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The chromosome copy number variation (CNV) is the deviation of ge-
nomic regions from their normal copy number states, which may associate
with many human diseases. Current genetic studies usually collect hundreds
to thousands of samples to study the association between CNV and diseases.
CNVs can be called by detecting the change-points in mean for sequences
of array-based intensity measurements. Although multiple samples are of in-
terest, the majority of the available CNV calling methods are single sample
based. Only a few multiple sample methods have been proposed using scan
statistics that are computationally intensive and designed toward either com-
mon or rare change-points detection. In this paper, we propose a novel multi-
ple sample method by adaptively combining the scan statistic of the screening
and ranking algorithm (SaRa), which is computationally efficient and is able
to detect both common and rare change-points. We prove that asymptotically
this method can find the true change-points with almost certainty and show in
theory that multiple sample methods are superior to single sample methods
when shared change-points are of interest. Additionally, we report extensive
simulation studies to examine the performance of our proposed method. Fi-
nally, using our proposed method as well as two competing approaches, we
attempt to detect CNVs in the data from the Primary Open-Angle Glaucoma
Genes and Environment study, and conclude that our method is faster and
requires less information while our ability to detect the CNVs is comparable
or better.

1. Introduction. The chromosome copy number refers to the number of
copies of a genomic deoxyribonucleic acid (DNA) region in a DNA mixture, rela-
tive to a control sample or a population control. In a human genome, except for the
sex chromosomes, the DNA copy numbers are normally two, with one copy from
the mother and the other copy from the father. Copy number variation (CNV) can
therefore be defined as the deviation from the “normal” copy number for a region
of genomic DNA, which includes both duplication and deletion. In general, CNVs
can be either generated from de novo mutations or inherited from ascendants. De
novo CNVs can possibly be long in length and unique for different individuals.
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For example, cancer CNVs as a type of de novo CNV can span as long as a whole
chromosome [Lengauer, Kinzler and Vogelstein (1998)], and can be very hetero-
geneous across different patients [Mermel et al. (2011)]. Inherited CNVs, on the
contrary, are generally short in length, shared by many people, and aligned well
across samples [Zhang et al. (2010)]. Recent studies have shown that CNVs can
play important roles in human diseases. For example, de novo CNVs are found to
be strongly associated with diseases such as autism [Sebat et al. (2007)] and can-
cer [Pollack et al. (2002)], while inherited CNVs are shown to be associated with
Crohn’s disease [McCarroll et al. (2008)] and resistance to HIV [Gonzalez et al.
(2005)]. To study the association of CNV and human diseases, it is critical to iden-
tify CNV regions in each sample. Over the last decade, high-throughput technolo-
gies such as array-comparative genomic hybridization (aCGH), single-nucleotide
polymorphism (SNP) array and next-generation sequencing (NGS) have been used
to detect CNVs [Alkan, Coe and Eichler (2011), Carter (2007)]. Because the data
produced by these technologies inevitably contain noise, various statistical meth-
ods have been proposed and applied to call CNV regions from noisy data. We
mainly focus on detecting CNV from array-based data in this paper and briefly
discuss the extension to NGS data in the Discussion section.

1.1. Statistical model. Regardless of the technology or platform, CNV detec-
tion can be formulated in the following way. Given N samples and T markers, raw
copy number intensities are measured for each sample on all the markers. Denote
the intensities measured for sample i by Yi = (Yi,1, Yi,2, . . . , Yi,T )T for 1 ≤ i ≤ N .
We assume

(1.1) Yi = μi + εi , 1 ≤ i ≤ N,

where μi = (μi,1,μi,2, . . . ,μi,T )T is a piecewise constant mean vector for the
intensities of sample i, and the errors εi ∼ MVN(0, σ 2

i I). We call τ a change-
point for sample i if μi,τ �= μi,τ+1. For sample i, we denote its Ji change-points
by 0 < τi,1 < τi,2 < · · · < τi,Ji

< T . By estimating all of the change-points θ i =
{τi,1, τi,2, . . . , τi,Ji

} for each sample i, CNV regions can be called between these
change-points.

We denote the collection of change-points in all samples as θ = {τ1 < · · · < τJ }
and let δi,j = μi,τj+1 − μi,τj

be the mean change at point τj for sample i. For
each change-point τj , we say that sample i is a “carrier” when δi,j �= 0. Note that
estimating change-points for individual samples is equivalent to estimating θ and
identifying individual carriers of each change-point. Our proposed method is based
on this strategy.

1.2. Current methods. Currently, various methods have been proposed for the
CNV calling problem. These methods can be categorized into single sample meth-
ods and multiple sample methods according to their strategies. Single sample
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methods, on the one hand, simply apply a CNV calling algorithm to each indi-
vidual sample repeatedly. Multiple sample methods, on the other hand, assume
that certain change-points may be shared by a proportion of the samples, and call
these shared change-points using information from multiple samples.

Because of the complexity of analyzing multiple samples together, most current
methods focus on a single sample. Yao (1988) and Yao and Au (1989) proposed to
search for the combination of change-points that minimizes a BIC score, and they
showed the consistency of their estimates. Another approach uses �1 penalization
methods in order to introduce sparsity to the segment means or the differences
in these means [Huang et al. (2005), Tibshirani and Wang (2008)]. The circular
binary segmentation (CBS) algorithm [Olshen et al. (2004), Venkatraman and Ol-
shen (2007)] uses a strategy of recursively finding segments with changed means
in a sequence. It is based on the following scan statistic: for a region (s, t),

(1.2) Ui(s, t) = (Si,t − Si,s)/(t − s) − (Si,T − Si,t + Si,s)/(T − t + s)

σ̂i

√
1/(t − s) + 1/(T − t + s)

,

where Si,t is the partial sum of sequence Yi (i.e., Si,t = ∑t
j=1 Yi,j ), Ȳi = Si,T /T ,

and σ̂ 2
i = ∑

(Yi,j − Ȳi)
2/T . The region with the highest Ui(s, t) is further scru-

tinized. Note that CBS uses global information to detect change-points. Niu and
Zhang (2012) demonstrated that local information is more efficient than global in-
formation for high-throughput data for change-points detection. They proposed a
screening and ranking algorithm (SaRa) using the following scan statistic:

(1.3) Di(t, h) = 1

h

(
h∑

k=1

Yi,t−k+1 −
h∑

k=1

Yi,t+k

)
,

for 1 ≤ t ≤ T , where h is a bandwidth parameter. Because Di(t, h) is calculated
from local information within a 2h window, the complexity of this algorithm is lin-
ear in T . This algorithm was refined by Xiao, Min and Zhang (2015) and further
studied theoretically by Hao, Niu and Zhang (2013). In addition to change-point
models, other models such as the Hidden Markov Model (HMM) are also applied
to CNV detection. For example, PennCNV [Wang et al. (2007)] and Birdsuite
[Korn et al. (2008)] are the two most popular HMM methods. Due to space lim-
itations, we do not discuss these models in detail. In Section 5, we examine the
performance of PennCNV in a real data analysis.

Zhang et al. (2010) noted that different people can share CNV regions. In the
framework of the change-point model, this means some of the change-points are
shared by multiple samples. Based on this idea, several multiple sample meth-
ods have been developed to find shared change-points. Zhang et al. (2010) pro-
posed taking the sum of squared scan statistics from individual samples to find
common change-points. Siegmund, Yakir and Zhang (2011) further extended this
method by using a weighted sum of squares statistic, which increases the power
for rare change-point detection when prior information on carrier proportions is
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available. Instead of using these sum-based statistics, Jeng, Cai and Li (2013)
summarized the scan statistics based on the higher criticism method which can
detect both common and rare CNVs [Cai, Jeng and Jin (2011)]. It is noteworthy
that the major difference among these multiple sample methods is the way that
multiple scan statistics are combined. The scan statistics used by these methods
for individual samples, however, are virtually the same as the CBS scan statistic.
Alternatively, Vert and Bleakley (2010) considered a group LASSO approach for
detecting shared change-points in multiple samples. Fan et al. (2015) also used a
penalized likelihood approach but assumed Laplace distribution for the observed
sequences to detect change-points in either mean or variance.

1.3. Motivations. Despite the success of the aforementioned methods, several
aspects of them need to be addressed or could be improved. First, the multiple
sample methods that we reviewed all use the CBS scan statistic which is based on
global information. In real data, it is most likely that there exists more than one
region of change, and a global statistic may contain data points that are irrelevant
and increase heterogeneity, and hence lose power. In addition, these methods tend
to suffer from higher computational complexities, especially when applied to high-
throughput genomic data. To overcome this computational burden and potentially
enhance the power, we propose a generalization of SaRa to accommodate mul-
tiple samples. The proposed method enjoys similar computational efficiency and
statistical properties as the single sample SaRa.

Second, we note that most available methods for combining multiple scan statis-
tics are either suitable for finding common change-points but not powerful in find-
ing rare ones (in terms of the proportion of carriers), or vice versa, or rely on prior
knowledge or assumption of the carrier proportion. Thus, it is desirable to develop
a unified method that is robust to carrier proportion and does not require any prior
knowledge or assumption. To this end, Jeng, Cai and Li (2013) proposed to use the
higher criticism method, which enjoys good theoretical properties and could detect
any “detectable” shared variants with any carrier proportion. However, we found
that the power of this method in CNV detection is low. We propose an adaptive
Fisher’s method which adaptively combines the scan statistics according to their
likeliness of being from a change-point carrier. We report that, regardless of the
carrier proportion, this method has a good power of finding change-points.

Finally, an important issue with regard to multiple sample methods is whether
they provide any improvement over single sample methods in detecting shared
CNVs. To address this question, Zhang et al. (2010) and Siegmund, Yakir and
Zhang (2011) concluded through simulations and real data analyses that cross-
sample scans perform better than single sample scans. In this paper, we provide
both theoretical and numerical comparisons between our proposed method and
single sample methods, which further confirm that the power of multiple sample
methods is higher than that of a single sample method.
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Section 2 presents our method in detail, and Section 3 provides its theoretical
properties. We demonstrate its performance via simulation in Section 4, and we
analyze a real dataset in Section 5.

2. Method.

2.1. SaRa for a single sample. First, we review the SaRa method proposed
by Niu and Zhang (2012). For a single sample i, given a bandwidth h, the scan
statistic Di(t, h) can be calculated for every position t from (1.3). Define t as
a local maximizer if |Di(t, h)| ≥ |Di(t

′, h)| for all t ′ ∈ (t − h, t + h). Let LMi

be the collection of all local maximizers found for sample i. Then the change-
points for sample i can be estimated as θ̃ i = {τ̃i,1 < τ̃i,2 < · · · < τ̃

i,J̃i
} ⊆ LMi by

a thresholding rule ∣∣Di(τ̃ , h)
∣∣ > λi.

The threshold λi can be obtained asymptotically or from the simulated null distri-
bution.

For any t , if no change-point exists in window (t −h+1, t +h), then Di(t, h) ∼
N(0, 2

h
σ 2

i ). Therefore, we can define a standardized scan statistic as

(2.1) D̃i(t, h) =
√

h

2σ̂i

Di(t, h),

where σ̂i is an estimate of σi . By assuming that the number of change-points in
sample i, Ji 
 T , the estimation of σ̂i is trivial. For example, we can use the
sample standard deviation of Yi as σ̂i .

2.2. Combining test statistics from multiple samples. In order to combine in-
formation across samples to identify shared change-points, we need to combine
single sample statistics for all samples. A natural choice is to take the sum of
squares of D̃i(t, h) across samples as in Zhang et al. (2010) and define a multiple
sample scan statistic

(2.2) WSum(t, h) =
N∑

i=1

D̃2
i (t, h).

Taking the weighted sum of squares [Siegmund, Yakir and Zhang (2011)] is an
alternative method, for which we define

(2.3) WWSum(t, h) =
N∑

i=1

wπ0

[
D̃2

i (t, h)
]
D̃2

i (t, h),

where wπ0(x) = exp(x/2)/[(1−π0)/π0 + exp(x/2)], and π0 is the carrier propor-
tion assumed to be known.
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The two methods above combine the scan statistics D̃i(t, h) directly. We can
also combine the p-values pi(t, h) = 2{1 − �[|D̃i(t, h)|]} or their order statistics
p(i)(t, h) in ascending order. Traditional methods include Fisher’s method [Fisher
(1925)], defined as

(2.4) WFisher(t, h) = −
N∑

i=1

logpi(t, h),

and Stouffer’s method [Stouffer et al. (1949)],

(2.5) WStouffer(t, h) =
N∑

i=1

�−1[
1 − pi(t, h)

]
.

The higher criticism statistic [Cai, Jeng and Jin (2011), Donoho and Jin (2004)]
can be defined as

(2.6) WHC(t, h) = max
1≤i≤N

∣∣HCi (t, h)
∣∣,

where

HCi (t, h) = √
N

i/N − p(i)(t, h)√
p(i)(t, h)[1 − p(i)(t, h)] .

Because both common and rare CNVs have been found to be associated with
many human diseases [McCarroll and Altshuler (2007)], a desirable CNV detec-
tion method should be powerful for both types of CNVs. Therefore, we need a
combining method which is sensitive to change-points with different carrier pro-
portions. While the sum of squares statistic is easy to implement, it is good in cap-
turing only change-points that are shared by many samples. Conversely, the higher
criticism statistic can detect rare change-points; however, because it is based on an
adaptively chosen single order statistic, its power for detecting common change-
points with a limited sample size is low in practical applications. Although the
weighted sum of squares statistic can detect both common and rare change-points,
it depends on a tuning parameter π0 whose choice relies on prior assumptions of
the change-points. Fisher’s method is well known for being powerful and asymp-
totically Bahadur optimal [Littell and Folks (1971, 1973)]. However, when the
change-points are rare, the statistical power of Fisher’s method will be compro-
mised by the noncarriers. The same problem also exists for Stouffer’s method.
Therefore, we propose a new summary statistic, which can detect both common
and rare change-points and does not require prior knowledge or assumption.

The idea of our approach is to adaptively combine the ordered p-values so that
only those that most likely come from the carriers are combined. In the same spirit,
Li and Tseng (2011) proposed an adaptively weighted Fisher’s statistic to down-
weigh the noncarriers, but it is time consuming and involves an exhaustive search
for the weights. Yu et al. (2009) and Zhang, Chen and Pfeiffer (2013) considered
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a similar adaptive rank truncated product statistic of the p-values, but they rely on
either permutations or numerical integration to decide the significance level. We
propose a more concise adaptive Fisher’s statistic as follows. For given t and h, let

Xi(t, h) = − logpi(t, h),

and

X(i)(t, h) = − logp(i)(t, h).

We first define

Vi(t, h) =
i∑

j=1

X(j)(t, h).

Under the null hypothesis, Xi(t, h)
i.i.d.∼ EXP(1), and X(1)(t, h) ≥ · · · ≥ X(N)(t, h)

are the decreasing ordered statistics. Let X(N+1)(t, h) = 0 and ξi(t, h) =
i[X(i)(t, h)−X(i+1)(t, h)] for 1 ≤ i ≤ N . It can be shown that ξi(t, h)

i.i.d.∼ EXP(1)

under the null. Thus,

Vi(t, h) =
i∑

j=1

N∑
k=j

ξk(t, h)
/

k =
N∑

k=1

w(k, i)ξk(t, h),

where w(k, i) = min(1, i/k). We standardize Vi(t, h) as

Ṽi(t, h) = Vi(t, h) − ∑N
k=1 w(k, i)√∑N

k=1 w2(k, i)
.

Our proposed adaptive Fisher’s statistic for multiple samples is defined as

WAF(t, h) = max
1≤i≤N

∣∣Ṽi(t, h)
∣∣.

In CNV detection, we are mainly interested in detecting signals arising from
shifted means. Therefore, we can consider only the smaller p-values and the one-
sided tests that the p-values are less than their expected values. Moreover, genetic
data for CNV detection, especially SNP array data, are prone to artifacts, including
guanine-cytosine (GC) content, batch effects and bad probes on the chips. Outliers
caused by these artifacts could lead to false discoveries. Considering these issues,
the adaptive Fisher’s statistic can also be defined as

(2.7) WAF(t, h) = max
n0≤i≤N/2

Ṽi(t, h),

where a tuning parameter n0 specifies that at least n0 observations are combined
so that the statistic is more robust to outliers. Similarly, we could modify (2.6) into

(2.8) WHC(t, h) = max
n0≤i≤N/2

HCi (t, h).

We apply (2.7) and (2.8) for CNV detection.
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2.3. SaRa for multiple samples. In the previous section, we defined six
scan statistics including WSum(t, h), WWSum(t, h), WFisher(t, h), WStouffer(t, h),
WHC(t, h) and WAF(t, h). We now extend the SaRa method for multiple samples
using these methods. Let {W(t,h) : t = 1, . . . , T } be the sequence of combined
statistics using any of the six combining methods with a bandwidth h. Then we
can find the local maximizers of this sequence, and select a subset of the local
maximizers by thresholding, as done in SaRa for single samples. The detailed al-
gorithm is described as below.

ALGORITHM. SaRa for multiple samples:

1. Given a bandwidth h, calculate individual scan statistics D̃i(t, h) using (2.1),
for 1 ≤ t ≤ T and 1 ≤ i ≤ N .

2. Calculate the summary scan statistic W(t,h) using (2.2), (2.3), (2.4), (2.5),
(2.8) or (2.7).

3. Find the collection of local maximizers LM = {t : W(t,h) > W(t ′, h),∀t ′ ∈
(t − h, t + h)}.

4. Given a threshold λ, estimate the shared change-points as a subset of LM,
θ̂ = {τ̂1 < τ̂2 < · · · < τ̂

Ĵ
} ⊆ LM, that satisfies W(τ̂j , h) > λ for 1 ≤ j ≤ Ĵ , where

Ĵ is the number of estimated shared change-points.

REMARK 1. In the calculation of D̃i(t, h), for Yi,k with k < 1 or k > T , use
Ȳi instead. This happens only when t is near either end of a sequence.

REMARK 2. To determine the threshold λ, we can simply simulate the null

distribution of W(t,h) by assuming that Yi
i.i.d.∼ MVN(0, I) for 1 ≤ i ≤ N . Be-

cause W(t,h) is calculated locally and T � h, we can simulate the null distribu-
tion of W(t,h) using any length T ′ that satisfies T ′ � h. Let F̂ (·) be the simulated
empirical distribution function of W(t,h), where t is a local maximizer. Given a
significance level α, the threshold can be calculated as λ = F̂−1(1 − α). Alterna-
tively, we can also find λ as the (1 − α′) quantile of the observed W(t,h)’s on the
local maximizers for different values of α′.

2.3.1. Multiple-bandwidth SaRa. Genomic CNVs are different in size, rang-
ing from one SNP site to the entire chromosome. Because we do not know the
sizes of the CNVs to detect, there is no one bandwidth that fits all CNVs. The
selection of bandwidth h may affect the result depending on the distance between
adjacent change-points. As described by Niu and Zhang (2012), a large h may
increase the statistical power. However, if h is too large such that more than one
change-points are included in the window, the algorithm will yield unreliable re-
sults. In practice, we use multiple bandwidths to ease this difficulty. Consider a
set of B bandwidths h = {h1 < h2 < · · · < hB}. With bandwidth hb, we can es-

timate a set of change-points θ̂
(b)

. Then the candidates for shared change-points
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are estimated by θ̂ = ⋃B
b=1 θ̂

(b)
. Because different bandwidths may yield change-

points with slightly different positions, some change-points in θ̂ may be redundant.
To resolve this issue, we keep the corresponding change-point and drop the other
change-point when two change-points detected by two different bandwidths are
close to each other (e.g., the distance between them is less than the shorter band-
width), as we “trust” the longer bandwidth. Moreover, some change-points with
small mean shifts may not be reliable. Such points will be excluded as described
in Section 2.3.2.

2.3.2. Change-point carrier identification. Recall that the shared change-
points are detected through summary scan statistics. Consequently, we do not
know which individuals carry a particular change. Hence, it is necessary and use-
ful to identify the carriers of a given change-point. A simple approach is to test
the means on two sides of a candidate change-point, but, as discussed by Zhang
et al. (2010), the existence of trends that are unrelated to the change-point could
cause slight shifts in local means along the chromosome, making it difficult to
differentiate a real change-point from a shift caused by trends. This can be re-
solved by thresholding as follows for a given sample i and candidate change-points
θ̂ = {τ̂1 < τ̂2 < · · · < τ̂

Ĵ
}.

ALGORITHM. Carrier identification:

1. Set Ĵi = Ĵ and τ̂i,j = τ̂j for j = 1, . . . , Ĵi . Denote θ̂ i = {τ̂i,j , j = 1, . . . , Ĵi}.
2. Let τ̂i,0 = 0 and τ̂

i,Ĵi+1 = T . Calculate the segment means mi,j =
∑τ̂i,(j+1)

t=τ̂i,j +1 Yi,t

τ̂i,(j+1)−τ̂i,j
for 0 ≤ j ≤ Ĵi .

3. Calculate the estimated jump size at each change-point di,j = mi,j −mi,(j−1)

for 1 ≤ j ≤ Ĵi .
4. Find the change-point with the smallest absolute jump size

j∗ = arg min
1≤j≤Ĵi

|di,j |.

If |di,j∗ | is less than a prespecified threshold γi , remove the j∗th change-point
by replacing θ̂ i with θ̂ i \ {τ̂i,j∗} and replacing Ĵi with Ĵi − 1, and then repeat
the procedure from step 2; otherwise, estimate all the individual change-points for
sample i by θ̂ i .

REMARK 3. The choice of γi should be based on the particular dataset and sci-
entific application. When technical replicates are available, γi can be determined
based on the proportion of detections that can be verified. We illustrate this ap-
proach in Section 5.
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REMARK 4. If no individual carrier is identified for a particular change-point,
we will remove this change-point from the shared set θ̂ , further improving the
precision and reliability of θ̂ .

3. Statistical properties. In this section, we consider two questions regarding
the proposed method: 1. Can we rely on this method to detect shared CNVs in mul-
tiple samples? 2. Since most current methods are single-sample-based, are multiple
sample methods really advantageous to single sample methods to justify their use?
To address these questions, we discuss two theoretical properties of multi-sample
SaRa. First, we prove a sure coverage property as sample size N increases. This
property guarantees to the users that when sample size is large, our method can
detect shared CNVs in multiple samples with a high probability. Second, in the
framework of our method, we compare the use of multiple samples versus one
sample at a time for CNV detection. We show that multiple sample methods have
higher asymptotic power in detecting shared change-points or CNVs, and should
be used instead of single sample methods. Admittedly, these asymptotic analyses
may not be applicable to quantify precisely the actual gain in power. Therefore,
we rely on simulation studies to compare different methods in Section 4.

Throughout this section, we assume that the sequence length T and the set of
change-points θ = {τ1, . . . , τJ } are fixed. For convenience in notation, we denote
τ0 = 0 and τJ+1 = T , and we let L = min1≤j≤J+1(τj − τj−1). Recall that δi,j is
the mean change of sample i at τj . Here, we assume for simplicity that, for each
1 ≤ j ≤ J , δ1,j , . . . , δN,j are independent and

δi,j

{= 0, with prob. (1 − πj ),

∼ N
(
�j,

(
η∗

j

)2)
, with prob. πj ,

where πj > 0, �j , and (η∗
j )

2 are fixed and assumed known. This setting corre-
sponds to a practical scenario that the platform for genotyping is fixed, and the
locations of the underlying CNVs are also fixed. For each shared CNV, its carriers
constitute a certain proportion of the population, and the mean intensity change in
the CNV region may vary for each carrier.

We also assume that σ 2
1 , . . . , σ 2

N are known, and so, without loss of generality,
we set them all equal to 1. Moreover, following Niu and Zhang (2012), we call a
point t h-flat if the interval (t − h, t + h) contains no change-point. Then we have

D̃i(t, h) ∼
⎧⎨
⎩

N(0,1), if t is h-flat,

(1 − πj )N(0,1) + πjN
(−�j

√
h/2, η2

j

)
, if t = τj ,

where η2
j ≡ (η∗

j )
2 + 1.

THEOREM 1. Using SaRa for multiple samples with any of the following com-
bining methods, WSum, WWSum, WFisher, WStouffer, WHC and WAF, there exist
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suitable h and λ such that the estimated change-points θ̂ satisfy

lim
N→∞P

({Ĵ = J } ∩ {θ ⊂ θ̂ ± h}) = 1,

where θ̂ ± h ≡ ⋃Ĵ
j=1(τ̂j − h, τ̂j + h).

The previous theorem states that a threshold λ exists to ensure the sure coverage
property of SaRa for multiple samples. However, the choice of such a threshold de-
pends on the underlying truth which is generally unknown. Therefore, in practice,
the threshold is usually chosen so that, at a flat-point or at a local maximizer, the
scan statistic goes above the threshold with a certain probability, say α. We show in
the next theorem that the “power” of detecting a true change-point, in other words,
the probability that the scan statistic at a true change-point exceeds this threshold,
tends to 1 pretty fast.

In comparison, we consider a naïve single sample procedure that calls change-
points in single samples first and then combines the obtained change-points in all
the samples. In other words, for some λ∗, whenever |D̃i(t, h)| > λ∗ for any i, we
claim that t is a change-point for sample i and thus a shared change-point. This is
equivalent to using the maximum statistic of {D̃i(t, h)}Ni=1 and calling t a change-
point when maxi |D̃i(t, h)| > λ∗. Note that, due to multiplicity, controlling the
false positive rate for individual samples is not enough. Instead, we need to choose
λ∗ such that P(maxi |D̃i(t, h)| > λ∗) = α for an h-flat point t . We show in the
following theorem that the power of this naïve single sample method detecting a
true change-point tends to 1 at a rate slower than multiple sample methods.

THEOREM 2. (a) Use SaRa for multiple samples with any of the follow-
ing combining methods, WSum, WWSum, WFisher, WStouffer, WHC and WAF, and
choose the threshold λ such that for an h-flat point t we have P(W(t, h) > λ) = α

with a specific level α. Then, for any j = 1, . . . , J , P(W(τj , h) > λ) tends to 1 at
least at an exponential rate in N .

(b) Use the single sample procedure that calls a common change-point at t when
maxi |D̃i(t, h)| > λ∗, where λ∗ is chosen such that P(maxi |D̃i(t, h)| > λ∗) = α

for an h-flat point t . Then, for any j = 1, . . . , J , P(maxi |D̃i(τj , h)| > λ∗) → 1 as
N → ∞ but with a rate slower than the exponential rate in N .

REMARK 5. We note that the convergence rate for the single sample method
in Part (b) of the theorem depends on η2

j . The convergence is slower for smaller η2
j .

At the extreme case when η2
j = 1, that is, when the mean changes for carriers of a

change-point are fixed, the convergence gets much slower.

4. Numerical result.

4.1. Power for detecting a single change-point. To study the power of SaRa
for multiple samples, we simulated simple datasets with only one change-point
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shared by a certain proportion of samples. The datasets were simulated in the fol-
lowing procedure.

1. Let N be the number of samples, T be the length of the sequence, δ be the
jump size, and π∗ be the proportion of samples that carry the change-point.

2. For 1 ≤ i ≤ �Nπ∗�, sample Yi,j
i.i.d.∼ N(0,1) if 1 ≤ j ≤ T/2, and sample

Yi,j
i.i.d.∼ N(δ,1) if T/2 < j ≤ T . Here, �·� is the ceiling function.

3. For �Nπ∗� < j ≤ N , sample Yi,j
i.i.d.∼ N(0,1) for 1 ≤ j ≤ T .

Different combining statistics were considered (for WWSum, we set π0 = 0.01
and π0 = 0.1 because, in real applications, the carrier proportion cover a large
range, and we do not know what π0 value is the best; for WHC and WAF, n0 = 4
was used). We correctly detect the change-point when at least one local maximizer
of the scan statistics falls between 50−h and 50+h, and exceeds the 99% quantile
of the null distribution of the local maximizers. We also counted the number of
local maximizers that fall out of 50 − h and 50 + h and exceeeds the threshold
as the number of false discoveries. We checked the number of false discoveries of
different methods to ensure that they are at the same level so that our comparison
of power is fair (see details in Supplement Figure 2 [Song, Xiaoyi and Zhang
(2016)]). The simulation results are a summary of 1000 replications.

To demonstrate how the power changes according to N when detecting
both rare and common change-points, we simulated two scenarios with N ∈
{100,200, . . . ,1000}. For the rare change-point scenario, we set π∗ = 0.01, δ = 1
and h = 20; for the common change-point scenario, we set π∗ = 0.2, δ = 0.5 and
h = 10. The parameters were selected to enhance the differences among methods.

Figure 1(a) compares the power of different methods for detecting a rare
change-point with carrier proportion π∗ = 0.01. As expected, the sum of squares
statistic, Fisher’s statistic and Stouffer’s statistic have the lowest statistical power
because they combine all of the scan statistics where a majority (99%) come from
noncarriers. On the contrary, using the maximum test statistic as an example of
single sample methods as described in Section 3 enjoys a reasonable statistical
power. However, its power increases very little as N increases because only the
single strongest test statistic is used, which is a waste of information. This result
is consistent with the theoretical conclusion of Theorem 2. Similar to the observa-
tion in Jeng, Cai and Li (2013), the higher criticism statistic has a relatively good
statistical power in detecting rare signals, and the power increases as N increases.
Our proposed adaptive Fisher’s statistic performs the best among the methods un-
der comparison. For the weighted sum of squares statistic with π0 = 0.01, even
though the prior information is correctly specified, its power is slightly lower than
that of the adaptive Fisher’s method. As expected, the performance of the weighted
sum statistic with π0 = 0.1 lies between the sum of the squares and weighted sum
with π0 = 0.01.
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FIG. 1. Power of different methods for detecting a single rare or common change-point as N

changes from 100 to 1000. In (a), a single rare (π∗ = 0.01) change-point was simulated and de-
tected using δ = 1 and h = 20; in (b), a single common (π∗ = 0.2) change-point was simulated and
detected using δ = 0.5 and h = 10.

Figure 1(b) compares those methods in terms of the power for detecting a
common change-point with carrier proportion π∗ = 0.2. As expected, the sum
of squares statistic, Fisher’s statistic and the weighted sum with π0 = 0.1 have the
best statistical power. The adaptive Fisher’s statistic and Stouffer’s statistic perform
similarly with slightly lower power. The weighted sum statistic with π0 = 0.01,
higher criticism statistic and maximum statistic have the lowest power. Similar to
the rare change-point case, the maximum statistic does not benefit much from the
increase in the sample size.
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To display the power of different methods as π∗ changes, we also simulated data
using π∗ ∈ {0,0.01,0.02, . . . ,0.25}, N = 100 and δ = 1. Moreover, to illustrate
how the adaptive Fisher’s statistic and higher criticism statistic adapt to different
carrier proportions, we calculated the peak positions of these two statistics as π∗
changes, which are the maximizer indices of equations (2.7) and (2.8) divided
by N .

Figure 2(a) shows the power of different methods with bandwidth h = 10. To
see the comparison more clearly, we calculate the relative power of different meth-
ods as their original power divided by the power of the adaptive Fisher method,
such that the relative power of adaptive Fisher is always 1. A relative power greater
than 1 means the method is more powerful than adaptive Fisher, and vice versa.
The relative power is shown in Figure 2(b). Similar to our previous observation,
the maximum statistic, higher criticism and weighted sum of squares statistic with
π0 = 0.01 only perform well for small π∗, whereas the sum of squares and Fisher’s
statistics only perform well for large π∗. Stouffer’s statistic performs good only
when π∗ gets close to 0.25, which is due to its well-known property of robustness
against a few outliers. The adaptive Fisher statistic enjoys competitive statistical
power whether π∗ is small or large. The weighted sum of squares with π0 = 0.1
is the closest competitor. It has the highest statistical power when the real carrier
proportion is between 0.07 and 0.18, but is suboptimal in detecting rare change-
points. In real applications, because rare change-points are more difficult to detect
and we do not know the true carrier proportion for each change-point, we decided
to use the adaptive Fisher’s statistic rather than the weighted sum of squares for
our algorithm. To illustrate how the adaptive Fisher’s statistic works, we show in
Figure 3 its average peak positions and those of the higher criticism statistic, which
can be interpreted as the proportions of scan statistics that contribute to the com-
bined statistics. We can see that the proportion of scan statistics that contributes to
the adaptive Fisher’s statistic tends to increase as π∗ increases. This trend is even
stronger when h = 20 is used. On the contrary, the higher criticism method tends to
select a much smaller proportion of p-values to combine, which can partly explain
why it does not perform well when π∗ gets large.

4.2. Simulation with multiple changes.

4.2.1. Data without trend. We further simulated data from a more realistic
model to compare our method and some existing ones. In each of the 1000 repli-
cations, we simulated a dataset of 500 SNPs and 1000 samples. The detailed sim-
ulation procedure is described below:

1. First, simulate the mean signal μi without noise. For 1 ≤ i ≤ 1000 and 1 ≤ t ≤
500, set μi,t to 0 except for the following change-regions in their carriers:

(a) Region 1: 28 ≤ t ≤ 54 (length is 27), set μi,t = δ1 = 2.58 if sample i is
a carrier, the carrier proportion π1 = 0.02.
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FIG. 2. The simulation result for single change-point detection as π∗ changes from 0 to 0.25.
N = 100 and δ = 1 were used for the simulation. The powers of the seven combining methods (with
h = 10) are compared in (a). To make the differences clear enough to see, the relative power of
different methods comparing to the adaptive Fisher’s method is plotted in (b), where the relative
power is calculated as the original power divided by the power of the adaptive Fisher’s method.

(b) Region 2: 116 ≤ t ≤ 130 (length is 15), set μi,t = δ2 = −1.92 if sample
i is a carrier, the carrier proportion π2 = 0.05.

(c) Region 3: 222 ≤ t ≤ 306 (length is 85), set μi,t = δ3 = 1.74 if sample i

is a carrier, the carrier proportion π3 = 0.1.

2. Add random noise to the mean signal. Simulate Yi = μi + εi for 1 ≤ i ≤ 1000,
where εi ∼ MVN(0, I).
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FIG. 3. Average adaptive peak position of the adaptive Fisher’s statistics and higher criticism
statistic, where the dotted line shows the true proportion of sample carriers.

Figure 4 displays five representative examples of individual sequences, with a
total of 3 pairs of change-points: one shared by sequences 2 and 4 (positions 27 and
54), one shared by sequences 3, 4 and 5 (positions 115 and 130), and one unique
to sequence 5 (positions 221 and 306). We compared five methods: a fast imple-
mentation of CBS (fast-CBS) from Venkatraman and Olshen (2007), CBS with

FIG. 4. The simulated data with no trend. Five samples are shown. The mean signals without noise
are shown by bold black lines.
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TABLE 1
The number of shared change-points detected for the simulation with no trend

Number of change-points

Method ≤5 6 7 8 >8

fast CBS 0 481 395 108 16
CBS-SS 0 524 376 90 10
m-SaRa 0 0 0 0 1000
Multiple-sample CBS 0 1000 0 0 0
Multiple-sample m-SaRa 0 1000 0 0 0

post hoc subset selection for the change-points using BIC (CBS-SS), multiple-
bandwidth SaRa for single samples (m-SaRa), multiple-sample CBS [Zhang et al.
(2010)], and our proposed method (multiple-sample m-SaRa, α = 0.001 was used
when determining λ, and γi = 2σ̂i

√
2/h was used for each bandwidth h).

Table 1 presents the number of shared change-points detected by each of the
five methods. Multiple-sample CBS and our method correctly detected exactly
6 change-points in all replications. Because single sample methods may not de-
tect the same change-point at the same location for different samples, we grouped
nearby change-points if they are within 3 markers. Table 2 provides the details

TABLE 2
True and false positives grouped by the change-points (CP1–CP6) for the simulation with no trend.

Standard errors are shown in parentheses

(a) Average number of true positives

CP1 CP2 CP3 CP4 CP5 CP6
Number of carriers 20 20 50 50 100 100

fast CBS 19.9 (0.3) 19.9 (0.3) 47.6 (1.5) 47.6 (1.5) 94.5 (2.3) 94.5 (2.2)
CBS-SS 19.9 (0.3) 19.9 (0.3) 47.5 (1.5) 47.6 (1.5) 94.5 (2.3) 94.5 (2.2)
m-SaRa 19.8 (0.4) 19.8 (0.4) 47.3 (1.6) 47.2 (1.6) 92.0 (2.7) 91.8 (2.6)
Multiple-sample CBS 20.0 (0.0) 20.0 (0.0) 50.0 (0.1) 50.0 (0.1) 100.0 (0.0) 100.0 (0.0)
Multiple-sample m-SaRa 20.0 (0.0) 20.0 (0.0) 50.0 (0.1) 50.0 (0.1) 100.0 (0.0) 100.0 (0.0)

(b) Average number of false positives

CP1 CP2 CP3 CP4 CP5 CP6

fast CBS 0.3 (0.6) 0.3 (0.6) 0.3 (0.5) 0.3 (0.5) 0.2 (0.5) 0.2 (0.5)
CBS-SS 0.2 (0.4) 0.2 (0.5) 0.2 (0.5) 0.2 (0.5) 0.2 (0.5) 0.2 (0.5)
m-SaRa 2.9 (1.7) 4.1 (2.0) 4.7 (2.2) 5.1 (2.2) 5.0 (2.2) 5.1 (2.2)
Multiple-sample CBS 2.7 (1.1) 2.3 (1.1) 2.8 (1.0) 2.8 (1.0) 1.3 (0.3) 1.2 (0.3)
Multiple-sample m-SaRa 0.2 (0.5) 0.1 (0.3) 0.3 (0.6) 0.3 (0.6) 0.0 (0.0) 0.0 (0.0)
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of the performance for each method (by row) in detecting each change-point (by
column). Table 2(a) and (b) offer the average numbers of true and false positives
for each of the six change-points, respectively. Because the single sample meth-
ods do not detect the change-point positions as accurately as the multiple sample
methods, for the single sample methods, we treat a change-point as a true positive
provided that it falls within 5 markers of the true position. From these tables, we
can see that our proposed method performed slightly better than multiple-sample
CBS in terms of sensitivity and specificity among the five methods.

4.2.2. Data with trend related to GC content. Signal intensities measured by
SNP arrays are often prone to genomic waves. Diskin et al. (2008) found that these
waves are related to genomic GC content. The correlation between the intensities
and local genomic GC content can be either positive or negative, and the magni-
tude of the genomic wave is related to the DNA quantity loaded in the SNP array
experiment. In other words, different samples may share the same wavy pattern,
but the magnitude of these waves are different and often related to the batch of
the experiments. Although these waves can be partially adjusted by regressing the
observed intensities on the local GC content, it is not guaranteed that they can be
completely removed. For example, selecting the bandwidth to calculate the local
GC content is not trivial—a large bandwidth may result in insufficient adjustment,
whereas a small bandwidth may fail to capture the local GC content and overfit
the adjustment model. Therefore, we believe that it is still beneficial for the CNV
calling algorithm to be robust to the local trend related to GC contend and batch
effect.

To examine our method, we simulated data with the same wavy pattern in all the
samples, but the magnitudes of the waves are different and randomly given. The
rest of the simulation was the same as in Section 4.2.1. Specifically, we simulated
Yi by adding local trend and random noise as follows:

Yi,t = μi,t + ai

[
sin(2πt/96 + ψ) + 2 sin(2πt/240 + φ)

] + εi,t ,

where ψ ∼ U(0,2π), φ ∼ U(0,2π), ai ∼ U(−0.15,0.15), and εi,t ∼ N(0,1). In
this model, the wavy pattern was composed of two sine signals with different pe-
riods and amplitudes, which mimics the GC content. The overall magnitude of
the wave ai is uniformly distributed between −0.15 and 0.15 for each sample.
Table 3 shows the number of shared change-points detected. We can see that the
single sample methods were all greatly impacted by the trend introduced. Multiple-
sample CBS was less affected, but still yielded a fair amount of false change-
points. Our multiple-sample m-SaRa method, however, still performed robustly
and detected all 6 true change-points in 998 out of 1000 replicates. An intuitive
explanation is that the CBS scan statistic uses global information, and thus can-
not distinguish between a large-scale trend and a real changed region, whereas the
SaRa scan statistic looks for sharp mean change using local information, which



2120 C. SONG, X. MIN AND H. ZHANG

TABLE 3
The number of shared change-points detected for the simulation with trend related to GC content

Number of change-points

Method ≤5 6 7 8 >8

fast CBS 0 0 0 0 1000
CBS-SS 0 0 0 0 1000
m-SaRa 0 0 0 0 1000
Multiple-sample CBS 41 332 242 203 182
Multiple-sample m-SaRa 0 998 2 0 0

makes it immune to the influence of a large-scale trend. In addition to this set-
ting, we simulated two more scenarios to test our robustness toward trends with
different patterns among individuals as well as dependent measurement error (see
Supplement Sections 1 and 2 for details).

4.2.3. Data with imperfectly aligned change-points. In real data, even though
the CNV can be shared across a proportion of samples, the change-points can be
slightly different in each carrier. To evaluate our method under this situation, we
simulated data with imperfectly aligned change-points. The simulation procedure
we adopted is the same as in Section 4.2.1, except that we added a random shift up
to 3 SNPs to each change-point in each sample. The probabilities that a change-
point shift by 1, 2 and 3 SNPs from the original location is 30%, 20% and 10%,
respectively, which leaves the probability of having no shift in the change-point
at 40%. We set the maximal shift to be 3 because if the change-points differ by
more than 3 SNPs, it is more appropriate to consider them as different change-
points. Table 4 presents the number of shared change-points detected. We can see
that the single sample methods often detected more than 6 change-points in the
1000 replications, whereas multiple sample methods including multiple-sample
CBS and multiple-sample m-SaRa always detected 6 change-points.

TABLE 4
The number of shared change-points detected for the simulation with trend related to GC content

Number of change-points

Method ≤5 6 7 8 >8

fast CBS 0 52 206 364 378
CBS-SS 0 64 237 371 328
m-SaRa 0 0 0 0 1000
Multiple-sample CBS 0 1000 0 0 0
Multiple-sample m-SaRa 0 1000 0 0 0
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5. Real data analysis. We examined the performance of our method by ap-
plying it to the genetic data from the Primary Open-Angle Glaucoma Genes
and Environment (GLAUGEN) study (http://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs000308.v1.p1). This dataset contains 1363 sam-
ples from 1343 individuals, including 20 pairs of technical replicates. A total of
657,366 markers were genotyped using Illumina Human660W-Quad_v1_A chips.
The detail steps on data preprocessing and implementation of our method are as
follows:

1. The observed Log R Ratio sequences were adjusted by the local GC content
as suggested by Diskin et al. (2008) using the program “genomic_wave.pl” in the
PennCNV package.

2. The adjusted sequences were each centered at 0.
3. Multiple-sample m-SaRa were run using bandwidths 5, 10 and 15. The

cutoff λ was determined following the approaches in Remark 2, first as the
99.99th percentile of the simulated null distribution of W(t,h) at local maximizers
(α = 0.0001), and then as the 50th percentile from the observed values of W(t,h)

at the local maximizers (α′ = 0.5).
4. Different values for the cutoff on the mean differences were tested: γi = kσ̂i ,

where k = 0.1,0.2, . . . ,3.

Note that even after adjusting for the GC content, microarray data could still
be affected by artifacts. For example, outliers may arise as a result of bad probes.
Furthermore, the normality assumption on the errors are generally violated. For
these issues, one may consider applying further adjustments on the data, and the
approaches include median polishing and quantile normalization [Xiao, Min and
Zhang (2015)].

We used the same approach as Zhang et al. (2010) and Siegmund, Yakir and
Zhang (2011) to assess detection accuracy. Specifically, we first applied the pro-
posed method to all 1363 samples without the information on replications. Then
we compared the detected copy number variants, or, more precisely, the detected
change-points, for each pair of technical replicates. We defined inconsistent detec-
tions in a pair of samples as the variants detected in one but not the other sample
of this pair. The remaining detected variants were called consistent detections. The
proportion of consistent detections was calculated for each pair of technical repli-
cates, and these proportions were then used to measure the performance of our
method and other CNV detection methods. Note that high values in these propor-
tions do not necessarily imply high accuracy. For example, they all equal 1 if all
the samples are identified as carriers of every change-point by letting γi be 0 in our
method. Therefore, we contrasted them with baseline proportions of consistent de-
tections in 1000 randomly selected pairs of samples. Although it is not clear what
the true baseline proportion should be for a random pair of samples, we expect that
a good detection method should give higher proportions of consistent detections in
replicate pairs than in random pairs.

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000308.v1.p1
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000308.v1.p1
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FIG. 5. Results of the real data analysis by the proposed method as γi/σ̂i changes from 0.1 to 3.
λ was determined using two approaches: first as the 99.99th percentile of the simulated null distribu-
tion of W(t,h) on local maximizers (denoted as “Simulated”), and then as the 50th percentile from
the corresponding observed distribution (denoted as “Empirical”). The total number of detections
in the 20 replicate pairs is given in (a). The median proportions of consistent detections in the 20
replicate pairs and in 1000 randomly selected pairs of samples are given in (b).

We display the results for the 11,244 markers on chromosome 22 in Figure 5
and Table 5. In Figure 5(a), we plot the total number of detections out of the 20
replicate pairs under different values of γi , and we also plot the median propor-
tion of consistent detections in Figure 5(b). When γi’s were low, the total number
of detections was very high. Meanwhile, the proportions of consistent detections
were high both for replicate pairs and for random pairs, most likely because most
samples were kept as carriers for each change-point due to low γi’s, which ren-
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TABLE 5
The median proportions of consistent detections in 20 pairs of technical replicates and in 1000

random pairs. S = Simulated; E = Empirical

Median proportion

Replicate Random Total
Method Settings pairs pairs detections

Multiple-sample m-SaRa S, k = 1.2 0.648 0.242 820
(h = 5,10,15) E, k = 1.2 0.646 0.240 824

S, k = 0.5 0.616 0.369 4521
E, k = 0.5 0.636 0.377 4483

Multiple-sample m-SaRa S, k = 1.6 0.667 0.222 858
(h = 2,5,10,15) E, k = 1.6 0.636 0.205 922

S, k = 0.7 0.507 0.290 4962
E, k = 0.7 0.457 0.275 5940

Multiple-sample CBS p0 = 1 0.616 0.311 4912
p0 = 0.1 0.618 0.311 4918
p0 = 0.01 0.594 0.305 4865

PennCNV 0.558 0.2 903

dered the detections unreliable. As γi’s increased, more detections were filtered
out, and the proportions of consistent detections dropped. The median proportion
of consistent detections in random pairs became quite stable after γi/σ̂i got greater
than 1, which is a suitable range to choose γi’s. For replicate pairs, the median pro-
portion began increasing when γi/σ̂i got greater than 0.8, and eventually climbed
to 1 for γi/σ̂i greater than 2.

A subsequent question is as follows: what values should we use for γi’s? In
general, this depends on how noisy the data are, the true mean shifts for differ-
ent copy number changes, and the researcher’s preference in the trade-off between
true positive and false negative detections. For this dataset, γi = 1.2σ̂i is a plausi-
ble threshold because the proportion of consistent detections was briefly stable as
γi/σ̂i is between 1.2 and 1.4, which suggested that the true positives were being
removed along with the false negatives for increasing γi’s in this region. The pro-
portion of consistent detections in random pairs was very stable until γi/σ̂i = 1.7,
and so this is another potential cutoff. One could also use γi = 2σ̂i if only the
most reliable detections are wanted, but this tends to retain only a small number
of change-points with the largest mean shifts, which in practice are the changes of
two or more copies.

We applied two competing methods, multiple-sample CBS and PennCNV, to
the same data after preprocessing and compare their detection accuracies with our
method in Table 5. The median proportion of consistent detections in the 20 pairs
of replicates and in 1000 randomly selected pairs are summarized. We present only
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the results for γi’s that led to a similar number of total detections to the compet-
ing methods so that the results are comparable. When γi/σ̂i = 1.2, our method
detected a similar number of variants to PennCNV. The median proportion of con-
sistent detections in replicate pairs by our method was higher than PennCNV, and
the proportion in random pairs by our method was also slightly higher. Note that
our method only used the LRR values, whereas PennCNV also used the B-allele
frequencies, yet our method gave similar or slightly better performance comparing
to PennCNV. When k = 0.5, our method had a similar number of detected vari-
ants to multiple-sample CBS; the proportion of consistent detections in replicate
pairs was slightly higher than multiple-sample CBS, but the proportion in random
pairs was also higher than multiple-sample CBS. These results, however, seem to
be worse than the results from our method with k = 1.2 and PennCNV.

We also performed our method with an additional bandwidth h = 2 in light
of the fact that many CNV regions might be short and cannot be captured when
the smallest bandwidth is 5. As displayed in Table 5, the accuracy was improved
when the total number of detections was smaller, but it was compromised when
the total number of detections was larger. Nevertheless, we detected more shorter
CNV regions as illustrated in Figure 6. Figure 6(a) and (b) present the distribution
of the lengths of regions (in numbers of markers) between consecutive change-
points detected by our method (with k = 1.2) using 3 bandwidths (h = 5,10,15)
and 4 bandwidths (h = 2,5,10,15), respectively. Since most of these regions are
short, we only plot those with no more than 60 markers. Here, we considered
chromosomes 1–22 in all 1363 samples. These two figures indicate that, with the

FIG. 6. The histograms of the number of markers between change-points detected in the GLAUGEN
data. Regions with no more than 60 markers were shown. The results based on three bandwidths
(h = 5,10,15) are shown in (a). The results based on four bandwidths (h = 2,5,10,15) are shown
in (b).
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TABLE 6
Running time for CNV detection on chromosome 22 in 1363 samples

Method

Multiple-sample m-SaRa Multiple-sample CBS PennCNV

Time 66 sec. ∼200,000 sec. ∼5000 sec.

extra bandwidth 2, the number of detected regions with more than 10 markers did
not change much, but many more shorter regions were detected, especially those
with 5 or fewer markers.

In Table 6, we compare the running time that each method used to identify
CNVs/change-points from the 11,244 markers on chromosome 22 for 1363 sam-
ples. The computation was performed on a Windows workstation equipped with 2
Inter(R) Xeon(R) E5645 processors (12 cores in total) and 48 GB RAM, though
we did not apply parallelization for any method. Our proposed method was much
faster than the competing methods, which confirmed its advantage of having lower
computational complexity. In fact, our method took about 87 minutes to finish
scanning the 640,663 markers on chromosomes 1–22 for the 1363 samples, which
is the size of a typical GWAS study. Note that, for our method, obtaining the thresh-
old λ from the simulated null distribution takes additional time and is computation-
ally intensive. We could use the quantile in the observed values instead, which does
not cost extra time. As can be seen in Figure 5 and Table 5, this threshold gave very
similar results to the simulated threshold.

6. Discussion. Although CNV has been studied for more than a decade, mul-
tiple sample-based calling methods had not been proposed until recent years. In
practice, single sample methods are still dominating. This is partly due to the lack
of systematic evaluation of multiple sample methods and single sample methods.
In this study, we have demonstrated that, in terms of shared change-point detec-
tion, single sample methods are equivalent to taking the most significant statistic
across samples, which is under-powered and sometimes does not work. Therefore,
to achieve biologically meaningful detection power, specificity has to be sacri-
ficed in the single sample method, which inevitably increases the number of false
positives. This approach does not utilize information across samples, especially
with the growth of studies with large sample sizes. Conversely, multiple sample
methods combine evidences from multiple samples to detect shared change-points,
which boosts the statistical power and hence reduces the false positives. Theoreti-
cally, we have proven that the power of multiple sample methods always converges
to 1 at an exponential rate in the number of samples, which is faster than single
sample methods. This is validated by our simulation.

Instead of using the CBS scan statistic, we employed the SaRa scan statistic in
our method. The SaRa statistic utilizes local information, which can significantly
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speed up the computation. Because the SaRa scan statistic uses a moving window,
the computation complexity is linear in the number of markers T . Sorting is also
needed in combining multiple samples using the adaptive Fisher’s method, thus the
overall complexity of our proposed method is O(T N logN). In practice T � N ,
our method is much more computationally efficient than other competing methods
whose computation complexities are at least O(NT 2) or O(NT logT ).

We should note that, despite the simplicity and speed of SaRa, the selection of
bandwidth h is nontrivial: too small an h may reduce the statistical power, whereas
too large an h may miss the short CNVs. A similar problem also haunts other sin-
gle sample methods. Specifically, short CNV regions are hard to detect since the
statistical evidence is relatively weak. Thus, the false positive rate usually has to
be sacrificed to detect these short regions. Some ad hoc methods have been pro-
posed to solve this problem. For example, in Birdsuite, a program called Canary
can detect common short CNVs by using prior knowledge. This solution is, how-
ever, platform-specific and cannot work when the prior knowledge is lacking. This
problem is greatly alleviated in multiple-sample SaRa. Because we have shown in
theory that the statistical power of multi-sample SaRa converges to 1 as the num-
ber of samples increases, a large h is no longer crucial to get decent statistical
power given enough samples. In multi-sample SaRa, we recommend h be selected
as large as possible provided that the biological interests are accommodated. For
example, the median distance between adjacent markers is below 700 bases in
Affymetrix Genome-Wide Human SNP Array 6.0. Using this platform, h should
be set ≤15 to study CNVs longer than 10k bases.

Furthermore, we proposed a novel adaptive Fisher’s method which combines
p-values while adapting to the proportions of true signals. We have demonstrated
by simulation that this statistic is powerful regardless of the proportion of true sig-
nals among the combined p-values. Another advantage is that the sums of the
transformed order p-values are standardized using their theoretical means and
variances, which saves computation time by avoiding a double permutation pro-
cedure. In the real data analysis, we noticed that the proposed statistic might be
over-sensitive by picking too many candidates for common change-points when
we used the threshold λ from the simulated null distribution. This might be due to
the noise in the data as well as the departure from the normal assumption in our
model. In this regard, we can decide the threshold empirically as suggested in the
paper, or other distribution assumptions can be used for the LRR sequences. Al-
ternatively, we can consider using mean, median or other quantiles in (2.7) as one
of the referees suggested. This would make WAF more robust to outliers caused
by artifacts in the data, but the sensitivity might be compromised. Further study is
needed to address the pros and cons of these alternatives.

Recent developments in NGS methods have allowed us to analyze DNA se-
quences at a much finer level. CNVs can also be detected by scanning for change-
points in sequences of read depths [Alkan, Coe and Eichler (2011)]. For this type
of data, our proposed method could be extended naturally and has the advantage



MULTIPLE SAMPLE SARA 2127

of being computationally efficient, but it faces several challenges. First, read depth
sequences are count data and correlated, and so new distributional assumptions are
needed, and the properties of the SaRa statistic need to be reevaluated. Second, the
p-values that we combine in the adaptive Fisher’s method might also be discrete
as the SaRa statistics are discrete, which makes evaluation of the significance level
more difficult. These are important issues for future research.

In conclusion, we proposed a new change-point calling method which utilizes
information from multiple samples. The SaRa scan statistic is used to make this
method computationally efficient and robust against long-range trends in the data.
The novel adaptive Fisher’s statistic enables the method to accommodate both rare
and common change-points. It should also be noted that this work is the first that
has compared the single sample methods and multiple sample methods theoreti-
cally and numerically.
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