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One important problem in microbiome analysis is to identify the bacterial
taxa that are associated with a response, where the microbiome data are sum-
marized as the composition of the bacterial taxa at different taxonomic levels.
This paper considers regression analysis with such compositional data as co-
variates. In order to satisfy the subcompositional coherence of the results,
linear models with a set of linear constraints on the regression coefficients
are introduced. Such models allow regression analysis for subcompositions
and include the log-contrast model for compositional covariates as a special
case. A penalized estimation procedure for estimating the regression coeffi-
cients and for selecting variables under the linear constraints is developed.
A method is also proposed to obtain debiased estimates of the regression co-
efficients that are asymptotically unbiased and have a joint asymptotic mul-
tivariate normal distribution. This provides valid confidence intervals of the
regression coefficients and can be used to obtain the p-values. Simulation
results show the validity of the confidence intervals and smaller variances of
the debiased estimates when the linear constraints are imposed. The proposed
methods are applied to a gut microbiome data set and identify four bacterial
genera that are associated with the body mass index after adjusting for the
total fat and caloric intakes.

1. Introduction. The human microbiome includes all microorganisms in and
on the human body. These microbes play important roles in human metabolism,
nutrient intake and energy generation, and thus are essential in human health. The
gut microbiome has been shown to be associated with many human diseases such
as obesity, diabetes and inflammatory bowel disease [Manichanh et al. (2012), Qin
et al. (2012), Turnbaugh et al. (2006)]. Next generation sequencing technologies
make it possible to study the microbial compositions without the need for culturing
the bacterial species. There are, in general, two approaches to quantify the relative
abundances of bacteria in a community. One approach is based on sequencing the
16S ribosomal RNA (rRNA) gene, which is ubiquitous in all bacterial genomes.
The resulting sequencing reads provide information about the bacterial taxonomic
composition. Another approach is based on shotgun metagenomic sequencing,
which sequences all the microbial genomes presented in the sample rather than
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just one marker gene. Both 16S rRNA and shotgun sequencing approaches pro-
vide bacterial taxonomic composition information and have been widely applied
to human microbiome studies, including the Human Microbiome Project (HMP)
[Turnbaugh et al. (2007)] and the Metagenomics of the Human Intestinal Tract
(MetaHIT) project [Qin et al. (2010)].

Several methods are available for quantifying the microbial relative abundances
based on the sequencing data, which typically involve aligning the reads to some
known database [Segata et al. (2012)]. Since the DNA yielding materials are dif-
ferent across different samples, the resulting numbers of sequencing reads vary
greatly from sample to sample. In order to make the microbial abundance compa-
rable across samples, the abundances in read counts are usually normalized to the
relative abundances of all bacteria observed. This results in high-dimensional com-
positional data with a unit sum. Some of the most widely used metagenomic pro-
cessing softwares such as MEGAN [Huson et al. (2007)] and MetaPhlAn [Segata
et al. (2012)] only output the relative abundances of the bacterial taxa at different
taxonomic levels.

This paper considers regression analysis of microbiome compositional data,
where the goal is to identify the bacterial taxa that are associated with a continuous
response such as the body mass index (BMI). Compositional data are strictly pos-
itive and multivariate that are constrained to have a unit sum. Such data are also
referred to as mixture data [Aitchison and Bacon-Shone (1984), Cornell (2002),
Snee (1973)]. Regression analysis with compositional covariates needs to account
for the intrinsic multivariate nature and the inherent interrelated structure of such
data. For compositional data, it is impossible to alter one proportion without al-
tering at least one of the other proportions. A linear log-contrast model [Aitchison
and Bacon-Shone (1984)] has been proposed for compositional data regression
where logarithmic-transformed proportions are treated as covariates in a linear re-
gression model with the constraint of the sum of the regression coefficients being
zero. Lin et al. (2014) proposed a variable selection procedure for such models in
high-dimensional settings and derived the weak oracle property of the resulting es-
timates. In analysis of microbiome data, it is also of biological interest to study the
subcompositions of bacteria taxa within higher taxonomic levels, such as subcom-
positions of species under a given genus or phylum, or subcompositions of genera
within a phylum. In subcompositional data, the proportions of species have been
calculated relative to total proportions of the species under a given genus; that is,
the values in the subcomposition have been “reclosed” to add up to 1. Regression
analysis of such subcompositional data is also considered in this paper.

One of the founding principles of compositional data analysis is that of subcom-
positional coherence [Aitchison (1982)]: any compositional data analysis should
be done in a way that we obtain the same results in a subcomposition, regardless
of whether we analyze only that subcomposition or a larger composition contain-
ing other parts. This is especially relevant in high-dimensional regression analysis
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with compositional covariates, where the goal is to select the bacteria whose com-
positions are associated with the response. Once such bacteria are identified, it
is desirable to recalculate the subcomposition only within those identified. How-
ever, these subcompositions have different values from those calculated based on a
larger set of bacterial taxa. The log-contrast model of Aitchison and Bacon-Shone
(1984) and Lin et al. (2014) satisfies this principal by imposing a linear constraint
on the regression coefficients. This paper extends this model for analysis of micro-
biome subcompositions, where multiple linear constraints are imposed in order to
achieve the subcompositional coherence.

Penalized and constrained regression, including constrained Lasso regression,
has been studied by James, Paulson and Rusmevichientong (2015), where the re-
gression coefficients are subject to a set of linear constraints. A computational al-
gorithm through reformulating the problem as an unconstrained optimization prob-
lem was proposed and nonasymptotic error bounds of the estimates were derived.
Different from James, Paulson and Rusmevichientong (2015), this paper presents
an efficient computational algorithm based on the coordinate descent method of
multipliers and the augmented Lagrange of the optimization problem. Since the
resulting estimates are often biased due to the �1 penalty imposed on the coeffi-
cients, variance estimation and statistical inference of the resulting estimates are
difficult to derive. In order to make the statistical inference on the regression coef-
ficients and to obtain the confidence intervals, asymptoticly unbiased estimates of
the regression coefficients are first obtained through a debiased procedure and their
joint asymptotic distribution is derived. The proposed debiased procedure extends
that of Javanmard and Montanari (2014) to take into account the linear constraints
on regression coefficients. However, due to the linear constraints on the regres-
sion coefficients, the theoretical developments are different from Javanmard and
Montanari (2014).

Section 2 presents linear regression models with linear constraints for compo-
sitional covariates. Section 3 presents an efficient coordinate descent method of
multipliers to implement the penalized estimation of the regression coefficients
under linear constraints. Section 4 provides an algorithm to obtain debiased esti-
mates of the coefficients and derives their joint asymptotic distribution. Section 5
presents results from an analysis of a gut microbiome data set in order to iden-
tify the bacterial genera that are associated with BMI. Methods are evaluated in
Section 6 through simulations.

2. Regression models for compositional data.

2.1. Linear log-contrast model. A linear log-contrast model [Aitchison and
Bacon-Shone (1984)] has been proposed for compositional data regression. Specif-
ically, suppose an n × p matrix X consists of n samples of the composition of a
mixture with p components, and suppose Y is a response variable depending on X.
The nature of the composition makes each row of X lie in a (p − 1)-dimensional
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positive simplex Sp−1 = {(x1, . . . , xp) : xj > 0, j = 1, . . . , p and
∑p

j=1 xj = 1}.
Based on this nature, Aitchison and Bacon-Shone (1984) introduced a linear log-
contrast model as follows:

(1) Y = Zpβ\p + ε,

where Zp = {log(xij /xip)} is an n × (p − 1) log-ratio matrix with the pth com-
ponent as the reference component, β\p = (β1, . . . , βp−1) is the regression coef-
ficient vector, and noise ε is independently distributed as N(0, σ 2). An intercept
term is not included in the model since it can be eliminated by centering the re-
sponse and predictor variables.

The selection of a reference component is crucial to analysis, especially in high-
dimensional settings. To avoid choosing an arbitrary reference component, Lin
et al. (2014) reformulated model (1) as a regression problem with a linear con-
straint on the coefficients by letting βp = −∑p−1

j=1 βj ,

(2) Y = Zβ + ε, 1�
p β = 0,

where 1p = (1, . . . ,1)� ∈ R
p , Z = (z1, . . . , zp) = (logxij ) ∈ R

n×p , and β =
(β1, . . . , βp)�.

2.2. Subcompositional regression model. In analysis of microbiome data, the
relative abundances of taxa are often obtained at different taxonomic ranks, in-
cluding species, genus, family, class and phylum. It is of interest to study whether
the composition of taxa that belong to a given taxon at a higher rank is associ-
ated with the response in which case subcompositions of taxa (e.g., all the genera
that belong to a given phylum) are calculated. Suppose r taxa at a given rank are
considered with mg taxa at the lower rank that belong to taxon g. Let Xgs be the
relative abundance of the sth taxon that belong to the gth taxon at a higher rank,
for g = 1, . . . , r , s = 1, . . . ,mg such that

mg∑
s=1

Xgs = 1, for g = 1, . . . , r.

Let n × mg matrix Xg represent n samples of the subcomposition of mg taxa. The
following model can be used to link the subcompositions to a response Y ,

(3) Y =
r∑

g=1

Zgβg + ε,

where Zg = (Zg1, . . . ,Zgmg) = (logXg1, . . . , logXgmg) ∈ R
n×mg , and βg =

(βg1, . . . , βgmg)
�. To make the model subcompositional coherence, the follow-

ing r linear constraints are imposed:

1�
mg

βg =
mg∑
s=1

βgs = 0 for g = 1, . . . , r.
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This set of linear constraints can be written as C�β = 0, where β = (β�
1 , . . . ,

β�
r )�, and

C� =

⎛⎜⎜⎜⎝
1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0
...

...
...

... · · · ...
...

...
...

0 · · · 0 0 · · · 0 1 · · · 1

⎞⎟⎟⎟⎠
r×p

.

Models (2) and (3) belong to a more general high-dimensional linear model
with r linear constraints on the coefficients,

(4) Y = Zβ + ε, C�β = 0,

where the rows of Z ∈ R
p are independently and identically distributed with mean

zero, C is a p × r matrix of the constraint coefficients, β = (β1, . . . , βp)�, and
ε ∼ Nn(0, σ 2I). Without loss of generality, C = (c1, . . . , cr) is assumed to be
orthonormal. In high-dimensional settings, β is assumed to be s-sparse, where
s = #{i : βi �= 0} and s = o(

√
n/ logp).

This paper considers estimation and inference of Model (4) under the general
linear constraints. Lin et al. (2014) proposed a procedure for variable selection
and estimation for Model (2) and derived the weak oracle property of the result-
ing estimates. James, Paulson and Rusmevichientong (2015) considered a more
general model and provided nonasymptotic bounds on estimation errors. How-
ever, variances of the estimates and statistical inference are lacking. In this paper,
an algorithm to perform variable selection for Model (4) based on �1 penalized
estimation is first proposed based on a coordinate descent method of multipli-
ers. An inference procedure for the penalized estimator of the regression coeffi-
cients is then introduced. The proposed approach parallels that of Javanmard and
Montanari (2014) by first obtaining debiased estimates of the coefficients for a
high-dimensional linear model with linear constraints, β̂u, which are shown to be
asymptotically Gaussian, with mean β and covariance σ 2(M̃�̂M̃)/n, where �̂ is
the empirical covariance and M̃ is determined by solving a convex program. Based
on this asymptotic result, the corresponding confidence intervals and p-values are
constructed and used for statistical inference.

3. Penalized estimation. In the following presentation, for a matrix Am×n,
‖A‖p is the �p operator norm defined as ‖A‖p = sup‖x‖p=1 ‖Ax‖p , where ‖v‖p is
the standard �p norm of a vector v. In particular, ‖A‖∞ = max1≤i≤m

∑n
j=1 |aij |.

We also define |A|∞ = maxi,j |aij |.
Consider model (4). Define PC = CC� as the projection onto the space spanned

by the columns of C. Two basic regularity conditions on C are assumed:

CONDITION 1. ‖Ip − PC‖∞ ≤ k0 for a constant k0 that is free of p.
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CONDITION 2. The diagonal elements of Ip − PC are greater than zero.

Condition 1 is equivalent to that ‖cj‖1‖cj‖∞, j = 1, . . . , r are all bounded by
a constant that is free of p. Condition 2 means that the group of constraints do not
indicate simple constraint such as βj = 0. If (Ip −PC)j,j = 0, then the j th row and
column of Ip − PC are all zeros, and thus (Ip − PC)ej = 0, which means that ej

lies in the space spanned by the columns of C. It is easy to verify that the constraint
matrix C in the log-contrast model (2) or the subcompositional model (3) satisfies
both conditions. For example, in the log-contrast model (2), k0 = 2 for C = 1p/

√
p

since∥∥(
Ip − 1p1�

p /p
)
a
∥∥∞ =

∥∥∥∥∥a − 1

p

p∑
j=1

aj 1

∥∥∥∥∥∞
≤ ‖a‖∞ +

∣∣∣∣∣ 1

p

p∑
j=1

aj

∣∣∣∣∣ ≤ 2‖a‖∞.

Define Z̃ = Z(Ip − PC). Since PCβ = 0, model (4) can be rewritten as

(5) Y = Z̃β + ε, C�β = 0.

The regression coefficients can be estimated using �1 penalized estimation with
linear constraints,

β̂n = argmin
β

(
1

2n
‖Y − Z̃β‖2

2 + λ‖β‖1

)
subject to C�β = 0,(6)

where λ is a tuning parameter.
A coordinate descent method of multipliers can be used to implement the con-

strained optimization problem (6). First, the augmented Lagrange of optimization
problem (6) [Bertsekas (1996)] is formed as

Lμ(β,η) = 1

2n
‖y − Z̃β‖2

2 + λ‖β‖1 + η�C�β + μ

2

∥∥C�β
∥∥2

2,

where η ∈ R
r is the Lagrange multiplier, and μ > 0 is a penalty parameter. Prob-

lem (6) can be solved by iterations

βk+1 ← argmin
β

Lμ

(
β,ηk), ηk+1 ← ηk + μC�βk+1.

Defining ξ = η/μ, the iterations become

βk+1 ← argmin
β

{
1

2n
‖y − Z̃β‖2

2 + λ‖β‖1 + μ

2

∥∥C�β + ξk
∥∥2

2

}
,(7)

ξk+1 ← ξk + C�βk+1.(8)

The iteration of β can be further detailed as

βk+1
j ← 1

‖z̃j‖2
2

n
+ μ‖Cj‖2

2

Sλ

[
1

n
z̃�
j

(
y − ∑

i �=j

βk+1
i z̃i

)
(9)

− μ

(∑
i �=j

βk+1
i C�

i Cj + C�
j ξ k

)]
,
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Algorithm 1: Coordinate descent method of multipliers for solving prob-
lem (6)

Input: Y , Z̃, and λ.
Output: β̂n

1: Initialize β0 with 0 or a warm start, ξ0 = 0, μ > 0 and k = 0.
2: For j = 1, . . . , p,1, . . . , p, . . . , update βk+1

j by (9) until convergence.

3: Update ξk+1 by (8).
4: k ← k + 1 and repeat the two steps above until convergence.

where Ci, i = 1, . . . , p are the rows of C, z̃i , i = 1, . . . , p are columns of Z̃, and
Sλ(t) = sgn(t)(|t | − λ)+. Combining (7)–(9) yields the following algorithm for
solving problem (6).

The penalty parameter μ that is needed to enforce the zero-sum constraints
does not affect the convergence of Algorithm 1 as long as μ > 0. It can, however,
affect the convergence rate of the algorithm. In this paper, μ = 1 is taken in all the
computations.

4. A debiased estimator and its asymptotic distribution.

4.1. A debiased estimator. The asymptotic distribution of the �1 regularized
estimator β̂n is not manageable and β̂n is biased due to regularization. Javanmard
and Montanari (2014) proposed a procedure to construct a debiased version of
the unconstrained LASSO estimator that has a tractable asymptotic distribution,
which can be used to obtain the confidence intervals of the regression coefficients.
Similar debiased procedures were also developed by Zhang and Zhang (2014) and
Bühlmann (2013).

Adapting the debiased procedure of Javanmard and Montanari (2014), the fol-
lowing algorithm can be used to obtain debiased estimates of the regression coef-
ficients, β̂u.

To solve problem (10), Matlab package CVX is used for specifying and solv-
ing convex programs [Grant and Boyd (2013)]. To briefly explain the logic behind
this algorithm, denote � = EZ̃�Z̃/n, and suppose that � = V�V� is the eigen-
value/eigenvector decomposition of �, where � = diag(λ1, . . . , λp−r ). Note that
(V,C) is full rank and orthonormal, and

� = (V,C)

(
� 0
0 0

)
(V,C)�.

Define

� = (V,C)

(
�−1 0

0 0

)
(V,C)�,
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and then

�� = (V,C)

(
Ip−r 0

0 0

)
(V,C)� = VV� = Ip − PC,

where � is the inverse of � in the perpendicular space of the column space of C.
The debiased algorithm first finds an approximation of � by rows, denoted by M̃,
and then corrects the bias based on M̃. At the last step of this algorithm, β̂u is the
debiased version of β̂n. It is easy to check that C�β̂u = 0, which is guaranteed
by (11).

The feasibility of the optimization (10) is presented in Lemma 1 under the fol-
lowing assumptions on matrix Z̃ = (Z̃1, . . . , Z̃n)

�.

CONDITION 3. There exist uniform constants Cmin,Cmax such that 0 <

Cmin ≤ σmin(�) ≤ σmax(�) ≤ Cmax < ∞, where σmax(A)(σmin(A)) is the largest
(smallest) nonzero eigenvalue of matrix A.

CONDITION 4. There exists a uniform constant κ ∈ (0,∞) such that the rows
of Z̃�1/2 are sub-Gaussian with ‖�1/2Z̃1‖ψ2 ≤ κ , where the sub-Gaussian norm
of a random vector Z ∈R

n is defined as

‖Z‖ψ2 = sup
{∥∥Z�x

∥∥
ψ2

: x ∈ R
n,‖x‖2 = 1

}
,

with ‖X‖ψ2 defined as ‖X‖ψ2 = supq≥1 q−1/2(E|X|q)1/q for a random variable X.

These two conditions are imposed on Z̃ = Z(Ip − PC), not on the original log-
ratio matrix Z. For the subcompositional model (3), it is easy to see that Z̃ is the
matrix of the centered log-ratio (CLR) transformation of the original taxonomic
composition [Aitchison (1982)], where

Z̃gs = log
Xgs

mg

√∏mg

s=1 Xgs

.

CLR has been shown to be effective in transforming compositional data to ap-
proximately multivariate normal in many real compositional and microbiome data
[Aitchison (1982), Kurtz et al. (2015)]. Conditions 3 and 4 are therefore reasonable
assumptions in our setting.

The following Lemma shows that if γ = c
√

logp/n in Algorithm 2 is properly
chosen, then � is in the feasible set of the optimization problem (10) with a large
probability.

LEMMA 1. Let �̂ ≡ (Z̃�Z̃)/n be the empirical covariance. For any constant
c > 0, the following holds true:

P

{∣∣��̂ − (Ip − PC)
∣∣∞ ≥ c

√
logp

n

}
≤ 2p−c′′

,

where c′′ = (c2Cmin)/(24e2κ4Cmax) − 2.
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Algorithm 2: Constructing a debiased estimator

Input: Y , Z, β̂n, and γ .
Output: β̂u

Let β̂n be the regularized estimator from optimization problem (6).
Set Z̃ = Z(Ip − PC).
Set �̂ ≡ (Z̃�Z̃)/n.
for i = 1,2, . . . , p do:
Let mi be a solution of the convex program:

minimize m��̂m

subject to
∥∥�̂m − (Ip − PC)ei

∥∥∞ ≤ γ.
(10)

end for
Set M = (m1, . . . ,mp)�, set

(11) M̃ = (Ip − PC)M(Ip − PC).

Define the estimator β̂u as follows:

(12) β̂u = β̂n + 1

n
M̃Z̃�(

Y − Z̃β̂n)
.

4.2. Asymptotic distribution and inference. To obtain the asymptotic distribu-
tion of the debiased estimator β̂u, an additional assumption on Z̃ is required.

CONDITION 5. The inequality (3τ − 1)δ−
2s(Z̃/

√
n) − (τ + 1)δ+

2s(Z̃/
√

n) ≥
4τφ0 holds for a constant φ0 > 0, where for any matrix A ∈ R

n×m, δ+
k (A) and

δ−
k (A) are the upper and lower restricted isometry property (RIP) constants of

order k defined as

δ+
k (A) = sup

{‖Aα‖2
2

‖α‖2
2

: α ∈R
m is k-sparse vector

}
,

δ−
k (A) = inf

{‖Aα‖2
2

‖α‖2
2

: α ∈ R
m is k-sparse vector

}
.

Condition 5 means that δ−
2s(Z̃/

√
n) and δ+

2s(Z̃/
√

n) should be close, that is, any
2s columns of the CLR transformed compositional data matrix Z̃/

√
n should be

close to orthonormal.
The following theorem gives the asymptotic distribution of the debiased esti-

mates of the regression coefficients.
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THEOREM 1. Consider the linear model (5) with β as an s-sparse vector, and
let β̂u be defined as in equation (12) in Algorithm 2. Then,

√
n
(
β̂u − β

) = B + �, B|Z ∼ N
(
0, σ 2M̃�̂M̃�)

,

� = √
n
(
M̃�̂ − (Ip − PC)

)(
β − β̂n)

.

Further, assume Conditions (1)–(5) hold. Then setting λ = rc̃σ
√

(logp)/n in op-
timization problem (6) and γ = c

√
(logp)/n in Algorithm 2, the following holds

true:

P

{
‖�‖∞ >

cc̃k0(τk0 + 1)

φ0
· σs logp√

n

}
≤ 2p−c′ + 2p−c′′

,

where K = maxi

√
�̂i,i and constants c′ and c′′ are given by

c′ = c̃2

2K2 − 1, c′′ = c2Cmin

24e2κ4Cmax
− 2.

Theorem 1 says that N(0, σ 2M̃�̂M̃�) can be used to approximate the distri-
bution of β̂u with proper choices of c and c̃ (or, equivalently, γ and λ). This
leads to the following corollary that can be used to construct asymptotic confi-
dence intervals and p-values for β in a high-dimensional linear model with linear
constraints (4).

COROLLARY 1. Let σ̂ be a consistent estimator of σ .

1. Define δi(α,n) = �−1(1−α/2)σ̂ n−1/2[M̃�̂M̃�]1/2
i,i . Then Ii = [β̂u

i −δi(α,n), β̂u
i +

δi(α,n)] is an asymptotic two-sided level 1 − α confidence interval for βi .
2. For individual hypothesis H0,i : βi = 0 versus H0,i : βi �= 0, an asymptotic p-

value can be constructed as follows:

Pi = 2
[
1 − �

(
n1/2|β̂u

i |
σ̂ [M̃�̂M̃�]1/2

i,i

)]
.

The following lemma shows that with Condition 2, the diagonal elements of
M̃�̂M̃� are nonzero with a γ that is not too large.

LEMMA 2. Let M̃ be the matrix obtained by equation (11). Then for γ <

(1 − (PC)i,i)/k0 and all i = 1, . . . , p,

[
M̃�̂M̃�]

i,i ≥ (1 − (PC)i,i − k0γ )2

�̂i,i

.
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4.3. Selection of the tuning parameters. In real applications, the estimator β̂n,
tuning parameter λ and estimation of noise level σ̂ are obtained through scaled
LASSO [Sun and Zhang (2012)]. Specifically, the following two steps are iterated
until convergence:

β̂n ← argmin
C�β=0

{‖Y − Z̃β‖2
2 + 2nλ0σ̂‖β‖1

}
,

σ̂ 2 ← ‖Y − Z̃β̂‖2
2/n,

where λ0 = √
2Ln(k/p), Ln(t) = n−1/2�−1(1 − t), �−1 is the quantile func-

tion for standard normal and k is the solution of k = L4
1(k/p) + 2L2

1(k/p). Then
λ̂ = λ0σ̂ and γ = aλ̂/σ̂ are used in Algorithm 2, where a = 1/3 is used in all
simulations and real data analysis in this paper.

5. Association between body mass index and gut microbiome. The gut mi-
crobiome plays an important role in food digestion and nutrition absorption. Wu
et al. (2011) reported a cross-sectional study to examine the relationship between
micronutrients and gut microbiome composition, where the fecal samples of 98
healthy volunteers from the University of Pennsylvania were collected together
with demographic data such as body mass index, age and sex. The DNAs from
the fecal samples were analyzed by 454/Roche pyrosequencing of 16S rRNA gene
segments of the V1–V2 region. After the pyrosequences were denoised, a total of
about 900,000 16S reads were obtained with an average of 9165 reads per sample
and 3068 operational taxonomic units (OTUs) were obtained. These OTUs were
combined into 87 genera that appeared in at least one sample. Out of these 87
genera, 42 genera had zero counts in more than 90% of the samples and were re-
moved from our analysis. The remaining 45 relatively common genera belong to
four phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. Since
dysbiosis of gut microbiome has been shown to be associated with obesity [Ley
et al. (2005), Ley et al. (2006), Turnbaugh et al. (2006)], it is interesting to identify
the bacterial genera that are associated with BMI after adjusting for total fat and
caloric intakes. In the following analysis, the zero count was replaced by the maxi-
mum rounding error of 0.5 commonly used in compositional and microbiome data
analysis [Aitchison (2003), Kurtz et al. (2015)]. Since the number of reads is very
large, replacing zero with other very small counts does not affect our results. These
read counts are then converted into compositions of the genera or subcompositions
of the genera within the phylum.

5.1. Analysis of the data at the genus-level. The proposed method was first
applied to perform regression analysis with BMI as the response and the log-
transformed compositions of the 45 genera as the covariates. In addition, total fat
intake and total caloric intake were also included as the covariates in the model.
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The model was fit with the constraint that the sum of the coefficients corresponding
to the 45 genera is zero, assuming

E(BMI) =
45∑

g=1

βg log(Xg) + γ1FAT + γ2CALORIE,

where
∑45

g=1 βg = 0, and log(Xg) is the logarithm of the relative abundance of
the gth genus. The goal of this analysis is to identify the bacteria genera that are
associated with BMI.

Figure 1 shows the estimated regression coefficients from LASSO with one con-
straint and their debiased estimates together with the 95% confidence intervals of
the regression coefficients. Four genera were statistically significant with p-value
of 0.0251 for Alistipes, 0.0031 for Clostridium, 0.0031 for Acidaminococcus and
0.0042 for Allisonella, respectively. These four genera were exactly the same gen-
era identified using stability selection by Lin et al. (2014). They belong to two
bacterial phyla, Bacteroidetes and Firmicutes. The results indicate that Alistipes
in the Bacteroidetes phylum is negatively associated with BMI, which is consis-
tent with previous findings that the gut microbiota in obese mice and humans tend
to have a lower proportion of Bacteroidetes [Ley et al. (2005), Ley et al. (2006),
Turnbaugh et al. (2006)]. However, for the Firmucutes phylum, both the positively

FIG. 1. Analysis of gut microbiome data. Lasso estimates, debiased estimates and 95% confidence
intervals of the regression coefficients in the model treating the composition of 45 genera as covari-
ates together with total fat and caloric intakes. Dashed vertical lines separate bacterial genus into
different phyla.
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associated (Acidaminococcus and Allisonella) and negatively associated (Clostrid-
ium) genera were observed to be associated with BMI, suggesting that obesity may
be associated with changes in gut microbiome composition at a lower taxonomic
level than previously thought.

5.2. Subcomposition analysis. The proposed method was then applied to sub-
composition analysis where the number of sequencing reads were converted into
compositions of genera within each phylum. This creates four subcompositions of
the genera within four phyla. This analysis aims to answer the question of whether
the composition of genera within a given phylum is associated with BMI, where the
log-transformed genera subcompositions are treated as predictors together with to-
tal fat and caloric intakes as covariates in the following model:

E(BMI) =
4∑

g=1

mg∑
s=1

βgs log(Xgs) + γ1FAT + γ2CALORIE,

where
∑mg

s=1 βgs = 0 for g = 1, . . . ,4, and log(Xgs) is the logarithm of the relative
abundance of the sth genus of the gth phylum.

Figure 2 shows the LASSO estimates, debiased estimates and 95% confidence in-
terval of the coefficients of the 45 genera. Four genera were statistically significant

FIG. 2. Analysis of gut microbiome data. Lasso estimates, debiased estimates and 95% confidence
intervals of the regression coefficients in the model treating the subcompositions of the genera in
each phylum as covariates together with total fat and caloric intakes. Dashed vertical lines separate
bacterial genus into different phyla.
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with a p-value of 0.0036 for Clostridium, 0.0056 for Acidaminococcus, 0.0116 for
Allisonella and 0.0111 for Oscillibactor. All four genera belong to phylum Firmi-
cutes, indicating that the subcomposition of the bacterial genera within Firmicutes
is associated with BMI. The genus Alistipes has a p-value of 0.0523 in this analysis,
which is marginally significant. It is interesting that the bacterial genus Oscillibac-
tor was identified as one of the two bacterial genera that are negatively associated
with BMI. Oscillibacter was observed to be increased on the resistent starch and
reduced carbohydrate weight loss diets [Walker et al. (2011)] in a strictly diet-
controlled experiment in obese men, which may explain its negative association
with BMI. A recent study also identified Oscillibacter-like organisms as a poten-
tially important gut microbe that mediates high fat diet-induced gut dysfunction
[Lam et al. (2012)]. It is possible that Oscillibacter directly regulates components
involved in the maintenance of gut barrier integrity.

Figure 3 shows the predicted BMI using leave-one-out cross-validation
(LOOCV). In each round of LOOCV, the variables were selected based on the
estimated 95% confidence intervals and the prediction was performed using re-
fitted coefficients of the selected bacterial genera together with calorie and fat
intakes. An R2 = 0.1576 was obtained between the observed and predicted val-
ues. As a comparison, fitting the model with one linear constraint at the genus level
resulted in R2 = 0.1361 based on LOOCV, indicating some gain in prediction by
the subcompositional analysis.

FIG. 3. Analysis of gut microbiome data. Observed and predicted BMI using LOOCV and variables
selected based on 95% confidence intervals together with total fat and caloric intakes.
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6. Simulation evaluation and comparisons. In order to simulate the com-
positional covariates, an n × p matrix W of taxon counts is first generated with
each row of W being generated from a log-normal distribution lnN(ν,�), where
�ij = ζ |i−j | with ζ = 0.2 or 0.5 is the covariance matrix to reflect different lev-
els of correlation between the taxa counts. Parameters νj = p/2 for j = 1, . . . ,5
and νj = 1 for j = 6, . . . , p are set to allow some taxa to be much more abundant
than others, as often observed in real microbiome compositional data. The compo-
sitional covariate matrix Z is obtained by normalizing the simulated taxa counts
as

zij = log
(

wij∑p
k=1 wik

)
, i = 1, . . . , n, j = 1, . . . , p.

Based on these compositional covariates, the response Y is generated through
Model (2) with

β = (1,−0.8,0.4,0,0,−0.6,0,0,0,0,−1.5,0,1.2,0,0,0.3,0, . . . ,0)

and σ = 0.5. Different dimension/sample size combinations (p,n) = (50,100),
(50,200), (50,500), (100,100), (100,200), (100,500) are considered and the
simulations are repeated 100 times for each setting. The tuning parameters are
chosen using the method described in Section 4.3. The regression coefficient β

used in the simulation satisfies the following 8 linear constraints:

10∑
j=1

βj = 0,

16∑
j=11

βj = 0,

20∑
j=17

βj = 0,

23∑
j=21

βj = 0,

(13)
30∑

j=24

βj = 0,

32∑
j=31

βj = 0,

40∑
j=33

βj = 0,

p∑
i=41

βj = 0.

6.1. Estimation of confidence intervals. The model is first fitted under the cor-
rect constraints specified in (13) and the corresponding confidence intervals are
obtained based on our asymptotic results. Figure 4 shows the coverage probability
for various models and samples sizes, indicating that the coverage probabilities of
the confidence intervals are close to the nominal level of 0.95 when the sample
size is large. For small sample sizes, the empirical coverage probability is slightly
greater than the nominal level of 0.95, indicating some conservativeness. Figure 5
shows the lengths of confidence intervals. As expected, larger sample sizes result
in shorter lengths and larger correlations among the variables lead to increased
length of the confidence intervals.

As comparisons, the model is also fitted under no constraint, one single con-
straint,

∑p
j=1 βj = 0, and misspecified constraints,

5∑
j=1

βj = 0,

12∑
j=6

βj = 0,

23∑
j=13

βj = 0,

30∑
j=24

βj = 0,

p∑
j=31

βj = 0.
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FIG. 4. Coverage probabilities of confidence intervals based on 100 replications. For each model,
minimum, median (in black line), mean (in black dot) and maximum of the coverage probabilities over
all compositional covariates are shown. The confidence intervals are constructed using multiple, one,
no and wrong linear constraints, labeled by “Multi,” “One,” “No” and “Wrong,” respectively.

The coverage probabilities and the lengths of the confidence intervals are given in
Figure 4 and Figure 5, respectively. While the coverage probabilities are relatively
less sensitive to such misspecification, the intervals estimated under the correct
linear constraints are much shorter than those obtained with one or none of the lin-
ear constraints, especially when sample size is small. Using the wrong constraints
results in much longer intervals with less accurate coverage.

6.2. Variable selection based on the confidence intervals. The confidence in-
tervals of the regression coefficients can also be applied to choose the variables of
interest. For example, a variable can be selected if the nominal 95% confidence
interval of the corresponding regression coefficient includes zero. Table 1 shows
the true positive rate and false positive rate of the variables identified based on
95% confidence intervals under multiple constraints, one single constraint and no
constraint. When the sample size is small, imposing the correct linear constraints
can lead to more true discoveries while the false positive rates are still controlled
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FIG. 5. Average lengths of confidence intervals based on 100 replications. For each model, mini-
mum, median (in black line), mean (in black dot) and maximum of the lengths of the intervals over all
compositional covariates are shown. The confidence intervals are constructed using multiple, one,
no and wrong linear constraints, labeled by “Multi,” “One,” “No” and “Wrong,” respectively.

under 5%. In contrast, the models with only one or no constraint lead to much
lower true positive rates and the standard LASSO without any constraint gives the
worst variable selection results.

6.3. Prediction evaluation. Prediction performances are also evaluated and
compared for models with or without linear constraints. The prediction error
‖Y − Zβ̂‖2

2/n is computed from an independent test sample of size n. Table 2
shows the prediction errors of the LASSO estimator, refitted estimator with vari-
ables selected by LASSO, and refitted estimator with variables selected by the 95%
confidence intervals. For each of these three estimators, model fitting and coeffi-
cient refitting and prediction are performed with multiple, one and no linear con-
straints. Overall, fitting the models with correct multiple constraints substantially
decreases the prediction error. The LASSO estimator has the worst prediction per-
formance, while the two refitted estimators have comparable prediction errors.
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TABLE 1
True/False positive rates of the significant variables selected based on 95% confidence intervals
constructed using multiple, one and no linear constraints, labeled by “Multi,” “One” and “No,”
respectively. Variable correlations ζ , numbers of variables p and sample sizes (n) are considered

Constraints

Configuration True positive rate False positive rate

ζ p n Multi One No Multi One No

0.2 50 50 0.9329 0.8514 0.7586 0.0121 0.0056 0.0051
100 1.0000 1.0000 0.9957 0.0330 0.0286 0.0267
200 1.0000 1.0000 1.0000 0.0386 0.0333 0.0328
500 1.0000 1.0000 1.0000 0.0498 0.0477 0.0470

0.2 100 50 0.8571 0.8071 0.7700 0.0131 0.0166 0.0139
100 1.0000 0.9857 0.9400 0.0265 0.0218 0.0173
200 1.0000 1.0000 1.0000 0.0374 0.0353 0.0333
500 1.0000 1.0000 1.0000 0.0441 0.0428 0.0406

0.5 50 50 0.8500 0.7486 0.6543 0.0095 0.0030 0.0019
100 0.9971 0.9900 0.9871 0.0281 0.0240 0.0223
200 1.0000 1.0000 1.0000 0.0351 0.0309 0.0305
500 1.0000 1.0000 1.0000 0.0474 0.0437 0.0412

0.5 100 50 0.7643 0.7157 0.6443 0.0168 0.0173 0.0118
100 0.9814 0.9300 0.8500 0.0227 0.0137 0.0145
200 1.0000 1.0000 1.0000 0.0359 0.0320 0.0319
500 1.0000 1.0000 1.0000 0.0444 0.0417 0.0409

6.4. Simulation based on real microbiome compositional data. Another set of
simulations are conducted where the gut microbiome composition data analyzed
in Section 5 are used to generate the covariates with p = 45 through resampling.
The many zeros in the compositional data matrix are replaced with a pseudo-count
of 0.05 and are renormalized to have a unit sum. For each simulation, we resample
with a replacement from the rows of the compositional data matrix to achieve
the required sample size. The coefficients β and noise level σ are the same as
in the previous section. The sample size is chosen to be n = 50,100,200 and
500. Each setting is repeated 500 times. The coverage probability and length of
confidence intervals are shown in Figure 6 for the model with multiple, one and
no constraints on the coefficients. Similar conclusions are observed. The coverage
probabilities are relatively less sensitive to misspecification of linear constraints,
however, the intervals estimated under the correct linear constraints are shorter
than those obtained with one or none of the linear constraints, especially when
sample size is small. Using the wrong constraints results in much longer intervals
with a less accurate coverage.
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TABLE 2
Testing set prediction error of the LASSO estimator, refitted estimator with variables selected by

LASSO, and refitted estimator with variables selected based on 95% confidence intervals. For each
estimator, the model was fit using multiple, one and no linear constraints. Variable correlations ζ ,

numbers of variables p and sample sizes (n) are considered

Constraints

Refitted with Refitted with
Configuration LASSO Estimator Selection by LASSO Selection by 95% CI

ζ p n Multi One No Multi One No Multi One No

0.2 50 50 0.687 0.926 0.983 0.360 0.502 1.336 0.370 0.487 1.375
100 0.360 0.391 0.412 0.300 0.309 1.153 0.284 0.296 1.155
200 0.293 0.302 0.307 0.271 0.273 1.039 0.264 0.269 1.054
500 0.265 0.269 0.270 0.259 0.261 1.025 0.255 0.258 1.034

0.2 100 50 1.027 1.429 1.438 0.484 0.776 1.531 0.496 0.602 1.483
100 0.408 0.467 0.491 0.305 0.315 1.164 0.286 0.322 1.300
200 0.303 0.318 0.322 0.273 0.276 1.066 0.268 0.277 1.076
500 0.269 0.274 0.274 0.263 0.264 1.041 0.260 0.264 1.049

0.5 50 50 0.806 1.095 1.210 0.520 0.687 1.179 0.441 0.557 1.278
100 0.400 0.476 0.454 0.300 0.319 0.959 0.283 0.301 0.963
200 0.305 0.325 0.320 0.270 0.272 0.861 0.263 0.267 0.877
500 0.269 0.276 0.274 0.258 0.260 0.847 0.255 0.257 0.862

0.5 100 50 1.069 1.494 1.731 0.668 0.993 1.416 0.606 0.690 1.361
100 0.476 0.604 0.560 0.322 0.366 0.963 0.293 0.342 1.134
200 0.323 0.358 0.342 0.271 0.273 0.884 0.265 0.270 0.896
500 0.274 0.284 0.279 0.262 0.262 0.863 0.258 0.261 0.876

FIG. 6. Coverage probabilities and length of confidence intervals based on 500 replications. Data
are simulated by resampling the gut microbiome composition data in Section 5.
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7. Discussion. This paper has considered the problem of regression analysis
for microbiome compositional data obtained through 16S sequencing or metage-
nomic sequencing. The models and methods in this paper can be applied to identify
the microbial subcompositions that are associated with a continuous response. The
idea of imposing the constraints on regression coefficients was motivated by using
the log-ratios as covariates. However, the method proposed does not use the log-
ratios as covariates; it treats the logarithm of the relative abundances as covariates
and allows the response to depend on the relative abundances of certain bacte-
ria instead of the ratios. Imposing linear constraints on coefficients enhances the
interpretability and also guarantees the subcompositional coherence. Our method
allows selecting taxa in different higher rank taxa. By applying our subcompo-
sitional analysis, Oscillibacter genus was found to be associated with BMI, even
after total fat and caloric intakes were adjusted, indicating that the gut microbiome
may serve as an independent predictor for complex phenotypes such as BMI. Our
simulation studies have demonstrated a clear gain in prediction performance when
true linear constraints are imposed. However, the small sample size of our data did
not allow us to extensively evaluate the gain in BMI prediction by incorporating
the gut microbiome data.

An estimation procedure through regularization under linear constraints has
been developed. In order to obtain the confidence interval of the regression co-
efficients, debiased estimates of the regression coefficients are obtained which are
shown to be approximately normally distributed. The p optimization problems in
the debiased algorithm can be solved efficiently using convex programs. For one
simulated data set in Section 6, Algorithm 2 took about 36 seconds for p = 100
and 300 seconds for p = 200 on a PC with a core of Intel i7-3770 CPU 3.40 GHz.
For large p, convex optimization problems can be carried out in parallel. In typical
microbiome studies, p is less than 1000.

The general results presented in this paper can also be used for statistical in-
ference for the log-contrast model considered in Lin et al. (2014). These types of
debiased estimates were also proposed in Zhang and Zhang (2014) and van de Geer
et al. (2014). Lee et al. (2016) proposed an exact inference procedure for LASSO

by characterizing the distribution of a post-selection estimator conditioned on the
selection event. It is interesting to extend their approach to the high-dimensional
regression problems with constraints. Efron (2014) developed a bootstrap smooth-
ing procedure for computing the standard errors and confidence intervals for pre-
dictions, which is different from what was considered in this paper. Efron’s proce-
dure can be applied directly to make inferences on predictions using the methods
developed here.

Several extensions are worth considering. Model (4) can be extended to include
the interaction terms of the form λlk(logxil − logxik)

2, where xil and xik are the
proportion of the lth and the kth component of subject i, and λlk is the coefficient
that corresponds to the interaction between these two components [Aitchison and
Bacon-Shone (1984)]. A similar variable selection and inference procedure can be
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developed. It is also interesting to develop methods for generalized linear models
with high-dimensional compositional data as covariates.
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SUPPLEMENTARY MATERIAL

Supplement to “Regression analysis for microbiome compositional data”
(DOI: 10.1214/16-AOAS928SUPP; .pdf). The online Supplemental Materials in-
clude proofs of all lemmas and theorems [Shi, Zhang and Hongzhe (2016)].
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