MTD of vorinostat in combination with lenalidomide
and dexamethasone in patients with relapsed or refractory multiple myeloma, and
Bendell et al. (2015) also applied the 3+3 design to identify the MTD of linsitinib
in combination with everolimus in patients with refractory metastatic colorectal
cancer. Although the 3 + 3 design dominates practical applications, its limitations
have been widely recognized and its performance has been criticized; for instance,
see Korn et al. (1994) and Ahn (1998). The drawbacks of the 3+3 design would be
more prominent in drug-combination trials due to small sample sizes yet a larger
searching space. In addition to its poor operating characteristics and tendency for
an inconsistent estimate of the MTD in single-agent trials, the application of the
3 + 3 design to drug-combination trials has a higher risk of excluding the true
MTDs because often only a subset of dose combinations is selected for investi-
gation. These recent trial examples and limitations of the current practice demon-
strate the urgent need for a novel dose-finding design which not only is easy to
implement but also has desirable properties.

3. Methodology.

3.1. Dynamic ordering. In a two-dimensional dose-finding study, we consider
combining J dose levels of drug A and K levels of drug B, which leads to a total of
J × K dose levels in combination. Let pjk denote the true toxicity probability of
dose combination (Aj ,Bk), j = 1, . . . , J ; k = 1, . . . ,K . The aim of dose finding
in phase I drug-combination trials is to identify the dose combination that has
the toxicity probability closest to the target toxicity rate φ. For the ith patient,
i = 1, . . . , n, let ti denote the toxicity outcome; that is, ti = 1 if the patient has
experienced DLT, and ti = 0 otherwise. Let di = (Aj ,Bk) if patient i is treated
at the dose combination (Aj ,Bk). The data collected up to the nth patient can be
represented as

D =
[

t1 · · · tn
d1 · · · dn

]
.

To reduce the number of unknown parameters in a model-based approach, we
propose a dimension-reduction technique that reduces the two-dimensional space
to one dimension. Our procedure can be split into two steps: First, we estimate
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the toxicity orders of all the dose combinations and sort these dose levels into a
one-dimensional vector. Second, we apply a commonly used single-agent model to
quantify the ordered toxicity probabilities. The model for a single-agent trial usu-
ally involves fewer parameters, which can increase the stability of the estimation
procedure.

Based on the partial ordering information, we can specify an initial toxicity
order for the dose combinations from the lowest to the highest,

O0 : (A1,B1) ≺ (A1,B2) ≺ (A2,B1) ≺ · · · ≺ (AJ ,BK),

where (Aj ,Bk) ≺ (Aj ′,Bk′) means that dose combination (Aj ′,Bk′) is more toxic
than (Aj ,Bk). Let O0(k) denote the dose level that ranks the kth place in O0. For
example, O0(1) = (A1,B1) is the lowest dose level in the drug-combination space,
and O0(3) = (A2,B1). The initial order can be arbitrary but must follow the partial
order requirement; that is, for j = 1, . . . , J ; k = 1, . . . ,K ,

(Aj ,Bk) ≺ (Aj+1,Bk) and (Aj ,Bk) ≺ (Aj ,Bk+1).

As demonstrated by the sensitivity analysis in Section 4.2, the specified initial
order has a minimal effect on the performance of the proposed method. As the
trial proceeds, the toxicity order of the two-dimensional dose space is dynamically
adjusted via a nonparametric method.

Under the Bayesian paradigm, we assign a beta prior distribution to pjk , that
is, pjk ∼ Beta(a, b), where a and b are hyperparameters taking small values to
ensure noninformativeness. Thus, the posterior mean of pjk is

p̄jk = yjk + a

njk + a + b
,

where njk = ∑n
i=1 I {di = (Aj ,Bk)} denotes the number of patients assigned to the

dose combination (Aj ,Bk), yjk = ∑n
i=1 tiI {di = (Aj ,Bk)} is the number of ob-

served DLTs, and I {·} represents the indicator function. As an alternative, one can
also assign different beta priors to pjk’s based on the partial order constraint. Let
ajk and bjk denote the hyperparameters of the beta prior distribution for the dose
combination (Aj ,Bk). We vary the value of ajk according to the partial orders,
while fixing the sum ajk + bjk = n0,

ajk = n0pmin + n0(j + k − 2)(pmax − pmin)

J + K − 2
, j = 1, . . . , J ;k = 1, . . . ,K,

where a small number n0 indicates a small effective sample size and thus weak
prior information, and pmin and pmax are the prespecified toxicity probabilities for
the lowest dose combination (A1,B1) and the highest dose combination (AJ ,BK),
respectively. For example, considering n0 = 0.1, pmin = 0.15 and pmax = 0.55 for
a 3 × 3 drug-combination trial, the values of (ajk, bjk) are given by

{
(ajk, bjk)

} =
⎡
⎣(0.035,0.065) (0.045,0.055) (0.055,0.045)

(0.025,0.075) (0.035,0.065) (0.045,0.055)

(0.015,0.085) (0.025,0.075) (0.035,0.065)

⎤
⎦ ,
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which leads to the prior means of pjk ,

{p̄jk} =
⎡
⎣0.35 0.45 0.55

0.25 0.35 0.45
0.15 0.25 0.35

⎤
⎦ .

Based on a simulation study (not reported here due to the space limit), there is no
gain in the performance by considering the partial orders in the prior specification,
as long as the prior distributions on pjk’s are noninformative, for example, setting
n0 = 0.1 corresponds to only 1/10 subject’s information.

To ensure the estimated toxicity rates satisfying the partial ordering constraint
when fixing one drug at a certain dose level, we perform the isotonic regression on
{p̄jk}. The isotonic regression is a model-free method to fit the data with monotone
or partial ordering constraints, which ensures the monotonic dose–response rela-
tionship [Yuan and Chappell (2004)]. Specifically, we apply the two-dimensional
PAVA algorithm [Bril et al. (1984)] to {p̄jk}, and denote the isotonically trans-
formed values by {p̃jk}. However, there are often ties for these p̃jk’s due to the
sparsity of the data. In a sequential way, we can utilize the information in the pre-
vious round of ordering to break the ties through the adjustment as follows:

p̃
†
jk = p̃jk + rjkε,

where rjk denotes the rank of dose level (Aj ,Bk) in the estimated order based on
the data up to the previous cohort (O0 is utilized for the first cohort of patients), and
ε is a very small positive number, for example, ε = 0.001. Thus, the dynamically
estimated order is given by

O = order
({

p̃
†
jk

})
,

where order(·) is a function that returns a permutation coordinate vector that rear-
ranges a two-dimensional matrix into an ascending order. We break the ties using
the previous ordering after the PAVA algorithm, which is a sequential updating
process as newly enrolled patients may lead to substantial change in the toxicity
ordering.

As an illustration, we consider an example with 2 levels of drug A and 3 levels
of drug B . The initial order is specified as

O0 : (A1,B1) ≺ (A1,B2) ≺ (A2,B1) ≺ (A1,B3) ≺ (A2,B2) ≺ (A2,B3).

Suppose that after treating the first fifteen patients, the collected data are given by

{yjk} =
[

1 − −
0 2 3

]
, {njk} =

[
6 − −
3 3 3

]
,

where “−” means no patient assigned to the corresponding dose combination. If
we assign Beta(0.05,0.05) as the prior distribution for each pjk , j = 1,2, k =
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1,2,3, then the isotonically transformed estimates of the toxicity rates are given
by

{p̃jk} =
⎡
⎣0.169 0.644 0.956

0.010 0.644 0.956

⎤
⎦ ,

and the adjusted estimates after breaking the ties are

{
p̃

†
jk

} =
⎡
⎣0.172 0.649 0.962

↑ ↘ ↑ ↘ ↑
0.011 0.646 0.960

⎤
⎦ .

As a result, the dynamically adjusted order O is

O = order
({

p̃
†
jk

})
= {

(A1,B1) ≺ (A2,B1) ≺ (A1,B2) ≺ (A2,B2) ≺ (A1,B3) ≺ (A2,B3)
}
.

The dynamic adjustment is an adaptive procedure: If the initial guess satisfies the
order implied by the observed data, the initial order retains; otherwise, the initial
order is restructured according to the observed information.

Based on the order O, the two-dimensional space in a drug-combination trial
can be reduced to a one-dimensional line with a monotonically increasing tox-
icity order, and thus the conventional CRM can be utilized to characterize the
dose–toxicity curve. Owing to its desirable properties and superior performance in
single-agent dose-finding trials [Heyd and Carlin (1999), Yin and Yuan (2009b),
O’Quigley and Conaway (2010), Cheung (2011)], we expect the CRM to pre-
serve its advantages in drug-combination trials as long as the toxicity ordering can
be pinned down correctly. Specifically, in the power model [Shen and O’Quigley
(1996)], let q1 < · · · < qJK be the prespecified toxicity probabilities of a set of
J × K dose levels, which is typically known as the skeleton of the CRM. Under
the estimated order O, the toxicity probability at dose level O(l) (l = 1, . . . , JK)
is

(3.1) Pr
(
toxicity at dose level O(l)

) = q
exp(α)
l ,

where α is the only unknown parameter that needs to be estimated. Such a power
model is simple yet flexible enough to characterize the underlying dose–toxicity
curve in dose-finding studies [Yin (2012)]. The likelihood function based on the
observed data D is given by

L(α | O,D) ∝
JK∏
l=1

{
q

exp(α)
l

}yO(l)
{
1 − q

exp(α)
l

}nO(l)−yO(l) ,

where yO(l) and nO(l) represent the number of observed DLTs and the number
of treated patients at dose level O(l), respectively. Let f (α) be a proper prior
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distribution for α, and then the posterior mean of the toxicity probability at dose
level (Aj ,Bk) under the aforementioned dynamic ordering scheme is given by

(3.2) p̂jk =
∫

qexp(α)
rjk

L(α | O,D)f (α)∫
L(α | O,D)f (α)dα

dα,

where rjk is the rank of dose combination (Aj ,Bk) in O. In addition to the esti-
mate of the toxicity probability, the posterior probability that dose level (Aj ,Bk)

is overly toxic is given by

Pr(pjk > φ | O,D) =
∫ log{log(φ)/ log(qrjk

)}
−∞

L(α | O,D)f (α)∫
L(α |O,D)f (α)dα

dα,

which can be used for decision-making on dose escalation or de-escalation.

3.2. Bagging CRM. Due to the sparsity of the data, the toxicity order of the
drug-combination space may vary dramatically for consecutive cohorts, which
means the estimated toxicity probabilities p̂jk in (3.2) tend to suffer from high
variability. On the other hand, Bootstrap aggregating (bagging), a powerful ma-
chine learning ensemble technique in statistical classification and regression, av-
erages the inference results based on multiple bootstrap samples [Breiman (1996),
Hastie, Tibshirani and Friedman (2009)]. As a result, the combined classifier or
predictor possesses low variance and high accuracy, and also helps to avoid overfit-
ting. To enhance the stability of the estimation, we consider the bagging procedure
to quantify the toxicity order.

Based on the cumulative data D, we construct B bootstrap samples of size n,

Db =
[

tb1 · · · tbn
db

1 · · · db
n

]
, b = 1, . . . ,B,

where each pair of (tbi , db
i ) is uniformly drawn from the data D with replacement.

For each bootstrap sample Db, we apply the dynamic ordering approach described
in Section 3.1 to obtain an estimated order Ob, b = 1, . . . ,B . After removing the
duplicate orders, we collect BU (BU ≤ B) sets of unique orders, O1, . . . ,OBU

. For
each of the unique orders Ob, b = 1, . . . ,BU , we obtain the posterior estimates of
the toxicity probabilities based on Ob and D (i.e., we use the bagging order and the
original data to fit the CRM model), which are denoted by {p̂b

jk}, b = 1, . . . ,BU .
Finally, we apply a Bayesian model averaging (BMA) procedure [Raftery et al.
(1997), Hoeting et al. (1999)] to combine these bagging estimators. Specifically,
the bagging estimate of pjk is a weighted average of p̂b

jk ,

p̂
Bagging
jk =

BU∑
b=1

Pr(Ob | D)p̂b
jk,
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where the weight Pr(Ob | D) is the posterior probability of order Ob,

Pr(Ob | D) = Pr(Ob)
∫

L(α | Ob,D)f (α)dα∑B
b′=1 Pr(Ob′)

∫
L(α | Ob′,D)f (α)dα

,

and Pr(Ob) is the prior order probability. For simplicity, we set Pr(O1) = · · · =
Pr(OBU

) = 1/BU for equal prior preference on all the orders. In addition, the bag-
ging estimate of the posterior probability of pjk > φ is given by

Pr
(
p

Bagging
jk > φ | D) =

BU∑
b=1

Pr
(
pb

jk > φ | Ob,D
)
Pr(Ob | D),

where Pr(pb
jk > φ | Ob,D) is obtained based on the bth bootstrapped order. We

can also consider the Bayesian bagging approach [Clyde and Lee (2001)] under
the Bayesian bootstrap framework [Rubin (1981)]. For ease of implementation,
the standard bootstrap approach is more straightforward without compromising
the performance.

3.3. Dose-finding algorithm. At the beginning of a trial, the posterior esti-
mates are often unstable as the collected data are very limited. Usually, a start-up
phase is required for the model-based dose-finding methods to enhance the reli-
ability of the posterior estimates. For the proposed method, we initiate a start-up
phase by treating the first cohort of patients at the lowest dose combination. If no
toxicity is observed for that cohort, then we consider a diagonal escalation rule,
that is, escalating drug A and drug B by one dose level simultaneously. If one drug
reaches its maximum dose level, then we increase the dose level of the other drug
until both agents arrive at their individual maximum dose levels. Such an escalation
rule may be aggressive at the very beginning of the trial, but it can be more effi-
cient in locating the target toxicity level [Riviere et al. (2014)]. As soon as the first
toxicity outcome is observed, the prephase stage is completed, and the proposed
dose-finding algorithm kicks in seamlessly for the rest of the trial as follows.

We define ce > 0 and cd > 0 (ce + cd > 1) as the probability cutoffs for dose es-
calation and de-escalation, respectively, and their values can be calibrated through
simulation studies. Suppose the current dose level is (Aj ,Bk), and the target toxi-
city rate is φ.

(1) If Pr(pBagging
jk > φ | D) > cd , then we define an admissible dose de-

escalation set as

AD = {
(Aj − 1,Bk), (Aj ,Bk − 1), (Aj − 1,Bk + 1), (Aj + 1,Bk − 1)

}
,

which is constituted by the dose levels adjacent to (Aj ,Bk). The next cohort of pa-
tients is assigned to dose combination (Aj∗,Bk∗), which has a toxicity probability
lower than (Aj ,Bk) but closest to φ,(

j∗, k∗) = arg min
(Aj ′ ,Bk′ )∈AD

{∣∣p̂Bagging
j ′k′ − φ

∣∣/I (
p̂

Bagging
j ′k′ ≤ p̂

Bagging
jk

)}
.
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(2) If Pr(pBagging
jk < φ | D) > ce, then we define an admissible dose escalation

set as

AE = {
(Aj + 1,Bk), (Aj ,Bk + 1), (Aj − 1,Bk + 1), (Aj + 1,Bk − 1)

}
.

The next cohort of patients is assigned to dose combination (Aj∗,Bk∗), which has
a toxicity probability higher than (Aj ,Bk) but closest to φ,(

j∗, k∗) = arg min
(Aj ′ ,Bk′ )∈AE

{∣∣p̂Bagging
j ′k′ − φ

∣∣/I (
p̂

Bagging
j ′k′ ≥ p̂

Bagging
jk

)}
.

(3) Otherwise, we retain the dose at the same level.

If an escalation decision is made at the highest dose level (AJ ,BK) or a de-
escalation decision is made at the lowest dose level (A1,B1), then we retain the
same dose level for the next cohort. To prevent the dose assignment from be-
ing trapped into some local suboptimal levels, we impose an additional rule: If
dose level (Aj ′,Bk′) belongs to the admissible dose escalation or de-escalation
set while that level has never been tested with patients, then we update the differ-
ence between the estimated toxicity probability at (Aj ′,Bk′) and the target φ to be
one-fourth of the original value. This adaptation rule can facilitate the proposed
method to visit untried dose combinations more aggressively, such that the entire
dose searching space can be explored.

The trial can be stopped after the exhaustion of the maximum sample size N or
be terminated early for safety if the lowest dose combination is still overly toxic as
indicated by Pr(pBagging

11 > φ | D) > λ, where λ is a threshold value close to 1. At
the end of the trial, we select the MTD as the dose combination (Aj∗,Bk∗) that has
been tested in the trial and attains the largest posterior probability of falling inside
the ε-neighborhood of the target φ,

(Aj∗,Bk∗) = arg max
(Aj ,Bk)∈N

Pr
(
φ − ε < p

Bagging
jk < φ + ε | D)

,

where N is the set that contains all the tried dose combinations, and ε is a small
positive number, for example, ε = 0.1.

4. Simulation study.

4.1. Performance with finite samples. We conduct extensive simulation stud-
ies to investigate the operating characteristics of the bagging CRM in compari-
son with four existing methods: the partial ordering CRM (POCRM) [Wages et
al. (2011)], the Clayton copula-type regression [Yin and Yuan (2009a)], the lo-
gistic method [Riviere et al. (2014)] and the two-dimensional Bayesian optimal
interval design (2d-BOIN) [Lin and Yin (2016)]. The POCRM reduces the two-
dimensional searching space to one dimension based on several prespecified toxi-
city orders; the copula design links the individual toxicity probabilities of the two
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FIG. 1. Four different specifications of the initial order.

drugs via a copula function; the logistic design quantifies the joint toxicity proba-
bilities of the combined drugs using a four-parameter logistic regression model;
and the 2d-BOIN design utilizes a predetermined toxicity tolerance interval to
guide the dose-finding procedure. Following the guidance of the POCRM, we se-
lect six possible orders with an equal prior probability, and we use the R package
pocrm with a slight modification to allow for a cohort size of 3. The skeleton of
the CRM is chosen using the getprior function in the R package dfcrm by
specifying η = 0.03 and an initial guess of the MTD position at 8. The simula-
tion configuration of the copula design follows the recommendation in Yin and
Lin (2015). The results of logistic and 2d-BOIN designs are obtained using the R
packages dfcomb and boin under their default settings, respectively. For the pro-
posed bagging CRM, we set the skeletons to be the same as those in the POCRM
and assign a noninformative prior distribution α ∼ N(0,2) in the power model
(3.1). We assign a noninformative prior distribution Beta(0.05,0.05) to pjk , and
the initial order is specified as in Figure 1(a). To implement the bagging CRM, we
take the cutoff probabilities ce = 0.7 and cd = 0.5, and draw 50 bootstrap sam-
ples, that is, B = 50. We also examine a reduced form of the bagging CRM with
B = 0 (denoted as the bagging-0 CRM), which only estimates the toxicity order
once based on the observed data according to the dynamic ordering procedure de-
scribed in Section 3.1. We investigate whether there is any gain of the bagging-50
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CRM (with 50 bootstrap samples) over the bagging-0 CRM. The diagonal escala-
tion rule described in Section 3.3 is implemented as the start-up phase for all the
model-based methods. For a fair comparison, we do not impose any early termi-
nation for all the considered designs.

The target toxicity probability φ is set at 0.3, and the trial starts from the low-
est dose level (A1,B1). The total sample size is 60 with a cohort size of 3. For
a patient treated at the dose combination (Aj ,Bk), the toxicity outcome is gen-
erated as a binary random variable that takes a value of 1 with probability pjk

and 0 otherwise. We consider 16 scenarios involving eight 4 × 4 and eight 3 × 5
drug-combination spaces, where the true toxicity probabilities, pjk’s, are given in
Table 1. These 16 toxicity scenarios cover a wide range of dose–response relation-
ships commonly encountered in real trials. In particular, scenario 1 has four MTD
combinations along the diagonal line. There exist three MTD combinations in sce-
narios 2 and 3, and scenario 3 is typically considered more difficult as the MTDs
in this scenario are far away from the starting dose and (A1,B4) is isolated from
the other two MTDs. In each of scenarios 4 to 7, there are two MTD combinations
which are located at different positions. The goal of scenario 4 is to examine the
design’s performance when the MTD combinations are located at the boundaries
of the dose searching space and the MTD contour is not complete, while scenario
5 mainly aims to investigate the safety aspect of the design as the MTDs are more
concentrated at the lower dose combinations. Only one MTD exists in scenario 8,
and the model-based approaches might yield a large incorrect selection percentage
if the model is misspecified. Scenarios 9–16 investigate the performance of our
design under an asymmetric dose-combination space with five dose levels of drug
A and three dose levels of drug B.

To quantify the operating characteristics of the dose-finding methods, we con-
sider six performance statistics, including the percentage of correct MTD selection,
the percentage of patients treated at the true MTDs, an accuracy index that repre-
sents the entire distribution of selected doses, the percentage of trials that select
over-toxic dose combinations as the MTDs, the percentage of patients allocated
to the over-toxic dose combinations, and the percentage of patients experiencing
toxicities. The definition of the accuracy index is given by

AI = 1 − JK

∑J
j=1

∑K
k=1 wjk|pjk − φ|∑J

j=1
∑K

k=1 |pjk − φ| ,

where wjk is the probability of selecting dose (Aj ,Bk) as the MTD [Cheung
(2011)]. The first three statistics, for which the larger the better, reflect the accu-
racy and efficiency of a design, while the remaining three are related to the safety
aspects of a trial, and thus a design with smaller values of these three statistics is
considered more ethical and desirable.

The simulation study is focused on the comparisons among the bagging-50
CRM, bagging-0 CRM and POCRM, as these three methods implement dimen-
sion reduction techniques for dose finding. For each scenario, we replicate 1000



2362 R. LIN AND G. YIN

TABLE 1
Sixteen toxicity scenarios for two-drug combinations, with a target toxicity probability

of 30% in shaded cells

Agent A

Dose level 1 2 3 4 5 1 2 3 4 5

A
ge

nt
B

Scenario 1 Scenario 2
4 0.30 0.45 0.60 0.70 0.50 0.55 0.60 0.70
3 0.15 0.30 0.48 0.60 0.30 0.50 0.55 0.60
2 0.10 0.20 0.30 0.50 0.12 0.30 0.50 0.55
1 0.08 0.14 0.19 0.30 0.10 0.15 0.30 0.45

Scenario 3 Scenario 4
4 0.30 0.52 0.60 0.70 0.20 0.30 0.50 0.60
3 0.19 0.40 0.45 0.60 0.15 0.20 0.45 0.55
2 0.10 0.21 0.30 0.40 0.10 0.15 0.20 0.30
1 0.02 0.11 0.20 0.30 0.05 0.10 0.15 0.20

Scenario 5 Scenario 6
4 0.48 0.52 0.55 0.58 0.50 0.55 0.60 0.70
3 0.42 0.45 0.50 0.52 0.15 0.30 0.45 0.60
2 0.30 0.40 0.48 0.50 0.10 0.18 0.30 0.45
1 0.15 0.30 0.40 0.45 0.06 0.08 0.10 0.15

Scenario 7 Scenario 8
4 0.42 0.48 0.60 0.65 0.50 0.60 0.67 0.73
3 0.20 0.30 0.45 0.61 0.40 0.54 0.62 0.68
2 0.10 0.20 0.40 0.46 0.20 0.30 0.50 0.60
1 0.05 0.15 0.30 0.45 0.15 0.20 0.40 0.56

Scenario 9 Scenario 10
3 0.15 0.30 0.45 0.50 0.60 0.30 0.40 0.45 0.55 0.60
2 0.10 0.15 0.30 0.45 0.55 0.07 0.10 0.20 0.30 0.55
1 0.05 0.10 0.15 0.30 0.45 0.02 0.07 0.10 0.15 0.30

Scenario 11 Scenario 12
3 0.30 0.45 0.50 0.65 0.75 0.30 0.50 0.60 0.70 0.80
2 0.15 0.30 0.45 0.52 0.60 0.20 0.45 0.50 0.60 0.75
1 0.07 0.10 0.12 0.30 0.50 0.15 0.20 0.30 0.50 0.60

Scenario 13 Scenario 14
3 0.15 0.30 0.45 0.50 0.60 0.50 0.60 0.70 0.80 0.90
2 0.09 0.12 0.15 0.30 0.45 0.45 0.55 0.65 0.75 0.85
1 0.05 0.08 0.10 0.13 0.15 0.30 0.45 0.60 0.70 0.80

Scenario 15 Scenario 16
3 0.07 0.09 0.12 0.15 0.30 0.08 0.20 0.40 0.55 0.65
2 0.03 0.05 0.10 0.13 0.15 0.05 0.08 0.15 0.30 0.50
1 0.01 0.02 0.08 0.10 0.11 0.02 0.05 0.10 0.19 0.45
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trials and summarize the respective averages of the six performance statistics in
Table 2. Overall, the bagging-50 CRM and bagging-0 CRM show improvement of
5% to 20% in terms of the MTD selection percentage over the POCRM in most of
the scenarios, and the superiority of the bagging CRMs is most striking in scenario
16. In reality, it may happen that all the six prespecified orders in the POCRM
deviate far from the truth and, as a result, such a fixed number of initial orders
cannot cover all the possible ordering profiles. By contrast, the bagging CRM does
not limit the possibilities of ordering, and it continually re-estimates the toxicity
order based on the cumulative data, even though the initial order might be incor-
rectly specified. Averaged over all the sixteen scenarios, the bagging-50 CRM has
4.3% more chance to identify the true MTDs than the POCRM, which is a real
gain that should not be undervalued given how critical it is to pin down the right
dose. Comparing the bagging-0 CRM and bagging-50 CRM, as expected, the latter
dominates the former due to reduction of the variation. The performances of the
other two statistics related to accuracy, including the percentage of patients treated
at the true MTDs and the accuracy index, are in line with the MTD selection cri-
terion, that is, both demonstrate improvement over the POCRM. In addition, by
comparing with other existing methods in Table 2, the bagging-50 CRM also has
superior performances in terms of accuracy and efficiency: The bagging-50 CRM
is more stable than the logistic method, especially in scenarios 3, 4, 8, 10, 12 and
16; and it is more efficient in identifying the MTD combinations than the copula
and 2d-BOIN designs. Furthermore, Table 3 shows that the standard deviations for
the percentages of patients assigned to the MTDs under the bagging-50 CRM are
generally lower than others. As the variability quantifies the reliability of a design
[Oron and Hoff (2013)], the highest overall MTD selection percentage in conjunc-
tion with low variability demonstrates the accuracy and reliability of our bagging
CRM.

The three safety statistics are of great practical importance, and a trial with poor
safety control should be deemed to be of high risk. Among all the six designs, the
logistic approach appears to be the safest, as it allocates fewer patients to over-
toxic dose combinations and also tends to avoid selecting high-risk dose levels.
The bagging-50 CRM ranks the second, under which on average 4.6 fewer pa-
tients are allocated to over-toxic dose combinations than the POCRM. The safety
advantage is especially prominent in scenarios 5, 7, 8 and 10, where the bagging-50
CRM reduces the percentage of patients allocated to over-toxic dose combinations
about 10% in comparison with the POCRM. Due to the higher variability of the
bagging-0 CRM, the posterior estimates of the toxicity probabilities are less stable,
and thus the bagging-0 CRM tends to select a higher dose combination for each
treatment assignment than the bagging-50 CRM. All the six considered designs ex-
hibit similar patterns in terms of the percentage of patients experiencing the DLT.
In summary, the simulation results demonstrate that both the proposed bagging-
0 and bagging-50 CRMs outperform POCRM substantially, and the bagging-50
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TABLE 2
Operating characteristics of the proposed bagging-50 CRM (with 50 bootstrap samples) in comparison with the bagging-0 CRM

(without bootstrapping), POCRM, copula, logistic and 2d-BOIN designs under sixteen scenarios

Scenarios

Designs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ave

% Correct MTD selection

Bagging-50 68.6 82.1 44.1 30.6 61.2 67.0 45.2 34.2 76.1 55.5 74.0 49.4 56.2 86.8 72.1 44.0 59.2
Bagging-0 71.7 74.6 49.1 31.8 56.6 60.7 48.3 33.8 73.0 58.3 70.6 45.2 56.0 79.4 72.3 34.3 57.2
POCRM 72.8 75.5 50.4 38.4 51.8 59.4 37.7 23.6 70.6 48.1 68.4 52.4 55.6 75.4 75.4 23.0 54.9
Copula 65.1 77.1 31.2 26.1 60.8 45.2 42.4 34.1 62.6 48.1 58.1 30.2 45.7 83.3 92.0 24.4 51.2
Logistic 68.9 83.5 36.1 15.1 71.6 68.7 44.6 18.9 75.7 23.5 68.3 35.3 65.8 86.6 79.3 26.0 54.2
2d-BOIN 67.9 79.0 45.8 48.7 65.3 54.4 44.5 37.4 66.1 56.5 70.1 48.6 57.2 79.5 74.8 23.2 57.4

% Patients treated at true MTDs

Bagging-50 42.5 53.8 28.6 15.4 42.6 35.3 28.1 21.8 46.1 33.1 44.8 28.1 29.1 73.2 37.5 22.1 36.4
Bagging-0 43.8 52.0 30.5 16.5 40.9 34.6 28.9 22.7 45.8 34.6 45.7 24.1 29.6 71.2 37.6 19.4 36.0
POCRM 50.0 51.1 35.1 22.1 32.9 36.0 25.9 19.7 45.7 33.7 49.9 31.5 32.3 65.2 52.7 14.8 37.4
Copula 41.0 50.4 23.5 16.0 41.4 31.2 26.4 25.1 36.6 31.8 40.5 20.2 27.6 82.5 53.1 17.9 35.3
Logistic 41.6 53.8 23.1 10.0 43.4 37.1 25.8 17.8 44.8 14.0 41.9 22.3 33.3 77.7 39.6 14.5 33.8
2d-BOIN 40.0 48.7 26.7 24.7 46.5 31.2 26.5 21.2 41.9 31.3 43.2 27.6 33.9 73.6 44.2 11.5 35.8

Accuracy index

Bagging-50 74.8 82.7 62.7 46.9 70.1 74.1 63.0 68.4 76.5 68.2 77.5 70.8 59.5 94.0 78.0 65.2 70.8
Bagging-0 75.1 75.5 65.5 46.6 66.8 67.6 63.3 67.0 73.3 68.2 74.3 67.7 59.1 90.5 78.3 58.5 68.6
POCRM 75.4 77.3 65.3 51.2 62.0 65.2 53.9 61.5 69.0 56.5 70.3 70.3 56.1 88.2 79.3 46.4 65.5
Copula 66.7 77.5 52.7 34.4 70.8 53.9 60.7 67.5 62.6 56.7 64.0 59.2 49.4 93.5 94.0 47.0 63.2
Logistic 75.1 84.2 59.2 31.6 78.2 75.6 63.9 61.7 76.0 48.5 72.7 65.8 68.2 94.1 83.9 56.8 68.5
2d-BOIN 70.3 80.3 63.3 57.4 72.5 63.4 60.0 68.0 66.3 65.3 73.4 70.3 59.8 93.5 80.7 52.8 68.6
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TABLE 2

(Continued)

Scenarios

Designs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Ave

% Trials selecting over-toxic doses

Bagging-50 6.7 12.1 30.8 15.0 31.9 13.7 26.7 35.0 12.4 18.6 18.3 21.8 17.9 13.2 0.0 26.8 18.8
Bagging-0 9.9 19.7 28.7 17.5 39.4 20.0 34.0 42.6 16.7 22.6 22.7 26.5 20.3 20.6 0.0 35.1 23.5
POCRM 9.6 16.9 28.3 15.7 44.8 18.6 40.5 47.5 16.9 26.7 21.0 22.1 18.3 24.6 0.0 23.0 23.4
Copula 17.5 15.1 39.2 35.8 32.3 35.7 35.7 36.7 23.7 38.5 35.5 33.5 41.0 16.7 0.0 45.9 30.2
Logistic 4.9 8.2 27.6 28.0 23.3 12.4 25.1 43.2 9.8 40.8 22.1 20.2 16.5 13.4 0.0 33.0 20.5
2d-BOIN 14.2 13.1 27.2 14.9 27.3 20.6 31.7 33.4 18.0 25.0 18.3 20.2 20.1 14.2 0.0 34.4 20.8

% Patients treated at over-toxic doses

Bagging-50 11.3 21.9 27.0 15.0 38.0 19.5 30.5 35.6 18.5 20.9 24.0 26.6 17.2 26.8 0.0 25.7 22.4
Bagging-0 14.9 24.6 28.9 17.6 40.4 23.4 34.1 36.5 21.5 24.7 26.4 30.2 20.5 28.4 0.0 29.5 25.1
POCRM 16.5 30.3 32.9 17.4 52.5 27.0 42.6 46.8 25.9 32.3 29.1 33.0 22.6 34.8 0.0 37.8 30.1
Copula 14.6 17.5 27.9 20.1 31.0 23.6 27.4 35.2 23.0 23.4 20.9 23.6 22.1 17.5 0.0 31.2 22.4
Logistic 9.3 14.9 24.0 15.7 29.9 16.1 27.8 31.4 14.0 29.2 19.0 18.8 15.1 22.3 0.0 26.0 19.6
2d-BOIN 17.7 21.6 27.5 18.9 31.2 24.2 29.8 33.8 20.5 28.1 24.6 25.2 21.9 26.4 0.0 32.5 24.0

% Observed toxicities

Bagging-50 25.8 30.1 27.6 23.2 31.7 26.1 28.7 30.3 26.8 25.7 28.5 29.5 23.5 34.8 18.5 25.1 27.2
Bagging-0 26.8 30.8 28.7 24.4 32.1 27.2 29.6 30.9 27.6 27.0 29.3 30.2 24.2 35.2 18.5 25.8 28.0
POCRM 28.2 32.6 30.0 24.9 34.6 28.8 31.6 33.3 29.3 29.3 31.0 31.9 25.6 36.6 20.9 27.8 29.8
Copula 26.4 28.0 27.3 25.0 29.2 26.3 27.3 27.9 26.7 26.0 26.5 27.1 24.8 33.1 21.2 26.4 26.8
Logistic 25.3 27.8 23.1 23.2 30.0 25.9 27.8 28.8 25.4 25.5 25.8 26.5 23.6 34.1 18.9 24.6 26.0
2d-BOIN 27.1 29.1 27.1 25.1 30.3 26.8 27.7 29.8 26.5 26.3 28.2 29.0 25.3 34.5 18.7 25.4 27.3

Note: Ave represents the averaged value over 16 scenarios. Under each scenario, the best design for each performance statistic is highlighted by the darker
shaded cell, and the second best by the lighter shaded cell.
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TABLE 3
Standard deviations of “% patients treated at true MTDs” in Table 2

Scenarios

Designs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bagging-50 19.5 15.6 15.4 13.2 21.2 15.6 12.9 15.8 17.1 16.4 13.6 15.7 13.6 24.8 28.0 14.0
Bagging-0 18.2 16.9 18.4 16.2 21.9 18.0 16.3 18.5 16.3 18.4 16.3 17.5 15.1 27.6 28.2 16.6
POCRM 22.7 20.4 21.4 19.5 23.5 22.1 19.2 19.8 21.5 21.2 20.5 18.6 18.3 30.1 26.8 17.9
Copula 17.1 13.9 16.3 13.6 17.4 15.4 12.7 13.9 14.0 13.6 12.0 13.5 11.3 19.3 20.1 11.6
Logistic 24.9 22.2 20.7 13.7 24.1 21.6 17.8 18.4 22.2 19.1 22.9 20.1 18.7 25.6 25.7 17.0
2d-BOIN 20.7 18.2 24.8 23.2 23.7 22.4 24.1 24.0 20.5 25.1 22.4 26.1 23.2 27.7 21.3 18.5
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FIG. 2. Average number of orders generated by the bagging-50 CRM along the sequence of co-
horts.

CRM possesses more stable and competitive operating characteristics in compar-
ison with other existing methods. More importantly, the new approach starts with
only one initial order and continually updates the toxicity order with every accrued
cohort so that the standard CRM can be applied straightforwardly. The nonpara-
metric estimates of the toxicity probabilities are used for adjusting the toxicity
order only, and the parametric CRM model is implemented separately based on
the updated toxicity order.

Figure 2 shows the average number of orders generated by the bagging-50 CRM
after enrolling each cohort, which clearly increases with the number of accrued
patients. However, if the MTDs are located in the lower- or upper-dose areas (i.e.,
the MTDs lie in the bottom-left or top-right corner of the two-dimensional space),
the bagging-50 CRM generates a smaller number of orders, for example, scenarios
5, 8, 12, 14 and 15. Under these scenarios, patient allocation tends to be more
concentrated, and the data are likely to be clustered in a small neighborhood of the
MTDs. As a result, the regions far away from the MTDs would only experiment
with very few patients, and thus the information from these isolated spots has a
minimal effect on the bootstrap samples, which in turn leads to fewer orders being
generated. For the other scenarios, more than 10 orders are generated after the 10th
cohort of patients, which indicates to some extent that only six orders specified by
the POCRM are not adequate for practical use.

4.2. Sensitivity analysis. To investigate the robustness of the bagging CRM to
the specification of the initial order, we consider three other orders, as shown in
Figures 1(b), (c) and (d) for the 4 × 4 drug-combination trials, while the initial
order specifications for the 3 × 5 cases are similar. For each order, we simulate
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FIG. 3. Sensitivity analysis of the bagging-50 CRM under four different initial orders in Figure 1.

1000 trials based on the same settings as described in Section 4.1. Figure 3 displays
the percentage of correct MTD selection and the total number of different orders
generated by the bagging-50 CRM under four initial orders across 16 scenarios.
We conclude that the initial order almost has no impact on both quantities.

To further study the influence of the bagging times, B , on the performance of the
bagging CRM, we consider three values of B: 30, 50 and 70. Figure 4 shows the
percentages of correct MTD selection with respect to B under the sixteen scenar-
ios. There is a general trend that the percentage of correct MTD selection slowly
increases with the number of bagging times, although some small variations are
observed. Due to the small sample size in phase I trials, the default value of B is
set to be 50, which is typically adequate for generating representative orders.
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FIG. 4. Percentages of correct MTD selection with respect to the number of bagging times.

5. Trial application.

5.1. Neratinib and temsirolimus combination trial. For illustration, we apply
our bagging CRM to the neratinib and temsirolimus combination trial [Gandhi
et al. (2014)]. Four dose levels of neratinib {A1,A2,A3,A4} = {120, 160, 200,
240} mg and four dose levels of temsirolimus {B1,B2,B3,B4} = {15, 25, 50,
75} mg are investigated. The toxicity rate of each dose combination (Aj ,Bk) is
estimated by fitting a logistic regression model to the trial data,

logit(pjk) = β0 + β1xj + β2yk + β3xjyk, j, k = 1, . . . ,4,

where xj and yk are the standardized dosages of neratinib and temsirolimus, re-
spectively. The estimated toxicity rates of the combined doses are given by

Temsirolimus
15 25 50 75

N
er

at
in

ib 240 0.24 0.33 0.56 0.77
200 0.14 0.19 0.33 0.55
160 0.08 0.10 0.17 0.22
120 0.04 0.05 0.07 0.10
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which has two MTDs located in the higher dose region of the two-agent space.
The observed DLTs can be generated from these estimated toxicity probabilities.
The total sample size is 60 with a cohort size of 2, which is consistent with the
up-and-down design that was used by the trial. We take the order in Figure 1(a) to
be the initial order for the bagging-50 CRM (with 50 bootstrap samples), and the
remaining parameters are specified according to Section 4.

In the prephase, we started the trial by treating the first cohort of patients at
the lowest dose combination (A1,B1), at which none of the two patients experi-
enced the DLT. The subsequent dose assignment followed the diagonal escalation
rule, that is, we simultaneously increased the dose levels of the two drugs until the
first DLT was observed. During this escalation stage, dose combinations (A2,B2),
(A3,B3) were visited once before one DLT was observed at (A4,B4). The trial
then entered into the main phase with the bagging-50 CRM. By bootstrapping the
prephase data 50 times, the posterior probability, Pr(pBagging

44 > φ | D), is 0.71, and
thus the dose level for the next cohort should be de-escalated to (A3,B4), which
has an estimated toxicity probability of 0.34. One of the two patients treated at
(A3,B4) experienced the DLT, and then (A2,B4) was recommended for the next
cohort. At each step of dose assignment with accrued trial information, the bag-
ging CRM continually re-estimated the toxicity order and the toxicity probabilities
of the dose combinations so that the new cohort can be assigned to the best com-
bination thus far. After exhaustion of 30 cohorts, the bagging CRM stopped at the
dose combination (A3,B3), where 8 out of 24 patients experienced DLTs. Given
the collected data at the end of trial,

{nij } =

⎡
⎢⎢⎣

4 2 0 2
2 6 26 8
0 2 2 4
2 0 0 0

⎤
⎥⎥⎦ , {yij } =

⎡
⎢⎢⎣

2 2 0 1
0 1 8 5
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

the dose combination (A3,B3) was recommended as the MTD, with an estimated
toxicity probability of 0.31. Throughout the entire trial, 75 different toxicity orders
are generated according to the bagging procedure. Since the toxicity profile of the
4 × 4 dose-combination space is presumably known, we can additionally conduct
a simulation study to examine the potential gain using the proposed design. Based
on 1000 replications, the up-and-down design utilized by the original trial only
has a correct MTD selection percentage of 42.0%, and assigns about 11.6 patients
to the two MTDs. By contrast, the bagging CRM has a 59.9% MTD selection
percentage, and assigns 20.6 patients to the MTDs.

5.2. Capecitabine and bosutinib combination trial. As another application
of the bagging-50 CRM, we redesign the phase I trial for advanced solid tu-
mors [Isakoff et al. (2014)]. In the trial, the three doses of capecitabine were
{A1,A2,A3} = {625,750,1000} mg/m2 and those of bosutinib were {B1,B2,
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B3} = {200,300,400} mg. Suppose the true toxicity probabilities of the combined
doses are

Bosutinib

C
ap

ec
ita

bi
ne 200 300 400

1000 0.20 0.33 0.55
750 0.09 0.29 0.41
625 0.05 0.20 0.33

which corresponds to scenario 2 in the supplemental simulation studies of Isakoff
et al. (2014). To be consistent with the dose escalation stage of the original study,
we set the total number of patients to be 24 with a cohort size of 2. As the total
number of dose combinations is 9, in the specification of the CRM skeleton, we
take the initial position of the MTD to be 5 and the half width of the indifference
interval in the R function getprior η = 0.05 to allow for adequate spacing be-
tween toxicity probabilities of adjacent dose levels. The initial order is chosen in
the same way as Figure 1(a):

O0 : (A1,B1) ≺ (A1,B2) ≺ (A2,B1) ≺ (A1,B3) ≺ (A2,B2)

≺ (A3,B1) ≺ (A2,B3) ≺ (A3,B2) ≺ (A3,B3).

All the other design parameters including the prior distributions are specified the
same as those in Section 4. During the start-up phase of the trial, dose combina-
tions of (A1,B1) and (A2,B2) were administrated along the diagonal escalation
direction. Since one DLT occurred at the dose combination (A2,B2), the main
phase with the bagging CRM was triggered immediately. Based on the cumula-
tive data, we generated 50 bootstrap samples that resulted in three sets of unique
orders:

O1 : (A1,B1) ≺ (A1,B2) ≺ (A2,B1) ≺ (A1,B3) ≺ (A2,B2)

≺ (A3,B1) ≺ (A2,B3) ≺ (A3,B2) ≺ (A3,B3),

O2 : (A1,B1) ≺ (A1,B2) ≺ (A2,B1) ≺ (A2,B2) ≺ (A1,B3)

≺ (A3,B1) ≺ (A2,B3) ≺ (A3,B2) ≺ (A3,B3),

O3 : (A1,B1) ≺ (A1,B2) ≺ (A2,B1) ≺ (A1,B3) ≺ (A3,B1)

≺ (A2,B2) ≺ (A2,B3) ≺ (A3,B2) ≺ (A3,B3).

We combined the estimated toxicity probabilities from the three orders using the
BMA procedure, and found the next dose combination to be (A1,B3). The sub-
sequent dose assignments are given in Table 4. Once the outcomes of all the
24 patients were observed and analyzed, the dose combination (A1,B3), that is,
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TABLE 4
Application of the bagging-50 CRM to the bosutinib and capecitabine combination trial

Sequence Dose # of # of Sequence Dose # of # of
of cohorts combination DLTs orders of cohorts combination DLTs orders

1 (A1,B1) 0 1 7 (A2,B2) 1 4
2 (A2,B2) 1 3 8 (A3,B1) 1 8
3 (A1,B3) 1 8 9 (A2,B1) 0 18
4 (A1,B2) 0 8 10 (A2,B2) 1 15
5 (A1,B3) 0 5 11 (A1,B3) 2 20
6 (A1,B3) 0 4 12 (A1,B2) 0 17

capecitabine 625 mg/m2 plus bosutinib 400 mg, was recommended as the MTD
combination, with an estimated toxicity probability of 0.36.

6. Concluding remarks. To embrace the trend of drug-combination trials,
we have proposed to dynamically estimate the toxicity order of two combined
agents by two-dimensional isotonic regression. Based on the estimated toxicity or-
der, we reduce the two-dimensional drug-combination searching space into a one-
dimensional line and then apply the CRM to locate the MTD combination. Our
design utilizes all the available data to continually reorder as well as to re-estimate
the toxicity probabilities in the entire dose-combination space. To stabilize this dy-
namic procedure, we incorporate novel ensemble methods, bagging and Bayesian
model averaging techniques, into the proposed method. Simulation studies show
that our approach outperforms the competing methods and is rather robust to vari-
ous prior ordering specifications.

The proposed method differs notably from the POCRM in many ways. First,
our method requires only one initial order that satisfies the partial order constraint
at the beginning of the trial, while the POCRM recommends to choose six to nine
orders. If the initial orders in the POCRM cannot cover the true toxicity profile,
the design may not perform well. In contrast, our method coherently updates the
single toxicity “working” ordering with the cumulative data as more patients en-
ter the trial, and thus it has a higher chance to estimate the order more accurately.
Second, the POCRM utilizes the Bayesian model selection procedure to select
only one order at each decision step, while the bagging CRM averages the esti-
mates from all possible bagging-generated orders via Bayesian model averaging.
Model selection based on a small sample may not be reliable, especially at the
beginning of the trial when very few patients have been accrued. Third, our bag-
ging CRM can be easily extended to clinical trial settings with more than two
drugs in combination, as we only need to sort out one single ordering for all dose
combinations. However, the POCRM may suffer from such a higher dimensional
dose-finding space because the number of possible orders increases immensely
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with three or more combined drugs. Many more initial orders are required to
cover different scenarios, which may become infeasible. Last, the dose assign-
ment rule of the bagging CRM is totally different from the POCRM: our method
makes decisions based on the posterior distribution of the toxicity probability,
while the POCRM solely relies upon the posterior mean estimate. We have fo-
cused on incorporation of bagging to the model-based dose-finding designs with
combined drugs. It is of interest to investigate other ensemble methods in ma-
chine learning, such as the random forest [Breiman (2001)] and boosting [Freund
and Schapire (1997), Friedman, Hastie and Tibshirani (2000)], in dose-finding
trials.

Acknowledgments. We thank the Editor, Associate Editor and two referees
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