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USING SCHEFFÉ PROJECTIONS FOR MULTIPLE OUTCOMES
IN AN OBSERVATIONAL STUDY OF SMOKING

AND PERIODONTAL DISEASE

BY PAUL R. ROSENBAUM

University of Pennsylvania

In an observational study of the effects caused by treatments, a sensi-
tivity analysis asks about the magnitude of bias from unmeasured covariates
that would need to be present to alter the conclusions of a naive analysis
that presumes adjustments for measured covariates remove all biases. When
there are two or more outcomes in an observational study, these outcomes
may be unequally sensitive to unmeasured biases, and the least sensitive find-
ing may concern a combination of several outcomes. A method of sensitivity
analysis is proposed using Scheffé projections that permits the investigator
to consider all linear contrasts in two or more scored outcomes while con-
trolling the family-wise error rate. In sufficiently large samples, the method
will exhibit insensitivity to bias that is greater than or equal to methods, such
as the Bonferroni–Holm procedure, that focus on individual outcomes; that
is, Scheffé projections have larger design sensitivities. More precisely, if the
least sensitive linear combination is a single one of the several outcomes, then
the design sensitivity using Scheffé projections equals that using a Bonferroni
correction, but if the least sensitive combination is a nontrivial combination
of two or more outcomes, then Scheffé projections have larger design sensi-
tivities. This asymptotic property is examined in terms of finite sample power
of sensitivity analyses using simulation. The method is applied to a repli-
cation with recent data of a well-known study of the effects of smoking on
periodontal disease. In the example, the comparison that is least sensitive to
bias from unmeasured covariates combines results for lower and upper teeth,
but emphasizes lower teeth. This pattern would be difficult to anticipate prior
to examining the data, but Scheffé’s method permits use of this unanticipated
pattern without fear of capitalizing on chance.

1. Introduction: Motivating example; outline.

1.1. Smoking and periodontal disease. Cigarette smoking is widely believed
to be a cause of periodontal disease. Using data from NHANES III, Tomar and
Asma (2000) claimed that about 42% of cases of periodontal disease in the US
are attributable to smoking. A comparison of this kind entails consideration of
potential biases. In the US, smoking is more common among people with less
education and less income, who may have reduced access to professional dental
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FIG. 1. Three covariates and a propensity score in I = 441 matched pairs of daily smokers (S) and
never smokers (C) from NHANES 2011–2012.

care. Periodontal disease increases dramatically with age, and fewer smokers live
to advanced ages. Smoking expresses a lack of concern with health that might also
be manifested in many other ways, perhaps including poor personal dental care.

Using more recent data from NHANES 2011–2012, Figure 1 and Table 1 show
441 matched pairs of a daily smoker and a never smoker. Daily smokers smoked

TABLE 1
Covariates in matched and unmatched samples. Smokers have less education and income, are

younger, less often female, more often black. Education is 1–5 with 1 = 9th grade, 3 = High School,
5 = College Degree

Treated
smoker

Controls: Never smokers

Covariate Matched Unmatched All

Sample size 441 441 1065 1506
No High School Degree % 29 29 14 18
Education (mean) 3.2 3.2 4.0 3.7
Income/(Poverty Level) 1.9 2.0 3.2 2.9
Age, mean 48 48 53 52
Age ≥60% 18 18 35 30
Female % 40 42 67 60
Black % 32 31 22 25
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every day of the last 30 days. Never smokers smoked fewer than 100 cigarettes
in their life, do not smoke now, and had no tobacco use in the previous five days.
Attention is restricted to the subsample of NHANES who were given and com-
pleted a periodontal exam and had at least one periodontal measurement. Pairs are
matched for education, income (recorded as a ratio, a multiple of the poverty level,
capped at five times poverty), age, gender and black race. In Table 1, before match-
ing, smokers have less education and income, are younger, more often male and
more often black. In Table 1 and Figure 1, after matching, these visible differences
have been removed, but of course the groups may differ in other ways not recorded
by NHANES. For discussion of multivariate matching, see Hansen (2007), Stuart
(2010) and Zubizarreta (2012).

Helpful diagrammatic descriptions of periodontal measurements in NHANES
are given by Wei, Barker and Eke (2013). Measurements are made for 28 teeth,
14 upper and 14 lower teeth, excluding 4 wisdom teeth. Pocket depth and loss
of attachment are two complementary measures of the degree to which the gums
have separated from the teeth. Pocket depth and loss of attachment are measured in
six locations on each tooth, providing the tooth is present. In parallel with Tomar
and Asma (2000), a periodontal measurement at a location was taken to exhibit
disease if it had either a loss of attachment of ≥4 mm or a pocket depth of ≥4 mm,
so each tooth contributes a score of 0-to-6. By this definition, Figure 2 depicts for
each person the proportion of measurements exhibiting periodontal disease, for
upper and lower teeth. The smoker-minus-control differences are somewhat larger
but also somewhat more unstable for lower teeth.

Figure 2 is the simplest example of an observational study with a bivariate
outcome. For each outcome, there appears to be a substantial difference between
smokers and nonsmokers, but how sensitive are these differences to unmeasured
biases? Here are two possible analyses that one might select without giving the
matter much thought. First, one might combine 14 lower teeth and 14 upper teeth
into 28 teeth, declining to consider a bivariate outcome. In this case, one would do
a sensitivity analysis for univariate matched pairs. Second, one might do two uni-
variate sensitivity analyses, one for upper teeth, one for lower teeth, applying the
Bonferroni–Holm procedure to the two bounds on P -values to correct for multiple
testing, as in Rosenbaum and Silber (2009b), Section 4.5; however, see Fogarty
and Small (2016) for a clever alternative approach improving this Bonferroni–
Holm technique. For the long-tailed data in Figure 2, analyses might reasonably
use a robust procedure, such as a rank test or an M-test, both of which score the
observations in such a way as to limit the influence of extreme outliers.

An alternative procedure proposed in the current paper uses Scheffé projections;
that is, it considers all possible linear combinations of scored outcomes, correct-
ing using Scheffé’s (1953) argument for multiple testing. Scheffé’s argument is
most familiar in the context of one-way analysis of variance, but it is applicable
to multivariate outcomes. Section 3 develops a new sensitivity analysis for unmea-
sured biases with multivariate outcomes whose justification combines a minimax
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FIG. 2. For 441 daily smokers and 441 matched never smokers, for lower teeth and upper teeth,
boxplots depict the proportion of measurements exhibiting either a pocket depth of 4 mm or more or
a loss of attachment of 4 mm or more. The plots show either 441 smokers and 441 controls, or 441
smoker-minus-control matched pair differences.

inequality with Scheffé’s argument. How does the sensitivity of the best linear
combination compare to the analyses in the previous paragraph?

1.2. Outline: A new procedure, its power and design sensitivity. Section 2 is
a brief review of causal inference and sensitivity analysis. Notation is reviewed
in Section 2.1, randomization inference in Section 2.2 and sensitivity analyses in
Section 2.3. Proposition 1 in Section 3.2 is one of the main results: it proposes
a method of sensitivity analysis using any linear contrast that the investigator se-
lects having examined the data. The proof of Proposition 1 combines a minimax
inequality and the idea underlying Scheffé projections. Section 4 evaluates the per-
formance of the proposed method in terms of the power of a sensitivity analysis
and its asymptotic index, the design sensitivity. In Section 4.2, numerical calcula-
tions are given for design sensitivity in the case of bivariate outcomes in matched
pairs; here, combinations of two outcomes can be more insensitive to unmeasured
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biases then either component. Then Section 4.3 shows that picking the best con-
trast empirically yields the same design sensitivity as knowing a priori the optimal
contrast. Results in Sections 4.1–4.3 are asymptotic. In Section 4.4, the finite sam-
ple power is determined by simulation, with some loss of power due to correcting
for repeated use of the data, but also some large gains in power if the best contrast
is a nontrivial combination of two outcomes.

2. Notation, background, review.

2.1. Notation: Treatment effects and treatment assignments. There are I

matched sets, i = 1, . . . , I , and set i contains ni ≥ 2 subjects, j = 1, . . . , ni , so
that ij refers to a particular person, the j th person in set i. Each matched set
i contains one treated subject with Zij = 1, and ni − 1 untreated controls with
Zij = 0, so 1 = ∑ni

j=1 Zij for each i. There are N = ∑I
i=1 ni subjects in total.

The matching controlled an observed covariate xij , so xi1 = · · · = xi,ni
for each i,

but subjects in the same matched set may differ in terms of an unobserved co-
variate uij . Each subject has two potential K-dimensional vector responses: the
response, rT ij , that would be observed if subject ij were assigned to treatment
with Zij = 1, and the response, rCij , that would be observed from this same sub-
ject if assigned to control with Zij = 0; therefore, the response observed from
subject ij is Rij = Zij rT ij + (1 − Zij )rCij , and the effect caused by the treat-
ment, rT ij − rCij , is not observed for any subject; see Neyman (1923, 1990),
Welch (1937) and Rubin (1974). In later sections, rT ij and rCij are each bivari-
ate responses describing the lower and upper teeth for subject ij if this subject
smokes daily, rT ij , or is a lifelong nonsmoker, rCij , so the effect of daily smoking
is rT ij − rCij . Fisher’s (1935) sharp null hypothesis of no treatment effect asserts
H0 : rT ij = rCij for all ij , that is, it asserts that different people ij have different
degrees of periodontal health rCij ; however, rCij is not altered by smoking. Write
F = {(rT ij , rCij ,xij , uij ), i = 1, . . . , I, j = 1, . . . , ni}. In Fisher’s theory of ran-
domization inference in randomized experiments, only the treatment assignment
Zij and quantities like Rij that depend on Zij are random variables, and F is fixed
by conditioning.

Write Z = (Z11,Z12, . . . ,ZI,nI
)T and u = (u11, u12, . . . , uI,nI

)T for the N -di-
mensional vectors, and R, rT , rC for the corresponding N ×K matrices containing
the Rij , rCij , rT ij as rows in the lexical order. For a finite set S , write |S| for
the number of elements of S . Write Z for the set containing the |Z| = ∏I

i=1ni

possible values z of Z, so z ∈ Z if z =(z11, . . . , zI,nI
)T with zij = 0 or zij = 1

and 1 = ∑ni

j=1 zij for each i. Conditioning on the event Z ∈ Z is abbreviated as
conditioning on Z .

2.2. Randomization inference in randomized experiments. In a matched ran-
domized experiment, Z is picked at random with equal probabilities from Z so that
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Pr(Z = z|F,Z) = |Z|−1 for each z ∈ Z . A key part of randomization is that treat-
ment assignment probabilities conditionally given F—namely, Pr(Z = z|F,Z)—
do not depend on F ; that is, the coin flips are truly fair in ignoring aspects of
people recorded in F . A test statistic T is a function of observed responses, R,
and observed treatment assignments, Z; that is, T = t (Z,R). For instance, with
matched pairs, the mean treated-minus-control pair difference is a test statis-
tic, T = t (Z,R); indeed, it is the simplest of the M-statistics used in the cur-
rent paper. If Fisher’s hypothesis H0 of no treatment effect is true, then R = rC ,
where rC is in F and hence is fixed conditionally given F . In a randomized ex-
periment, the distribution of treatment assignments Z is uniform on Z ; that is,
Pr(Z = z|F,Z) = |Z|−1 for each z ∈ Z . Putting this together, if Fisher’s null hy-
pothesis H0 of no effect is true in a randomized experiment, then the distribution
of T = t (Z,R) is its permutation distribution,

Pr
{
t (Z,R) ≥ v|F,Z

} = Pr
{
t (Z, rC) ≥ v|F,Z

}
(2.1)

= |{z ∈Z : t (z, rC) ≥ v}|
|Z| ,

because R = rC if H0 is true, rC is fixed by conditioning on F , and Z is uniform on
Z in a randomized experiment. In (2.1), the tail probability Pr{t (Z,R) ≥ v|F,Z}
is simply the proportion of treatment assignments z ∈ Z that would produce a value
of t (z,R) of v or more under H0 with R not changing as z changes. If T = t (Z,R)

is the mean of I treated-minus-control pair differences, then the distribution (2.1)
of T under H0 in a randomized experiment—the so-called permutational t-test—is
found by computing the mean for all 2I possible changes in signs of the I pair dif-
ferences; see Lehmann and Romano (2005), Section 5, for general discussion, see
Maritz (1979) for the case of M-statistics, and see Rosenbaum (2010), Section 2.9,
for a tiny example presented in explicit detail.

2.3. Model for sensitivity analysis in observational studies. The randomiza-
tion distribution in (2.1) is derived from the random assignment of treatments
in an experiment, and there is typically no reason to believe it is applicable in
an observational or nonrandomized study of treatment effects. A simple model
for treatment assignment in observational studies says that in the population be-
fore matching, treatments are assigned independently with unknown probabilities
πij = Pr(Zij = 1|F) such that two subjects, ij and ij ′, who might be matched
because they have the same value of the observed covariates, xij = xij ′ , may differ
in their odds of treatment by at most a factor of � ≥ 1, that is,

(2.2)
1

�
≤ πij (1 − πij ′)

πij ′(1 − πij )
≤ � whenever xij = xij ′,
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and then returns the distribution of Z to Z by conditioning on Z ∈ Z . Writing
U = [0,1]N for the N -dimensional unit cube and γ = log(�), it is easy to verify
[Rosenbaum (1995)] that this model is equivalent to assuming that, for z ∈Z ,

(2.3) Pr(Z = z|F,Z) =
I∏

i=1

exp(γ
∑ni

j=1 zijuij )∑ni

j=1 exp(γ uij )
, with u ∈ U,

where the verification consisting in constructing uij satisfying (2.3) from πij sat-
isfying (2.2) and conversely.

Because πij and uij are unknown, the distributions in (2.2) and (2.3) are un-
known, so for several values of � ≥ 1 a sensitivity analysis computes bounds on
inference quantities such as P -values or point estimates, thereby determining the
magnitude of bias � in treatment assignment that would need to be present to
alter the qualitative conclusions of an observational study. In principle, an exact
computation of Pr{t (Z,R) ≥ v|F,Z} under H0 for fixed γ = log(�) and u ∈ U
entails summing terms (2.3) over {z ∈ Z : t (z, rC) ≥ v}, yielding (2.1) for γ = 0;
then a sensitivity bound is obtained by maximizing and minimizing Pr{t (Z,R) ≥
v|F,Z} over u ∈ U . This exact calculation is feasible for moderate I for matched
pairs, ni = 2 for some test statistics [Rosenbaum (2010), Section 3.9]. If, as is often
true, the test statistic is of the form T = ∑I

i=1
∑ni

j=1 Zijqij where qij is a function
of R (and hence a function of rC under H0), then for fixed γ and u, under H0 and
mild conditions on the scores qij , the distribution of {T − E�,u(T )}/√

var�,u(T )

under (2.3) converges to the Normal distribution as I → ∞, where E�,u(T ) and
var�,u(T ) are the expectation and variance of T under (2.3). In this case, a simple
algorithm calculates approximate bounds on Pr{t (Z,R) ≥ v|F,Z} for fixed v > 0
using this Normal approximation for a particular u ∈ U that maximizes E�,u(T )

and maximizes var�,u(T ) among all u that maximize E�,u(T ); see Gastwirth,
Krieger and Rosenbaum (2000) and Rosenbaum (2007, 2014), and see the R pack-
ages sensitivitymv (version 1.3) and sensitivitymw (version 1.1) for
implementation in the case of M-statistics including the mean. This algorithm is
called a “separable approximation” because E�,u(T ) and var�,u(T ) can be opti-
mized separately, one matched set at a time, and then combined, whereas the exact
tail probability cannot be optimized in this way. In the current paper, when a devi-
ate |T − E�,u(T )|/√

var�,u(T ) is minimized over u ∈ U , the calculation uses the
separable approximation to that minimum. Simpler algorithms work with matched
pairs, ni = 2; see Rosenbaum (2007).

For discussion of various methods, aspects and illustrations of sensitivity anal-
yses in observational studies, see Cornfield et al. (1959), Rosenbaum and Ru-
bin (1983), Manski (1990), Manski and Nagin (1990), Yu and Gastwirth (2005),
Shepherd et al. (2006), McCandless, Gustafson and Levy (2007), Heller, Rosen-
baum and Small (2009), Hosman, Hansen and Holland (2010), Hsu and Small
(2013) and Liu, Kuramoto and Stuart (2013). In particular, in some simple situa-
tions, bounds related to Manski’s bounds are obtained by letting � → ∞ in (2.2);
see Rosenbaum (1995), Section 2.4.
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3. Comparisons among multiple outcomes.

3.1. Weighted combinations of test statistics for several outcomes. The K out-
comes are examined with L test statistics of the form T� = ∑I

i=1
∑ni

j=1 Zijqij�

where qij� is a function of R, � = 1, . . . ,L. Commonly, L = K , and qijk will be a
function of the entries in the kth column of R, that is, of the kth outcome variable,
but this is not essential and there is no gain in assuming this when testing Fisher’s
null hypothesis of no treatment effect H0 : rT = rC . Under Fisher’s H0, R = rC is
fixed by conditioning on F in (2.1) and (2.3), so qij� is also fixed, and T� is the
sum of the fixed scores qij� for those individuals assigned to treatment, Zij = 1.
Write T = (T1, . . . , TL)T for the L-dimensional vector.

Many familiar statistics have the form Tk = ∑I
i=1

∑ni

j=1 Zijqijk when K = L

and Tk refers to the kth of the K outcomes Rijk . Among rank tests, taking qijk

to be the rank of Rijk among the ni individuals in set i makes Tk into a stratified
Wilcoxon rank sum statistic, whereas taking (ni + 1)qijk to be the rank of Rijk

yields an optimally weighted combination of rank sum tests [van Elteren (1960);
Lehmann (1975), Section 3.3, page 135]. If qijk is a rank of Rijk −n−1

i

∑ni

j ′=1 Rij ′k
ranking from 1 then N , then Tk is Hodges and Lehmann’s (1962) aligned rank
statistic for the kth outcome. Define Dijj ′k = Rijk − Rij ′k , so Dijjk = 0 and
Dijj ′k = rCijk − rCij ′k if H0 is true. If qijk = ∑ni

j ′=1 Dijj ′k/{I (ni − 1)}, then

Tk = ∑I
i=1

∑ni

j=1 Zijqijk is the mean over I matched sets of the mean treated-
minus-control difference in the kth outcome within set i, and it is an unbiased
estimate of the average effect of the treatment on treated subjects in a matched
randomized experiment; moreover, for pairs with ni = 2, this Tk is familiar as
the basis for the permutational t-test of Fisher (1935), Pitman (1937) and Welch
(1937). Another test statistic is based on Huber’s M-statistics; see Maritz (1979)
for randomization inference using M-statistics when ni = 2. Let ψ(·) be an odd
function, ψ(y) = −ψ(−y), so that ψ(0) = 0. Huber (1981) favored ψhu(y) =
sign(y)min(|y|, κ) for some κ > 0, while ψt(y) = y again yields a permutational
t-test for ni = 2. There are

∑I
i=1

(ni

2

)
values of |Dijj ′k| with j < j , so define sk

to be a quantile, typically the median of |Dijj ′k|. In the example in Section 1.1
and Section 5, and in the numerical results in Section 4, κ = 2.5 and sk is the me-
dian absolute pair difference. Let wik ≥ 0 be a weight that is a function of R, I

and the ni , most commonly, wik = 1. Then Tk = ∑I
i=1

∑ni

j=1 Zijqijk is a weighted

M-statistic if qijk = wik

∑ni

j ′=1 ψ(Dijj ′k/sk); see Rosenbaum (2007, 2013, 2014)
for detailed discussion, including sensitivity analyses for M-tests, M-estimates
and confidence intervals, and for the relative performance of different ψ(·) func-
tions and weights wi , and see the R packages sensitivitymv (version 1.3) and
sensitivitymw (version 1.1) for implementation.

Under H0 and (2.3) for fixed γ = log(�) and u ∈ U ,

E�,u(T�|F,Z) =
I∑

i=1

ni∑
j=1

qij� exp(γ uij )∑ni

j=1 exp(γ uij )
= μ�,u, say,
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and

cov�,u(T�, T�′ |F,Z) =
I∑

i=1

ni∑
j=1

qij�qij�′ exp(γ uij )∑ni

j=1 exp(γ uij )
− μ�,uμ�′,u = σ�,�′,u, say.

Write μ
(�)
u = (μ1,u, . . . ,μL,u)T and �

(�)
u for the L × L matrix containing the

σ�,�′,u, where �
(�)
u is assumed to be positive definite. When there is no chance

of confusion, it is less cumbersome to write μu for μ
(�)
u and �u for �

(�)
u , leav-

ing implicit the dependence of μu and �u on �. In a few places, the explicit if
cumbersome notation is needed, hence used.

Finally, let λ = (λ1, . . . , λL)T be an L-dimensional vector of constants and de-
fine

Tλ =
L∑

�=1

λ�T� = λT T =
I∑

i=1

ni∑
j=1

Zij

L∑
�=1

λ�qij�

(3.1)

=
I∑

i=1

ni∑
j=1

Zijqijλ where qijλ =
L∑

�=1

λ�qij�.

Of course, T� = Tλ for λ = (0,0, . . . ,0,1,0, . . . ,0)T , where λ� = 1 and λ�′ = 0 for
�′ �= �; that is, T� is a statistic of the form Tλ for suitable λ and, from (3.1), Tλ is of
the form

∑I
i=1

∑ni

j=1 Zijqijλ for suitable scores qijλ, so the sensitivity calculations
described in Section 2.3 apply directly to both T� and Tλ, providing λ is selected a
priori, without examining the data. In particular, {Tλ − E�,u(Tλ)}/√

var�,u(Tλ) =
λT (T − μu)/

√
λT �uλ. Write 
(·) for the standard Normal cumulative distribu-

tion. To a close approximation for large I , the sensitivity analysis in Section 2.3

rejects H0 in a one-sided test at level α if λT (T−μu)/

√
λT �uλ ≥ 
−1(1−α) for

(essentially) all u ∈ U or, more precisely, for the one worst u ∈ U constructed by
the separable approximation.

Section 3.2 extends this reasoning to a λ selected by the investigator after ex-
amining the data.

3.2. Sensitivity analysis for comparisons selected using the current data.
Proposition 1 speaks to the possibility that an investigator will become interested
in a particular contrast λ after examining the data. Indeed, the investigator may try
several values of λ, or even all nonzero values of λ, in an effort to find one that
reports a high degree � of insensitivity to unmeasured biases, in the sense that, for

this value of λ, the deviate λT (T − μu)/

√
λT �uλ is large for all u ∈ U . There is,

in Proposition 1, a price paid for multiple testing, for picking λ in light of the data,
and later sections ask whether this price is worth paying.

Proposition 1 assumes H0 is true for the purpose of testing it and assumes (2.3)
is true for some specific but unknown u∗ with a fixed γ = log(�) for the purpose
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of conducting one step in the sensitivity analysis. For any specific λ, attention in

(3.3) of Proposition 1 focuses on the u ∈ U that minimizes |λT (T−μu)|/
√

λT �uλ,
thereby making H0 difficult to reject; that is, one must reject H0 with this u in order
to report that rejection of H0 is insensitive to a bias of magnitude �. Then (3.3)

finds the nonzero λ that makes minu∈U |λT (T−μu)|/
√

λT �uλ as large as possible
while controlling the probability of a false rejection at α. In other words, no matter
how the investigator picks λ, if the investigator rejects H0 when minu∈U |λT (T −
μu)|/

√
λT �uλ ≥ √

cα , then the chance is at most α of rejecting H0 when H0 is
true and the bias in (2.3) is at most � = eγ . The critical constant cα in Proposition 1
is discussed in Section 3.3.

PROPOSITION 1. Suppose that the null hypothesis H0 of the no treatment ef-
fect is true and treatment assignment Z has the distribution (2.3) for a specific
γ = log(�) ≥ 0 and a specific but typically unknown u∗ ∈ U . Let cα be a constant
such that

(3.2) Pr
{
(T − μu∗)T �−1

u∗ (T − μu∗) ≥ cα|F,Z
} ≤ α.

Then

(3.3) Pr
{

max
λ�=0

min
u∈U

|λT (T − μu)|√
λT �uλ

≥ √
cα

∣∣∣F,Z
}

≤ α.

PROOF. Using a standard result about extrema of quadratic forms [Rao
(1973), page 60, 1f.1(i)],

(3.4)
√

(T − μu)T �−1
u (T − μu) = max

λ �=0

|λT (T − μu)|√
λT �uλ

for each u ∈ U .

Then (3.3) follows from√
(T − μu∗)T �−1

u∗ (T − μu∗) ≥ min
u∈U

√
(T − μu)T �−1

u (T − μu)

= min
u∈U max

λ �=0

|λT (T − μu)|√
λT �uλ

(3.5)

≥ max
λ �=0

min
u∈U

|λT (T − μu)|√
λT �uλ

,

where (3.5) uses a standard and straightforward inequality relating interchanging
the order of max and min [e.g., Karlin (1992), Volume II, page 8, Lemma 1.3.1;
Rosenbaum and Silber (2009b), Section 4.5]. �
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3.3. The critical constant cα in Proposition 1. As I → ∞, under mild con-
ditions, the smallest critical constant cα such that (3.2) holds in Proposition 1
tends to the upper α critical value of the chi-square distribution on L degrees of
freedom, say χ2

L,α . The current section discusses sufficient conditions relevant to
M-statistics and the stratified Wilcoxon statistic.

Before discussing these conditions, it is useful to indicate what this implies in
the case of L = 2 test statistics, T1 and T2. With L = 2 test statistics, the value
of

√
c0.05 in (3.3) tends to 2.45 in testing all possible choices of λ = (λ1, λ2)

T .
For comparison, as I → ∞, a two-sided α-level Bonferroni correction for two test

statistics, T1 and T2, rejects if |λT (T − μu)|/
√

λT �uλ ≥ 
−1(1 − α/4) for either
λ = (1,0)T or λ = (0,1)T , where 
−1(1−0.05/4) = 2.24. In other words, a price
is paid for looking at all possible λ rather than just two values of λ—the price is
the move to 2.45 from 2.24—but it is not an extremely high price. Again, whether
this price is worth paying is explored in a later section.

Under the assumptions of Proposition 1, E(T − μu∗) = 0 and cov(T − μu∗) =
�u∗ . Using the familiar Cramér–Wold device, if λT (T − μu)/

√
λT �uλ con-

verges in distribution to the standard Normal 
(·) for every λ �= 0, then T − μu∗
converges in distribution to the L-dimensional multivariate Normal with expec-
tation 0 and covariance matrix �u∗ ; see, for instance, Rao (1973), 2c.5(iv),
page 128. Also, for each λ �= 0, the quantity λT (T − μu∗) is the sum of I in-
dependent but not identically distributed random variables. In order to prove that
Pr{(T − μu∗)T �−1

u∗ (T − μu∗) ≥ χ2
L,α|F,Z} → α as I → ∞, it suffices to prove

that the central limit theorem applies to Tλ = λT T = ∑I
i=1

∑ni

j=1 Zijqijλ for each
λ �= 0.

When does a central limit theorem apply to Tλ = ∑I
i=1

∑ni

j=1 Zijqijλ for each
λ �= 0? Recall that under (2.3) the qij� are a sequence of constants and Tλ is
random because treatment assignment Zij is random. It is convenient to assume
that ni is uniformly bounded, ni ≤ ñ, say. If an M-statistic is used, it is addi-
tionally assumed that each quantile scale factor sk in Section 3.1 converges to a
positive limit. If each T� is a stratified Wilcoxon statistic or an M-statistic with
bounded, continuous, monotone ψ-function, then the I independent random vari-
ables

∑ni

j=1 Zijqijλ that are summed to produce Tλ are uniformly bounded. If

λT �u∗λ → ∞ as I → ∞, then the conditions of the Lindeberg central limit the-

orem are satisfied, and λT (T − μu∗)/
√

λT �u∗λ converges in distribution to the
standard Normal. For M-statistics, one needs the double array version of this theo-
rem [e.g., Billingsley (1979), Theorem 27.2, page 310] because sk changes slightly
as I → ∞, altering all of the qijλ.

The requirement that λT �u∗λ → ∞ is a requirement on the qij� and it precludes
various types of degeneracy taking hold as I → ∞. For instance, if for all large i

the responses of all ni subjects in set i were equal, Rijk = Rij ′k , ∀i, j, j ′, k, then∑ni

j=1 Zijqijλ would be constant for large i and the central limit theorem would
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not apply; however, λT �u∗λ → ∞ precludes this. Because λT �u∗λ must tend to
∞ for all λ �= 0, the condition also precludes a limit for �u∗ that is not positive
definite.

3.4. Closed testing of subhypotheses. Proposition 1 provides a basis for test-
ing the null hypothesis H0 of no effect on all K outcomes. If this null hypothesis
is rejected, then subhypotheses may be examined using the closed testing method
of Marcus, Peritz and Gabriel (1976), as implemented for multiple outcomes by
Lehmacher, Wassmer and Reitmeir (1991). To use closed testing, take L = K with
test statistic Tk computed from response k. Stated informally, if H0 is rejected for
all K outcomes, then K analogous hypotheses are tested concerning no effect on
K − 1 outcomes, now with a slightly more generous constant cα , and so on, termi-
nating a branch of testing when an acceptance occurs, possibly testing individual
outcomes; see Lehmacher, Wassmer and Reitmeir (1991) for the specifics of con-
verting one multivariate test into a closed testing procedure. Closed testing has
attractive properties when used in sensitivity analyses; see Rosenbaum and Silber
(2009b).

4. Design sensitivity and power with fixed and discovered contrasts.

4.1. Design sensitivity with fixed λ. If the treatment did have an effect and if
there were actually no bias from unmeasured covariates, then we could not rec-
ognize this situation had occurred from the observable data. Not knowing that we
are in this favorable situation with an effect and no bias, the best we could hope
to report is that rejection of the null hypothesis H0 of no effect is insensitive to
small and moderate biases �. The power of an α-level sensitivity analysis is the
probability that this hope will be realized, that is, the probability of rejection of
H0 at level α using a particular test while allowing for a bias of � in a particular
design or sampling situation with a treatment effect and no unmeasured bias; see
Rosenbaum (2004). Under mild conditions, there is a value �̃ called the design
sensitivity such that, for every α > 0, the power of the sensitivity analysis tends
to 1 as I → ∞ for � < �̃ and to 0 for � > �̃, so �̃ is a concise indicator of large
sample power [Rosenbaum (2004); (2010), Part III; (2013, 2014)]. Moreover, �̃

is closely connected with the Bahadur efficiency of the sensitivity analysis; see
Rosenbaum (2015). In short, computing the power of a sensitivity analysis or the
design sensitivity means assuming that: (i) we are in the favorable situation with
data generated by a specific stochastic model with a treatment effect and no un-
measured biases, (ii) we are, as we would be in practice, ignorant of the fact that
we are in the favorable situation, so we conduct sensitivity analyses with various
values of �, (iii) we evaluate the stochastic performance of these sensitivity anal-
yses in this favorable situation, in particular, considering the probability that we
reject H0 at level α, allowing for a bias of magnitude �.
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Because for fixed λ the statistic Tλ = ∑I
i=1

∑ni

j=1 Zijqijλ is essentially a uni-
variate statistic, the calculation of the design sensitivity of Tλ for a fixed λ closely
parallels existing results. In general, the numerical calculation of the design sen-
sitivity �̃ for matched sets with more than one control, ni ≥ 3, is not difficult,
but it does not produce a simple formula; see Rosenbaum (2004, 2013, 2014)
for such calculations. To exhibit a formula for �̃, consider the case of matched
pairs, ni = 2, using an M-statistic with an odd, continuous, bounded, monotone
increasing ψ-function that is not identically zero, for instance, ψhu(y), and sup-
pose that the favorable situation consists of I matched pairs of I independent and
identically distributed (i.i.d.) observations from a sampling situation with a treat-
ment effect and no unmeasured biases so that Pr(Z = z|F,Z) = |Z|−1 for each
z ∈ Z . In this case, write Yik for the treated-minus-control pair difference in re-
sponse k in pair i, so Yik = (Zi1 − Zi2)(Ri1k − Ri2k) = (Zi1 − Zi2)Di12k , and sk
is a quantile, typically the median, of the |Yik|, and write ωk for the correspond-
ing population quantile. Because ψ(·) is odd, the case of matched pairs simplifies,
with

∑2
j=1 Zij

∑2
j ′=1 ψ(Dijj ′k/sk) = ψ(Yik/sk), so that Tk = ∑I

i=1 ψ(Yik/sk) and

Tλ = ∑I
i=1

∑K
k=1 λkψ(Yik/sk). Then the I quantities

∑K
k=1 λkψ(Yik/ωk) are i.i.d.,

so write θλ = E{∑K
k=1 λkψ(Yik/ωk)} and ηλ = E{|∑K

k=1 λkψ(Yik/ωk)|}, where
both expectations exist because ψ(·) is bounded, and of course ηλ ≥ θλ with strict
inequality unless

∑K
k=1 λkψ(Yik/ωk) is non-negative with probability 1.

PROPOSITION 2. In the case of i.i.d. matched pairs, ni = 2, for fixed λ, the
design sensitivity �̃λ of Tλ = ∑I

i=1
∑K

k=1 λkψ(Yik/sk) is

(4.1) �̃λ = ηλ + θλ

ηλ − θλ
if ηλ > θλ and is �̃ = ∞ otherwise.

The proof of Proposition 2 is almost the same as the proof of Corollary 1 in
Rosenbaum (2013) and is omitted. The idea of the proof is that Tλ/I converges in
probability to θλ, whereas, in the paired case, maxu∈U λT μu converges in proba-
bility to ηλ(� − 1)/(� + 1); then �̃ in (4.1) is obtained by equating these limits
and solving for �.

4.2. Numerical evaluation of the optimal design sensitivity. Table 2 evaluates
the design sensitivity �̃ in (4.1) in the case of matched pairs, ni = 2, with i.i.d. bi-
variate outcomes, K = 2, having either a bivariate Normal distribution or a bivari-
ate t-distribution with 5 degrees of freedom. In Table 2, the treated-minus-control
matched pair differences Yi1 for the first outcome always have an expectation that
is half its standard deviation, whereas this effect size ranges from 0 to 0.5 for the
second outcome, Yi2. Table 2 reports the design sensitivity for the first outcome
alone, �̃1, for the second outcome alone, �̃2, and for an optimal combination of
the two outcomes, �̃λ. Neither �̃1 nor �̃2 depends upon the correlation parame-
ter ρ, but the optimal �̃λ does depend on ρ.
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TABLE 2
Design sensitivities with bivariate Normal errors or bivariate t errors with five degrees of freedom
(t5) errors. Effect sizes τk are the expected treated-minus-control pair differences in units of the

standard deviation, with τ1 = 0.5 and τ2 varying

τ2 ρ ˜�1 ˜�2 ˜�λ Optimal λ2

Normal distribution, ψhu
0.00 0.0 3.4 1.0 3.4 0.00
0.00 0.5 3.4 1.0 4.1 −0.48
0.25 0.0 3.4 1.8 4.0 0.49
0.25 0.5 3.4 1.8 3.4 0.01
0.50 0.0 3.4 3.4 5.8 1.00
0.50 0.5 3.4 3.4 4.1 1.00

Normal distribution, ψin
0.00 0.0 4.2 1.0 4.2 0.00
0.00 0.5 4.2 1.0 4.5 −0.29
0.25 0.0 4.2 2.0 4.4 0.25
0.25 0.5 4.2 2.0 4.2 0.00
0.50 0.0 4.2 4.2 6.2 1.00
0.50 0.5 4.2 4.2 4.6 1.00

t5 distribution, ψhu
0.00 0.0 3.8 1.0 3.8 0.00
0.00 0.5 3.8 1.0 4.7 −0.47
0.25 0.0 3.8 2.0 4.5 0.50
0.25 0.5 3.8 2.0 3.8 0.03
0.50 0.0 3.8 3.8 6.8 1.00
0.50 0.5 3.8 3.8 4.7 1.00

t5 distribution, ψin
0.00 0.0 4.4 1.0 4.4 0.00
0.00 0.5 4.4 1.0 4.8 −0.29
0.25 0.0 4.4 2.1 4.7 0.30
0.25 0.5 4.4 2.1 4.4 0.00
0.50 0.0 4.4 4.4 6.8 1.00
0.50 0.5 4.4 4.4 5.0 1.00

The test statistic Tλ = ∑2
k=1 λk

∑I
i=1 ψ(Yik/sk) = λ1T1 + λ2T2 is a weighted

combination of two M-statistics, where sk is the median |Yik| and the ψ-function
is either Huber’s ψhu(y) = sign(y)min(|y|, κ) or a version that performs inner
trimming, ψin(y) = sign(y){κ/(κ − ι)}max{0,min(|y|, κ) − ι}, with 0 ≤ ι < κ , so
|ψin(y)| is 0 for |y| ∈ [0, ι], is κ for |y| ∈ [κ,∞) and rises linearly from 0 to κ on
(ι, κ). Inner trimming has been shown to increase the power of a sensitivity anal-
ysis and to increase design sensitivity; see Rosenbaum (2013). In Table 2, ι = 0.5
and κ = 2.5. The optimal λ = (λ1, λ2)

T is found by setting λ1 = 1 and numerically
optimizing (4.1) over λ2. The final column of Table 2 reports the optimal λ2.
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Some specifics follow. Let (εi1, εi2), i = 1, . . . , I , be independent bivariate Nor-
mal random vectors with zero expectations, unit variances and correlation ρ. For
bivariate Normal errors, (Yi1, Yi2) = (τ1, τ2)+ (εi1, εi2). For bivariate t errors with
5 degrees of freedom, (Yi1, Yi2) = √

5/3(τ1, τ2) + (εi1, εi2)/
√

χ2
i,5/5, where χ2

i,5
are independent chi-square random variables with 5 degrees of freedom, indepen-
dent of the (εi1, εi2)’s, so var(Yik) = 5/3 and E(Yik)/

√
var(Yik) = τk . In other

words, for both the Normal and t-distributions, τk is the expected treated-minus-
control pair difference in units of the standard deviation, τk = E(Yik)/

√
var(Yik).

As is always true with the bivariate t-distribution, ρ is the correlation of the Nor-
mal (εi1, εi2), but not of (Yi1, Yi2) for the t-distribution. Numerical calculations
used the mvtnorm package in R; see Genz and Bretz (2009).

In Table 2, consider, first, �̃1 and �̃2 for the two outcomes analyzed separately.
When the second outcome is unaffected, τ2 = 0, the design sensitivity is, of course,
�̃2 = 1, whereas when τ1 = τ2 = 0.5, the separate design sensitivities are equal,
�̃1 = �̃2. As in Rosenbaum (2013), inner trimming ψin(·) yields somewhat higher
design sensitivities than ψhu(·) in the sampling situations in Table 2.

Consider now the design sensitivity �̃λ for Tλ when λ is chosen to maximize
�̃λ. If ρ = 0 and τ2 = 0, the optimal weight ignores Yi2 with λ2 = 0 and �̃λ = �̃1.
If two outcomes are equally affected by the treatment, τ1 = τ2 = 0.5, then the
optimal weights are equal, λ1 = λ2 = 1, and �̃λ > max(�̃1, �̃2), with the differ-
ence �̃λ − max(�̃1, �̃2) being quite large when ρ = 0 and not small for ρ = 0.5.
For uncorrelated outcomes where the second outcome is less affected than the
first, ρ = 0 and τ2 = 0.25, the optimal weight has 0 < λ2 < 1 and a smaller in-
crease in design sensitivity, �̃λ −max(�̃1, �̃2). A particularly interesting case with
�̃λ > max(�̃1, �̃2) has ρ = 0.5 and τ2 = 0, so the two outcomes are correlated,
but the second outcome is unaffected by the treatment—in this case, Yi2 has some-
times been called a “control outcome”; see McKillip (1992), Weiss (2002) and
Rosenbaum (2010), Section 5.2.4. With ρ = 0.5 and τ2 = 0, the optimal λ2 is neg-
ative, so Tλ is large when the affected T1 is larger than the unaffected T2. Between
these two situations, with a correlated but smaller effect, ρ = 0.5 and τ2 = 0.25,
the optimal λ2 is close to 0 and �̃λ is negligibly different from �̃1.

In many of the sampling situations in Table 2, in sufficiently large samples,
the optimal Tλ will report greater insensitivity to unmeasured biases than both of
its components, T1 and T2. For instance, in the four situations in Table 2 with
τ1 = τ2 = 0.5 and ρ = 0, the power of a sensitivity analysis performed with � = 5
is tending to 0 as I → ∞ for both T1 and T2, but the power is tending to 1 for
the optimal Tλ. Moreover, with τ1 = τ2 = 0.5 and ρ = 0 at � = 5, the chance
that T1 or T2 rejects H0 but Tλ does not is declining to 0 at an exponential rate
with increasing I , so this event is improbable even for moderate sample sizes; see
Rosenbaum (2015).

4.3. Design sensitivity when the optimal λ is unknown. Suppose that the treat-
ment has an effect and there is no unmeasured bias, and suppose λ̃ is any λ such
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that �̃λ̃ = maxλ�=0 �̃λ. For the test statistic Tλ̃ with this best λ̃, define the deviate

A� = minu∈U |̃λT
(T −μ

(�)
u )|/

√
λ̃

T
�

(�)
u λ̃. By the definition of the design sensitiv-

ity, if � < �̃λ̃, then the power Pr(A� ≥ a|F,Z) → 1 as I → ∞ for each a. Be-
cause λ̃ depends upon the unknown sampling distribution of the responses, Rijk ,
it is not possible to test H0 using this optimal Tλ̃. For instance, in Table 2, deter-
mining the optimal λ̃ required knowledge of the distribution of (Yi1, Yi2).

Instead, define

A∗
� = max

λ �=0
min
u∈U

|λT (T − μ
(�)
u )|√

λT �
(�)
u λ

.

By Proposition 1, if H0 were true and the bias in treatment assignment was at
most �, then a test that rejected H0 when A∗

� ≥ √
cα would falsely reject H0

with probability at most α. Moreover, by definition, A∗
� ≥ A� . If � < �̃λ̃, then

it follows that the power Pr(A∗
� ≥ √

cα|F,Z) of the test that rejects H0 when
A∗

� ≥ √
cα tends to 1 as I → ∞. So the feasible test using A∗

� achieves the same
design sensitivity as the test using Tλ̃ (or, equivalently, A�), which is not feasible
because it requires knowledge of the optimal λ̃.

4.4. Simulated power of sensitivity analyses. Where Sections 4.1–4.3 consider
the limit as the number I of matched sets increased, I → ∞, the current section
evaluates the power in finite samples of the procedure in Proposition 1. Table 3
considers twelve of the 24 sampling situations from Table 2, that is, matched pairs,
ni = 2, bivariate observations, K = 2, from either the bivariate Normal distribu-
tion or the bivariate t-distribution with 5 degrees of freedom. The effect size τk

for coordinate k, k = 1,2, is in units of the standard deviation of a matched pair
difference, Yik , so τk = E(Yik)/

√
var(Yik). In all cases, the effect size for the first

coordinate is τ1 = 0.5, but τ2 is either 0 or 0.5. In Table 2, the correlation parame-
ter for the underlying Normal distribution is either ρ = 0 or ρ = 0.5. If τ2 = 0 and
ρ = 0, then Yi2 is irrelevant and an optimal weighting ignores Yi2. If τ2 = 0.5 and
ρ = 0, then Yi2 is as informative as Yi1 and an optimal weighting gives the two
coordinates equal weights. If τ2 = 0 and ρ = 0.5, then Yi2 is a “control outcome”
and an optimal weighting gives the second coordinate a negative weight.

Table 3 reports the power of a 0.05-level sensitivity analysis when conducted
with � = 3 in the favorable situation with a treatment effect and no unmeasured
bias. Specifically, in 10,000 samples of size I = 500 pairs, Table 3 reports the pro-
portion of upper bounds on the P -value that were 0.05 or less, thereby saying that
a bias of � = 3 is too small to explain the observed association between treatment
and outcome. With 10,000 replicates, the standard error of a simulated power is at
most

√
0.25/10,000 = 0.005.

Table 3 reports the power of five procedures, of which only two are practical
procedures, the others serving as benchmarks for comparison. Three of the pro-
cedures at the far right [columns (iv)–(vi)] do not correct for multiple testing, so
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TABLE 3
Simulated power of 0.05-level sensitivity analyses at � = 3 in I = 500 pairs, ni = 2, with bivariate

Normal errors (N) or bivariate t errors with five degrees of freedom (t5). Effect sizes τk are the
expected treated-minus-control pair differences in units of the standard deviation, with τ1 = 0.5 and

τ2 varying. Each sampling situation is replicated 10,000 times. Uncorrected tests are based on
one-sided P -values with no correction for multiple testing. Corrected tests correct for multiple

testing. In each sampling situation, the highest corrected power is in bold

Sampling distribution Corrected tests Uncorrected tests

Column number (i) (ii) (iii) (iv) (v) (vi)

τ2 ρ Bonferroni Maximum Optimal First Second Optimal

Normal distribution, ψhu
N 0.0 0.0 0.08 0.06 0.05 0.23 0.00 0.23
N 0.0 0.5 0.07 0.46 0.43 0.22 0.00 0.79
N 0.5 0.0 0.14 1.00 0.99 0.22 0.22 1.00

Normal distribution, ψin
N 0.0 0.0 0.43 0.34 0.34 0.70 0.00 0.70
N 0.0 0.5 0.44 0.62 0.59 0.70 0.00 0.89
N 0.5 0.0 0.69 1.00 1.00 0.71 0.70 1.00

t5 distribution, ψhu
t5 0.0 0.0 0.32 0.26 0.24 0.58 0.00 0.58
t5 0.0 0.5 0.31 0.80 0.78 0.57 0.00 0.95
t5 0.5 0.0 0.52 1.00 1.00 0.56 0.57 1.00

t5 distribution, ψin
t5 0.0 0.0 0.59 0.50 0.50 0.81 0.00 0.81
t5 0.0 0.5 0.58 0.76 0.73 0.81 0.00 0.94
t5 0.5 0.0 0.82 1.00 1.00 0.81 0.81 1.00

these procedures would be appropriate only if selected in advance, without exam-
ining the data. Two of the procedures labeled “optimal” [columns (iii) and (vi)]
use the optimal λ for large I from Table 2, but this optimal λ is derived from the
true sampling distribution and is unknown to the investigator. The “corrected max-
imum” test [column (ii)] is based on Proposition 1, maximizing over λ �= 0 the
minimum deviate over u ∈ U , with

√
c0.05 = 2.45 as in Section 3.3. The Bonfer-

roni procedure [column (i)] tests both coordinates of (Yi1, Yi2) in both tails so the
absolute value of a standardized deviate must exceed 2.24 to produce a P -value
bound of 0.05 or less, as in Section 3.3. The uncorrected tests are all one-sided, so
they assume the investigator knows the direction of the effect, and H0 is rejected at
the 0.05 level if the deviate exceeds 1.645 = 
−1(0.95). In contrast, the corrected
optimal procedure [column (iii)] uses optimal weights but with the critical value√

c0.05 = 2.45. Keep in mind that, because it capitalizes on chance in its choice
of λ, the maximum deviate in (3.3) is almost always slightly larger than the de-
viate that uses the optimal λ from Table 2, so the power in column (ii) is slightly
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higher than in column (iii). In other words, the critical constant
√

c0.05 = 2.45 cor-
rects for capitalizing on chance, and column (ii) does capitalize on chance, but
column (iii) does not because it uses the unknown optimal λ.

Obviously, it is best to know what you do not know, the optimal λ and the direc-
tion of the effect, so the unattainable power in column (vi) is the highest in every
row of Table 2. Importantly, this optimal power in column (vi) is strictly higher
than the maximum power in columns (iv) and (v) except when Yi2 is irrelevant
(τ2 = 0 and ρ = 0), so there is something to be gained by looking at both out-
comes in combination. If the same optimal weights and deviate are used with the
larger critical constant of

√
c0.05 = 2.45 rather than 1.645, then of course the power

drops, as seen by comparing columns (vi) to column (iii); that is, the comparison
of columns (iii) and (vi) shows the pure effect of changing the critical constant
to 2.45 from 1.645 with the same standardized deviate.

Comparing the two practical procedures in columns (i) and (ii), the Bonferroni
procedure has somewhat higher power when Yi2 is irrelevant because then the
optimal λ ignores Yi2, but in the other two cases the Bonferroni procedure has
substantially lower power. Columns (ii) and (iii) are quite similar. In brief, the
power in column (ii) for the procedure in Proposition 1 is lower than the optimal
power in column (vi) mostly because it corrects the critical value for discovering
a good λ using the data at hand, and the power is sometimes much higher than for
the Bonferroni procedure in column (i) mostly because it is similar to using the
optimal λ in column (iii).

Many modern observational studies are based on administrative or survey data
and have sample sizes orders of magnitude larger than I = 500. For such studies,
Table 2 provides better guidance than Table 3.

5. Sensitivity analysis in the periodontal data.

5.1. Sensitivity analysis using a standard test statistic. The sensitivity analy-
sis for the periodontal data in Section 1.1 will first use an M-statistic with Huber’s
ψhu(·) with κ = 2.5, the default ψ-function in the senmv function in the sen-
sitivitymv package (version 1.3) in R. In Section 5.2, the sensitivity analyses
will be repeated with the inner trimmed ψin(·). As K = L = 2, the critical value
c0.05 from the chi-square distribution on 2 degrees of freedom is c0.05 = 5.9915 or√

c0.05 = 2.4477, and the argument in Section 3.3 shows this critical constant is
appropriate as I → ∞ with these ψ-functions. Using ψhu(·), the test in Proposi-
tion 1 just barely rejects H0 at the 0.05 level for � = 2.2 because, with this �, the
largest deviate is

(5.1) max
λ�=0

min
u∈U

|λT (T − μ
(�)
u )|√

λT �
(�)
u λ

= 2.4513 > 2.4477 = √
c0.05,

which is attained with λ = (0.714,0.286)T . In words, the least sensitive combi-
nation of two M-statistics gave positive weight to both lower and upper teeth, but
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gave more than two times as much weight to the lower teeth. The bivariate pat-
tern seen in Figure 2 cannot quite be explained by a bias of � = 2.2, but every λ
produces a minimum deviate less than

√
c0.05 for � = 2.3.

An aid to interpreting the value of � is a device called amplification; see
Rosenbaum and Silber (2009a) and the amplify function in the sensitiv-
itymv package, version 1.3, in R. A single value of � ≥ 1 is equivalent to
a curve of values of two parameters, � = (�� + 1)/(� + �), where an un-
observed covariate u increases the odds of treatment by a factor of � and in-
creases the odds of a positive matched pair difference in responses under con-
trol, rCi1 − rCi2, by a factor of �. For instance, a bias of � = 2.2 corresponds
with an unobserved covariate that increases the odds of smoking by more than
4-fold and increases the odds of a positive pair difference in periodontal disease
by more than 4-fold because � = 2.2 > 2.125 = (4 × 4 + 1)/(4 + 4). Similarly,
� = 2.2 = (3 × 7 + 1)/(3 + 7), so the curve � = (�� + 1)/(� + �) includes
(�,�) = (3,7) and (�,�) = (7,3); that is, � = 2.2 corresponds with an unob-
served u that triples the odds of smoking and increases the odds of greater pe-
riodontal disease by 7-fold, but it also corresponds with an unobserved covariate
that increases the odds of smoking by 7-fold and increases the odds of greater peri-
odontal disease by 3-fold. The correspondence is that a sensitivity analysis for any
(�,�) on the curve � = (�� + 1)/(� + �) gives exactly the same results as the
one sensitivity using �; see Rosenbaum and Silber (2009a) for technical details.
The amplification helps to understand the magnitude of � in terms of its impact in
a simple situation, namely, matched pairs. To explain the association in Figure 2
as something other than an effect caused by smoking, the bias from an unobserved
covariate would need to be larger than this.

At � = 2.2, the minimum deviate, minu∈U λT (T − μ
(�)
u )/

√
λT �

(�)
u λ, is 2.155

for lower teeth, λ = (1,0)T , yielding a two-sided Bonferroni corrected P -value of
4
(−2.15) = 0.062, whereas for upper teeth, λ = (0,1)T , the minimum deviate
is 0.599 with Bonferroni corrected P -value of 1. So at � = 2.2, the Bonferroni
method would test its two null hypotheses and fail to reject both of them, while
Proposition 1 would reject the bivariate H0 at the family-wise 0.05 level having
tested infinitely many hypotheses. In words, looking at upper teeth and lower teeth
separately would lead us to conclude that a bias of � = 2.2 could explain Figure 2
as something other than an effect caused by smoking, whereas (5.1) disagrees, say-
ing a bias of � = 2.2 is too small to explain the ostensible effect of smoking. Using
Proposition 1 at � = 2.2 to produce adjusted P -values from the chi-square distri-
bution with 2 degrees of freedom, the adjusted P -value for λ = (0.714,0.286)T is
0.0496, for λ = (1,0)T is 0.0982, for λ = (0,1)T is 0.836 and for λ = (0.5,0.5)T

is 0.0732.
Consider, now, the closed testing procedure in Section 3.4. In closed testing, if

the bivariate hypothesis is rejected, the univariate hypotheses are tested as uncor-
rected two-sided tests. Closed testing may be implemented either using Proposi-
tion 1 or using the Bonferroni inequality, and in the latter case it becomes Holm’s
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(1979) procedure. At � = 2.2, the Bonferroni/Holm closed testing procedure does
not reject any hypothesis. At � = 2.2, the contrast λ = (0.714,0.286)T in (5.1)
barely rejects H0, and closed testing then compares the deviate 2.155 for lower
teeth, λ = (1,0)T , to 1.96, the two-sided 0.05 critical value from the Normal dis-
tribution, so closed testing rejects the hypothesis of no effect on lower teeth. Not
only did Proposition 1 report greater insensitivity to unmeasured bias for the bi-
variate outcome, but it also reported greater insensitivity to unmeasured bias for a
single outcome, lower teeth, when Proposition 1 formed the basis for closed test-
ing.

If closed testing is applied at � = 1.8, then Scheffé projections reject the two
hypotheses of no effect for upper and no effect for lower teeth. In other words,
there is evidence of an effect on lower teeth and on upper teeth, but a smaller bias
� could explain the ostensible effect on upper teeth.

Consider point estimates and 95% confidence intervals for an additive or shift
effect for each outcome separately with a bias of at most � = 1.5. The shift ef-
fect is the typical increase in the number of measurements with either a loss of
attachment or a pocket depth of ≥4 mm. A bias of � = 1.5 is equivalent to an un-
observed covariate that doubles the odds of treatment and increases by 4-fold the
odds of a positive pair difference in responses; see Rosenbaum and Silber (2009a)
and the amplify function in sensitivitymv. When � > 1, there is not a sin-
gle point estimate, but rather an interval of point estimates, and at � = 1.5 that
interval is [3.34,8.72] for lower teeth and [1.51,5.76] for upper teeth. Of course,
the corresponding 2-sided 95% confidence intervals are wider because they allow
for both sampling variability and a bias of � = 1.5; they are [2.01,10.64] for lower
teeth and [0.63,7.43] for upper teeth. The calculations in this paragraph used the
senmwCI function in the sensitivitymw package in R using the method in
Rosenbaum (2007), and, unlike the tests above, the confidence intervals are not
simultaneous intervals.

5.2. Sensitivity analysis using a statistic that emphasizes larger effects. Tables
2 and 3 and results in the literature anticipate higher power in a sensitivity analysis
and a larger design sensitivity if ψin(·) is used in place of ψhu(·). This anticipation
is correct for the periodontal data in Figure 2. Using ψin(·) with ι = 0.5 and κ =
2.5, the statistic in (5.1) is 2.460 at � = 2.37, leading to rejection at the 0.05 level
of the hypothesis of no effect on the bivariate outcome, and closed testing goes on
to reject the hypothesis of no effect on lower teeth. At � = 2.37 using ψin(·), the
Bonferroni/Holm procedure also rejects the null hypothesis of no effect for lower
teeth.

In parallel, using ψin(·) rather than ψhu(·), the intervals of point estimates and
the 95% confidence intervals are further from zero. At � = 1.5, as above, but using
ψin(·) rather than ψhu(·), the interval of point estimates of a shift for lower teeth
is [4.85,9.73] and the 95% confidence interval is [3.28,11.71], whereas for upper
teeth the point estimates are [2.60,6.73] and the confidence interval is [1.41,8.76].
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FIG. 3. Smoker-minus-control matched pair differences for lower teeth (L), upper teeth (U), and
the linear combination λ = (0.714,0.286)T that gives more than twice the weight to lower teeth. All
values are scaled, s1 = 8, s2 = 5. Plot I has an unrestricted range, but the range of Plots II, III, and
IV are restricted to [−3,3]. Plot III uses Huber’s ψhu and Plot IV uses inner trimming, ψin. With
Huber’s ψhu in Plot III, values above 2.5 become 2.5, and values below −2.5 become −2.5. With
inner trimming ψin in Plot IV, additionally, values between −0.5 and 0.5 become 0. In each plot,
there is a horizontal line at 0.

Figure 3 compares ψhu(·) and ψin(·) for the pair differences for lower teeth, Yi1,
upper teeth, Yi2, and the linear combination with weights λ = (0.714,0.286)T .
Plots II, III and IV of Figure 3 restrict the y-axis to the interval [−3,3] so that
the extremes do not obscure the center of the plot. In the M-statistics, the weights
are applied after scaling the responses, so Figure 3 plots Yik/sk , ψhu(Yik/sk) and
ψin(Yik/sk) and their linear combinations weighted by λ = (0.714,0.286)T . Hu-
ber’s ψhu(·) in Plot III replaces values beyond ±2.5 by ±2.5. Inner trimming in
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Plot IV does this and additionally replaces values in [−0.5,0.5] by zero. The com-
bined scores 0.714ψ(Yi1/s1) + 0.286ψ(Yi2/s2) in Plots III and IV have shorter
interquartile distances than the separate components. Figure 3 provides a visual
display of the numerical finding above that the deviate in (5.1) was least sensitive
for an unequally weighted combination of lower and upper teeth using ψin(·).

5.3. Analyses restricted to heavier smokers. Among the 441 daily smokers,
the median number of cigarettes smoked per day was 10, and 206/441 = 47%
smoked more than 10 per day. Results are insensitive to somewhat larger unmea-
sured biases if the analysis is restricted to the 206 pairs in Figures 2 and 3 in which
the smoker smoked more than 10 cigarettes per day. Using ψin(·), the corrected
P -value from Proposition 1 is 0.0494 at � = 2.55 for these 206 pairs, although
the optimal weights now attach weight 1 to lower teeth and 0 to upper teeth,
λ = (1.0,0.0)T . In contrast, using all teeth, λ = (0.5,0.5), the adjusted P -value
from Proposition 1 is 0.308 at � = 2.55. For general results about design sensitiv-
ities when low-dose pairs are eliminated, see Rosenbaum (2010), Section 17.3.

5.4. Sensitivity analyses using scheffé projections. It would take a moderately
large bias from unmeasured covariates to explain away the ostensible effects of
smoking on periodontal disease. There is evidence of an effect for both lower and
upper teeth, but the ostensible effect on lower teeth is larger than on upper teeth,
and the effect on lower teeth is insensitive to larger biases. In the example, the con-
trast λ that produced the least sensitive finding varied from one analysis to another.
When looking at all 441 daily smokers, it was best to combine lower and upper
teeth, emphasizing lower teeth. When looking at the 206 smokers who smoked
more than 10 cigarettes per day, it was best to focus exclusively on lower teeth, ig-
noring upper teeth. In Tables 2 and 3 and in the example, it was often worthwhile
to pay a price for multiple testing to gain the freedom to look at every possible
contrast λ, rather than to try to guess the best λ from a priori considerations. The
design sensitivities in Table 2 indicate that the correct choice of λ becomes ever
more important, and the multiplicity correction ever less important, as the sample
size I increases.

6. Discussion: Multivariate outcomes viewed as infinitely many univari-
ate outcomes. When a large observational study has a K-dimensional outcome,
a test that considers all linear combinations of the K-dimensional outcome can
exhibit greater insensitivity to unmeasured biases than a test that considers the K

outcomes one at a time with a correction for multiple testing. More precisely, con-
sideration of all linear combinations of a K-dimensional outcome cannot reduce
but can increase the design sensitivity, the limiting sensitivity to unmeasured bias
as the sample size increases, I → ∞. Gains can occur when several outcomes are
each affected by the treatment or when one outcome is strongly affected and an-
other correlated outcome is entirely unaffected. In practice, gains in the power of a
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sensitivity analysis combined with gains in understanding are most likely to occur
when: (i) the sample size I is reasonably large and the dimension K is not large,
(ii) the K-outcomes are components of a whole, such as upper and lower teeth in
one mouth, a few subscores of a test score or attitude scale, or measures of related
changes in behavior.

In the periodontal data, smoking appeared to cause periodontal disease, but the
linear combination λ of results for upper and lower teeth that yielded the greatest
insensitivity to unmeasured biases varied from one analysis to another. Analyses
that used all smokers found greatest insensitivity with a λ that used both lower and
upper teeth, but with lower teeth receiving more than twice the weight of upper
teeth. Analyses that focused on heavier smokers were most insensitive if upper
teeth were ignored entirely. It would be difficult to anticipate these patterns before
looking at the data. Use of Scheffé projections permits the investigator to search
for a particularly insensitive combination λ while controlling the probability of
falsely rejecting a true hypothesis.
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