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The use of water quality indicators is of crucial importance to identify
risks to the environment, society and human health. In particular, the Chloro-
phyll type A (Chl-a) is a shared indicator of trophic status and for monitoring
activities it may be useful to discover local dangerous behaviours (for exam-
ple, the anoxic events). In this paper we consider a comprehensive data set,
covering the whole Adriatic Sea, derived from Ocean Colour satellite data,
during the period 2002–2012, with the aim of identifying homogeneous ar-
eas. Such zonation is becoming extremely relevant for the implementation of
European policies, such the Marine Strategy Framework Directive. As an al-
ternative to clustering based on an “average” value over the whole period, we
propose a new clustering procedure for the time series. The procedure shares
some similarities with the functional data clustering and combines nonpara-
metric quantile regression with an agglomerative clustering algorithm. This
approach permits to take into account some features of the time series as
nonstationarity in the marginal distribution and the presence of missing data.
A small simulation study is also presented for illustrating the relative merits
of the procedure.

1. Introduction. The amount of data sets produced and made available
through satellite imaging has rapidly increased in the last few years. These data
sets, when collected over time, provide a rich source of information on the dy-
namic nature of earth surface processes and can be used for monitoring biological,
climate and ecological dynamics.

In this paper we are interested in the temporal structure of reprocessed satellite
data concerning the concentration of Chlorophyll type-a (Chl-a) in the superficial
water of the Adriatic Sea. Chl-a is an indicator of the biomass of phytoplank-
ton (e.g., photosynthetic algae, from unicellular to multicellular ones [Behrenfeld
and Falkowski (1997), Huot et al. (2007)]). The level of Chl-a shows seasonal
variation due to inter-annual changes of water temperature, available light and, to
some extent, inorganic nutrients, such as dissolved nitrogen, phosphorus and sili-
cate [Yoder et al. (1993)]. Furthermore, nutrient enrichment may cause eutrophic
conditions in which marked algal blooms may be followed by nutrient depletion
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and a rapid decrease in algal biomass. The subsequent degradation of the algal
biomass may then lead to hypoxic or even anoxic events. The European WFD
2000/60/EC defines a series of threshold values for the concentration in order to
define areas at “high impact” of Chlorophyll type-a concentrations. Then areas
have been regrouped only considering the average value over a period, usually one
year.

In past years, many studies have used satellite data of the Chl-a concentration
in order to verify the spatial distribution of water eutrophication in the Adriatic
Sea [Djakovac et al. (2012), Giani et al. (2012), Marini et al. (2010), Mélin et al.
(2011)]. Satellite data provides valuable temporal information over a grid. In our
context the clustering of the time series observed at each point of the grid could
help to define areas of “high impact,” which could be characterized by high peaks
of Chl-a, and also discover homogeneous areas using the dynamics related to the
Chl-a concentration. This type of clustering procedure is likely to provide more
reliable results in comparison to simpler classifications based on the average value
of the Chl-a over the time, since it takes into account both the seasonal and inter-
annual variability.

In order to extract useful information from these satellite image time series, we
need a new clustering procedure that should be able to address some issues. First,
the time series over a given site can become irregular in terms of temporal sam-
pling due to meteorological phenomena, such as clouds. Second, the phenomenon
of interest exhibits a periodic behaviour which can be slightly modulated by cli-
mate and/or anthropic artifacts. These modulations result in distortions of canon-
ical temporal profile [Petitjean, Inglada and Gançarski (2012)], which should be
stable if not affected by climate changes or anthropic influences. Therefore, the
resulting time series appears irregularly sampled, nonstationary in mean and with
different variability in time. These features make the clustering task quite chal-
lenging.

Several approaches to time series clustering have been proposed in the literature
[see Liao (2005) for a recent review]. The simplest procedures treat time series as
multivariate data and cluster them using some dissimilarity measures concerning
observations or sample summaries, such as mean, median or standard deviation
computed from the raw data. This approach shows some limits: the results of the
classification are very sensitive to the choice of a given dissimilarity measure and
these methods do not take into account the “structural features” of the time se-
ries, such as local or global trends and isolated peaks. Wang, Smith and Hyndman
(2006) try an approach for overcoming these limits by considering the structural
characteristics of a time series.

In the model-based approach, each time series is thought to be generated by
some kind of model, which is generally assumed to be a linear stationary process.
Therefore, dissimilarity measures [see Piccolo (1990), for instance] in the space
of model parameters have to be introduced in order to perform a classification. In
such an approach the mechanism assigning each time series to a particular group is



966 GAETAN, GIRARDI, PASTRES AND MANGIN

deterministic. A related approach [see Frühwirth-Schnatter and Kaufmann (2008),
for example] considers that this mechanism can be captured by a latent variable
that drives the assignment. The distribution of this latent variable may be either in-
dependent of the specific time series or may depend on time series characteristics.

If the time series are irregularly sampled, then another possibility is considering
a time series as a discrete and noised representation of a curve μ(t),

Y(t) = μ(t) + ε(t),

where t indicates the time and ε(t) is a random error with zero mean. This rep-
resentation leads to a functional representation of the data [Ramsay and Silver-
man (2005)]. The curve is interpreted as a mean function, that is, E(Y (t)) = μ(t),
which is determined as a finite expansion of appropriate basis. Subsequently, a
clustering procedure is applied to the basis expansion coefficients [Abraham et al.
(2003), Antoniadis et al. (2013), Jacques and Preda (2014), Haggarty, Miller and
Scott (2015)]. As an alternative working hypothesis, each time series is supposed
to be generated by a mixture of underlying distributions [James and Sugar (2003),
Nieto-Barajas and Contreras-Cristán (2014), Pastres, Pastore and Tonellato (2011),
Haggarty et al. (2012)].

Clustering techniques for functional data are mainly concentrated on the mean
function and treat higher moments as constant nuisance parameters. As a conse-
quence, clustering crucially relies on assumptions such as homoscedasticity and
symmetry of the marginal distribution of the time series.

For these reasons, we introduce a new method for clustering time series taking
into account more properly the variability. The novelty lies in the use of a tech-
nique based on nonparametric quantile regressions with the scope of estimating the
temporal distribution patterns [Cheng (1983), Koenker, Ng and Portnoy (1994)].
More precisely, by varying the quantiles of interest in the nonparametric quantile
regression, we are able to make inferences about the marginal distribution of the
data at each time. However, care has to be taken in order to avoid the problem
that curves pertaining to different quantile regressions may cross, as might happen
when nonstationary time series exhibits high variability. To avoid this problem, we
estimated a “quantile sheet” [Schnabel and Eilers (2013)] that allows the simul-
taneous estimation of all quantile curves without intersections. Subsequently, an
agglomerative clustering algorithm is used to group the basis coefficients using an
opportune distance measure (e.g., L2-norm). Therefore, our methodology shares
some similarity with clustering functional data, but, due to its flexibility, it allows
one to cope with different variability in time.

The paper is organized as follows. The next section illustrates our data on Chl-a
that we use in the subsequent analysis. In Section 3 we introduce the quantile sheet
and its estimation, and in Section 4 we present the clustering procedure. Section 5
is devoted to a small simulation study for illustrating the performances of the pro-
cedure. Section 6 considers the application of the procedure to the Chlorophyll-a
satellite data. In the last section we discuss the relative strengths and weaknesses
of our proposal.
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2. Data. We have considered the monthly mean values of the Chl-a concentra-
tion in the Adriatic Sea from January 2002 to December 2012. Data were obtained
by calibrating Ocean Colour data provided by different satellite missions, such as
MERIS, SeaWiFS and MODIS, and the data set was made available by ACRI
(http://hermes.acri.fr) in the framework of the GlobColour Project [Maritorena
et al. (2010)].

For each month, we have extracted gridded data with a resolution of 192 × 240
points (longitude: 12.02◦E to 21.98◦E; latitude: 38.02◦N to 45.98◦N ; 4 km
scale). Satellite data are usually affected by a measurement error due to many
physical factors. Along the coasts, the low bathimetry and the tide level affect the
quality of the measurement and lead to lack of many data. Therefore, we have anal-
ysed a coarse resolution of 8km resulting in a grid of 96 × 120 points, where 2168
points cover the Adriatic Sea [Figure 1(a)]. Satellite Chl-a data can be approxi-
mated with a log-normal distribution [Campbell (1995)] and we have considered
in our analysis log-transformed values.

Chl-a concentration is subjected to seasonal and annual changes. It is usually
influenced by rivers and their input of nutrients, climatic conditions (sunlight, rain,
temperature, etc.), water depth and hydrodynamics. As an example, in Figure 1(b),
(c), (d) we show the temporal evolution of the logarithm of the Chl-a concentration
in three sites representative of three areas within the studied area. The patterns are
quite different, being characterized by different seasonal behaviours: in general
we observe higher spring values and lower summer ones associated to a different
grade of heteroscedasticity at sites 1 and 2. Furthermore, sites (2 and 3) located at
the same distance from the coast exhibit a very different trend.

3. Quantile sheet and its estimation. We look at time series of data collected
on a site, that is, yi = {yi(tj ), tj ∈ Ti}, where yi(tj ) represents the outcome of a
random variable Yi(tj ) that we observe at the time instants tj on the site i of
coordinates si . The set Ti = {t1, . . . , tJi

} denotes the set of time instants in which
measurements are taken at site i. In the following a crucial assumption is that the
whole temporal structure of yi is described in terms of the marginal distributions
of Yi(t). In order to define the quantile sheet of a time series, we concentrate on a
single time series, and for simplicity we drop the index i.

The τ -quantile function, g(t, τ ), of Y(t) is a function of t such that

Pr
(
Y(t) ≤ g(t, τ )

) = τ, 0 ≤ τ ≤ 1.

For a while we fix a value for the probability τ and we assume g(t, τ ) to be a
smooth function in t that belongs to an appropriately chosen function space. An
estimate of g(t, τ ) is obtained [Koenker (2005)] by minimizing the fitness function

J∑
j=1

uj (τ )
∣∣y(tj ) − g(tj , τ )

∣∣,

http://hermes.acri.fr
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FIG. 1. Study area (a) and logarithm of the observed values along with the estimated quantile
curves at 3 sites [1 (b), 2 (c) and 3 (d), respectively] in the period 2002–2012.

where uj (τ ) = τ1{y(tj )>g(tj ,τ )} + (1 − τ)1{y(tj )≤g(tj ,τ )}.
The minimization process is difficult to perform because the convergence may

take long time, especially in presence of a large data set and of many quantiles.
Here, for computational reasons, we adopt an iterative algorithm that is a variant of
the Majorization–Minimization (MM) algorithm following Schlossmacher (1973)
and Schnabel and Eilers (2013).

We use a quadratic fitness function

J∑
j=1

wj(τ)
(
y(tj ) − g(tj , τ )

)2
,
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where wj(τ) = uj (τ )/
√

{y(tj ) − g(tj , τ )}2 + β2. The value of β has to be care-
fully selected. Schnabel and Eilers (2013) recommended a small number of the
order of 10−4 times the maximum absolute value of values uj (τ ).

Finally, we suppose that we can represent g as a linear combination of L B-
spline basis functions Bl(t), l = 1, . . . ,L, namely,

(1) g(t, τ ) =
L∑

l=1

γlBl(t).

Using a penalized regression spline approach [Eilers and Marx (1996)], we can
derive an estimate of g(t, τ ), ĝ(t, τ ) = ∑L

l=1 γ̂lBl(t), solving

γ̂ = arg min
γ

(y − Bγ )�W(y − Bγ ) + γ �(λ�)γ, λ > 0,

where y = (y(t1), . . . , y(tJ ))�, γ = (γ1, . . . , γL)�, B is a J by L matrix with
elements bjl = Bl(tj ) and W is a J by J diagonal matrix with diagonal element
wjj = wj(τ).

The penalty matrix λ� term is introduced to penalize the roughness of the fitted
τ -quantile function ĝ(t, τ ) and λ is a penalty parameter. For evenly spaced values
of tj , � can be chosen such that γ ��γ = ∑L−1

l=2 (γl+1 −2γl +γl−1)
2 is the squared

second difference penalty, namely, � = D�D and

D =

⎡⎢⎢⎢⎢⎣
1 −2 1 0 . . .

0 1 −2 1 . . .

0 0 1 −2
...

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎦ .

Fixing the weights wj(τ) and the penalty parameter λ, we have an explicit ex-
pression of γ̂ , that is,

(2) γ̂ = (
B�WB + λ�

)−1
B�Wy.

Therefore, we can devise an iterative algorithm to calculate the penalized spline
estimate of the τ -quantile function by alternating between evaluating (2), the resid-

uals and recomputing the weights wj(τ) as uj (τ )/
√

{y(tj ) − ĝ(tj , τ )}2 + β2 until
convergence. A convenient starting point for the weights is wj(τ) = 1 for all j .
The convergence of the MM algorithm follows from the general result in Hunter
and Lange (2000).

Varying t and the probability τ , we can obtain a complete description of the
marginal distributions of Y(t). How we estimate in this case the function g(t, τ )

is less straightforward. In principle, we can fit separate models for a grid of prob-
abilities τ , however, curves pertaining to different quantiles may cross. Solutions
to this problem can be obtained by combining all quantile fits in one joint model
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based on, for example, location-scale models [He (1997)] or by estimating simulta-
neously all parameters for each quantile curve [Bondell, Reich and Wang (2010)].

Schnabel and Eilers (2013) interpreted g(t, τ ) as a surface, called a quantile
sheet. A parsimonious representation of g(t, τ ) is obtained by considering a B-
spline basis for the probability τ and a tensor product of the basis for the times and
the probability. More formally, let B̃1(τ ), . . . , B̃M(τ) be the B-spline basis for τ ,
and we suppose that

(3) g(t, τ ) =
L∑

l=1

M∑
m=1

γlmBl(t)B̃m(τ ).

Fixing K values τ1, . . . , τK , we estimate γ∗, the vector of the unknown coefficients
γlm by

γ̂∗ = arg min
γ∗

J∑
j=1

K∑
k=1

wj(τk)

(
y(tj ) −

L∑
l=1

M∑
m=1

γllBl(tj )B̃m(τk)

)2

+ γ �∗ �∗γ∗(4)

= arg min
γ∗

(y∗ − B∗γ∗)�W∗(y∗ − B∗γ∗) + γ �∗ �∗γ∗.

Here y∗ = 1�
K ⊗ y�, W∗ = diag(vec(W)), where W is a J by K matrix with el-

ements wjk = wj(τk), B∗ = B̃ ⊗ B and B̃ is a K by M matrix with elements
bkm = B̃m(τk). The penalty matrix �∗ is

�∗ = λ(IM ⊗ �) + λ̃(�̃ ⊗ IL), λ, λ̃ > 0,

where IM and IL are two identity matrices of size M and L, while � and �̃ are
the squared second difference penalty for times and probability, respectively.

The formula in (4) gives us a solution similar to (2), namely,

(5) γ̂∗ = (
B�∗ W∗B∗ + �∗

)−1
B�∗ W∗y∗.

However, the Kronecker product in formula (5) is very memory demanding and
computationally cumbersome when we use a high-level language like Matlab or R
[R Core Team (2014)], but in our R implementation we rearrange the computations
as in Eilers, Currie and Durbán (2006).

The full implementation requires to fix the amount of smoothing to be fixed.
Schnabel and Eilers (2013) suggested to perform n-fold cross-validation for choos-
ing the penalty parameters λ and λ̃, but implementing this method inside the clus-
tering procedure requires a lot of computational resources. As a result, we have
preferred to adopt a generalized approximate cross-validation (GACV) criterion
[Yuan (2006)], namely,

(6) GACV(λ, λ̃) = (y∗ − B∗γ̂∗)�W∗(y∗ − B∗γ̂∗)
n × m − tr(H∗)

,
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where H∗ = B∗(B�∗ W∗B∗ + �∗)−1B�∗ W∗. The evaluation of the trace is greatly
simplified if we consider tr(B∗(B�∗ W∗B∗ + �∗)−1B�∗ W∗) = tr((B�∗ W∗B∗ +
�∗)−1B�∗ W∗B∗).

In the clustering procedure a vector γ∗,i has to be estimated for each time se-
ries and, in principle, we can suppose each quantile sheet has a different amount
of smoothing. However, we have experimented that this strategy yields to a less
robust clustering procedure, so we prefer to choose the amount of smoothing by
minimizing the overall criterion

∑N
i=1 GACV i(λ, λ̃), where GACV i is of the form

as (6) evaluated for the ith time series.
Model (3) can be extended with regard to seasonal variability. Judging from the

observed monthly values in Figure 1, we can see a strong and varying seasonal pat-
tern. For this reason we propose a modulation model [Eilers et al. (2008)], namely,

(7) g(t, τ ) = g̃1(t, τ ) + g̃2(t, τ ) cos(π/6t) + g̃3(t, τ ) sin(π/6t).

For a fixed probability τ , g1 accounts for a smooth temporal trend, while g2 and
g3 are smooth functions that describe the local amplitudes of the cosine and sine
waves. Again, we use B-spline functions as in (3) for specifying g̃i , i = 1,2,3,
that is,

g̃i(t, τ ) =
Li∑
l=1

M∑
m=1

γlm,iBl(t)B̃m(τ ).

Setting BC
l (t) = cos(π/6t)Bl(t), and BS

l (t) = sin(π/6t)Bl(t), we can rewrite the
model (7) as

g̃i(t, τ ) =
L1∑
l=1

M∑
m=1

γlm,1Bl(t)B̃m(τ ) +
L2∑
l=1

M∑
m=1

γlm,2B
C
l (t)B̃m(τ )

(8)

+
L3∑
l=1

M∑
m=1

γlm,3B
S
l (t)B̃m(τ ).

Stacking the coefficients γlm,i into the vector γ∗, the estimate γ̂∗ can be derived as
in formula (4), provided that the matrix B is replaced with the matrix [B,CB,SB],
where C = diag{cos(π/6ti)} and S = diag{sin(π/6ti)}, and the matrix λ(IM ⊗ �)

is replaced by the block diagonal matrix IM ⊗diag(λ1, λ2, λ3)⊗�. The parameters
λi > 0, i = 1,2,3 control the amount of smoothing of the overall trend and the
modulated seasonal components.

4. Clustering time series by means of the quantile sheets. For clustering
I time series yi , i = 1, . . . , I , we use a partition around the medoid (PAM) algo-
rithm [Kaufman and Rousseeuw (1990)] coupled with the gap statistic [Tibshirani,
Walther and Hastie (2001)].
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We define the similarity of two time series yi and yi′ in terms of the distance
between their quantile sheets according to the L2 distance

dii′ = d(gi, gi′) =
√∫∫ (

gi(t; τ) − gi′(t; τ)
)2

dt dτ .

This definition allows us to take into account shifts not only in the mean, but also
in the marginal distribution during the whole period. The evaluation of this dis-
tance is simplified in the representation (3) because each quantile sheet gi can be
summarized by the L × M vector, γ∗,i , of its coefficients.

It turns out that

d2
ii′ =

L∑
l=1

M∑
m=1

L∑
l′=1

M∑
m′=1

(γlm,i − γlm,i′)vll′ ṽmm′(γl′m′,i − γl′m′,i′)

= (γ∗,i − γ∗,i′)
�(Ṽ ⊗ V )(γ∗,i − γ∗,i′),

with V = [vll′ ], vll′ = ∫
Bl(t)Bl′(t) dt , and Ṽ = [ṽmm′ ], ṽmm′ = ∫

B̃m(τ ) ×
B̃m′(τ ) dτ . Finally, the resulting dissimilarity matrix is the input matrix for the
PAM algorithm.

The number of clusters is chosen by means of the gap statistic [Tibshirani,
Walther and Hastie (2001)] as implemented in the function clusGap of the
R package cluster. We have clustered I time series into N clusters C1,C2, . . . ,CN

with Cn denoting the indices of the times series in cluster n; the gap statistic is
based on the within-cluster sum of squared distances from the cluster means

W(N) =
N∑

n=1

1

2|Cn|Dn,

with Dn = ∑
i,i′∈Cn

dii′ and |Cn| the cardinality of Cn. The gap for N clusters is
defined as

Gap(N) = E
[
log

(
W ∗(N)

)] − log
(
W(N)

)
,

where E[log(W ∗(N))] is the expectation of the logarithm of the within-cluster
variation we would see if we instead had points distributed uniformly over an en-
capsulating box. The quantity E[log(W ∗

N)] is computed by simulation and we av-
erage the log within-cluster variation over B simulated uniform data sets. Finally,
the proper number of clusters for the given data set is the smallest N such that

Gap(N) ≥ Gap(N + 1) − sN+1,

where sN = √
1 + 1/BsdN is the simulation error calculated from the standard

deviation sdN of the B replicates [Tibshirani, Walther and Hastie (2001)].
In our motivating example time series are geographically referenced samples

and the spatial dependence has to be taken into account. A possible solution is
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adjusting the dissimilarity matrix following the idea in Giraldo, Delicado and
Mateu (2012). We consider the I estimated quantile sheets, ĝi , as georeferenced
functional data and we define a new similarity measure for the site si and si′ as
dS
ii′ = d(ĝi, ĝi′)	(si, si′), where

	(si, si′) = 1

2

∫∫
E

[
ĝi(t, τ ) − ĝj (t, τ )

]2
dt dτ.

Assuming that {ĝi} is a spatial intrinsic stationary functional random field, the
function 
(si − si′) = 	(si, si′) is a valid semi-variogram that can be estimated by
using the moment estimator


̂(h) = 1

2|N(h)|
∑

i,i′∈|N(h)|
d2(ĝi , ĝi′)

(9)

= 1

2|N(h)|
∑

i,i′∈N(h)

∫∫ (
ĝi(t; τ) − ĝi′(t; τ)

)2
dt dτ,

where |N(h)| is the number of the element of the bin N(h), that is, a subset of
possible lags si − si′ and h a representative member of N(h).

Once we have estimated 
(h) for a sequence of values h, a parametric model

(h; θ) is fitted by weighted least squares Cressie (1993), page 95. Finally, we use

(10) d̂S
ii′ = d(ĝi, ĝi′)
(si − si′ ; θ̂ )

as an element of the dissimilarity matrix for the PAM algorithm.
The assumption of spatial stationarity seems too restrictive in our motivating ex-

ample. Owing to the representation (3) of the quantile sheet, spatial nonstationarity
can arise if the distribution of the estimated coefficients γ̂∗,i depends on si . A so-
lution that we adopted is fitting a trend surface on the values γ̂lm,i and inserting
the detrended coefficients into (9).

5. Simulated data. In this small simulation study we are mainly interested
in seeing how our proposal can cluster different temporal patterns that we have
encountered in our data set. For simplicity we have considered nonstationary time
series which are spatially independent.

We have considered two examples, and in each example we have simulated
data sets structured in 3 clusters. Each cluster contains one hundred time series
generated from a nonstationary model. The number of observations for each time
series is 132. The clustering procedure based on the quantile sheet (QSC) in the
sequel has been compared with four other clustering procedures, namely

1. Competitor clustering procedure based on quantiles (CQC), according to which
a set of conditional quantile splines curves are fitted to the time series. Then the
estimated coefficients are clustered using the PAM algorithm;
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2. Functional curve clustering (FCC) procedure in which for each time series first
we estimate a mean curve using regression splines [Abraham et al. (2003)].
Then the estimated spline coefficients are partitioned using the PAM algorithm;

3. Wavelet-based clustering (WAC) procedure [see Antoniadis et al. (2013) for
details] in which we extract time series features using the wavelet coefficients
of an orthonormal basis and calculating the distribution of energy across scales.
Then the time series are partitioned using the PAM algorithm applied to the
extracted features. The WAC procedure is useful when shifts in global and local
characteristics of the time series are expected;

4. Characteristic-based clustering (CHC) procedure. A global measure describing
the time series is obtained by applying summary indices about trend, season-
ality, periodicity, serial correlation, skewness, kurtosis, chaos, nonlinearity and
self-similarity [Wang, Smith and Hyndman (2006)]. The normalized indices are
the inputs of the PAM algorithm.

In QSC the quantile sheet has been estimated setting K = 19 quantile values,
with probabilities τk = 0.05 + 0.05(k − 1), k = 1, . . . ,K , L = 6 and M = 6 B-
spline functions, with knots equally distributed over the ranges. In CQC we have
set six different quantile values with six B-splines basis functions for each penal-
ized regression. In FCC we have considered six B-spline basis functions. Smooth-
ing parameters are selected by cross-validation, pooling the time series in a unique
cluster.

In evaluating the performances of the four procedures we have assumed that
the number of clusters was known. The clustering procedures have been compared
by means of the Adjusted Rand Index (ARI) [Hubert and Arabie (1985)]. This
index varies between 0 and 1, and the more closer to 1 is ARI, the better is the
correspondence between the clustering and the true partition.

5.1. Example 1. Time series are generated according to these models:

Cluster 1: Y1(t) = 2μ(t) + κ
√

μ(t)ε1(t);
Cluster 2: Y2(t) = μ(t) + κ

√
μ(t)ε2(t);

Cluster 3: Y3(t) = ε3(t), ε3(t) ∼ G(μ(t)/κ2, κ2), where κ2 = 0.5 and G(a, b)

is the Gamma distribution with mean ab and variance ab2.

Nonstationarity arises from the trend component

μ(t) = 1 + t/132 + exp
{−(t/132 − 0.6)2/0.05

}
.

In order to asses the robustness of the procedure in the presence of temporal cor-
relation, we have generated εi(t), i = 1,2 from a multiplicative seasonal ARMA
model

(11) εi(t) = ei(t) + θei(t − 1) + ei(t − 12) + θei(t − 13).

Here e1(t) and e2(t) are i.i.d. random variables such that e1(t) ∼ N (0,1/(1 +
θ2 + θ22 + 2)) and e2(t) ∼ 3−1/2(1 + θ2 + θ22 + 2)−1T3, where Tg is the
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FIG. 2. Example 1: one hundred simulated trajectories with θ = 0 and  = 0 in (11). Solid lines
represent the mean function E(Yi(t)).

Student distribution with g degrees of freedom. We have considered four pairs of
parameters (θ,), namely, (0,0), (0.8,0), (0,0.8), (0.8,0.8). The first pair corre-
sponds to the case of independence.

We highlight that the time series models of clusters have the same variance func-
tion but different mean function E(Y1(t)) = 2μ(t), E(Y2(t)) = E(Y3(t)) = μ(t).
Moreover, time series in Clusters 1 and 2 have symmetric marginal distributions,
whereas the distribution is skewed to the right in Cluster 3. Under this setup the
clustering of time series does not seem as easy as Figure 2 shows.

Table 1 presents the mean and the standard errors of ARI that we obtained for
one hundred simulations. QSC appears to be the best method in the independent
case by producing markedly higher ARI values with respect to the other methods.
Moreover, all ARI values for QSC, CQC and FCC decrease in the presence of
serial dependence. However, the QSC procedure, with respect to the other ones,
still has a discrete ability to classify the simulated time series (ARI > 0.5). It is
worth noting that QSC outperforms CQC in all examples. This means that avoiding
crossing of the quantile curves decreases the risk of incorrect classification due to
no reliable estimates of the marginal distributions.

TABLE 1
Example 1: mean and standard errors (in parentheses) of the ARI for evaluating the performance of

clustering by the quantile sheet with respect to other classical methods

θ = 0.0,� = 0.0 θ = 0.8,� = 0.0 θ = 0.0,� = 0.8 θ = 0.8,� = 0.8

QSC 0.864 (0.054) 0.667 (0.095) 0.686 (0.094) 0.536 (0.050)
CQC 0.550 (0.032) 0.527 (0.020) 0.530 (0.020) 0.522 (0.018)
FCC 0.503 (0.005) 0.502 (0.008) 0.501 (0.012) 0.500 (0.016)
WAC 0.519 (0.023) 0.854 (0.071) 0.500 (0.039) 0.766 (0.084)
CHC 0.438 (0.028) 0.405 (0.023) 0.471 (0.057) 0.417 (0.067)
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FIG. 3. Example 2: one hundred simulated trajectories with ρ = 0.6 in (12). Solid lines represent
the mean function E(Yi(t)).

5.2. Example 2. In this second example we have introduced a modulated com-
ponent function, namely,

σ(t) = 0.2 × (1 + t) cos(π/6t) + 0.03 × t2 sin(π/6t),

that reflects a time-varying seasonal fluctuation in the marginal distribution. More
precisely, we have considered the following models:

Cluster 1: Y1(t) = μ(t) + σ(t) + κε1(t);
Cluster 2: Y2(t) = μ(t) + σ(t) + κ{μ(t) + σ(t)}ε2(t);
Cluster 3: Y3(t) = ε3(t) and ε3(t) ∼ G(1/κ2, κ2{μ(t) + σ(t)});

where κ = √
2.5. Serial dependence in Clusters 1 and 2 has been introduced by

means of the autoregressive model

(12) εi(t) = ρεi(t − e) + ei(t), i = 1,2,

where ei(t) are i.i.d. random variables such that ei(t) ∼ N (0,1/(1 − ρ2)).
In this example the time series are highly heteroscedastic (see Figure 3). The

results (see Table 2) confirm the superiority of the QSC procedure for independent
data (ρ = 0.0) and moderate correlations (ρ = 0.2,0.4) and the overall robustness
of the procedure in the case of serial dependence (ARI > 0.89).

6. Chlorophyll type-a concentration in the Adriatic Sea. The clustering
procedure (QSC) outlined in Section 4 was applied to the time series of the loga-
rithm of the Chlorophyll type-a concentration in the Adriatic Sea. Such a procedure
was compared to the FCC, WAC and CHC procedures.

In the QSC procedure we used model (7) with 6 B-spline functions both for the
temporal trend and for each modulated component (L1 = L2 = L3 = 6). More-
over, we had chosen the probabilities τk = 0.05 + 0.05(k − 1), k = 1, . . . ,K and
M = 4 B-spline functions. The knots of the B-spline functions were equally dis-
tributed over the ranges.
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TABLE 2
Example 2: mean and standard errors (in parentheses) of the ARI for evaluating the performance of

clustering by the quantile sheet with respect to other classical methods

ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6

QSC 0.951 (0.027) 0.955 (0.024) 0.945 (0.027) 0.894 (0.033)
CQC 0.707 (0.081) 0.477 (0.158) 0.301 (0.087) 0.217 (0.060)
FCC 0.042 (0.025) 0.027 (0.020) 0.023 (0.016) 0.023 (0.017)
WAC 0.487 (0.028) 0.510 (0.041) 0.720 (0.085) 0.926 (0.032)
CHC 0.536 (0.008) 0.538 (0.010) 0.540 (0.011) 0.528 (0.017)

In our data set about 90% of the time series are quite far from the coast and
exhibit a similar temporal pattern so that the use of a common degree of smoothing
seems justified for the data we handle.

The GACV criterion selects λ = 2.522×10−3 and λ̃ = 6.656×10−1 as smooth-
ing parameters. The whole procedure has been implemented using the R language.
All calculations have been carried out on a 2.40 GHz 32 core processor with 96 GB
of RAM. Using 10 cores and the R-package parallel, one evaluation of the
GCV, that is, the estimation of 2168 quantile sheets, requires approximately 180
seconds.

Similarly to QSC, in the FCC procedure we have considered a seasonal modu-
lation model [Eilers et al. (2008)] for each time series, namely,

(13) Y(t) =
L1∑
l=1

γl,1Bl(t) +
L2∑
l=1

γl,2B
C
l (t) +

L3∑
l=1

γl,3B
S
l (t) + ε(t),

with L1 = L2 = L3 = 6. We have accounted for possible serial correlation in the
error term ε(t) by supposing that the error term follows a moving average model
of order 6. This order has been identified after preliminary analysis in which we
have estimated the coefficients in model (13) using ordinary least squares.

Finally, the number of clusters for all the procedures is chosen according to the
gap statistic, with B = 500 simulated reference data sets.

With the first attempt to cluster the sites, we consider the time series without
regard to the spatial information.

In Figure 4 we present the spatial distribution of the clusters that we have ob-
tained. Sites are labelled with a colour ranging from grey to green in accordance
with the average value of each cluster. High values of Chl-a concentrations are
associated to the dark colours (green colours in the online version of the paper).

All clustering procedures point out that there exists a value scale according to
the distance of the sea sites with respect to the coast. However, in spite of this
similarity there are several substantial spatial differences in that pattern. First of
all, the gap statistic suggests a different number of clusters for each procedure. In
FCC and CHC the sites are clustered into 12 clusters, while 6 clusters are required
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FIG. 4. Spatial distribution of the clusters in the Adriatic Sea identified by (a) FCC, (b) QSC,
(c) WAC and (d) CHC.

by QSC and WAC procedures. A closer analysis of the results allows us to highlight
the differences in the spatial patterns (see Figure 4):

• according to FCC procedure [Figure 4(a)], sites in the northern Adriatic Sea are
grouped in three clusters due to the influence of the rivers of the Po valley on
the Chl-a concentration. In particular, Clusters 1 and 2, identified by dark green
colours in the figure, are related to the influence area of the Po river freshwater
discharges. The subsequent clusters (from 4 to 9) regroup the sites near to the
Intermediate Italian coastal area and the Croatian coasts which are affected by
local seasonal rivers; the last three clusters (10, 11 and 12) correspond to the
open central and southern Adriatic Sea. This part of the basin is not significantly
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affected by land-based inputs of nitrogen and phosphorus compounds. However,
the overall spatial pattern appears a little blurred and is inconsistent in some
areas;

• for the QSC procedure the gap statistic suggests six clusters [Figure 4(b)] and in
comparison with FCC results, it seems better able to resolve the spatial structure
in the northern part of the basin. The clusters are spatially more homogeneous
and related to the coast and the river mouth distances. The clustering confirms
the presence of a large area [Figure 4(b); Cluster 6] distant from the coast and
unaltered by any potential source of anthropic influence;

• for the WAC procedure the gap statistic suggests the same number of clusters of
QSC. However, the spatial pattern is very different [Figure 4(c)]. The main dif-
ference is the presence of a large area (Cluster 2) which corresponds to the entire
northern Adriatic Sea. Cluster 1 regroups the sites near the upper intermediate
Italian coastal area, whereas Cluster 3 embraces the coastal zone of the southern
Adriatic Sea and the Albanian coasts. Last, three clusters correspond to zones
far from points of influence, but they have a fragmented spatial distribution;

• the clustering results obtained by the CHC procedure are less convincing [see
Figure 4(d)]. Most parts of the clusters are patched with a lack of consistency.

In short, the FCC and QSC procedures yield to a more consistent clustering
because they clearly separate the area influenced by the plume of the Po river
from the surrounding. However, QSC better resolves the spatial structure in the
northern part of the basin. In fact, the spatial structure suggested by FCC is more
fragmented and less consistent with general knowledge about the evolution of Chl-
a in the basin. In fact, the regrouped sites in the central and the southern western
coastal area don’t follow a clear gradient when we move away from the coastline.
Furthermore, in the northern part, the area directly affected by the plume of Po
river is not clearly identified.

In the previous analysis we do not take into account the spatial information. The
maps of the clusters can be perturbed by the local factor resulting from variance
instability and outliers in the raw time series so sites that are very far apart could
possibly be assigned to the same cluster with high probability. As a consequence,
similarity between time series far apart could be stronger than that of observations
near each other, which runs counter to cluster structures often desired in the spatial
setting.

For the QSC procedure we have corrected the entries of the dissimilarity matrix
in the PAM algorithm using (10). The variogram model 
(h; θ) has been identified
by visual inspection of the graphical representation of the moment estimates (9)
of the semi-variogram against the distances (see Figure 5). The moment estimates
have been calculated using the coefficients of the B-spline functions which have
been detrended by means of a first order linear surface trend. Figure 5 suggests
that an exponential model with a nugget effect, namely,


(h; θ) = θ1
(
1 − exp{−h/θ2}) + θ3

(
1 − 10(h)

)
, θ1, θ2, θ3 > 0,
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FIG. 5. Empirical and fitted semi-variogram for (a) FCC, (b) QSC and (c) WAC clustering proce-
dures. In all cases the coefficients of the B-spline functions have been detrended using a first order
linear trend surface.

fits quite well.
Mutatis mutandis, we can apply the same idea for correcting the entries of the

dissimilarity in the FCC and WAC procedure as in Giraldo, Delicado and Mateu
(2012), Haggarty, Miller and Scott (2015). Regrettably, we cannot extend such
corrections to the CHC method because it is not clear how defining an appropriate
distance measure between the proposed finite set of time series characteristics can
be compared to the L2 norm used in the other procedures.

If we compare the obtained practical ranges (see Figure 5), that is, the distances
where the semi-variogram first reaches 95% of the sill, the spatial smoothing ef-
fects are more evident for QSC than FCC and WAC.



CLUSTERING CHLOROPHYLL-A SATELLITE DATA USING QUANTILES 981

FIG. 6. Maps of the clusters in the Adriatic Sea resulting from the clustering procedures (a) FCC,
(b) QSC and (c) WAC after correcting the dissimilarity matrix by the spatial weights.

The gap statistic, applied to the spatially weighted dissimilarity matrix, points
out new numbers of clusters with respect to the previous results (see Figure 6). For
the FCC procedure this number decreases from 12 to 10 clusters: the grouping is
slightly coarse and the results appear too simplified, in particular, if we consider
the areas near to the Italian coast. For the WAC procedure the number of clusters
is reduced to 5 and the spatial distribution of the sites appears quite smoothed but
too simplified.

Instead, the number of clusters increases for the QSC procedure from 6 to 12.
The resulting clusters seem to be able to better catch the influence of the freshwa-
ters from the rivers defining a unique cluster (Cluster 1) closed to the Po river’s
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mouth. In addition, looking to the southern part of the Adriatic Sea, QSC permits
to define a more detailed classification of the Albanian coastal waters in contrast
to the FCC that exhibits less clear distinctions in such area.

In Figure 7 we show the temporal behaviour of the logarithm of Chl-a con-
centrations in each cluster identified by the spatially adjusted QSC procedure.
The clusters are sorted by ascending average value of the time series. For
each cluster, we represent the quantile curves corresponding to the probabilities
0.05,0.25,0.50,0.75 and 0.95. Such curves are obtained by fitting a quantile sheet
using the time series that belong to the cluster.

Sites belonging to Cluster 1 are located near to the Po river’s mouth, which
is the most important influence point of this basin for Chl-a concentration. They
exhibit the highest average value with respect to all the other clusters. The temporal
evolution of the grouped time series shows an increasing trend in the period 2010–
2012; the seasonal component is weak and more pronounced in the last years.
Cluster 2 collects sites in front of the upper intermediate Italian coasts. It presents
a seasonal pattern (the so-called “Algae bloom cluster”), with the highest peaks
during the beginning of years 2011 and 2012. The temporal trend of Cluster 3
appears more similar to Cluster 1, with the seasonal peaks barely visible and high
values in the last part of the temporal window.

Covering the extreme northern Adriatic Sea, sites of Cluster 4 are spatially com-
prised between sites of Cluster 2 and the Dalmatian coast. We can observe a strong
seasonality, more evident than the previous clusters. Clusters 5 and 6 encompass
several areas disseminated near the coasts of southern Italy and the Albania. De-
spite the spatial distribution of these clusters interests in the same areas, they show
a different temporal pattern: Cluster 5 is more similar to the “coastal” Clusters 1
and 3, while Cluster 6 is characterized by a strong seasonality and likewise Clus-
ter 4 (but with lower values). Clusters 7 and 8 regroup the sites placed between
the coastal zone and the offshore areas: these sites are not directly affected by
rivers and other points of influence, but their trends point out a halfway behaviour
between “bloom” and “coastal” clusters. It is interesting to consider that sites be-
longing to Cluster 9 are closed to the Dalmatian coasts, but its temporal trend is
completely different with respect to the other coastal clusters (1, 3 and 5), with low
Chl-a concentrations and a moderate seasonality.

Finally, sites of Clusters 10, 11 and 12 are located far from the coasts, from
north to south. As a consequence of this location, the sites belonging to these
clusters report lower Chl-a values and a prominent seasonal pattern due to the
solar radiation and the temperature (“no bloom cluster”).

We finally remark that our findings are consistent with previous attempts of
classifying Adriatic waters on the basis of Ocean Colour data. For example,
D’Ortenzio and Ribera d’Alcalà (2009), using a K-means procedure, identified
four main clusters within the Adriatic Sea: 2 different coastal clusters with a high
seasonal signal, characteristic of nutrient enriched coastal waters; intermittently
blooming areas in the southern part; a “no bloom” cluster in the remaining zones
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FIG. 7. Chl-a distribution for the first six clusters of the Adriatic Sea with five estimated quantile
curves by QSC with the spatial adjustment procedure. In the title the number of time series that
belong to the cluster is reported.
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FIG. 8. Chl-a distribution for the last six clusters of the Adriatic Sea with five estimated quantile
curves by QSC with the spatial adjustment procedure. In the title the number of time series that
belong to the cluster is reported.
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(the eastern part of the Adriatic Sea). In the QSC clustering, Clusters 10, 11 and 12
regroup the typical evolution of Adriatic oligotrophic areas. As one can see from
Figure 7, which shows the estimated quantile sheets for each cluster, this area is
characterized by low Chl-a values all year round, and it is impossible to detect clear
multi-annual trends. Clusters 1, 3 and 5 overlap with the “coastal water” clusters
described in D’Ortenzio and Ribera d’Alcalà (2009), but our clustering allows us
to better resolve the spatial gradient and to clearly identify the influence of the Po
river on Chlorophyll type-a dynamics. In fact, the clearly visible increasing trend
in the years 2008–2012, which may be due to higher river discharges of inorganic
nutrients, in turn, caused a higher primary production. These features are more
marked in Cluster 1, which is directly affected by the plume of the Po River. In
addition, the Adriatic marine current circulation transports the nutrients of the Po
river to the south and the clusters follow the distance from this point of “source”
[Giani et al. (2012)]. The absence of important rivers explains the difference of
classification inherent to the eastern coast of the Adriatic Sea with respect to the
Croatian coast. A separate discussion concerns the Albanian coastal area which
reports a temporal pattern similar to the Italian coast [Marini et al. (2010)].

7. Discussion. In this work we have proposed a new procedure to cluster time
series of satellite data especially suitable when we deal with marginal distributions
that vary over time and have missing values. We have applied the procedure to
GlobColour data related to Chlorophyll type-a concentrations in order to identify
homogeneous areas in the Adriatic Sea with respect to the temporal behaviour
of this water indicator. In the literature there exist several attempts to cluster wa-
ter quality indicators [Haggarty et al. (2012), Henderson (2006), Pastres, Pastore
and Tonellato (2011)] that consider time series under a functional data analysis
perspective. A distinctive feature of our proposal is that we use the information
coming from the quantiles of a time series. Such information is conveyed in terms
of the quantile sheet of a time series, which is a surface in the time-probability
space. The use of a quantile sheet, not allowing the quantiles curve to cross in
the fitting procedure, leads to reliable estimates of the conditional distributions.
The importance of this constraint has been evident in our small simulation study.
Our procedure reports the highest values of the Adjusted Rand Index with respect
to a procedure that forms a group using separated quantile curves. Moreover, our
simulation results show some degree of robustness of the procedure in the case
of correlated observations, even if a wider study is undoubtedly required. Finally,
differently from the aforementioned references, we take into account the role of
the spatial dependence in the clustering procedure.

Concerning our specific water quality indicator, many studies have used the
Chlorophyll type-a concentration in order to assess the spatial distribution of wa-
ter eutrophication in the Adriatic Sea [D’Ortenzio and Ribera d’Alcalà (2009),
Djakovac et al. (2012), Giani et al. (2012), Marini et al. (2010), Mélin et al.
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(2011)], however, its clustering in homogeneous zones is still an open problem.
The clusters derived by our procedure have shown convincing results.

It is worth pointing out that Chlorophyll type-a concentration appears to be
impacted by several factors. Therefore, one potential future development of this
work is the multivariate extension resulting in the analysis of “quantile volumes”
[Schnabel and Eilers (2013)] with the aim to classify using information from sev-
eral physical attributes [Ramos et al. (2012)].

Another future development is a better description of the spatial dependence. At
this stage our proposal can be resumed in two steps: a summary of the temporal
behaviour and a clustering procedure, corrected by spatial information. We are
currently working on a model-based method for clustering random time-varying
functions that are spatially interdependent combining the proposal in Jiang and
Serban (2012) and in Reich (2012).

Acknowledgment. We are indebted to the anonymous referees for their con-
structive comments that have greatly improved the original version of the paper.
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