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Sequencing techniques have been widely used to assess gene expression
(i.e., RNA-seq) or the presence of epigenetic features (e.g., DNase-seq to
identify open chromatin regions). In contrast to traditional microarray plat-
forms, sequencing data are typically summarized in the form of discrete
counts, and they are able to delineate allele-specific signals, which are not
available from microarrays. The presence of epigenetic features are often as-
sociated with gene expression, both of which have been shown to be affected
by DNA polymorphisms. However, joint models with the flexibility to assess
interactions between gene expression, epigenetic features and DNA polymor-
phisms are currently lacking. In this paper, we develop a statistical model
to assess the associations between gene expression and epigenetic features
using sequencing data, while explicitly modeling the effects of DNA poly-
morphisms in either an allele-specific or nonallele-specific manner. We show
that in doing so we provide the flexibility to detect associations between gene
expression and epigenetic features, as well as conditional associations given
DNA polymorphisms. We evaluate the performance of our method using sim-
ulations and apply our method to study the association between gene expres-
sion and the presence of DNase I Hypersensitive sites (DHSs) in HapMap
individuals. Our model can be generalized to exploring the relationships be-
tween DNA polymorphisms and any two types of sequencing experiments,
a useful feature as the variety of sequencing experiments continue to expand.

1. Introduction. Gene expression regulation is an essential biological pro-
cess by which static genetic information gives rise to dynamic organismal phe-
notypes [Jaenisch and Bird (2003)]. Multiple epigenetic features are involved in
gene expression regulation, including DNase I hypersensitive sites (DHSs) [Song
et al. (2011)], DNA methylation [Fang et al. (2012)] and histone modifications
[Heintzman et al. (2009)]. DHSs, which delineate open chromatin regions, are
among the most well-studied epigenetic features. DHSs often harbor regulatory
DNA elements that can influence gene expression [Thurman et al. (2012)], and thus
the presence or absence of DHSs is often associated with gene expression variation
[Djebali et al. (2012)]. Both gene expression and DHSs are heritable [McDaniell
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et al. (2010)], and previous studies have found their variations are often associ-
ated with DNA variants such as single nucleotide polymorphisms (SNPs) [Degner
et al. (2012), Pickrell et al. (2010)]. Characterizing these associations plays an im-
portant role in understanding how one’s genotype modifies phenotype, such as in
Cowper-Sal et al. (2012), where the authors systematically determined SNPs asso-
ciated with breast cancer and found these SNPs are over-represented on the binding
sites of a transcription factor FOXA1. They then confirmed that these SNPs modi-
fied the FOXA1 binding strength, which further leads to imbalance of downstream
gene regulation.

Gene expression and epigenetic features are being routinely assessed by high-
throughput sequencing solutions, and the results are quantified by the number
of sequenced reads within certain genomic regions. For example, the number of
RNA-seq reads within a gene provides a measure of gene expression, which can
be further normalized by read depth (the total number of sequencing reads sam-
pled per individual) and gene length to facilitate comparison across individuals and
across genes. Sequencing data not only provide more comprehensive and more
accurate assessments of genomic activity, but also reveal novel information that
is not available from traditional microarrays, such as allele-specific signals. In a
diploid genome, the DNA sequence at each autosomal locus has two copies (i.e.,
the maternal and paternal copy), and each copy is referred to as an allele.

Recently, allele-specific signals have been studied in various sequencing stud-
ies, including gene expression [Pickrell et al. (2010)], DNA methylation [Fang
et al. (2012)], transcription factor binding [Rozowsky et al. (2011)] and chromatin
accessibility [Degner et al. (2012)]. Such allele-specific signals can be used to
distinguish cis-acting and trans-acting genetic effects [Sun (2012)]. A cis-acting
DNA polymorphism only modifies expression of genes or epigenetic features that
are located on the same haploid genome as the DNA polymorphism. In contrast,
a trans-acting DNA polymorphism has the same effect on both alleles of its tar-
get. Therefore, an imbalance of Allele-Specific Read Counts (ASReCs) of the two
alleles within one individual implies the presence of a cis-acting regulatory ele-
ment, and the variation of the Total Read Count (TReC, summation of read count
from either allele) across individuals can be due to either cis-acting or trans-acting
regulations.

Previous studies have demonstrated the association between gene expression
and epigenetic features using either TReC or ASReC and their associations with
DNA polymorphisms. Unfortunately, no study has systematically assessed the
joint associations between gene expression, epigenetic features and underlying
genotype. Furthermore, no method exists to determine such associations with
allele-specific sequencing data (ASReC). To address this issue, we develop a novel
statistical method, which we refer to as BASeG (Bivariate Aassociation studies us-
ing Sequencing data, while accounting for shared Genetic effects). Specifically, we
study the association of TReC and ASReC using Bivariate Poisson-Log-Normal
(BPLN) regression and Bivariate Binomial-Logistic-Normal (BBLN) regression,
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respectively. We demonstrate BASeG’s utility in simulations and a study of the as-
sociation between gene expression (measured by RNA-seq) and DHSs (measured
by DNase-seq). BASeG is general enough to be applied to study the associations
between any two types of sequencing data, such as gene expression (by RNA-seq)
vs. DNA methylation measured by bisulfite sequencing or histone modifications
measured by ChIP-seq (Chromatin Immunoprecipitation followed by sequencing).

2. Model.

2.1. Bivariate Poisson-log-normal regression for Total Read Count (TReC).
Assume we are interested in the RNA-seq TReC of a particular gene, denoted by
TR , and the DNase-seq TReC within a particular genomic region (e.g., a 250-bp
window in the promoter of the gene of interest), denoted by TC in the ith sam-
ple. For notational simplicity, we drop sample subscript i for now. We assume the
expected value of TR is associated with a genetic variable ZR and some other co-
variates XR , and, similarly, the expected value of TC is associated with a genetic
variable ZC and some other covariates XC . Such covariates may include the log
of the sequencing depth for each sample (the log transformation is due to the fact
that our model of TReC has a log link function), as well as demographic variables
and/or batch effects. We also assume the genetic effect is additive such that ZR

or ZC equals 0, 1 or 2, which is the number of nonreference (alternative) alleles
of the SNP. In this study, the reference allele of a SNP is defined based on the
1000 Genomes Project SNP annotation file and this definition is applied consis-
tently across samples. Without loss of generality, we also assume that this genetic
effect jointly impacts each data type (i.e., gene expression or DHSs), allowing us
to assess whether the observed correlation of gene expression and DHSs is due to
a joint effect of a single SNP. It is straightforward to define other types of genetic
effects (e.g., dominant or co-dominant) if desired. We model the joint distribution
of TR and TC by a bivariate Poisson-log-normal (BPLN) distribution:

fBPLN(TR,TC)
(2.1)

=
∫ ∞
−∞

∫ ∞
−∞

fP(TR;μR)fP(TC;μC)φ(εR, εC;�1) dεRi dεCi,

where fP(;μ) denotes the Poisson distribution probability mass function with
mean μ. For RNA-seq and DNase-seq data, we assume log(μR) = XRβR +
ZRbR + εR and log(μC) = XCβC + ZCbC + εC , respectively, where εR and εC

are two random variables following a bivariate normal distribution with mean 0
and covariance �1, denoted by the bivariate normal probability density function
φ(εR, εC;�1),

�1 =
(

σ 2
R ρ1σRσC

ρ1σRσC σ 2
C

)
,
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and −1 ≤ ρ1 ≤ 1 is a correlation parameter. Therefore, in this BPLN distribution,
the correlation, in the absence of a shared genetic effect, between TR and TC is
induced by the correlation ρ1 between εR and εC . We compare our model with
that of a generalized mixed linear model framework with heterogeneous variances
in the discussion section of this manuscript.

The probability mass function of (TR,TC) is obtained by integrating out the
random effects εR and εC . To efficiently approximate this integral computation-
ally, we utilize a multivariate form of adaptive Gauss-Hermite quadrature [Liu and
Pierce (1994)]:

fBPLN(TR,TC) ≈
s∑

j=1

s∑
k=1

w∗
jw

∗
kfP

(
TR;μ∗

R

)
fP

(
TC;μ∗

C

)
φ

(
ε∗
j , ε

∗
k ;�1

)
,(2.2)

where the s quadrature nodes ε∗
j and ε∗

k are chosen with respect to the mode of
the integrand and are scaled according to the estimated curvature at the mode,
and weights w∗

j and w∗
k are utilized as defined in Section 1 of the Supplementary

Material [Hartzel, Agresti and Caffo (2001), Rashid, Sun and Ibrahim (2016)].
Here log(μ∗

R) = XRβR + ZRbR + ε∗
j and log(μ∗

C) = XCβC + ZCbC + ε∗
k . Adap-

tive quadrature approaches are typically utilized to increase the accuracy of an
integral approximation while utilizing fewer quadrature points to control compu-
tational cost. Details regarding the adaptive quadrature procedure are given in
the Supplementary Material. For all simulations and real data analyses in this
manuscript we have used s = 10 quadrature points.

The log likelihood corresponding to all n samples can then be expressed as

lBPLN(TR,TC) =
n∑

i=1

log
[
fBPLN(TRi, TCi)

]
.

The derivatives of this log likelihood can be factored into the form of (2.2), and
thus maximization with respect to the parameters βR,βC, bR, bC,σR,σC and ρ1
can be performed via quasi-newton methods such as L-BFGS-B. We provide fur-
ther details of the maximization procedure in the Supplementary Material.

2.2. Bivariate Binomial-logistic-normal regression for Allele-specific Read
Counts (ASReC). Next we consider the statistical model for allele-specific read
counts (ASReC). Similar to the previous section, we wish to assess conditional
correlations after accounting for genetic effects. As before, we drop the subject
subscript i for notational simplicity and describe the PMF for a single sample.
For a gene of interest, we assume its two haplotypes are known, and denote them
by h1 and h2, respectively. Let NR1 and NR2 be the number of allele-specific
RNA-seq reads from haplotype h1 and h2, respectively, and let NR = NR1 + NR2.
Analogously, we define NC1, NC2 and NC for the DNase-seq data. We exclude
those samples with NC < u or NR < u for ASReC studies because allelic imbal-
ance cannot be reliably estimated when there are few allele-specific reads. In the
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following real data studies, we set u = 1. For the remaining samples, we model
the joint distribution of NR1 and NC1 by a Bivariate Binomial-Logistic-Normal
regression model (BBLN), denoted by fBBLN:

fBBLN(NC1,NR1)

=
∫ ∞
−∞

∫ ∞
−∞

fB(NR1;NR,πR)fB(NC1;NC,πC)φ(ξR, ξC;�2) dξR dξC,

where fB(;N,π) denotes the binomial distribution probability mass function with
N trials and probability of success π . In this scenario, success pertains to a read’s
alignment to haplotype h1. We define πR and πC to be the success probabilities
in the RNA-seq and DNase-seq data, respectively, given some possible underlying
genetic effect. We model πR and πC such that log[πR/(1 − πR)] = vRER + ξR

and log[πC/(1−πC)] = vCEC +ξC , where ER or EC describes the allele-specific
effect of a SNP:

ER (or EC) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if the SNP is homozygous,

−1, if the SNP is heterozygous and its reference allele is

on haplotype h1,

1, if the SNP is heterozygous and its reference allele is

on haplotype h2;
that is, the success probability in each data type may be related to an allele-specific
effect of an underlying SNP. When the SNP is homozygous, it has the same allele
in both haplotypes, and thus cannot lead to any allelic imbalance of gene expres-
sion. Therefore, ER (or EC) = 0 if the SNP is homozygous. When the SNP is
heterozygous and it is responsible for allelic imbalance of gene expression, the
higher expression haplotype may have either reference allele or alternative allele.
The magnitude of this effect in each data type is conveyed by vR and vC . Thus,
the definition of genetic effect relies on which haplotype has the reference allele.
The confounding covariates XR or XC used for TReC model are ignored because
such covariates’ effects are often canceled out when we compare the expression
of one allele vs. the other allele. It is straightforward to add such effects back into
the model if needed. Similarly to the model for TReC data, we assume ξC and ξR

follow a bivariate normal distribution: φ(ξC, ξR;�2) ∼N (0,�2), where

�2 =
(

κ2
R ρ2κRκC

ρ2κRκC κ2
C

)
,

and −1 ≤ ρ2 ≤ 1 is the correlation parameter. Therefore, in the absence of a shared
genetic effect, the dependence between the observed allele-specific read counts
(NR1 and NC1) is induced by the correlation parameter ρ2 between ξC and ξR .
We compare and contrast our model with that of a generalized mixed linear model
framework with heterogeneous variances in the discussion section of this paper.
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Finally, the joint log likelihood of ASReC for n individuals is

lBBLN(NCi1,NRi1) =
n∑

i=1

I (NRi ≥ u and NCi ≥ u) log
[
fBBLN(NR1i ,NC1i)

]
,

where I ( ) is an indicator function. We obtain the MLE (Maximum Likelihood
Estimate) of the parameters similarly to the BPLN model for TReC data; see the
Supplementary Material for details.

2.3. Testing framework using TReC or ASReC. Utilizing the MLE of the
above models, we employ likelihood ratio tests (LRTs) with degree of freedom
1 to assess the correlation between gene expression and DHS site. Specifically, we
will conduct the following four tests:

1. Assess the correlation between RNA-seq and DNase-seq TReC in the pres-
ence of genetic effects. Conduct the LRT using the TReC likelihood with H0:
ρ1 = 0 vs. H1: ρ1 �= 0.

2. Assess the correlation between RNA-seq and DNase-seq TReC in the ab-
sence of genetic effects. Conduct the LRT using the TReC likelihood with H0:
bR = bC = ρ1 = 0 vs. H1: bR = bC = 0, and ρ1 �= 0.

3. Assess the correlation between RNA-seq and DNase-seq ASReC in the pres-
ence of genetic effects. Conduct the LRT using the ASReC likelihood with H0:
ρ2 = 0 vs. H1: ρ2 �= 0.

4. Assess the correlation between RNA-seq and DNase-seq ASReC in the ab-
sence of genetic effects. Conduct the LRT using the ASReC likelihood H0: vR =
vC = ρ2 = 0 vs. H1: vR = vC = 0, and ρ2 �= 0.

It is also desirable to test the two null hypotheses ρ1 = 0 and ρ2 = 0 simul-
taneously as a two degree of freedom test. However, it is possible that only one
of the null hypotheses is correct in certain situations. For example, if the associa-
tion between gene expression and DHS is totally due to a common cis-acting SNP
(i.e., ZC = ZR) and the SNP is heterozygous across all individuals, then without
conditioning on SNP genotype, ρ1 = 0 but ρ2 �= 0.

We conduct a genome-wide assessment of the dependency between gene ex-
pression and DHS in the following steps. First, for each gene, we only consider
the DHSs that are local (e.g., within 2 kb) since distant DHSs are unlikely to influ-
ence gene expression and would increase the burden of multiple testing correction.
Second, for each gene and each DHS, we only consider the SNPs that are close to
either feature (e.g., within 2kb of either feature), which has been a common prac-
tice in previous eQTL studies [Sun (2012)]. Our method allows distinct SNPs to
be associated with the RNA-seq and DNase-seq data, respectively. However, since
our focus is to account for the case where the dependence between gene expression
and DHS is induced by shared genetic effect, we choose to use the same SNP for
RNA-seq and DNase-seq data (i.e., ZR = ZC). Another important motivation for
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this strategy is to reduce the multiple testing burden. For example, if there are 100
SNPs around a gene-DHS pair, we correct for the multiple tests across 100 SNPs
in the case of a common SNP effect ZR = ZC . However, if we allow two distinct
SNPs to be associated with the RNA-seq and DNase-seq data (ZR �= ZC), 10,000
SNP combinations will be evaluated, with much higher multiple testing burden
and more complicated correlation structures among the 10,000 tests. We note that
a SNP that is found to explain the correlation between two data types may not
be the only possible SNP to do so, as we do not survey every single SNP in the
genome for association. Furthermore, it is possible that two separate SNPs may
jointly explain such correlation. However, given previous interest in searching for
common SNPs with a joint effect [Degner et al. (2012)], we focus the rest of the
manuscript assuming a joing SNP effect.

3. Results.

3.1. Simulation studies. We use simulated data to evaluate the power and type
I error of the tests in Section 2.3 for a triplet of gene expression, DHS and SNP.
First, TReC data were simulated from fBPLN under the combinations of the fol-
lowing situations:

• Sample size: n = 50,100 or 300.
• SNP minor allele frequency: 0.5.
• SNP effect: bR = bC = 0,0.05,0.075,0.1,0.15 or 0.2.
• Four covariates. The first one is the intercept, the other three are simulated from

uniform (0,1) distribution. The coefficients are βC = (2.5,0.5,0.5,0.5) and
βR = (2.5,1,1,1).

• Variance: � = [ 0.1 0.12ρ1
0.12ρ1 0.1

]
, with ρ1 = 0,0.05,0.1,0.15,0.2,0.25,0.35

or 0.5.

The simulation study results are summarized in Figure 1. We note that bR and
bC represent the effect of the common SNP on read counts in each data type,
whereby larger values of each induce more correlation in read counts. Therefore,
if one accounts for the SNP effect in the BPLN model, the estimated correlation
parameter will be much smaller in this model relative to the model that ignores
the SNP effect. For testing ρ1 = 0 in the presence of a shared genetic effect (Fig-
ure 1A), there is slight inflation of Type I error for small sample sizes (n = 50);
however, such inflation disappears as sample size increases (n = 100 or 300).
When shared genetic effects on RNA-seq and DNase-seq are ignored, testing the
correlation between RNA-seq and DNase-seq TReC data has inflated Type I error,
and such inflation increases as the genetic effects bR and bC increase (Figure 1B).
This suggests the importance of accounting for genetic effects in our model, as the
correlation between TReC counts may be induced by a shared genetic effect. We
also find that the power for detecting the correlation between RNA-seq and DNase-
seq increases greatly with sample size (Figure 1C). When the sample size is 50,
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FIG. 1. Simulation results for the BPLN (Bi-variate Poisson Log Normal) model. (A) Type I error
in testing for ρ1 = 0 given bC and bR . (B) Type I error in testing for ρ1 = 0 under the assumption of
bC = 0 and bR = 0 while the true values of bC and bR vary from 0 to 0.2. (C) Power in testing for
ρ1 = 0 with different sample sizes, given bC = 0 and bR = 0.

we achieve approximately 80% power to detect correlation ρ1 = 0.5. For n = 300,
we achieve 80% power to detect correlation ρ1 = 0.2. The power calculations in
Figure 1C correspond to data simulated such that bR = bC = 0, while results for
other values of bR and bC are similar. Reducing the MAF in our model from 0.5
to 0.1, we find that our power analysis with respect to ρ1 is unchanged, as we uti-
lize data from all subjects regardless of genotype to estimate ρ1 (Supplementary
Figure S1A).

Next, we simulated ASReC data from fBBLN(NRi1,NCi1) over the following
situations:

• Sample size: n=50 or 100.
• SNP minor allele frequency: 0.5.
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• SNP effect: vR = vC = 0, 0.2, 0.3 or 0.4.
• NR,NC ∼ Poisson(λ), λ = 5, 20 or 100.
• Variance: �2 = [ 0.1 0.12ρ2

0.12ρ2 0.1

]
, where ρ2 = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.035

and 0.5.

The simulation results are shown in Figure 2. When we account for the shared
genetic effect, testing for ρ2 = 0 has little inflation of Type I error, regardless of
the values of π1 and π2 or the total number of allele-specific reads (Figures 2A–
B). Under model misspecification where we ignore genetic effects (i.e., assuming
vR = 0 and vC = 0 or, equivalently, πRi = πCi = 0.5), type I error in testing for
ρ2 = 0 increases as πR and πC deviate from 0.5 (Figures 2C–D). In Figures 2E–
F, we find that the power for testing for ρ2 = 0 is mostly a function of the total
number of allele-specific reads, while sample size has little effect on power. For
example, doubling the sample size from n = 50 to n = 100 leads only to modest
gains in power, mostly at lower levels of ρ2. Notably, having only 5 total allele-
specific reads per site has almost zero power to detect correlation. This observation
justifies our suggestion of ignoring allele-specific read data when there are few
allele-specific reads. Similar to the BPLN simulation, decreasing MAF to 0.1 does
not have a large impact on our power to detect ρ2 (Supplementary Figure S1B).

3.2. Real data analysis. We applied our method to study the DNase-seq and
RNA-seq data of 60 HapMap YRI individuals [Degner et al. (2012), Pickrell et al.
(2010)]. The data were downloaded from http://eqtl.uchicago.edu/. Given the re-
sults in simulation studies with respect to model misspecification, we seek to assess
gene-DHS association in the presence of a common SNP effect.

3.2.1. Genotype data preparation. Among these 60 individuals, 42 have
phased genotypes from the 1000 Genomes Project (TGP) Phase I Release Ver-
sion 3 [1000 Genomes Project Consortium et al. (2012)] consisting of 36 mil-
lion SNPs. For the remaining 18 individuals we obtained their corresponding
HapMap r27 genotypes consisting of approximately 3 million SNPs, and im-
puted the genotypes and haplotypes on TGP SNPs using MACH 1.0 [Li et al.
(2010)] with the TGP AFR (African population) reference panel. Prior to im-
putation, about 4000 HapMap SNPs whose rsIDs have changed between hu-
man genome build hg18 and hg19 were removed using the liftRsNumber tool
(http://genome.sph.umich.edu/wiki/LiftRsNumber.py).

3.2.2. Tabulating TReC for RNA-seq and DNase-seq data. Raw data of
paired-end RNA-seq reads were downloaded from http://eqtl.uchicago.edu/RNA_
Seq_data/unmapped_reads/ and were mapped to human genome build hg19 us-
ing Tophat version 2.0.6 [Trapnell, Pachter and Salzberg (2009)] given Ensembl
transcriptome annotation (GRCh37 release 66). All lanes of data pertaining to the
same individual were merged subsequent to mapping.

http://eqtl.uchicago.edu/
http://genome.sph.umich.edu/wiki/LiftRsNumber.py
http://eqtl.uchicago.edu/RNA_Seq_data/unmapped_reads/
http://eqtl.uchicago.edu/RNA_Seq_data/unmapped_reads/
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FIG. 2. Simulation results for BBLN (Bi-variate Binomial Logistic Normal) model. (A) and (B):
Type I error in testing for ρ2 = 0 while accounting for genetic effects when n = 50 (A) or n = 100
(B). (C) and (D): Type I error in testing for ρ2 = 0 while ignoring genetic effect (i.e., assuming
π1 = 0.5 and π2 = 0.5) when n = 50 (C) or n = 100 (D). (E) and (F): Power in testing for ρ2 = 0
when n = 50 (E) or n = 100 (F).
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We obtained the RNA-seq TReC for each gene by first counting the number of
RNA-seq reads that overlap with exonic regions using R function countReads in
R package R/isoform (http://research.fhcrc.org/sun/en/software/isoform.html)
[Sun et al. (2014)]. To account for possible batch effects in the RNA-seq TReC
data, we computed and retained the first 6 principal components from the TReC
data matrix for later association analysis using TReC data. Specifically, the count
data was first transformed such that xij = log[(yij + 1/6)/(

∑P
j=1 yij )], where yij

is the original count for sample i, i = 1 . . . n and feature j , j = 1 . . . P . P is the
total number of features and n is the total number of samples. Mapped single-
end DNase-seq reads were downloaded from http://eqtl.uchicago.edu/dsQTL_
data/MAPPED_READS/ and were lifted over from build hg18 to hg19 to pre-
serve the quality controls performed in a previous study [Degner et al. (2012)].
Total DNase-seq read counts were tabulated using BedTools v2.17 [Quinlan and
Hall (2010)] for each of 1.5 million 100 bp candidate regions defined in Degner
et al. (2012); and following Degner et al. (2012), we assigned a read to a candidate
region based on the 5′ start position of each read. We also computed and retained
the first 6 principal components from the DNase-seq TReC data matrix and used
them as part of the association analysis using TReC data.

The allele-specific reads mapped to haplotype 1 and haplotype 2 in the RNA-
seq data were extracted given the list of heterozygous SNPs per individual using R
function extractAsReads in R package R/asSeq (http://research.fhcrc.org/
sun/en/software/asSeq.html) [Sun (2012)]. The isolation of allele-specific DNase-
seq reads was performed using the function asCountsBED5 from the R package
developed for this manuscript BASeG. Then the Allele-specific Read Count (AS-
ReC) per gene and per haplotype was counted using R function countReads. As
mentioned earlier, adjusting for confounding factors is often not necessary in the
allele-specific analysis since the ASReC from one haplotype is directly compared
to the other haplotype within an individual, serving as its own control, and thus we
do not use any covariate other than genotype for association analysis using ASReC
data. Other packages for TReC and ASReC read count tabulation may be utilized,
as our method will accept any n × p table of counts as input for each data type,
where n is the number of samples and p is the number of features being considered
for a particular data type.

We performed some additional filtering before our analysis. We removed genes
and DNase-seq candidate regions without enough TReC or ASReC. Specifically,
we kept features for our allele-specific analysis that had ≥10 allele-specific reads
in at least 10 individuals. For our TReC-based analysis, we kept genes that had
an FPKM (Fragments Per Kilobase of sequence Per Million total reads) ≥ 3 in at
least 15 individuals and DHSs with RPM (Reads Per Million total reads) ≥ 3 in
at least 15 individuals, where total sequencing read depth was the sum of number
of reads across all sites in an individual. We also removed SNPs with minor allele
frequency (MAF) less than 0.05. During testing, a Gene-DHS pair was skipped if
less than 10 individuals had at least 10 allele-specific reads for either type of the

http://research.fhcrc.org/sun/en/software/isoform.html
http://eqtl.uchicago.edu/dsQTL_data/MAPPED_READS/
http://research.fhcrc.org/sun/en/software/asSeq.html
http://research.fhcrc.org/sun/en/software/asSeq.html
http://eqtl.uchicago.edu/dsQTL_data/MAPPED_READS/


ASSOCIATION BETWEEN GENE EXPRESSION AND EPIGENETIC FEATURES 2265

data. The final number of features utilized for testing in each data type and for each
chromosome is given in Supplementary Tables S1 and S2 in the Supplementary
Material. We only performed testing between genes and DHS candidate regions
(DHS for short) that are within 2 Kb of each other, and only consider SNPs that are
within 2 Kb of either feature. Using TReC data, we tested 9368 gene-DHS pairs
(consisting of 2841 genes and 8689 DHSs), with 9.97 SNPs per gene-DHS pair
on average. After removing results from gene-DHS-SNP trios that failed during
testing (approximately 14%), we are left with 8689 gene-DHS pairs.

We summarized the results for each gene-DHS pair by three p-values:

• puncond: the p-value without conditioning on any SNP.
• pmax: the maximum of the p-values conditioning on each of the local SNPs.
• pmin.corr: the minimum of the p-values conditioning on each of the local

SNPs, after multiple testing correction.

Suppose Mk local SNPs are considered as possible genetic factors of the kth
gene-DHS pair, and denote the p-values conditioning on each of these SNPs by
(�1, . . . , �Mk

). Then pmin.corr = min(1,min(�1, . . . , �Mk
)Mk,eff), where Mk,eff

is the effective number of independent SNPs of the Mk SNPs [Nyholt (2004)]:

Mk,eff = 1 + (Mk − 1)

(
1 − var(λobs)

Mk

)
,

and var(λobs) is the variance of the observed eigenvalues from the correlation
matrix of the Mk SNPs. A precise correction for multiple testing correction for
pmax can be conducted as follows. First we can assume the p-values of the Mk

SNPs follow a mixture distribution: π0f0 + (1 − π0)f1, where f0 is a distribu-
tion skewed to 0 and f1 is a uniform distribution. Then we need to calculate the
effective number of independent SNPs among those SNPs whose p-values fol-
low uniform distribution. Denote this number as Mmax

k,eff. Then the multiple testing

corrected p-value is p
Mmax

k,eff
max . The rationale of this formula is as follows. Suppose

we have Mmax
k,eff independent p-values, denoted by �1, . . . , �Mmax

k,eff
, which follow the

Uniform distribution, then P(maxu �u ≤ τ) = ∏Mmax
k,eff

u=1 P(�u ≤ τ) ≤ τ
Mmax

k,eff . Due to
limited SNPs around a gene-DHS pair and their strong correlation, it is difficult to
estimate Mmax

k,eff, and thus we use a conservative choice of Mmax
k,eff = 1.

These three p-values are further converted to q-values using the R package
qvalue [Dabney and Storey (2015)] to account for multiple testing across the
gene-DHS pairs, and we denote the q-values by quncond, qmax and qmin.corr,
respectively. As illustrated in Figure 3, the significant unconditional association of
many gene-DHS pairs disappears after conditioning one of the local SNPs. The
tables in Figure 3C provide a summary in terms of number of significant findings
at q-value cutoff 0.1. Our method detects significant unconditional associations
for 80 gene-DHS pairs (0.92% of pairs), while only 10 of them remain significant
after conditioning on local SNPs. A previous study testing for correlation between
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FIG. 3. Panels (A) and (B) show the comparison between unconditional q-value (quncond) vs. (A)
maximum (conditional) q-value (qmax) and (B) multiple testing corrected minimum (conditional)
q-value (qmin.corr). Note that multiple testing corrected minimum p-value pmin.corr account
for multiple testing across multiple SNPs of each gene-DHS pair, while calculation of q-value from
p-values accounts for multiple testing across multiple gene-DHS pairs. The size of each point rep-
resents the number of conditioning SNPs for each gene-DHS pair, and it is truncated at 10. The
dashed lines indicate q-value threshold 0.1 and the solid line is the diagonal line of y = x. Panel (C)
demonstrates our findings by tables.

RNA-seq and DNase-seq data in this dataset found ∼0.7% of all gene-DHS pairs
tested (3587 out of 4,678,275 pairs) showed significant correlation, after scaling
the TReC for each data type to account for possible confounding factors [Degner
et al. (2012)]. The small proportion of gene-DHS pairs with significant uncondi-
tional association can be explained by the small sample size and low read depth,
and thus low statistical power of this dataset. We estimated that about 8.1% of
gene-DHS pairs are associated without conditioning on local SNPs by estimating
the non-null proportion of the p-values across all the gene-DHS pairs [Dabney and
Storey (2015)].

We further examine several significant associations between RNA-seq and
DNase-Seq while accounting for the effect of a common SNP. In this context,
adjusted TReC refers to the residuals that are calculated from the BBLN model
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from each data type. For example, for the RNA-seq data, the adjusted TReC is
determined as TR − exp(XRβ̂R), where TR is the RNA-seq read count for a partic-
ular gene, XR is the associated covariate matrix of factors for the model that was
fit, and β̂R is the estimate for the regression coefficients pertaining to the RNA-
seq data from the fitted BBLN model. We similarly calculate the residuals for the
DNase-seq data.

One example involves the RNA-seq TReC of SLFN5 and the DNase-seq TReC
of a DHS site near an intron approximately 1.5 kb from its transcription start site.
SLFN5 has been shown to play a role in melanoma and renal cell carcinoma,
and is known to be inducible by interferon-α [Mavrommatis et al. (2013)]. Ig-
noring any possible joint SNP effect, we find that the correlation between the
DNase-seq TReC and SLFN5 RNA-seq TReC is significant (Figure 4A, quncond =
5.9 × 10−10). However, after adjusting for the additive genetic effects, such as
nearby SNP rs11080327 (Figure 4C), we find this correlation is no longer signif-
icant (Figure 4E, qmax = 1.0), indicating that the observed correlation between
the RNA-seq TReC and DNase-seq TReC is induced by shared genetic factors.
We also observe a significant correlation between the RNA-seq TReC from gene
EGR1 and the DNase-seq TReC for a DHS located upstream of the gene (Fig-
ure 4B, quncond = 7.3×10−3). This correlation remains significant after adjusting
for nearby SNPs, for example, rs7735367 (Figure 4D, F, qmax = 0.084). In fact,
both RNA-seq and DNase-seq data show very weak associations with the geno-
type of rs7735367 (Figure 4D). We also reran our analysis without PCs and, after
p-value correction, we found that there were approximately 50% fewer significant
results after our p-value correction compared to when the PCs were utilized.

We also compared our method to the much simpler approach of computing cor-
relations between the TReC observed in each of the gene-DHS pairs considered by
our model. To adjust for read depth, we transformed the TReC from each data type
to Counts Per Million (CPM). DNase-seq CPM was computed such that the DHS
TReC for a given individual was divided by the total DNAse-seq read count for
that individual, multiplied by one million. RNA-seq CPM for a given individual
was computed similarly. We then computed three types of correlations based on the
computed CPMs for each of the gene-DHS pairs considered by our model: Spear-
man correlation between the RNA-seq and DNase-seq CPM, Pearson correlation
between log(CPM + 1) transformed RNA-seq and DNase-seq CPM, and

√
CPM

transformed RNA-seq and DNase-seq CPM. We then perform a correlation test
between the CPM from each data type to assess the significance of the association,
and p-values across the gene-DHS pairs were converted to q-values. The results
are given in Supplementary Figure S3, where we observed 8 significantly associ-
ated gene-DHS pairs using Spearman correlation, 14 for the Pearson correlation of
log(CPM + 1) transformed counts and 8 for Pearson correlation of

√
CPM trans-

formed counts at an FDR threshold of 0.1. We attribute the lower sensitivity of the
simple approach relative to our BBLN model to loss of power due to transforma-
tion, and also the inability to account for additional possible confounders affecting
the data.
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FIG. 4. Illustrations of significant interactions between the TReC of select gene-DHS pairs, as well
as the modulatory effects of nearby SNPs. In this context, adjusted TReC refers to the residuals that
are calculated from the BBLN model from each data type. (A) Association between the adjusted
TReC of SLFN5 expression and a DHS in intron 1 of SLF5, and (B) the adjusted TReC of EGR1
expression and a DHS in the upstream region of EGR1, after accounting for sequencing depth and
PCs in the BBLN model. (C) The genotype of SNP rs11080327 is associated with both the SLFN5
gene expression and the nearby DHS. (D) The genotype of SNP rs7735367 is weakly associated with
both the EGR1 gene expression and a nearby DHS. (E) The adjusted TReC of the SLFN5 expression
and the nearby DHS is not associated after accounting for sequencing depth, PCs and SNP effect of
rs11080327 in the BBLN model. (F) The adjusted TReC of the EGR1 expression and the nearby DHS
are still associated after adjusting for sequencing depth, PCs and SNP effect of rs11080327.
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FIG. 4. (Continued.)

For our ASReC data, we did not observe many significant results after applying
our p-value correction procedure (Supplementary Table S3). This is due to the fact
that we could not find many sites with coverage in both alleles at sufficient depth
(Supplementary Figure S2), leading to only 567 DHS-gene pairs being evaluated.
Of those evaluated, there was a median of 17 allele-specific read counts for the
DNase-seq data and 46 for the RNA-seq data. This also resulted in few individuals
being utilized during testing for a given site, as many samples did not have enough
ASReC in both data types to be included in the model. As the cost of high through-
put sequencing drops, we expect this to be less of an issue in the near future.

4. Discussion. We introduce a new method to model relationships across
three types of data: gene expression, epigenetic features and genetic variants. We
demonstrate the utility and power of our method to test for bivariate correlation
between RNA-seq and DNase-seq data while adjusting for a possible shared ge-
netic effect. Our simulation results show that there is relatively low power to detect
weaker associations at smaller sample sizes, such as n = 50, which may explain
the limited number of findings from our real data study with sample size 60. While
this is a limitation for this dataset, in the near future we expect to see larger sample
sizes as the cost of sequencing decreases.

The univariate form of our model, the Poisson-Log-Normal model, has been
long utilized as a model to handle overdispersed counts and has been applied in
the contexts of species abundance analysis [Bulmer (1974)], prediction of highway
crash counts [Ma, Kockelman and Damien (2008)] and many others. For the TReC
data, our BPLN model is a bivariate generalization of the Poisson Log-Normal
model and a special case of the multivariate version introduced by Aitchison and
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Ho (1989). These methods have similarly been applied to contexts involving mul-
tivariate overdispersed count data, such as multivariate crash count data [Park
and Lord (2007)] and network inference in microRNA-seq interaction networks
[Gallopin et al. (2013)]. The advantage of this approach is the flexibility in spec-
ifying the correlation structure between the bivariate counts via �1. In addition,
overdispersion in the RNA-seq and DNase-seq TReC is modeled via variances σR

and σC , respectively, where larger variance corresponds to larger overdispersion.
Most importantly, both positive and negative correlations are allowed between the
bivariate counts using this approach. However, the numerical integration that is
required to evaluate the BPLN likelihood and derivatives increases the complexity
of the estimation procedure, and may become unstable for lower sample sizes and
lower signal levels. The BBLN (Bivariate Binomial-Logistic-Normal) model for
the ASReC data also shares similar flexibilities and computational issues as the
BPLN model.

One alternative to the BPLN is the bivariate negative binomial distribution intro-
duced by Famoye (2010). This model is simply the product of two marginal nega-
tive binomial distributions corresponding to each of the two random variables, plus
a multiplicative term with an additional parameter λ controlling the correlation of
the two random variables. This approach also allows for either positive or nega-
tive correlations between the two variables, and evaluation of the likelihood and
derivatives of this distribution does not require numerical integration. However, the
maximization of the corresponding likelihood with respect to λ is difficult in prac-
tice because the plausible values of λ are bounded and such bounds are not known
a priori. When the mean of each marginal distribution is not modeled by covari-
ates, these bounds can be derived analytically. However, in the regression setting
such bounds are difficult to determine. For ASReC, a model analogous to the bi-
variate negative binomial distribution is the Bivariate Beta Binomial Distribution
[Danaher and Hardie (2005)] and it suffers from similar problems. Our model also
shares some similarities with the generalized linear mixed model framework with
heterogeneous variances. However, we do not share any fixed effects covariates or
intercepts between data types, complicating the specification of the model; that is,
each data type has distinct sets of covariates and dynamic ranges of signal (TReC
for genes are typically larger than TReC for short windows tabulating DNA-seq
TReC).

Despite the computational complexity of the BPLN and BBLN models, our
implementation proved to be robust and computationally efficient relative to alter-
native approaches of numerical integration (ns2 operations per likelihood evalua-
tions, where s is the number of quadrature points). Our software implementation
is freely available as an R package accessible at https://github.com/naimrashid/
BASeG. In our implementation, testing of 874 trios in chromosome 21 took 1.5
hours. This time can be greatly reduced by setting more lenient convergence crite-
ria, however, we chose more stringent settings for this particular study. Sampling-
based integration methods such as Monte Carlo integration could have been used

https://github.com/naimrashid/BASeG
https://github.com/naimrashid/BASeG
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to evaluate the BPLN and BBLN, however, the inherent randomness in such ap-
proaches may pose problems during maximization. Fully Bayesian approaches are
not computationally efficient for our applications.

Given the size of the observed read counts, especially for the RNA-seq data,
a logarithmic transformation would be merited, and simple correlations can be
computed. However, for certain features, such as the DHS sites that we consider
in our manuscript, such a transformation may not be appropriate, as these sites
accumulate relatively smaller counts. Features such as DHS sites, which are on
the order of 100 bp in our manuscript, naturally tend to capture relatively fewer
sequencing reads relative to larger features like gene bodies. In addition, shorter
genes may exhibit smaller counts relative to larger genes. More importantly, a log-
arithmic transformation with our BPLN model would be efficient only if we are
modeling total read counts, not allele-specific read counts, which tend to be much
lower. For these reasons, we chose to develop a general model that utilizes the
count data directly instead of modeling the data independent of any transforma-
tions.

Our current model conditions the distribution of the observed read counts in
each data type jointly on a common SNP, implying that the SNP impacts both gene
expression and DNAse-I hypersensitivity; that is, we are assessing the following
causal model: DHS signal ← SNP → Gene expression. If the causal model is in-
stead SNP → DHS signal → Gene expression, we would still observe association
between DHS and expression. Conditioning on the common SNP in this scenario
may reduce our power to detect correlation between data types, but would allow
for the detection of a direct instead of indirect relation between DHS signal and
gene expression. One may further compare this conditional independence model
DHS signal ← SNP → Gene expression versus the following two causal models
SNP → DHS signal → Gene expression or SNP → Gene expression → DHS
signal. These tasks can be accomplished by simply comparing the likelihoods of
these models or by a non-nested likelihood ratio test [Sun, Yu and Li (2007)]. Our
approach provides the likelihood model for such a comparison, though we did not
further make such comparisons due to limitations of the real data, for example,
sample size and read depth.

SUPPLEMENTARY MATERIAL

Supplement to “A Statistical model to assess (allele-specific) associations
between gene expression and epigenetic features using sequencing data”
(DOI: 10.1214/16-AOAS973SUPP; .pdf). Contains details on numerical maxi-
mization procedures for the BBLN and BPLN models.
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