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INVESTIGATING DIFFERENCES IN BRAIN FUNCTIONAL
NETWORKS USING HIERARCHICAL COVARIATE-ADJUSTED

INDEPENDENT COMPONENT ANALYSIS1

BY RAN SHI AND YING GUO

Emory University

Human brains perform tasks via complex functional networks consisting
of separated brain regions. A popular approach to characterize brain func-
tional networks in fMRI studies is independent component analysis (ICA),
which is a powerful method to reconstruct latent source signals from their lin-
ear mixtures. In many fMRI studies, an important goal is to investigate how
brain functional networks change according to specific clinical and demo-
graphic variabilities. Existing ICA methods, however, cannot directly incor-
porate covariate effects in ICA decomposition. Heuristic post-ICA analysis to
address this need can be inaccurate and inefficient. In this paper, we propose
a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal
statistical framework for estimating covariate effects and testing differences
between brain functional networks. Our method provides a more reliable and
powerful statistical tool for evaluating group differences in brain functional
networks while appropriately controlling for potential confounding factors.
We present an analytically tractable EM algorithm to obtain maximum likeli-
hood estimates of our model. We also develop a subspace-based approximate
EM that runs significantly faster while retaining high accuracy. To test the
differences in functional networks, we introduce a voxel-wise approximate
inference procedure which eliminates the need of computationally expensive
covariance matrix estimation and inversion. We demonstrate the advantages
of our methods over the existing method via simulation studies. We apply
our method to an fMRI study to investigate differences in brain functional
networks associated with post-traumatic stress disorder (PTSD).

1. Introduction. In the past decade, the field of neuroimaging has been
moving toward a network-oriented view of brain functions. Functional magnetic
resonance imaging (fMRI) is one of the most commonly used technologies to
investigate brain functional networks (BFNs). In fMRI studies of functional con-
nectivity, observed data are viewed as mixtures of signals generated from various
BFNs. Each of these networks consists of a set of spatially distributed but func-
tionally linked brain regions that present similar blood oxygenation level depen-
dent (BOLD) signals during the scanning sessions. One of the major goals in fMRI
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data analysis is to decompose the observed fMRI data to identify the underlying
functional networks and characterize their spatial distributions and temporal dy-
namics. Independent component analysis (ICA) has become the most widely used
tool in the neuroscience community to investigate these functional networks. As
a special case of blind source separation, ICA can separate observed fMRI sig-
nals into linear combinations of latent spatial source signals that are statistically as
independent as possible. Each of these latent components correspond to a BFN.

Compared with alternative network methods, ICA has several major advantages.
As a multivariate approach, ICA can jointly model the relationships among multi-
ple voxels, and hence provide a tool for investigating whole brain connectivity. Un-
like second-order statistical methods such as PCA, ICA takes into account higher-
order statistics, and the spatial statistical independence assumption of ICA is well
supported by the sparse nature in typical fMRI activation patterns [Beckmann and
Smith (2004), Calhoun et al. (2001)]. Furthermore, ICA is a fully data-driven ap-
proach that does not need a priori temporal or spatial models. This makes ICA
an important tool for analyzing resting-state fMRI where there is no experimen-
tal paradigm [Beckmann et al. (2005)]. Finally, compared with other whole brain
connectivity methods such as graphical models, a distinctive feature of ICA is that
it can partition the whole brain into functionally coherent networks.

ICA was initially used for analyzing single-subject fMRI data to either charac-
terize spatially independent brain networks, that is, spatial ICA [Beckmann and
Smith (2005), Biswal and Ulmer (1999), Calhoun et al. (2001), Mckeown et al.
(1998)], or separate independent time courses, that is, temporal ICA [Lee et al.
(2011)]. In this paper, we consider spatial ICA which is more suitable for our
fMRI data example. Denote by Y the T × V fMRI data matrix for one subject,
where T is the number of fMRI scans and V is the number of voxels in the 3D
brain image acquired during each scan. Each row of Y represents a vectorized 3D
image. Classical noise-free spatial ICA decomposes the observed fMRI data for
one subject as YT ×V = AT ×qSq×V , where q is the total number of source sig-
nals. Each row of S represents a vectorized 3D image of a spatial source signal.
The q spatial source signals are assumed to be statistically independent, and hence
are called independent components (ICs). A is the mixing matrix, the columns of
which determine the temporal dynamics of the ICs.

To decompose multi-subject fMRI data, ICA has been extended for group anal-
ysis, which is referred to as group ICA [Calhoun et al. (2001)]. One commonly
used group ICA framework in fMRI analysis is the temporal concatenation group
ICA (TC-GICA). In TC-GICA, the T × V fMRI data matrices from N subjects
are stacked in the temporal domain to form a tall T N × V group data matrix. The
concatenated group data are then decomposed into the product of a T N × q group
mixing matrix and a q × V spatial source matrix with independent rows. Many
existing group ICA methods [Beckmann and Smith (2005), Calhoun et al. (2001),
Guo (2011), Guo and Pagnoni (2008)] were developed under the TC-GICA frame-
work. A notable restriction of the TC-GICA models is that they assume the same
spatial distribution of BFNs across subjects.
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In recent years, neuroscience literature has provided evidence that BFNs can
vary considerably due to subjects’ clinical, biological and demographic charac-
teristics. For example, neuroimaging studies have shown that neural activity and
connectivity in specific functional networks are significantly associated with men-
tal disorders and their responses to treatment regimes [Anand et al. (2005), Chen
et al. (2007), Greicius et al. (2007), Sheline et al. (2009)]. Other studies have found
activity patterns in major functional networks vary with demographic factors in-
cluding age and gender [Cole et al. (2010), Quiton and Greenspan (2007)]. These
findings call for statistical methods that can quantify the effects of subjects’ char-
acteristics on the BFNs and can evaluate the differences in BFNs between subject
groups (e.g., diseased vs. normal).

The data example in this paper demonstrates the need for incorporating co-
variate effects when investigating differences in BFNs using group ICA. The data
come from a post-traumatic stress disorder (PTSD) study conducted by the Grady
Memorial Hospital and Emory University in Atlanta. This PTSD study is one of the
largest NIH sponsored ongoing research projects on PTSD in an urban population.
In our data example, a subgroup of African–American female subjects from the
Grady PTSD study were recruited for fMRI acquisitions. One of the main goals
of the fMRI study is to investigate PTSD-related differences in BFNs. A major
challenge in achieving this goal is that the Grady PTSD study is an observational
study in which the PTSD positive and PTSD negative groups were not matched
on their demographic or clinical variables. Therefore, between-group comparisons
are prone to be biased due to potential confounding factors. For example, it is well
known that PTSD is often co-morbid with other mental problems such as major
depression disorders (MDD) [Campbell et al. (2007), Kessler et al. (1995)]. An-
other example is that the heterogeneity of age distribution between the two PTSD
groups can affect the BFNs, according to findings in Bullmore and Sporns (2009).
Thus, to assess PTSD-related brain network alterations, it is necessary to adjust for
these potential confounding factors.

Existing group ICA methods, which often assume the same spatial patterns of
BFNs across subjects, do not directly incorporate covariate information in the ICA
decomposition. Currently, differences in brain functional networks and their asso-
ciations with subjects’ covariates are assessed through two kinds of heuristic ap-
proaches. The first approach is through conducting single-subject ICA separately
on each subject’s, selecting matched ICs and then performing group analysis on
the selected subject-level IC maps [Greicius et al. (2007)]. A major problem with
this approach is that it is often challenging to match ICs across subjects since ICA
results are only identifiable up to a permutation of the ICs. Furthermore, since
most ICA algorithms are stochastic [Himberg, Hyvärinen and Esposito (2004)],
the levels of ICs extracted from separate ICA runs for different subjects are often
not comparable to each other. The second approach is via two-stage analysis based
on TC-GICA. Two representative methods in this category are the back construc-
tion [Calhoun et al. (2001)] and dual regression [Beckmann et al. (2009), Filippini
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et al. (2009)]. These methods first perform TC-GICA to extract common IC maps
at the group level and then reconstruct subject-specific IC maps by post-ICA steps.
The covariate effects are evaluated via secondary hypothesis testing or regression
analysis on the reconstructed subject-specific maps. These methods do not take
into account the random variabilities introduced in reconstructing subject-specific
IC maps, which could lead to loss of accuracy and efficiency in estimating and
testing covariate effects on functional networks.

In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model
that directly incorporates covariate effects in group ICA decomposition to investi-
gate differences in BFNs. The hc-ICA model decomposes each subject’s fMRI data
into linear mixtures of subject-specific spatial source signals (ICs). These distinct
subject-specific ICs are then modeled in terms of population-level baseline source
signals, covariate effects and between-subject random variabilities. To the best of
our knowledge, hc-ICA is the first model-based group ICA method that captures
variabilities in BFNs due to covariates effects. Compared with existing group ICA
methods, hc-ICA has several advantages. hc-ICA is more accurate and powerful
in terms of detecting brain network differences due to the primary effects of in-
terest, such as disease status, while controlling for other confounding factors. For
example, application of hc-ICA to the Grady PTSD study reveals important dif-
ferences in the brain networks of the two PTSD groups, while the existing group
ICA method cannot detect these differences effectively. Results from our simula-
tion studies also corroborate that hc-ICA has better performance than the existing
method in terms of both estimation accuracy and statistical power. In addition,
hc-ICA can provide model-based estimation or prediction of brain functional net-
works for subpopulations defined by specific clinical or demographic characteris-
tics. This will promote understandings of both commonalities and distinctions in
brain networks across various subgroups within a study cohort.

Our hc-ICA model is developed under the hierarchical probabilistic ICA mod-
eling framework first introduced in Guo and Tang (2013) which proposed a hierar-
chal random effects ICA model for relaxing the spatial homogeneity assumption in
TC-GICA. The hc-ICA model, as well as its estimation and inference procedures,
provides several important contributions to hierarchical ICA modeling. First, hc-
ICA provides the first statistical framework to evaluate how subjects’ demographic
and clinical characteristics can affect their brain functional networks. This is not
available in any existing group ICA methods, including the random effect model
in Guo and Tang (2013). Second, we propose a novel subspace-based approximate
expectation-maximization (EM) algorithm for obtaining maximum likelihood es-
timates. The approximate EM algorithm scales linearly with the number of ICs,
which is significantly faster than the exponential growth of the exact EM algo-
rithms used by Guo (2011) and Guo and Tang (2013). Third, our work provides an
efficient voxel-wise approximate inference procedure for testing covariate effects
on ICs. Such statistical inference procedures are not available in existing group
ICA methods, including Guo and Tang (2013).
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We introduce in Section 2 the hc-ICA framework including data preprocess-
ing, model specification, estimation and inference. Section 4 presents an analy-
sis of the PTSD dataset using our method. Section 3 reports simulation results
for comparing hc-ICA to the existing TC-GICA two-stage method, comparing the
subspace-based EM to the exact EM algorithms and comparing the proposed infer-
ence method to the existing TC-GICA two-stage method for testing covariate ef-
fects. Conclusions and discussions are presented in Section 5. Derivations, proofs,
additional simulation studies and details for the analysis of the PTSD data are pro-
vided in the web Supplementary Materials [Shi and Guo (2016)].

2. Methods. This section introduces the hc-ICA framework, which includes
the preprocessing step, the hc-ICA model, estimation algorithms and the inference
procedure.

2.1. Preprocessing prior to ICA. Prior to an ICA algorithm, some prepro-
cessing steps such as centering, dimension reduction and whitening of the ob-
served data are usually performed to facilitate the subsequent ICA decomposition
[Hyvärinen, Karhunen and Oja (2001)]. Suppose that the fMRI study consists of
N subjects. For each subject, the fMRI signal is acquired at T time points across V

voxels. Let ỹi (v) ∈R
T be the centered time series recorded for subject i at voxel v;

Ỹi = [ỹi (1), . . . , ỹi(V )] is the T × V fMRI data matrix for subject i.
Under the paradigm of group ICA, we perform the following dimension reduc-

tion and whitening procedure on the original fMRI data: for i = 1, . . . ,N ,

(1) Yi = (
�i,q − σ̃ 2

i,qIq

)− 1
2 U′

i,qỸi ,

where Ui,q and �i,q contain the first q eigenvectors and eigenvalues based on the
singular value decomposition of Ỹi . The residual variance, σ̃ 2

i,q , is the average
of the smallest T − q eigenvalues that are not included in �i,q representing the
variability in Ỹi that is not accounted by the first q components. The parameter q ,
which is the number of ICs, can be determined using the Laplace approximation
method [Minka (2000)]. Throughout the rest of our paper, we will present the
model and methodologies based on the preprocessed data Yi = [yi (1), . . . ,yi(V )]
(i = 1, . . . ,N ), which are q × V matrices.

2.2. A hierarchical covariate-adjusted ICA model (hc-ICA). In this section,
we present a hierarchical covariate-adjusted ICA (hc-ICA) model for evaluating
covariate effects on brain functional networks using multi-subject fMRI data. The
first-level model of hc-ICA decomposes a subject’s observed fMRI signals into a
product of subject-specific spatial source signals and a temporal mixing matrix to
capture between-subject variabilities in the spatio-temporal processes in the func-
tional networks. We include a noise term in this ICA model to account for residual
variabilities in the fMRI data that are not explained by the extracted ICs, which is
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known as probabilistic ICA [Beckmann and Smith (2004)]. To be specific, the first
level of hc-ICA is defined as

(2) yi (v) = Aisi (v) + ei (v),

where si (v) = [si1(v), . . . , siq(v)]′ is a q × 1 vector with si�(v) representing the
spatial source signal of the �th IC (i.e., brain functional network) at voxel v for sub-
ject i. The q elements of si (v) are assumed to be independent and non-Gaussian.
Ai is the q × q mixing matrix for subject i which mixes si(v) to generate the
observed (preprocessed) fMRI data. Since Yi is whitened, the mixing matrix, Ai ,
should be orthogonal [Hyvärinen and Oja (2000)]. ei (v) is a q × 1 vector that rep-
resents the noise in the subject’s data and ei (v) ∼ N(0,Ev) for v = 1, . . . , V . The
noise term is assumed to be independent across voxels because the spatial correla-
tion across voxels is modeled by the spatial source signals [Beckmann and Smith
(2004), Guo (2011), Hyvärinen, Karhunen and Oja (2001)]. Prior to ICA, prelim-
inary analysis such as pre-whitening [Bullmore et al. (1996)] can be performed
to remove temporal correlations in the noise term and to standardize the vari-
ability across voxels. Therefore, following previous work [Beckmann and Smith
(2004, 2005), Guo (2011), Guo and Pagnoni (2008)], we assume that the covari-
ance for the noise term is the same across voxels and isotropic, that is Ev = ν2

0Iq .
The ICA decomposition in the first-level model is a spatial ICA model since sta-
tistical independence is assumed for the spatial maps of brain functional networks.
For fMRI data, spatial ICA has become dominant because the spatial indepen-
dence assumption is well suited to the spatial patterns of most cognitive activation
paradigms [Mckeown et al. (1998)].

At the second level of hc-ICA, we further model subject-specific spatial source
signals si (v) as a combination of the population-level source signals, the covariate
effects and additional between-subject random variabilities:

(3) si (v) = s0(v) + β(v)′xi + γ i (v),

where s0(v) = [s01(v), . . . , s0q(v)]′ is the population-level spatial source signals
of the q statistically independent and non-Gaussian ICs; xi = [xi1, . . . , xip]′ is the
p × 1 covariate vector containing subject-specific characteristics such as the treat-
ment or disease group, demographic variables and biological traits; β(v) is a p×q

matrix where the element βk�(v) (k = 1, . . . , p, � = 1, . . . , q) in β(v) captures
the effect of the kth covariate on the �th functional network at voxel v; γ i (v) is
a q × 1 vector reflecting the random variabilities among subjects after adjusting

for covariate effects. We assume γ i (v)
i.i.d.∼ N(0,D), where D = diag(ν2

1 , . . . , ν2
q).

IC-specific variances specified in D allow us to accommodate different levels of
between-subject random variability.
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2.3. Source signal distribution assumptions. Following Guo (2011) and Guo
and Tang (2013), we choose mixtures of Gaussians (MoG) as our source distribu-
tion model for the population-level spatial source signals, s0(v), in (3). MoG have
several desirable properties for modeling fMRI signals. Within each BFN, only
a small percentage of locations in the brain are activated or deactivated, whereas
most brain areas exhibit background fluctuations [Biswal and Ulmer (1999)]. MoG
are well suited to model such mixed patterns. Furthermore, MoG can capture var-
ious types of non-Gaussian signals [Kostantinos (2000), Xu et al. (1997)] and also
offer tractable likelihood-based estimation [McLachlan and Peel (2004)].

Specifically, for � = 1, . . . , q we assume that

(4) s0�(v) ∼ MoG
(
π�,μ�,σ

2
�

)
, v = 1, . . . , V ,

where π� = [π�,1, . . . , π�,m]′ with
∑m

j=1 π�,j = 1, μ� = [μ�,1, . . . ,μ�,m]′ and

σ 2
� = [σ 2

�,1, . . . , σ
2
�,m]′; m is the number of Gaussian components in MoG. The

probability density of MoG(π�,μ�,σ
2
�) is

∑m
j=1 π�,jg(s0�(v);μ�,j , σ

2
�,j ), where

g(·) is the p.d.f. of the (multivariate) Gaussian distribution. In fMRI applications,
mixtures of two to three Gaussian components are sufficient to capture the distribu-
tion of fMRI spatial signals, with the different Gaussian components representing
the background fluctuation and the negative or positive fMRI BOLD effects, re-
spectively [Beckmann and Smith (2004), Guo and Pagnoni (2008)]. Without loss
of generality, we denote by j = 1 the background fluctuation state throughout the
rest of the paper.

To facilitate derivations in models involving MoG, latent state variables are
often used [McLachlan and Peel (2004)]. Here we define latent states z(v) =
[z1(v), . . . , zq(v)]′ at voxel v as follows. For � = 1, . . . , q , z�(v) takes a value
in {1, . . . ,m} with probability p[z�(v) = j ] = π�,j for j = 1, . . . ,m. Conditional
on z(v), we can rewrite our source distribution model as

(5) s0(v) = μz(v) + ψz(v),

where μz(v) = [μ1,z1(v), . . . ,μq,zq(v)]′ and ψz(v) = [ψ1,z1(v), . . . ,ψq,zq(v)]′;
ψz(v) ∼ N(0,�z(v)) with �z(v) = diag(σ 2

1,z1(v), . . . , σ
2
q,zq(v)).

2.4. Maximum likelihood estimation. We develop a unified maximum likeli-
hood estimation method via the EM algorithm that simultaneously estimates all
parameters in the hc-ICA model. Based on (2), (3) and (5), the complete data log-
likelihood for the hc-ICA model is

(6) l(�;Y,X ,S,Z) =
V∑

v=1

lv(�;Y,X ,S,Z),

where Y = {yi (v) : i = 1, . . . ,N;v = 1, . . . , V }, X = {xi : i = 1, . . . ,N}, S =
{si (v) : i = 0, . . . ,N, v = 1, . . . , V } and Z = {z(v) : v = 1, . . . , V }; the parameters
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are � = {{β(v)}, {Ai},E,D, {π�}, {μ�}, {σ 2
�} : i = 1, . . . ,N, v = 1, . . . , V , � =

1, . . . ,m}. The detailed expression for the complete data log-likelihood function
at each voxel v is

lv(�;Y,X ,S,Z) =
N∑

i=1

[
logg

(
yi (v);Aisi(v),E

)
+ logg

(
si (v); s0(v) + β(v)′xi ,D

)]
(7)

+ logg
(
s0(v);μz(v),�z(v)

) +
q∑

�=1

logπl,zl (v).

2.4.1. The exact EM algorithm. We first present an exact EM which has an
explicit E-step and M-step to obtain ML estimates for the parameters in hc-ICA.

E-step: In the E-step, given the parameter estimates �̂(k) from the last step, we
derive the conditional expectation of the complete data log-likelihood given the
observed data as follows:

(8) Q
(
� | �̂(k)) =

V∑
v=1

Es(v),z(v)|y(v)

[
lv(�;Y,X ,S,Z)

]
,

where y(v) = [y1(v)′, . . . ,yN(v)′]′ represents the group data vector from the N

subjects at voxel v, s(v) = [s1(v)′, . . . , sN(v)′, s0(v)′]′ is the vector containing la-
tent source signals on both the population and individual level. The detailed defini-
tion of Q(� | �̂(k)) is available in Section 1 of the web Supplementary Materials.
The evaluation of Q(� | �̂(k)) relies on obtaining p[s(v), z(v) | y(v); �̂(k)] as well
as its marginal distributions, which consist of the following three steps. First, we
determine p[s(v) | z(v),y(v); �̂(k)], which is a multivariate Gaussian distribution.
Second, we evaluate the probability mass functions p[z(v) | y(v); �̂(k)] through an
application of Bayes’ theorem. We finally obtain p[s(v) | y(v); �̂(k)] by convolv-
ing the distributions derived in the previous two steps. More details can be found
in Section 2 of the Supplementary Material.

Given these probability distributions, we can derive the analytical forms for the
conditional expectation in (8). For illustration purposes, two main quantities of
interest in (8) are given as follows:

E
[
s(v) | y(v);�] = ∑

z(v)∈R
p

[
z(v) | y(v);�]

E
[
s(v) | y(v), z(v);�]

,

E
[
s(v)⊗2 | y(v);�] = ∑

z(v)∈R
p

[
z(v) | y(v);�]

E
[
s(v) | y(v), z(v);�]⊗2

+ ∑
z(v)∈R

p
[
z(v) | y(v);�]

Var
[
s(v) | y(v), z(v);�]

,
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where R represents the set of all possible values of z(v), that is, R = {zr}mq

r=1
where zr = [zr

1, . . . , z
r
q]′ and zr

� ∈ {1, . . . ,m} for � = 1, . . . , q; the notation a⊗2 for
vector a stands for aa′.

Based on the results presented above, our E-step is fully tractable without the
need for iterative numerical integrations.

M-step: In the M-step, we update the current parameter estimates �̂(k) to

(9) �̂(k+1) = arg max
�

Q
(
� | �̂(k)).

We have derived explicit formulas for all parameter updates. The updating rules
are provided in Section 3 of our Supplementary Material.

The estimation procedure for the exact EM algorithm is summarized in Algo-
rithm 1. See Sections 1–3 of the Supplementary Material for more details. After
obtaining �̂, we can estimate the population- and individual-level source signals
as well as their variability based on the mean and variance of their conditional
distributions, that is, [s0(v) | y(v); �̂] and [si (v) | y(v); �̂]. These conditional mo-
ments are directly obtainable from the E-step of our algorithm upon convergence
and no separate post-ICA steps are required. As a referee pointed out, one could
also estimate the source signals using the MAP estimator. As a major difference
from TC-GICA, our subject-specific ICs {si} are estimated simultaneously with
the population-level IC s0 instead of being reconstructed via post-ICA ad hoc ap-
proaches. Therefore, all the subject ICs are aligned to the population ICs in our
model specification and estimation, which eliminates the need to match ICs across

Algorithm 1 The Exact EM Algorithm

Initial values: Start with initial values �̂(0) which can be obtained based on
estimates from existing group ICA software.
repeat

E-step:
1. Determine p[s(v), z(v) | y(v); �̂(k)] and its marginals using the proposed
three-step approach:

1.a Evaluate the multivariate Gaussian p[s(v) | y(v), z(v); �̂(k)];
1.b Evaluate p[z(v) | y(v); �̂(k)];
1.c p[s(v), z(v) | y(v), �̂(k)] = p[s(v) | y(v), z(v); �̂(k)] × p[z(v) |

y(v); �̂(k)];
p[s(v) | y(v), �̂(k)] = ∑

z(v)∈R p[s(v), z(v) | y(v), �̂(k)];
2. Evaluate conditional expectations in Q(� | �̂(k)).
M-step:
Update β(v), Ai , π�,j , μ�,j , σ 2

�,j ;
Update the variance parameters D,E.

until ‖�̂(k+1)−�̂(k)‖
‖�̂(k)‖ < ε
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difference subjects. This is an advantage of our approach over single-subject ICA-
based analysis.

In fMRI analysis, researchers are often interested in thresholded IC maps to
identify “significantly activated” voxels in each BFN. Following previous work
[Guo (2011)], we propose a thresholding method based on the mixture distribu-
tions for this purpose (Section 6 of the Supplementary Material).

2.4.2. The subspace-based approximate EM algorithm. One major limitation
of the exact EM algorithm is that its complexity increases exponentially with re-
gard to the number of ICs. Specifically, O(mq) operations are required for the exact
EM algorithm to complete. The main reason is that, at each voxel, the exact EM
evaluates and sums the conditional distributions across the whole sample space R
of the latent state variables z(v), which has a cardinality of mq . A standard way to
alleviate this issue is through mean field variational approximation. This method
has been used by Attias (1999, 2000) for single subject ICA and by Guo (2011) for
TC-GICA. However, the variational method cannot be easily generalized to other
models such as hierarchical ICA because the derivation of the variational approxi-
mate distributions depends heavily on the model specifications. In most cases, the
estimates for the variational parameters do not have analytically tractable expres-
sions and require extra numerical iterations, which sometimes causes convergence
problems.

In this section, we propose a new approximate EM algorithm for solving MoG-
based ICA models in fMRI studies. Compared with the exact EM that needs
O(mq) operations, this new EM algorithm only requires O(mq) operations. The
key idea behind the approximate algorithm is that instead of considering the whole
sample space R of the latent state vector z(v), we only focus on a small subspace
of R in the algorithm. Theorem 1 provides the definition for the subspace and
shows that, under certain conditions, the distribution of the latent state vectors is
concentrated to the proposed subspace.

THEOREM 1. Define R = {zr = [zr
1, . . . , z

r
q]′ : zr

� = j with j ∈ {1, . . . ,m}, � =
1, . . . , q} for r = 1, . . . ,mq , which is the domain of z(v). For all z(v) ∈ R, sup-
pose that p[z�(v) = j ] = π�,j and that p[z(v) = zr ] = ∏q

�=1 π�,zr
�

[i.e., z(v) has

independent elements]. Define R̃ as R̃ = R0 ∪ R1, where R0 = {zr ∈ R : zr
� =

1, � = 1, . . . , q} and R1 = {zr ∈ R : ∃ one and only one �, s.t., zr
� 	= 1}. Then, for

any 0 < ε < 1, if π�,1 >
q

q+√
ε

for all � = 1, . . . , q , we have p[z(v) ∈ R̃] > 1 − ε.

The proof of the theorem is relegated to Section 4 of the Supplementary Mate-
rial. Based on the above theorem, when ε ≈ 0, that is, p[z�(v) = 1] ≈ 1, we have
p[z(v) ∈ R̃] ≈ 1. For fMRI data, the latent state j = 1 in MOG model (4) corre-
sponds to background fluctuation. Therefore, Theorem 1 implies that, for each IC,
if latent states at most voxels are background fluctuation, the probability distribu-
tion of the latent state vector z(v) in our hc-ICA will be mostly restricted to the
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subspace R̃. The condition in Theorem 1, that is, p[z�(v) = 1] ≈ 1, is supported by
fMRI data because previous literature maintains that the fMRI spatial source sig-
nals are sparse across the brain [Daubechies et al. (2009), Mckeown et al. (1998)];
that is, within a specific BFN, that is, IC, most of the voxels exhibit background
fluctuations with only a very small proportion of voxels being activated (or deac-
tivated). The restriction of the latent states vector to the subspace R̃ implies that
there is little chance for the same voxel to be activated in more than one IC. Bio-
logically, this means that there is little overlapping in the activated regions across
different BFNs, which has been supported by findings in the existing neuroimaging
literature.

Based on this result, we propose a subspace-based approximate EM for our
ICA model. The approximate EM follows similar steps as the exact EM. The
main difference is that we restrict the conditional distribution of the latent state
vector z(v) to the subspace R̃ in the E-step and M-step; that is, the conditional
expectations in the E-step are evaluated with a subspace-based approximate distri-
bution p̃[z(v) = zr | y(v); �̂(k)] = p[z(v) = zr | y(v); �̂(k)]/∑

r∈R̃ p[z(v) = zr |
y(v); �̂(k)] where zr ∈ R̃ (see Section 5 of the Supplementary Material for a de-
tailed treatment). Since the subspace R̃ has a cardinality of (m − 1)q + 1, the
approximate EM only requires O(mq) operations to complete. The concentration
of measures to the subspace leads to the simplification in evaluating the conditional
expectations in the E-step. For example,

(10) Ẽ
[
s(v) | y(v);�] = ∑

z(v)∈R̃
p̃

[
z(v) | y(v);�]

E
[
s(v) | y(v), z(v);�]

,

which implies that, instead of summing over mq latent states in R, we only need to
perform (m − 1)q + 1 summations across the subspace of R̃. The subspace-based
EM also reduces computation time in the M-step. Specifically, when updating the
parameters for the MoG source distribution model, we now use approximate con-
ditional marginal moments. For example, as compared with the exact results, we
use the following approximate moment when updating parameters for the Gaus-
sian mixtures:

Ẽ
[
s0�(v) | z�(v) = j,y(v);�]

(11)

=
∑

z(v)∈R̃(�,j) p̃[z(v) | y(v);�]E[s0�(v) | y(v), z(v);�]∑
z(v)∈R̃(�,j) p̃[z(v) | y(v);�] ,

where R̃(�,j) = {zr ∈ R̃ : zr
� = j}, whose cardinality equals (m − 1)(q − 1) + 1 if

j = 1 and 1 if j 	= 1. Comparing to its exact counterpart, R(�,j) = {zr ∈ R : zr
� =

j}, which has a cardinality of mq−1; this can dramatically simplify the updating of
π�,j ,μ�,j and σ 2

�,j in the M-step. We summarize the approximate EM algorithm
as Algorithm 2.
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Algorithm 2 The Subspace-based Approximate EM Algorithm

Initial values: Start with initial values �̂(0).
repeat

E-step:
1. Determine p̃[s(v) | y(v); �̂(k)] and its marginals as follows:

1.a Evaluate the multivariate Gaussian p[s(v) | y(v), z(v); �̂(k)];
1.b Evaluate p̃[z(v) | y(v); �̂(k)] on the subset R̃;
1.c p̃[s(v), z(v) | y(v), �̂(k)] = p[s(v) | y(v), z(v); �̂(k)] × p̃[z(v) |

y(v); �̂(k)];
p[s(v) | y(v), �̂(k)] = ∑

z(v)∈R̃ p̃[s(v), z(v) | y(v), �̂(k)];
2. Evaluate conditional expectations in Q(� | �̂(k)) with regard to

p̃[s(v), z(v) | y(v); �̂(k)].
M-step:
Update β(v), Ai , π�,j , μ�,j ; σ 2

�,j with the modification of replacing the exact

conditional moments with their counterparts based on p̃[s(v) | y(v); �̂(k)].
Update D,E with similar modifications of replacing the exact conditional
moments with those based on p̃[s(v) | y(v); �̂(k)].

until ‖�̂(k+1)−�̂(k)‖
‖�̂(k)‖ < ε

2.5. Inference for covariate effects in hc-ICA model. Typically, statistical in-
ference in maximum likelihood estimation is based on the inverse of the informa-
tion matrix which is used to estimate the asymptotic variance-covariance matrix
of the MLEs. Since Standard EM algorithms only provide parameter estimates,
extensions to the EM algorithm have been developed to estimate the informa-
tion matrix [Louis (1982), Meilijson (1989), Meng and Rubin (1991)]. However,
these methods are computationally expensive for the proposed hc-ICA model due
to the following reasons. First, the dimension of the information matrix for our
model is huge due to the large number of parameters. Second, the ML estimates,
β̂(v), v = 1, . . . , V , are not independent across voxels because they rely on the es-
timates of the same set of parameters such as the mixing matrices. Consequently,
the information matrix of the hc-ICA model is ultra-high-dimensional and is not
sparse, which makes it extremely challenging to invert.

In this section, we present a statistical inference procedure for covariate effects
in the hc-ICA model. The proposed method is developed based on the connection
between the hc-ICA and standard linear models. Our method aims to provide an
efficient approach to estimate the asymptotic standard errors of the covariate ef-
fects at each voxel, that is, β̂(v)(v = 1, . . . , V ), by directly using the output from
our EM algorithms. Specifically, we first rewrite the hc-ICA model in a nonhierar-
chical form by collapsing the two-level models in (2) and (3), and then multiplying
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the orthogonal mixing matrix Ai on both sides:

(12) A′
iyi (v) = s0(v) + Xi vec

[
β(v)′

] + γ i (v) + A′
iei (v),

where Xi = x′
i ⊗ Iq . (12) can be re-expressed as follows:

(13) y∗
i (v) = Xi vec

[
β(v)′

] + ζ i (v),

where y∗
i (v) = A′

iyi (v) − s0(v), and ζ i (v) = γ i (v) + A′
iei (v) is a multivariate

zero-mean Gaussian noise term. The model in (13) can be viewed as a general
multivariate linear model at each voxel. The major distinction of (13) from the
standard linear model is that the dependent variable y∗(v) not only depends on the
observed data y(v) but also involves unknown parameters Ai and latent variables
s0(v). Given the similarity between the hc-ICA and the standard linear models, we
propose a variance estimator for vec[β̂(v)′] following the linear model theory.

Note that, for a standard linear model, the asymptotic variance for vec[β̂(v)′]
can be obtained by

(14) Var
{
vec

[
β̂(v)′

]} = 1

N

(
N∑

i=1

X′
iW(v)−1Xi

)−1

,

where W(v) is the variance of the Gaussian noise in the linear model. Then the
variance of vec[β̂(v)′] can be estimated by plugging in an estimator for W(v)

in (14). Following this result, we consider a variance estimator for vec[β̂(v)′] based
on (14) by plugging in the empirical variance estimator Ŵ(v) = 1

N

∑N
i=1(y

∗
i (v) −

Xi vec[β̂(v)′])⊗2 [Seber and Lee (2012)]. Because the dependent variable y∗(v) in
(13) is not directly observable, we estimate y∗

i (v) using the ML estimates from our
EM algorithm as ŷ∗

i (v) = Â′
iyi (v) − ŝ0(v), where ŝ0(v) = E[s0(v) | y(v), �̂]; that

is, we modify the empirical variance estimator Ŵ(v) as follows:

(15) W̃(v) = 1

N

N∑
i=1

(
Â′

iyi (v) − E
[
s0(v) | y(v), �̂

] − Xi vec
[
β̂(v)′

])⊗2
.

Thus, our final variance estimator is V̂ar{vec[β̂(v)′]} = 1
N

(
∑N

i=1 X′
iW̃(v)−1Xi)

−1.
Hypothesis testing on the covariate effects at each voxel can be performed by

calculating the Z-statistics based on the proposed variance estimator and determin-
ing the corresponding p-values. Our method can test whether a certain covariate
has significant effects on each of the BFNs at the voxel level. Based on the para-
metric Z-statistic maps, one can also apply standard multiple testing methods to
control the family-wise error rate (FWER) or the false discovery rate (FDR) when
testing the covariate effects within a BFN.

We note that our variance estimator may underestimate the variabilities in β̂(v)

because it does not account for variabilities in estimating Ai and s0(v). As a result,
when performing hypothesis testing, the actual type-I errors of the proposed test
statistic can be relatively higher than the nominal level. We evaluate via simulation
studies the performance of this proposed inference procedure in Section 4.
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3. Application to fMRI data from Grady PTSD study. We applied the pro-
posed method to the fMRI data collected from the Grady PTSD study. In this study,
92 African American women were recruited as part of a larger study conducted by
the Grady Health System in Atlanta, GA. The Structured Clinical Interview for
DSM-IV (SCID) [First (1995)] was administered to all subjects and was used for
diagnosis of PTSD. In addition, participants completed the Beck Depression In-
ventory (BDI) [Beck, Steer and Carbin (1988), Beck et al. (1996)] for depression
assessment. Out of the 92 subjects, 39 met a diagnosis of PTSD (PTSD+) and 53
did not meet the criteria for PTSD (PTSD−). The ages of these women at the time
of study ranged from 20 to 62 (Mean ± SD: 35±12 for PTSD+ group; 39±12 for
PTSD− group; between-group test p = 0.1096). The BDI depression scores were
significantly higher in subjects with PTSD diagnosis (Mean ± SD: 16.6 ± 9.0 for
PTSD+, 8.3 ± 7.8 for PTSD−, p < 10−5).

3.1. fMRI experimental design, image acquisition and preprocessing. MRI
scans were obtained in a 3.0T Siemens scanner. Participants received task stimuli
through a flexible mirror attached to the radio frequency coil of the scanner. The
mirror reflected a computer screen placed at the end of the MRI aperture. During
all experiments, a white cross appeared on a black background for 500 msec; it was
replaced by an X or an O “Go” signal for 1000 msec and followed by 750 msec
of blank screen. On a response pad, the subjects pressed 1 for X and 2 for O. The
subjects were instructed to respond to each trial as fast as they could unless the
“NoGo” signal appeared (i.e., the background changed to red), in which case they
should not press either button. The task comprised four runs separated by three
20’s rest periods. Each run contained 26 “Go”, 13 “NoGo” and 14 blank trials
distributed randomly.

A T1-weighted high-resolution anatomical image was first acquired (176 sagit-
tal slices, voxel size: 1 × 1 × 1 mm). During task administration, a series of T2-
weighted functional images (echo-planar, 26 axial slices, voxel size: 3.75×3.75×
4 mm, TR = 2.53 s, TE = 30 ms) were acquired. The fMRI data were converted
and preprocessed using Statistical Parametric Mapping, version 5 (SPM5, Well-
come Trust Centre for Neuroimaging, London, UK: http://www.fil.ion.ucl.ac.uk/
spm/). Functional volumes were corrected for slice acquisition timing differences
and subject movement. The anatomical image was registered to the mean of the
corrected functional images and subsequently spatially normalized to the MNI
standard brain space. These normalization parameters from the MNI space were
used for the functional images, which were smoothed with an 8 mm FWHM Gaus-
sian kernel. Prior to ICA analysis, we performed additional preprocessing steps, in-
cluding centering, dimension reduction and whitening as described in Section 2.1,
on the fMRI data.

3.2. Analysis and findings. The preprocessed data from the 92 subjects were
decomposed using the proposed hc-ICA model into 16 ICs (the number is chosen

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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from the GIFT package: http://mialab.mrn.org/software/gift/index.html). To com-
pare the networks between the two PTSD groups, we included PTSD diagnosis as
the primary covariate of interest in the hc-ICA (PTSD− = 0, PTSD+ = 1). We
also included subject’s age and BDI score as covariates to control for potential
confounding effects. We estimated the parameters in the hc-ICA model using the
subspace-based EM algorithm implemented in MATLAB, which is available at
the authors’ website. To ensure the validity of the results, we initialized the EM
algorithm with 50 different starting values. The resulting estimates of the param-
eters were mostly close to each other. In this analysis, we reported the estimates
corresponding to the highest observed data likelihood. More details about this ro-
bustness check are included in the Supplementary Materials.

Among the extracted ICs, we identified two components of particular interest.
The first network had the highest positive temporal correlation with the task time
series, which were the task series convolved with the hemodynamic response func-
tion (HRF). The spatial pattern of this network features the visual cortex, which
responded to the visual stimuli presented in the Go/NoGo task. In Figure 1(A),
we present the hc-ICA model-based estimates of the visual network for both the
PTSD− and PTSD+ groups. The two subpopulation maps were estimated at the
median age (36 year old) and the median BDI scores (BDI = 10) to control for
confounding effects. They were all thresholded based on the conditional proba-
bility of activation (Section 6 of the Supplementary Material). According to Fig-
ure 1(A), the PTSD+ group demonstrated stronger spatial source signals in the
visual network as compared to the PTSD− group with the same ages and BDI
scores. It is worth noting that the existing group ICA methods cannot provide such
model-based estimates of the brain networks for subpopulations defined by spe-
cific covariate patterns.

The second network of interest mainly includes the posterior cingulate cor-
tex (PCC), the medial prefrontal cortex (mPFC) and the lateral parietal cortex
(LPC). This network is known as the “default mode network”, which shows in-
creased activities during resting states and decreased activities during cognitive
tasks [Raichle et al. (2001)]. Its temporal responses have the largest negative cor-
relation with the task time series. Figure 1(B) presents the hc-ICA model-based
estimates of this network for the two PTSD subpopulations (also adjusted at the
median age and the median BDI score). Based on Figure 1(B), the default mode
network of the PTSD+ women demonstrated stronger functional connectivity dur-
ing the Go/NoGo tasks.

We then applied the proposed inference procedure to formally test the PTSD
group differences in these two networks while controlling for the potential con-
founding effects from age and depression status. We also applied the method in
Genovese, Lazar and Nichols (2002) to calculate the FDR corrected p-values for
the between-group tests. For comparison, we also used a TC-GICA-based method,
dual-regression ICA [Beckmann et al. (2009), Filippini et al. (2009)], to exam-
ine the group differences. Dual-regression ICA is one of the most commonly

http://mialab.mrn.org/software/gift/index.html
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FIG. 1. The estimated subpopulational maps for the PTSD− and PTSD+ women at the median
age (36 years old) and the median depression score (BDI = 10): Panel (A) shows the estimates for
the network featuring the visual cortex, which has the highest positive correlation with the task time
series. Panel (B) shows the estimates for the default mode network, which has the largest negative
correlation with the task time series. All IC maps are thresholded at the posterior probability of
activation above 0.9. PTSD+ women show stronger IC signals in both networks.

used methods in the neuroimaging community for estimating subject-specific IC
maps and performing between-group comparisons; see Reineberg et al. (2015),
Smith et al. (2014) for some examples of its application. It is also adopted
as a standard analytical tool by the well-known Human Connectome Project
(http://www.humanconnectomeproject.org/). The dual-regression procedure typi-
cally tests group differences via permutation tests which cannot adjust for any
confounding factors. To provide a fair comparison between hc-ICA and dual re-

http://www.humanconnectomeproject.org/
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FIG. 2. p-values, thresholded below 0.01, for comparing the adjusted PTSD group differences
(PTSD− < PTSD+) in the task-related network: hc-ICA found increased spatial source signals
at the central part of the visual cortex among PTSD+ women, which remained significant after
FDR control; dual regression found much less group differences in the network, all of which became
insignificant with the FDR control.

gression, we performed an additional regression analysis on the reconstructed sub-
ject IC maps from dual regression using the same set of covariates as in hc-ICA
and then tested PTSD group differences with adjustment for age and BDI.

The p-values for testing group differences in the task network, which features
the visual cortex, are presented in Figure 2. Based on Figure 2, hc-ICA detected
that PTSD+ women showed significantly stronger spatial signals than PTSD−
women in major parts of the visual network. This finding still held after FDR
correction. These enhanced activities in visual cortex among PTSD subjects were
previously reported in other fMRI studies involving visual stimuli [Hendler et al.
(2003)]. The dual-regression analysis, however, found only a few differences in
this network between the two groups, and all of them became insignificant after
FDR control.
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FIG. 3. p-values, thresholded below 0.01, for comparing the adjusted PTSD group differences
(PTSD− < PTSD+) in the default mode network: hc-ICA finds stronger network activities across
all the major regions of this network for PTSD+ women. Many of these identified voxels still appear
after FDR control; dual-regression findings only discover a few differences in the PCC and mPFC
regions.

Figure 3 shows the p-values regarding the group differences on the default
mode network. Compared with PTSD− women, our method showed that the de-
fault mode network of PTSD+ women had significantly stronger source signals
in all regions of the network as compared to the PTSD− women. This implies
that functional connectivities among the brain regions within this network were
stronger for the PTSD+ women, after controlling for subjects’ age and depression
status. Our results are consistent with recent findings in neuroscience literature
that report abnormally high functional connectivity within the default mode net-
work during both resting states and tasks for patients with mental disorders such as
schizophrenia, depression and PTSD [Daniels et al. (2011), Greicius et al. (2007),
Whitfield-Gabrieli et al. (2009)]. In comparison, dual regression only identified a
few distinctions between the two groups in the PCC and mPFC regions but did not
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detect any differences in the LPC part of the default mode network. After FDR
correction, none of the findings based on dual regression remained significant.

4. Simulation study. We conducted three sets of simulation studies to (1)
evaluate the performance of the proposed hc-ICA model as compared with the
existing TC-GICA model, (2) to compare the accuracy of the subspace-based ap-
proximate EM algorithm vs. the exact EM22 and (3) to evaluate the performance
of the proposed inference method for testing covariate effects based on hc-ICA.

4.1. Simulation study I: Performance of the hc-ICA vs. TC-GICA. In the first
simulation study, we evaluate the performance of the proposed hc-ICA model
compared with dual-regression ICA. We simulated fMRI data from three under-
lying source signals, that is, q = 3, and considered three sample sizes with the
number of subjects of N = 10,20,40. For each source, we generated a 3D spa-
tial map with the dimension of 25 × 25 × 4, and the activated signals in each
source are displayed in Figure 4(A). For spatial source signals, we first gener-
ated population-level spatial maps, that is, {s0(v)}, as the activated signals plus
Gaussian random variability of a variance of 0.5. We then generated two co-

variates for each subject with one being categorical [x1
i.i.d.∼ Bernoulli(0.5)] and

the other being continuous [x2
i.i.d.∼ Uniform(−1,1)]. The covariate effects maps,

that is, {β(v)}, are presented in Figures 4(B1)–(B2) where the covariate effect
parameters at each voxel took values from {0,1.5,1.8,2.5,3.0}. Additionally,
we generated Gaussian subject-specific random effects, that is, γ i (v), and con-
sidered three levels of between-subject variability: low [D = diag(0.1,0.3,0.5)],
medium [D = diag(1.0,1.2,1.4)] and high [D = diag(1.8,2.0,2.5)]. The subject-
specific spatial source signals were then simulated as the linear combination of the
population-level signals, covariate effects and subject-specific random effects. For
temporal responses, each source signal had a time series of length of T = 200 that
was generated based on time courses from real fMRI data, and hence represented
realistic fMRI temporal dynamics. We generated subject-specific time sources that
had similar frequency features but different phase patterns [Guo (2011)], which
represented temporal dynamics in resting-state fMRI signals. After simulating the
spatial maps and time courses for the source signals, Gaussian background noise
with a standard deviation of 1 (E = Iq ) was added to generate observed fMRI data.

We applied both hc-ICA and dual-regression ICA to the simulated data. The
computational time was about 10 min (N = 10), 16 min (N = 20) and 25 min
(N = 40) for hc-ICA using the exact EM and around 45 s (approximately the same
among all N ’s) for dual regression for each simulated dataset using a desktop PC
with an Intel i7 3.6 GHz quad core CPU. Following previous work [Beckmann
and Smith (2005), Guo (2011)], we evaluate the performance of each method
based on the correlations between the activation signals and estimated signals
in both temporal and spatial domains. To compare the performance in estimating
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FIG. 4. Comparison between our method and dual-regression ICA: truth, estimates from our model
and estimates from dual regression (N = 10, between-subject variabilities are medium) are displayed
based on 100 runs. All the images displayed are averaged across the 100 Monte Carlo datasets.
Population-level spatial maps are shown in Figure 4(A). The results of dual-regression ICA are con-
taminated by the covariate effects. The results from our method are more accurate. Covariate effect
estimates are shown in Figure 4(B1) and Figure 4(B2), respectively. The results of dual regression
show clear mismatching, while our method provides accurate estimates.



1950 R. SHI AND Y. GUO

the covariate effects, we report the mean squared errors (MSEs) of β̂(v) defined
by 1

V

∑V
v=1 ‖β̂(v) − β(v)‖2

F averaged across simulation runs. Here ‖ · ‖F is the
Frobenius norm for a matrix. Since ICA recovery is permutation invariant, each
estimated IC was matched with the original source with which it had the high-
est spatial correlation. We present the simulation results in Table 1. The results

TABLE 1
Simulation results for comparing our hc-ICA method against dual-regression ICA based on 100
runs. Values presented are the mean and standard deviation of correlations between the true and
estimated: subject-specific spatial maps, population-level spatial maps and subject-specific time

courses. The mean and standard deviation of the MSE of the covariate estimates are also provided

Btw-subj
Var

Population-level spatial maps Subject-specific spatial maps
Corr. (SD) Corr. (SD)

hc-ICA Dual. Reg. hc-ICA Dual. Reg.

Low
N = 10 0.982 (0.003) 0.956 (0.018) 0.984 (0.004) 0.945 (0.023)
N = 20 0.990 (0.002) 0.968 (0.014) 0.996 (0.002) 0.949 (0.008)
N = 40 0.992 (0.002) 0.976 (0.005) 0.996 (0.001) 0.956 (0.002)

Medium
N = 10 0.942 (0.017) 0.914 (0.048) 0.943 (0.011) 0.882 (0.030)
N = 20 0.954 (0.002) 0.938 (0.034) 0.959 (0.004) 0.890 (0.016)
N = 40 0.961 (0.002) 0.949 (0.020) 0.968 (0.003) 0.893 (0.009)

High
N = 10 0.833 (0.146) 0.740 (0.164) 0.894 (0.108) 0.689 (0.303)
N = 20 0.850 (0.129) 0.795 (0.143) 0.909 (0.084) 0.695 (0.281)
N = 40 0.871 (0.055) 0.809 (0.102) 0.928 (0.035) 0.705 (0.259)

Btw-subj
Var.

Subject-specific time courses Covariate effects
Corr. (SD) Corr. (SD)

hc-ICA Dual. Reg. hc-ICA Dual. Reg.

Low
N = 10 0.998 (0.001) 0.987 (0.010) 0.048 (0.019) 0.154 (0.055)
N = 20 0.998 (0.001) 0.995 (0.004) 0.021 (0.003) 0.127 (0.044)
N = 40 0.998 (0.001) 0.994 (0.004) 0.012 (0.001) 0.111 (0.030)

Medium
N = 10 0.993 (0.010) 0.970 (0.028) 0.273 (0.088) 0.485 (0.151)
N = 20 0.998 (0.003) 0.976 (0.016) 0.117 (0.015) 0.285 (0.076)
N = 40 0.998 (0.002) 0.991 (0.008) 0.064 (0.005) 0.187 (0.041)

High
N = 10 0.948 (0.021) 0.903 (0.045) 0.387 (0.157) 0.783 (0.325)
N = 20 0.978 (0.018) 0.925 (0.029) 0.224 (0.075) 0.532 (0.271)
N = 40 0.990 (0.015) 0.934 (0.022) 0.131 (0.056) 0.389 (0.198)
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show that hc-ICA provides more accurate estimates for the source signals on both
the population and subject levels. It leads to smaller mean squared errors in es-
timating the covariate effects. We also display the estimated population-level IC
maps and the covariate effects maps from both methods in Figure 4. The hc-ICA
shows, in Figure 4, much better performance in correctly detecting the true ac-
tivation patterns and covariate effects for each IC. In comparison, the estimates
of the population-level IC maps from dual regression show clear “cross-talk” be-
tween the ICs. Furthermore, the estimated covariate effects maps based on dual
regression are noisier plus some mismatches across the ICs.

4.2. Simulation study II: Performance of the approximate EM. In the second
simulation study, we compare the performance of the exact EM algorithm with the
approximate EM for the hc-ICA model. We simulated fMRI data for ten subjects
and considered three model sizes with the number of source signals of q = 3,6,10.
The fMRI data were generated using methods similar to that in Simulation Study I
with 10 subjects and low between-subject variabilities. We then fitted the proposed
hc-ICA model using both the exact EM and the approximate EM. Results from
Table 2 show that the accuracy of the subspace-based EM is comparable with
regard to that of the exact EM in both the spatial and temporal domains and on
both population and subject level. The major advantage of the subspace-based EM
is that it was much faster than the exact EM. This advantage becomes more clear
with the increase of the number of ICs. For q = 10, the subspace-based EM only
uses about 2% computation time of the exact EM.

The convergence rates are the same between the two EM algorithms. We note
that as q increased to 10, the convergence rates slightly decrease to 96%, which
are lower than the EM algorithm for the TC-GICA model in Guo (2011). The
main reason is that compared with the model in Guo (2011), which assumes com-
mon spatial maps across subjects, hc-ICA involves a significantly larger number
of parameters and latent variables by incorporating subject-specific IC maps and
spatially varying covariate effects on each IC. The dramatic increase in the number
of parameters for hc-ICA with larger q leads to the slightly decreased convergence
rate. In practice, if the EM algorithm experiences convergence issues due to a large
number of ICs, one can consider using existing group ICA software to first iden-
tify the uninteresting ICs, linearly remove them from the observed data and then
perform hc-ICA on the new data with a smaller number of ICs. This technique has
been commonly used in ICA applications to remove artifact-related components
[Griffanti et al. (2014), Tohka et al. (2008)].

4.3. Simulation study III: Performance of the proposed inference procedures for
covariate effects. We examine the performance of our inference procedures for
β̂(v) in the third simulation study. We simulated fMRI datasets with two source
signals and considered sample sizes of N = 20,40,80. We generated two covari-
ates in the same manner as in Simulation Study I. To facilitate computation, we
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TABLE 2
Simulation results for comparing the subspace-based approximate EM and the exact EM based on
50 runs. The mean and standard deviation of correlations between the true and estimated spatial

maps and time courses are presented. The mean and standard deviation of the MSE
of the covariate estimates are also provided

Population-level spatial maps Subject-specific spatial maps
Corr. (SD) Corr. (SD)

# of IC Exact EM Approx. EM Exact EM Approx. EM

q = 3 0.981 (0.003) 0.981 (0.001) 0.986 (0.004) 0.981 (0.002)
q = 6 0.980 (0.006) 0.980 (0.006) 0.985 (0.012) 0.981 (0.011)
q = 10 0.969 (0.022) 0.963 (0.020) 0.972 (0.027) 0.970 (0.022)

Subject-specific time courses Covariate effects
Corr. (SD) Corr. (SD)

# of IC Exact EM Approx. EM Exact EM Approx. EM

q = 3 0.998 (0.001) 0.998 (0.000) 0.048 (0.020) 0.048 (0.019)
q = 6 0.997 (0.003) 0.995 (0.002) 0.069 (0.024) 0.070 (0.022)
q = 10 0.992 (0.016) 0.992 (0.009) 0.105 (0.033) 0.112 (0.028)

Time in minutes Proportions of convergence

# of IC Exact EM Approx. EM Exact EM Approx. EM

q = 3 9.91 5.22 100% 100%
q = 6 71.05 9.09 100% 100%
q = 10 860.10 19.02 96% 96%

generated images with the dimension of 20 × 20. The variance of between-subject
random variabilities was 0.25 for both spatial source signals, and the within-
subject variance was 0.4. We applied our hc-ICA method and dual-regression ICA
for the simulated datasets and tested for the covariate effects using both meth-
ods. The hypotheses were H0 : βk�(v) = 0 versus H1 : βk�(v) 	= 0 at each voxel.
Specifically, for hc-ICA, hypothesis tests were conducted for β(v) using the test
proposed in Section 2.5. In comparison, the dual-regression method tested covari-
ate effects by performing post-ICA regressions of the estimated subject-specific
IC maps. We estimated the Type-I error rate with the empirical probabilities of not
rejecting H0 at voxels such that βk�(v) = 0. We also estimated the power of the
tests with the empirical probabilities of rejecting H0 at voxels with nonzero values
for the covariate effects, that is, βk�(v) ∈ {1.5,1.8,2.5,3.0}. We report the aver-
age of the Type-I error rates at various significance levels, as well as the powers
with regard to different alternative hypothesis, in Table 3. According to Table 3,
the type-I error rates from our inference method are always lower than those from
dual-regression ICA. We do note that our Type-I error rates are slightly higher
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TABLE 3
Simulation results for the inference of β(v) based on 1000 runs. Type-I errors are averaged across

all voxels with βk�(v) = 0; powers are averaged across voxels having the same values of βk�(v) 	= 0

N = 20 N = 40 N = 80

Size hc-ICA Dual. Reg. hc-ICA Dual. Reg. hc-ICA Dual. Reg.

Type-I error analysis:
0.01 0.014 0.029 0.012 0.025 0.012 0.018
0.05 0.062 0.084 0.056 0.076 0.055 0.062
0.10 0.129 0.205 0.118 0.190 0.112 0.149
0.50 0.522 0.580 0.516 0.565 0.514 0.557
0.80 0.835 0.872 0.820 0.856 0.810 0.840

β(v) hc-ICA Dual. Reg. hc-ICA Dual. Reg. hc-ICA Dual. Reg.

Power analysis (test size: 0.05):
1.5 0.144 0.130 0.256 0.203 0.404 0.284
1.8 0.268 0.224 0.474 0.390 0.812 0.548
2.5 0.589 0.475 0.862 0.705 0.963 0.839
3.0 0.907 0.845 1.000 0.922 1.000 1.000

than the nominal level mainly due to the approximation in the inference procedure.
From Table 3, we can also see that our method consistently demonstrates higher
statistical power than dual-regression ICA. The results indicate that the proposed
inference method based on hc-ICA provides more reliable and powerful inference
about the covariate effects on the functional networks than the TC-GICA based
dual-regression method.

5. Discussion. We propose a hierarchical covariate-adjusted ICA (hc-ICA)
model to formally quantify and test differences in brain functional networks re-
lated to subjects’ demographic, clinical and biological characteristics. Our hc-ICA
approach can be applied to study brain networks in both task-related and resting
state fMRI studies. We develop a maximum likelihood estimation method based
on EM algorithms for hc-ICA. We use an efficient approximate procedure to make
inferences about covariate effects in our model. Simulation studies show that our
methods provide more accurate estimation and inference for covariate effects on
brain networks than the widely used dual-regression method. Application of hc-
ICA to the Grady PTSD Study reveals important differences in brain functional
networks between PTSD+ and PTSD− African American women, after adjusting
for their ages and depression scores.

One of the main challenges in statistical modeling of brain imaging is the heavy
computation load. In this paper, we develop computationally efficient estimation
and inference procedures for the proposed hc-ICA model. In particular, by ex-
ploiting sparsity in fMRI source signals, the subspace-based EM algorithm sig-
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nificantly reduces the computational time via concentration of probability masses
on a subspace of the latent multinomial variables. We show theoretically that the
subspace-based approximate method is supported by the characteristics of fMRI
signals. We demonstrate empirically that the approximate EM provides highly ac-
curate results. The definition of the subspace implies that there is little overlap in
the spatial distributions of fMRI source signals. This is supported by findings in
the neuroscience literature which showed that brain functional networks are mostly
separate [Beckmann et al. (2005), Smith et al. (2009)]. However, there are a few
network hubs in the brain, consisting of a very small proportion of voxels, that may
be involved in multiple networks. To investigate the performance of the subspace-
based EM in this case, we have conducted additional simulation studies which
generated data from overlapping source signals. Results show that the subspace
EM still maintains good performance in recovering overlapping spatial signals.

Our hc-ICA model estimation is performed via a formal and unified maxi-
mum likelihood estimation which simultaneously estimates all parameters and
latent variables in the model. By doing so, we improve the accuracy in estimat-
ing the brain networks on both population and individual level significantly; we
also achieve higher statistical power in detecting differences in the networks. This
holistic estimation approach does lead to heavier computation load compared with
TC-GICA two-stage methods. The computation can be accelerated using several
strategies. First, based on preliminary analysis of the data, we can identify ICs that
are not of strong interest in a study, apply the standard procedure mentioned at
the end of Section 4.2 to remove them from the data, and then apply the hc-ICA
model to investigate group differences in the remaining ICs. Second, we can also
apply standard multi-process/multi-thread computing techniques to reduce com-
putational time at a large scale since most parts of our EM algorithm can be paral-
lelized for each voxel (see the Supplementary Material, Sections 2–3, for details).

One potential extension to hc-ICA is to incorporate spatial dependence on mod-
eling the spatially varying covariate effects β(v). This can help increase the ac-
curacy in detecting covariate-related network differences when they are spatially
correlated. Furthermore, we can accommodate spatial dependence in the residual
terms in both the first and the second level of the hc-ICA model, which may help
improve the accuracy and efficiency of the proposed hc-ICA framework for inves-
tigating differences between functional networks.
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SUPPLEMENTARY MATERIAL

Supplement to the paper “Investigating differences in brain functional net-
works using hierarchical covariate-adjusted independent component analy-
sis” (DOI: 10.1214/16-AOAS946SUPP; .zip). This document presents the follow-
ing contents: details about our EM algorithm and the approximate EM algorithm;
the proof of Theorem 1; the criteria of selecting activating voxels within each brain
network; the specification of initial guesses to our algorithm; additional simulation
results with q = 10; additional simulation results and theoretical results on the ro-
bustness of the approximate EM; additional results on the robustness of our method
in real data analysis.
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