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Research in dental caries generates data with two levels of hierarchy: that
of a tooth overall and that of the different surfaces of the tooth. The outcomes
often exhibit spatial referencing among neighboring teeth and surfaces, that
is, the disease status of a tooth or surface might be influenced by the status of
a set of proximal teeth/surfaces. Assessments of dental caries (tooth decay)
at the tooth level yield binary outcomes indicating the presence/absence of
teeth, and trinary outcomes at the surface level indicating healthy, decayed
or filled surfaces. The presence of these mixed discrete responses compli-
cates the data analysis under a unified framework. To mitigate complications,
we develop a Bayesian two-level hierarchical model under suitable (spatial)
Markov random field assumptions that accommodates the natural hierarchy
within the mixed responses. At the first level, we utilize an autologistic model
to accommodate the spatial dependence for the tooth-level binary outcomes.
For the second level and conditioned on a tooth being nonmissing, we utilize
a Potts model to accommodate the spatial referencing for the surface-level tri-
nary outcomes. The regression models at both levels were controlled for plau-
sible covariates (risk factors) of caries and remain connected through shared
parameters. To tackle the computational challenges in our Bayesian estima-
tion scheme caused due to the doubly-intractable normalizing constant, we
employ a double Metropolis–Hastings sampler. We compare and contrast our
model performances to the standard nonspatial (naive) model using a small
simulation study, and illustrate via an application to a clinical dataset on den-
tal caries.

1. Introduction. Dental caries, also known as tooth decay, is one of the most
prevalent chronic diseases worldwide [Selwitz, Ismail and Pitts (2007)]. Although
preventable, people remain susceptible to the disease throughout their lifetime
[Featherstone (2000), Pitts (2004)]; hence it remains a major global oral health
burden and is prevalent in the United States. Caries is triggered by acids produced
during bacterial fermentation of food debris that accumulates on the tooth surface.
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This causes localized dissolution of the tooth’s hard tissues and leads to the de-
velopment of cavities or holes in the teeth [Kidd, Smith and Watson (2003)]. The
four main factors influencing the formation of dental caries are the person’s age,
the health of the tooth surface, the presence of cariogenic bacteria and the pres-
ence of fermentable carbohydrates [Soames and Southam (1993)]. The degree of
caries progression varies with the individual, depending on the shape of the teeth,
oral hygiene habits and the buffering capacity of saliva. If left untreated, caries can
spread to supporting tissues and the jaws, and result in advanced conditions that
are often painful [Jamison et al. (2006)] and which may lead to tooth loss.

Clinical Studies on dental caries produce clustered multivariate data, consisting
of information collected at the tooth surfaces, which are in turn clustered within
the oral cavity of each participant [Burnside, Pine and Williamson (2007)]. The
surface-level data measure whether they are decayed (D), filled (F) or missing (M)
tooth surfaces (S), these are often aggregated over the whole mouth/individual to
yield the popular DMFS measure [Darby and Walsh (1995)]. However, the use of
this measure provides unrealistic equal weighting to a tooth surface described as
D, M or F, even though these indices might represent some latent ordinal levels
of caries progression. While the “M” measure is indicative of a tooth-level fea-
ture (because a missing tooth contributes to all surfaces as missing for that tooth),
the “D” and “F” measures categorize surface-level outcomes. That means the as-
signment of the “M” component in computing the DMFS measure might lead to
possible overestimation or underestimation of the individuals true carious status. In
addition, caries status might be spatially referenced [García-Zattera et al. (2007)],
that is, a diseased surface (within a particular tooth) might be influenced by the
disease status of a set of proximal surfaces, or teeth.

There is a rich body of statistical literature on analyzing spatially referenced
discrete data in many disciplines, such as epidemiology, image analysis and en-
vironmental studies, starting with the autologistic propositions for binary data
[Besag (1974), Hoeting, Leecaster and Bowden (2000), Preisler (1993), Sherman,
Apanasovich and Carroll (2006), Wu and Huffer (1997)] and the Potts model for
multi-category outcomes [Alfó, Nieddu and Vicari (2009), Green and Richard-
son (2002), Potts (1952)]. These are based on the popular non-Gaussian Markov
random field (MRF) assumptions, where the full conditional distribution for a re-
sponse (say, a tooth surface in the analysis of dental caries) depends on only a
set of prespecified neighbors. Autologistic models, popularized by Besag (1974),
are often used to establish the correspondence between a binary response (say,
the presence/absence of caries) and the potential explanatory covariates via lo-
gistic regression while accounting for spatial dependence via an autoregression.
One can also predict the outcome at some unsampled surface, thereby improv-
ing the understanding of a spatially referenced binary outcome. There have been
some applications of the autologistic specification for modeling caries outcomes
in the dental literature [Afroughi et al. (2010), Bandyopadhyay, Reich and Slate
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(2009), García-Zattera et al. (2007), Mustvari et al. (2013)]. Other spatial applica-
tions in the context of modeling (continuous) periodontal disease responses utilize
a parametric conditionally autoregressive (CAR) framework [Reich and Bandy-
opadhyay (2010), Reich and Hodges (2008), Reich, Hodges and Carlin (2007)]
or a nonstationary nonparametric framework [Reich, Bandyopadhyay and Bon-
dell (2013)] mostly under a Bayesian paradigm. The Potts model, a generalization
of the Ising model that is popular in statistical mechanics [Winkler (2003)], fits
multi-category [Zhu, He and Zhou (2008)] regression models to multiple discrete
responses. The Potts model includes the autologistic model as a special case and
has been widely applied in image segmentation [Brémaud (1999), Higdon (1998),
Johnson and Piert (2009)] and functional magnetic resonance imaging data analy-
sis [Johnson et al. (2012)].

In this paper, we develop a Bayesian hierarchical two-level framework that
closely resembles the caries evolution process in humans. At the first level of hi-
erarchy, the binary probability of a tooth being present or absent is modeled via
an autologistic model. Conditioned on the tooth being present, we next model the
probabilities of a D, F or health (H)/sound surface via a Potts model. At the surface
level, we identify various types of spatial association quantified by between-teeth
and within-tooth interactions. A Gaussian copula is employed to link the spatial
interaction parameters in the autologistic model to those in the Potts model. For
illustration, we apply our proposed methodology to a dataset generated from a clin-
ical study on dental caries [Fernandes et al. (2007)]. Our framework handles both
individual- and tooth-level (spatial) clustering, and facilitates borrowing strength
across all teeth and surfaces for caries risk assessment of important covariables
such as age, gender, smoking status, oral brushing/flossing habits and glycemic
level.

The remainder of the paper is structured as follows. In Section 2, we describe
the aforementioned motivating data on dental caries. In Section 3, we propose our
Bayesian hierarchical spatial model utilizing the autologistic and Potts specifica-
tions. We present the Bayesian computational framework using the double MH
sampler in Section 4. In Section 5, we apply our model to the caries dataset, assess
model fit and summarize the inference on fixed effects and spatial associations.
In Section 6, we present a small simulation study to study the effect of exclud-
ing spatial associations parameters on the regression parameters. We provide our
conclusions and future developments in Section 7.

2. Motivating data. The motivating data were collected in a clinical study by
the Center for Oral Health Research at the Medical University of South Carolina.
The study aimed to assess caries status among the Gullah-speaking (or simply Gul-
lah) African Americans who had type 2 diabetes, were 13 years of age or older,
and resided in the coastal islands of South Carolina. All study participants under-
went an oral examination and answered a detailed questionnaire that focused on
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FIG. 1. Permanent dentition within a mouth showing various tooth surfaces. Adapted from Darby
and Walsh (1995).

their social, medical and dental histories. There were 281 subjects in the dataset
with complete covariate information.

Figure 1 illustrates the different surfaces of permanent dentition within a human
mouth. Following Darby and Walsh (1995), the entire dentition can be divided into
four quadrants, two on each jaw bone, the mandible (lower jaw) and maxilla (up-
per jaw). Each quadrant consists of a cluster of 8 teeth: the nonanterior teeth (three
molars and two premolars) and the anterior teeth (one incisor and two canine). Fur-
thermore, each nonanterior tooth contributes five surfaces (occlusal, mesial, distal,
facial and lingual), while each anterior tooth contributes four of these surfaces (no
occlusal surface for these teeth). Caries data has two levels of hierarchy, a tooth
level and a surface level, and hence the primary response is recorded according to
the level of hierarchy. An assessment of the caries progression at the tooth level
yields a binary indicator for the presence or absence of a particular tooth. For that
indicator, we denote a nonmissing and missing tooth as N and M, respectively.
Note that, for a missing tooth, all its surfaces are considered missing, whereas if
the tooth is lost due to a cause other than caries, it does not contribute to the data
analysis. The cause of missingness was determined from the questionnaire admin-
istered to the study participants, in which the participants distinguished the cause
from among the choices of caries, gum disease, orthodontics, injury and other fac-
tors. We acknowledge that this self-reported information may be inaccurate, but it
is the best information available. Next, conditional on the tooth being present, an
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assessment of the caries progression status at the tooth-surface level is a trinary
indicator that the surface is either healthy (H), decayed (D) or filled (F).

Several individual-level covariates were also collected, including gender (0 =
male, 1 = female), brushing and flossing habits (1 = brushed twice and flossed
once every day; 0 = otherwise), smoking status (0 = never, 1 = smoker), age
(in years) and glycemic level (determined by HbA1c). Although study recruitment
was blind to gender, females participated at a higher rate (77%) than males, and this
is reflected in the sample drawn for our analysis. Higher rates of enrollment among
females than males are typical for studies among Gullah African Americans. About
15% of the individuals in our sample are smokers and 19% brush twice and floss
once every day. The mean age of the participants in the sample is approximately 55
years, with a range of 26–78 years. The mean glycemic level of the individuals in
the sample is approximately 7.8, with a range of 5.0–16.4. One primary objective
of this study is the risk assessment of these covariates of interest on the caries
response, controlling for the effects of spatial association.

3. Bayesian hierarchical spatial model for dental caries.

3.1. Types of spatial associations. Because caries in a tooth is commonly re-
lated to the health of the adjacent/proximal tooth (or surfaces), a spatial structure
may be introduced into the models. At the tooth level, we consider only one spatial
association, that is, the interaction with neighboring teeth. We denote the corre-
sponding parameter for this association as ψA ∈ [0,∞). At the surface level, three
types of spatial associations can be conjectured. These are related to the follow-
ing:

1. surfaces on the same tooth (type-A association),
2. surfaces on adjacent teeth on the same jaw (type-B association), and
3. contact surfaces on the opposite jaw (type-C association).

For the sake of simplicity and ease of interpretation, we eliminated the associa-
tions between non-neighboring surfaces in adjacent teeth on the same jaw. Type-A
associations are illustrated in Figure 2(a) and can be divided into three categories,
as characterized by three spatial parameters, ψP,1, ψP,2 and ψP,3. Specifically,
ψP,1 denotes associations between the occlusal surface and the other four surfaces
on the same tooth, while ψP,2 denotes associations between adjacent nonocclusal
surfaces on the same tooth, that is, between mesial and facial, mesial and lingual,
distal and facial, and distal and lingual surfaces. ψP,3 denotes associations between
nonadjacent opposite-site surfaces on the same tooth, that is, between mesial and
distal, and facial and lingual surfaces. Type-B associations, as illustrated in Fig-
ure 2(b), also consist of two categories characterized by two spatial parameters,
ψP,4 and ψP,5. While ψP,4 denotes associations between the contacting mesial
and distal surfaces of adjacent teeth on the same jaw, ψP,5 quantifies the asso-
ciations between adjacent occlusal surfaces, facial surfaces and lingual surfaces
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FIG. 2. Illustrations of spatial interactions at the surface level. Panel (a) denotes the type-A (with-
in-tooth) associations, while panel (b) represents the type-B (between-teeth) associations.

of adjacent teeth on the same jaw. Finally, ψP,6 is the parameter that captures
the spatial correlation between the contacting occlusal surfaces on opposite jaws
(Type-C association). We denote the vector of the spatial association parameters by
ψP = {ψP,1, . . . ,ψP,6}, where ψP,1, . . . ,ψP,6 ∈ [0,∞). Using these definitions
of spatial associations ψA and ψP , we develop a model for the presence/absence
of teeth and a model for the status of the tooth surfaces (given that the tooth is
present) using autologistic and Potts models, respectively.

3.2. Model for the presence/absence of teeth. Let xij be the binary variable
indicating whether the j th tooth of individual i is missing (xij = 1) or nonmiss-
ing (xij = 0), with i = 1, . . . ,281 and j = 1, . . . ,32. Assuming the autologistic
model, the joint distribution of x = {xij } is given by

f (x|θA) = 1

κ(θA)
exp

[∑
(i,j)

xij

{
αM +

7∑
l=1

βM,lZi,l + RA,i

}

(3.1)

+ 1

2
ψA

∑
(i,j)

∑
(ij)∼(ij)′

{
xij x(ij)′ + (1 − xij )(1 − x(ij)′)

}]
,

where ψA determines the intensity of association between xij and its neighbor, rep-
resented by (ij) ∼ (ij)′; Zi,l is the lth individual-level covariate with l = 1, . . . ,7
denoting gender, brushing-flossing habit, smoking status, age, age2, HbA1c and
HbA1c2; βM,l measures the effect of covariate l on the missingness of teeth; αM is
an intercept; and RA,i is the random effect that accounts for the within-individual
correlation. We assume RA,i ∼ N(0,1/σ 2

A), where N(·) denotes a normal distri-
bution. To accommodate potential nonlinear effects of age and HbA1c, we include
quadratic terms of age and HbA1c in our model. In the autologistic model, κ(θA),
with θA = (ψA,βM = {βM,l}, αM), is the doubly-intractable normalizing constant
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which involves the sum over all possible realizations of x [see equation (A.1) in
Appendix A]. In order to simplify a complex spatial structure of dental caries, we
here assume pairwise-only dependencies and the free boundary condition that all
nodes in the external field have a zero value [Lim, Wang and Sherman (2007)].

3.3. Model for surface-level caries data. Let yijs be the trinary indicator of the
surface condition on a nonmissing tooth (xij = 0), representing a healthy (yijs =
1), decayed (yijs = 2) or filled (yijs = 3) surface. Here, yijs is observed at the sth
surface of the j th tooth for individual i, where the 5 surface types are represented
as s = 1: occlusal; s = 2: mesial; s = 3: distal; s = 4: facial; and s = 5: lingual.
Note that this corresponds to the posterior premolars and molars. For the anterior
incisors and canines, there are only four surfaces, corresponding to s = 2, . . . ,5
(see Figure 1). We assume y = {yijs}, arising from a multinomial distribution with
the following Potts model,

p(y|θP , xij = 0)

= 1

κ(θP )
exp

[ ∑
(i,j,s)

I (yijs = 2)

{
αD +

7∑
l=1

βD,lZi,l + RP,i

}
(3.2)

+ ∑
(i,j,s)

I (yijs = 3)

{
αF +

7∑
l=1

βF,lZi,l + RP,i

}
+

6∑
q=1

ψP,qSP,q

]
,

where Zi,l denotes the individual-level covariates (as described in Section 3.2);
βD,l and βF,l measure the effects of covariate l for the decayed and filled surfaces,
with αD and αF as the intercepts, respectively; RP,i is the individual-specific ran-
dom effect following N(0,1/σ 2

P ); and ψP,q , where q = 1, . . . ,6, are the six spatial
association parameters defined in Section 3.1. With a one-to-one correspondence
to ψP,q , the six spatial terms SP,q are defined as follows:

• SP,1 = ∑
(i,j)

∑
s �=1 I (yijs = yij1)I (xij = 0), corresponding to ψP,1, which rep-

resents the associations between the occlusal surface and the other surfaces on
the same tooth;

• SP,2 = ∑
(i,j)

∑
s=4,5{I (yijs = yij2) + I (yijs = yij3)}I (xij = 0), correspond-

ing to ψP,2, which represents the associations between adjacent nonocclusal
surfaces on the same tooth;

• SP,3 = ∑
(i,j){I (yij2 = yij3) + I (yij4 = yij5)}I (xij = 0), corresponding to

ψP,3, which represents the associations between nonadjacent opposite-site sur-
faces on the same tooth;

• SP,4 = ∑
(i,j)

∑
m∼j I (yij2 = yim3)I (xij = 0)I (xim = 0), where m ∼ j repre-

sents m = j − 1 for j = 2, . . . ,8,18, . . . ,24; m = j + 1 with j = 9, . . . ,15,

25, . . . ,31; and m does not exist with j = 1,16,17,32. This corresponds to
ψP,4, representing the association between the mesial and distal surfaces of ad-
jacent teeth on the same jaw;
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• SP,5 = ∑
(i,j)

∑
m∼j

∑
s=1,4,5 I (yijs = yims)I (xij = 0)I (xim = 0), correspond-

ing to ψP,5, which represents the associations between the adjacent occlusal,
facial and lingual surfaces of teeth on the same jaw;

• SP,6 = ∑
(i,j)

∑
o↔j I (yij1 = yio1)I (xij = 0)I (xio = 0), where o ↔ j denotes

the contacting teeth o and j on opposite jaws, corresponding to ψP,6, which
represents the association between the occlusal surfaces of these teeth.

Similar to the autologistic model, the normalizing constant of the Potts model
κ(θP ), where θP = (ψP,1, . . . ,ψP,6, βD = {βD,l}, βF = {βF,l}, αD,αF ), is in-
tractable [see equation (A.2) in Appendix A]. We also assume pairwise-only de-
pendencies and the free boundary condition.

In spatial models, such as the autologistic and Potts models, the spatial pa-
rameters are typically the parameters that are most difficult to identify due to
limited data information. To alleviate this issue, we link spatial parameters ψA

(in the autologistic model) and ψP (in the Potts model) using a Gaussian cop-
ula [Nelsen (2006)] to borrow information across the autologistic and Potts mod-
els. We first set boundaries [ψA,min,ψA,max] and [ψP,min,ψP,max] for ψA and
ψP , respectively, to map these parameters into [0,1]. In our analysis, we choose
the lower bound, ψA,min = ψP,min = 0, to represent the independent surfaces,
and the upper bound, ψA,max = 1 and ψP,max = 3, to represent highly depen-
dent surfaces, similarly to the methods of Liang, Liu and Carroll (2007) and
Zhang et al. (2010), respectively. Let WA = �−1(ψA), WP,1 = �−1(ψP,4/3),
WP,2 = �−1(ψP,5/3) and WP,3 = �−1(ψP,6/3), where �−1 is the inverse cu-
mulative distribution of a standard normal distribution. The Gaussian copula as-
sumes that W = (WA,WP,1,WP,2,WP,3) follows a multivariate normal distribu-
tion, W ∼ N4(0,�), where � is a 4 × 4 covariance (or correlation) matrix with
the elements on the diagonal equal to 1. As ψP,1, ψP,2 and ψP,3 represent the
associations between surfaces on the same tooth, these parameters are presumably
less likely to be correlated with ψA, which characterizes the spatial association at
the tooth level. Therefore, we exclude ψP,1, ψP,2 and ψP,3 in the copula model.
We assign ψP,1, ψP,2 and ψP,3 independent uniform priors with support [0,3].
In our data analysis, for simplicity and also to be consistent with the common
practice of using the Potts model, we do not impose correlations among the spa-
tial parameters within the Potts model, that is, ψP,1, . . . ,ψP,6 are pairwise inde-
pendent a priori. We only specify and estimate the correlations between ψA and
each of ψP,4, . . . ,ψP,6 (i.e., across the autologistic and Potts models). We de-
note these correlation parameters as ρ1 = corr(WA,WP,1), ρ2 = corr(WA,WP,2),
ρ3 = corr(WA,WP,3) and ρ = (ρ1, . . . , ρ3), where corr(·) denotes the correla-
tion coefficient. In some applications, more complicated, unstructured covariance
structures can be entertained in the copula model if desired. In practice, it is pos-
sible that the strength of the dependency between the two Markov random fields
(but also within them) depends on covariates. One way to accommodate that is to
model the dependency parameters as the functions of covariates. However, as data
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generally contain limited information on the dependency parameters, incorporat-
ing covariates and introducing extra parameters may lead to unstable estimates and
identification problems.

4. Estimation.

4.1. Prior specification. Denote � = (θA, θP ,σ 2
A,σ 2

P ,ρ). To conduct our
Bayesian analysis, we assign noninformative or weakly informative priors to the
parameters of the autologistic model and Potts model. A uniform prior on α =
(αM,αD,αF ) ∈ [−20,20] is assumed. To assign prior distributions for β = (βM =
{βM,l}, βD = {βD,l}, βF = {βF,l}), we adopt the weakly informative prior for the
logistic regression proposed by Gelman et al. (2008). We assign each component
of β an independent Cauchy prior, that is, Cauchy (0,2.5), after standardizing the
covariates to have a mean of 0 and a standard deviation of 0.5. For the variances of
random effects RA and RP , we assume a vague prior σ 2

A,σ 2
P ∼ Uniform(0,100).

In the copula model, we take ρ ∼ Uniform(−1,1). Letting π(�) denote the prior
distribution of �, the posterior distribution of our Bayesian hierarchical spatial
model is given by

π(�|x,y)
(4.1)

∝ f (x|RA, θA)f (y|RP , θP ,x)f (RA,RP |�)f (ψA,ψP |�)π(�).

4.2. Markov chain Monte Carlo (MCMC). The general MH algorithm can-
not be applied to simulate from π(�|x,y) because the acceptance probability
would involve an unknown intractable normalizing constant ratio {κ(θA)κ(θP )}/
{κ(θ ′

A)κ(θ ′
P )}, where θ ′

A and θ ′
P denote the proposed values. To circumvent this,

we use a double MH (DMH) sampler [Liang (2010)] as an approximate version of
the exchange algorithm [Murray, Ghahramani and MacKay (2006)]. By replacing
the perfect sampler in the exchange algorithm with MH sampling steps, the DMH
sampler is easier to implement and computationally more efficient. One iteration
of the DMH sampler can be described as follows:

1. Simulate a new sample �′ from π(�) using the MH algorithm starting with
�t , where t denotes the iteration index and �t denotes the current state of the
Markov chain.

2. Generate an auxiliary variable (x′, y′) ∼ P
(m)

�′ (x′, y′|x, y), where P
(m)

�′ (x, y|
x′, y′) denotes the transition probability from the current state (x, y) to a
sample (x′, y′), through m MH updates, with the detailed balance condition
r(�t ,�

′, x′, y′|x, y) = π(�t |x′,y′)
π(�t |x,y)

π(�′|x,y)

π(�′|x′,y′) .

3. Set �t+1 = �′ if the auxiliary variable is accepted in step (2), and set �t+1 =
�t otherwise.
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In our analysis, updating all parameters at one time is not feasible. This is
because the parameter space � consists of 30 components, in addition to the
individual-level random effects, leading to slow mixing of the MCMC. Instead,
we sequentially update the parameters as follows:

1. Update ψA, αM and βM simultaneously in the autologistic model;
2. Update σA in the autologistic model;
3. Update RA,i sequentially in the autologistic model;
4. Update ψP , αD and αF simultaneously in the Potts model;
5. Update βD and βF simultaneously in the Potts model;
6. Update σP in the Potts model;
7. Update RP,i sequentially in the Potts model;
8. Update ρ in the Gaussian copula model.

The details of the MH ratios in each update are presented in Appendix B.

5. Application: Dental caries dataset. In this section, we apply our method
to the motivating dataset on caries progression described in Section 2. We em-
ployed the DMH sampler to run five independent chains with random starting val-
ues. Each run consisted of 60,000 iterations, with 20 cycles of Gibbs updates to
generate the auxiliary variables. To assess the convergence of the chains, we used
trace plots, autocorrelation plots and the Gelman–Rubin convergence diagnostic
R̂. We discarded the first 10,000 iterations of each run for the burn-in process
and collected 5000 samples from the remaining iterations, with a thinning of 10
iterations.

5.1. Covariate-effect parameters. Table 1 summarizes the posterior mean
and 95% highest posterior density (HPD) interval for the parameter vectors
(βM,βD,βF ), quantifying the effect of various covariates on the carious condi-
tions, that is, Missing, Decayed and Filled surfaces, respectively. Each element
of these parameter vectors can be interpreted in terms of the increase/decrease in
the log odds of having a missing (M) tooth (for the first level), and decayed (D)
or filled (F) surface (with healthy surface as the baseline for the second level) at
the same spatial location, when the value of a covariate Zi,l increases one unit (or
changes in category, e.g., from a nonsmoker to smoker, for discrete covariates),
conditioned on the other covariates and spatial referencing for that spatial location
remaining unchanged.

Covariates corresponding to parameters whose 95% HPD intervals do not in-
clude 0 are considered to have substantial effects on the caries outcomes. Intu-
itively, a proper habit of brushing and flossing leads to reduced odds (log odds =
−0.325), while smoking increases the odds (log odds = 0.196) of experiencing a
decayed tooth surface. Also, a higher glycemic level leads to increased odds (log
odds = 0.139) of a decayed surface. Glycemic level demonstrates some trend of
nonlinear effect on the missing tooth, as the HPD of HaA1c2 is largely positive.
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TABLE 1
Posterior mean estimates and 95% HPD intervals of the covariate-effect parameters obtained after

fitting the copula model to the caries dataset

Copula Noncopula

Covariates Condition Estimates 95% HPD Estimates 95% HPD

Gender Missing 0.004 (−0.113,0.123) 0.000 (−0.111,0.118)

Decayed −0.068 (−0.191,0.032) −0.036 (−0.159,0.086)

Filled 0.091 (0.007,0.175) 0.098 (−0.024,0.212)

Brush-Floss Missing −0.079 (-0.195, 0.028) −0.074 (-0.192, 0.037)
Decayed −0.325 (−0.450,−0.174) −0.255 (−0.366,−0.132)

Filled 0.041 (−0.042,0.115) 0.060 (−0.043,0.156)

Smoking Missing 0.096 (−0.038,0.224) 0.090 (−0.046,0.223)

Decayed 0.196 (0.061,0.324) 0.225 (0.099,0.414)

Filled −0.123 (−0.239,−0.005) −0.124 (−0.276,0.027)

Age Missing 0.348 (0.245,0.458) 0.344 (0.242,0.451)

Decayed 0.001 (−0.102,0.106) −0.004 (−0.122,0.185)

Filled 0.025 (−0.065,0.103) 0.027 (−0.066,0.167)

Age2 Missing −0.005 (−0.140,0.130) −0.009 (−0.153,0.142)

Decayed 0.065 (−0.098,0.238) 0.034 (−0.131,0.200)

Filled −0.184 (−0.378,−0.036) −0.200 (−0.351,−0.091)

HaA1c Missing −0.023 (−0.155,0.094) −0.029 (−0.149,0.094)

Decayed 0.139 (0.013,0.343) 0.039 (−0.068,0.145)

Filled 0.023 (−0.090,0.138) −0.012 (−0.099,0.099)

HaA1c2 Missing 0.110 (−0.012,0.236) 0.108 (−0.014,0.238)

Decayed 0.081 (−0.077,0.178) 0.167 (0.024,0.276)

Filled −0.081 (−0.092,0.034) −0.059 (−0.172,0.040)

The upper HPD value of the Brush-Floss covariate for a missing tooth is a very
small positive number; therefore, we can infer that maintaining good dental hy-
giene (via brushing and flossing) also leads to reduced odds (log odds = −0.079)
of a missing tooth. Similarly, we infer that smoking increases odds (log odds =
0.096) of a missing tooth because the lower HPD value of the missing tooth for
smokers is a very small negative number. Older age is related to increased odds of
a missing tooth (log odds = 0.348), while reduced odds (log odds = −0.184) are
observed for a filled surface for a quadratic term of age. This supports the finding
that missing teeth are largely associated with elderly subjects, while more filled
tooth surfaces are associated with younger subjects.

In our approach, two spatial models (i.e., the model for the presence/absence of
teeth and the model for surface-level caries) are linked through the copula. We also
considered an alternative approach that fits the two spatial models independently
without imposing the copula structure. We note that although the separate model-
ing approach seems simpler to fit than the proposed joint modeling approach, in
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TABLE 2
Posterior mean estimates and 95% HPD intervals of spatial association parameters, variance

components and correlation parameters, obtained after fitting the copula and noncopula models to
the caries dataset

Copula Noncopula

Parameter Estimates 95% HPD Estimates 95% HPD

ψA 0.377 (0.352,0.401) 0.378 (0.353,0.400)

ψP,1 0.156 (0.127,0.183) 0.153 (0.119,0.183)

ψP,2 0.905 (0.837,0.986) 0.897 (0.846,0.950)

ψP,3 0.984 (0.857,1.110) 0.995 (0.888,1.116)

ψP,4 1.113 (1.004,1.227) 1.106 (0.985,1.196)

ψP,5 0.647 (0.595,0.706) 0.647 (0.587,0.708)

ψP,6 0.444 (0.309,0.624) 0.486 (0.317,0.650)

σ 2
A 0.273 (0.201,0.360) 0.256 (0.184,0.360)

σ 2
P 0.249 (0.171,0.379) 0.286 (0.158,0.441)

αM −0.352 (−0.432,−0.283) −0.351 (−0.446,−0.269)

αD −0.751 (−0.865,−0.627) −0.787 (−0.948,−0.672)

αF −0.261 (−0.340,−0.165) −0.288 (−0.407,−0.201)

ρ1 0.988 (0.960,0.996) – –
ρ2 0.876 (0.856,0.892) – –
ρ3 0.635 (0.475,0.744) – –

our case, these two approaches are actually comparable in terms of computational
complexity. This is because the majority of computation time and complexity is
related to handling a doubly-intractable normalizing constant that appears in both
joint and separate models. For comparison purposes, the estimates from the sepa-
rate model approach are also presented in Tables 1 and 2.

Although the estimates are generally similar between the separate and joint ap-
proaches, slight differences are noted in the mean estimates for intercepts, variance
parameters for random effects and covariates for decayed and filled surfaces. In
addition, the separate model approach yields wider HPD intervals for intercepts,
variance parameters for random effects and covariate effects for decayed and filled
surfaces.

5.2. Spatial association parameters. Table 2 presents the posterior mean and
95% HPD interval of the spatial association parameters and other remaining pa-
rameters (e.g., intercepts, variance components and correlations induced via the
Gaussian copula) from our full copula model, and compares these to those obtained
from the noncopula model. Usually, in these autologistic and Potts specifications,
a value of 1.0 for the spatial association parameters (ψ) amounts to a very high de-
gree of association [Green and Richardson (2002)]. The estimate of the tooth-level
ψA is 0.38, which provides evidence of a moderate level of association. At the sur-
face level, the posterior estimates of ψP,1 − ψP,6 can be ordered to determine the
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strength of associations between various teeth surfaces. The strongest association
is observed for ψP,4, representing the effect between the mesial and distal surfaces
of adjacent teeth on the same jaw. Given the proximity of these surfaces within the
same tooth, this was expected and, intuitively, the gaps between teeth (the area be-
tween the mesial and distal surfaces of adjacent teeth in the same jaw) might serve
as ideal pockets for trapping food during mastication, and can trigger vigorous
caries progression. The next one following (in terms of the magnitude of associa-
tion) is ψP,3, representing the associations between nonadjacent opposite surfaces
on the same tooth. This is followed by ψP,2, that is, between adjacent nonocclusal
surfaces on the same tooth. Associations between adjacent occlusal surfaces, fa-
cial surfaces and lingual surfaces of teeth on the same jaw (represented by ψP,5)
and of contacting occlusal surfaces on opposite jaws (represented by ψP,6) are of
moderate strength, while that between the occlusal surface and the other surfaces
on the same tooth (represented by ψP,1) is negligible. Furthermore, the estimates
of ρ1, ρ2 and ρ3 explain the correlation between spatial association parameters ψA

(from the first level) and ψP,4, ψP,5 and ψP,6, respectively, from the second level,
as specified by the Gaussian copula structure. The strength is maximum for ρ1,
which might explain the fact that the presence/absence of a tooth is highly related
with the association between the mesial and distal surfaces of adjacent teeth on the
same jaw. Also, as in Table 1, the corresponding estimates of the spatial associa-
tion parameters and variance components for the noncopula model are presented
in Table 2. Once again, these estimates are very close to the ones from the full
(copula) model.

To summarize, the associations with occlusal surfaces tend to be much lower
than those with nonocclusal surfaces, that is, the carious state of the occlusal sur-
faces exerts minimum influence on the carious status of neighboring surfaces. Note
that only the nonanterior teeth (the molars and premolars) have occlusal surfaces;
therefore, occlusal surfaces are outnumbered by the other types of surfaces.

5.3. Model assessment. We assessed the goodness of fit for our model us-
ing the posterior predictive checking method [Gelman et al. (2013)]. Using this
approach, the first step is to choose a discrepancy measure T (y), a function of
data y, to target a certain model specification. Then we simulate the data replicate
yrep,k , k = 1, . . . ,K , from its posterior predictive distribution based on the posited
model and observed data. The model assessment is based on the posterior predic-
tive probability of T (y), which is estimated as the proportion of simulations for
which T (yrep,k) equals or exceeds its realized value T (y). A large (i.e.,>0.95) or
small (i.e.,<0.05) value of the posterior predictive probability signals a lack of fit
of the model, that is, the observed value T (y) is very unlikely under the posited
model, whereas a posterior predictive probability close to 0.5 indicates that the
model adequately fits the data.
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To assess the adequacy of the model we proposed, we chose 9 discrepancy mea-
sures that target different components of the autologistic model (3.1),

T1 = ∑
(i,j)

I (xij = 1), T2,l = ∑
(i,j)

zi,lI (xij = 1), l = 1, . . . ,7,

T3 = ∑
(i,j)

∑
(ij)∼(ij)′

xij x(ij)′ + (1 − xij )(1 − x(ij)′),

where T1 diagnoses the overall (or marginal effect) adequacy of the model, and T2,l

and T3 diagnose the adequacy of covariate effects and spatial associations, respec-
tively. Along similar lines, for the Potts model (3.2), we examined 22 discrepancy
measures

T̃1 = ∑
(i,j,s)

I (yijs = 2), T̃2 = ∑
(i,j,s)

I (yijs = 3),

T̃3,l = ∑
(i,j,s)

zi,lI (yijs = 2), l = 1, . . . ,7,

T̃4,l = ∑
(i,j,s)

zi,lI (yijs = 3), l = 1, . . . ,7,

T̃5,q = SP,q, q = 1, . . . ,6,

where T̃1 and T̃2 diagnose the overall (or marginal effects) adequacy of the model,
T3,l and T4,l diagnose the adequacy of covariate effects, and T5,q diagnoses the ad-
equacy of spatial associations. We generated 25,000 data replicates using posterior
predictive simulations, and calculated the posterior predictive probability for each
of the aforementioned 31 discrepancy measures. The resulting posterior predictive
probabilities were all between 0.40 and 0.60, suggesting that the proposed model
adequately fits the data. Figure 3 shows the posterior predictive distributions of
selected discrepancy measures (T3 and T̃5,2).

6. Simulation study. We conducted a small simulation study in this sec-
tion to explore the finite sample frequentist/classical properties of the covariate-
effect parameter estimates, and to quantify the effect of excluding spatial asso-
ciations on these estimates when the underlying data generation mechanism is
spatially referenced. Here, we used a much simpler spatial model (as compared
to the model in Section 3) for data generation by reducing the number of spatial
associations and covariates. We considered three spatial association parameters
ψA,ψP,2 and ψP,4, and two covariate-effect parameters β2 and β4, correspond-
ing respectively to a binary and a continuous covariate. We fixed ψP,1 = 0.1.
We generated the binary covariate from a Bernoulli(0.19) distribution, depict-
ing the original dataset with 19% subjects with proper brushing and flossing
habits. We generated the continuous covariate from N(0,0.5). We considered
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FIG. 3. Posterior predictive distribution of T3 (panel a) and T̃5,2 (panel b) based on 25,000 poste-
rior predictive simulations. The vertical lines indicate the observed values of T3 and T̃5,2.

four sets of values for the association parameters: (ψA,ψP,2,ψP,4) = (0.3, 1.0,
0.7), (0.3, 1.5, 1.0), (0.4, 1.0, 0.7) and (0.4, 1.5, 1.0), representing a sequence
of spatial associations increasing from moderate to high levels. We fixed all the
other parameter values as follows: (αM , αD , αF , βM,2, βM,4, βD,2, βD,4, βF,2,
βF,4) = (0.0,−0.2,0.0,0.1,0.15,0.35,0.25,−0.15,−0.15,0.15). For each sce-
nario, we generated 500 datasets. We compared this model to a naive model that
ignores the spatial associations, that is, fitting the missing/nonmissing tooth data
using the standard logistic regression and fitting the surface-level data using a
multinomial regression.

Table 3 summarizes the simulation results, including the empirical bias, root
mean squared error (RMSE) and the coverage probability of the 95% HPD interval,
based on 500 simulations. Compared to the naive method, the proposed approach
has smaller bias and RMSE in all four scenarios, especially for the covariate-effect
parameters, including βM,2, βM,4, βD,2, βD,4, βF,2 and βF,4. In addition, under
the proposed method, the coverage probabilities of the 95% HPD interval are gen-
erally close to the nominal value of 0.95, whereas those of the naive method are
substantially lower than the nominal value and often lower than 50% for some pa-
rameters (e.g., βM,4, βD,2 and βF,4). Based on the simulation results, we conclude
that the exclusion of spatial associations can lead to serious issues in the estimation
of the covariate-effect parameters.

7. Discussion. In this paper, we set out to alleviate some of the methodologi-
cal issues not previously addressed in the context of modeling dental caries. Specif-
ically, risk assessment of “missing” tooth/surfaces separately from the “decayed”
and “filled” tooth surfaces via a two-level model in the context of DMFS/DMFT
for dental caries has never been conducted. If we are not mistaken, this is the first
paper exploring such a model. In particular, our Bayesian hierarchical model not
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TABLE 3
Empirical bias, root mean squared error (RMSE) and coverage probability (CP) of 95% HPD interval for parameter estimates under the proposed

method and the naive method (which ignores spatial correlations)

Setting Method αM βM,2 βM,4 αD αF βD,2 βD,4 βF,2 βF,4

ψA = 0.3 Proposed Bias 0.001 0.006 0.014 −0.002 −0.001 0.007 0.002 −0.005 0.005
RMSE 0.001 0.007 0.014 0.002 0.001 0.008 0.004 0.006 0.005
CP (%) 94.4 95.0 94.8 95.4 94.6 90.4 93.8 91.8 94.2

ψP,2 = 1.0
ψP,3 = 0.7 Naive Bias 0.003 0.251 0.587 −0.221 0.001 0.266 −0.066 −0.212 0.246

RMSE 0.004 0.251 0.587 0.221 0.001 0.266 0.066 0.212 0.246
CP (%) 74.4 49.4 0.2 0.0 77.0 36.2 76.0 51.6 17.2

ψA = 0.3 Proposed Bias 0.000 0.008 0.015 −0.003 0.000 0.002 0.000 −0.003 0.000
RMSE 0.001 0.009 0.015 0.003 0.000 0.004 0.003 0.004 0.002
CP (%) 96.8 94.0 92.4 93.6 95.8 90.2 91.8 93.4 94.2

ψP,2 = 1.5
ψP,3 = 1.0 Naive Bias 0.000 0.251 0.587 −0.406 0.003 0.463 −0.078 −0.391 0.468

RMSE 0.002 0.251 0.587 0.406 0.004 0.463 0.078 0.391 0.468
CP (%) 80.8 51.8 0.2 0.0 68.0 14.2 67.2 18.0 0.8

ψA = 0.4 Proposed Bias 0.001 0.004 0.016 −0.002 0.000 0.002 0.006 −0.005 0.002
RMSE 0.001 0.005 0.016 0.002 0.000 0.004 0.007 0.006 0.003
CP (%) 94.8 93.6 93.8 94.4 95.8 93.4 94.0 92.8 91.2

ψP,2 = 1.0
ψP,3 = 0.7 Naive Bias 0.004 0.421 1.009 −0.224 0.004 0.264 −0.054 −0.214 0.249

RMSE 0.004 0.421 1.009 0.224 0.004 0.264 0.054 0.214 0.249
CP (%) 69.4 26.6 0.0 0.0 79.4 37.2 77.4 48.0 18.8

ψA = 0.4 Proposed Bias −0.001 0.015 0.021 −0.004 0.000 0.001 0.000 −0.008 0.004
RMSE 0.001 0.016 0.021 0.004 0.000 0.003 0.003 0.009 0.004
CP (%) 95.4 94.0 92.6 92.2 96.4 90.0 92.4 91.4 95.0

ψP,2 = 1.5
ψP,3 = 1.0 Naive Bias −0.001 0.447 1.017 −0.415 0.003 0.474 −0.064 −0.410 0.502

RMSE 0.002 0.447 1.017 0.415 0.004 0.474 0.064 0.410 0.502
CP (%) 69.8 21.4 0.0 0.0 67.4 15.0 69.2 16.8 0.6



900 I. H. JIN, Y. YUAN AND D. BANDYOPADHYAY

only quantifies various kinds of (spatial) between-tooth and within tooth-surfaces
associations, but also efficiently explore the response-covariate relationships in
caries progression. We tackled the problem of doubly-intractable normalizing con-
stants (a standard byproduct of autologistic or Potts models) by utilizing an effi-
cient double MH sampler.

A multinomial/logistic framework under the umbrella of spatial generalized lin-
ear mixed models (SGLMM) can be a useful alternative to our two-level (autolo-
gistic and Potts) formulation. We chose to use the autologistic and Potts models
because of ease of interpretation for spatial dependence. Unlike the spatial general-
ized linear mixed model (SGLMM), which uses a latent Gaussian Markov random
field to model spatial dependence, the autologistic and Potts models explain de-
pendence directly using a function of the observations, which makes spatial inter-
actions to be easy to interpret. Our approach provides an extension to the seminal
work of Besag (1972) for analyzing discrete (spatial) data by considering inference
using the intractable full likelihood, and avoiding ad hoc (and often inefficient)
pseudo-likelihood approximations.

Our motivating dataset does not contain missing data. To handle missing data,
a natural and general approach is to impute the missing data using the multiple
imputation method, and then apply the proposed method. Due to the difficulty and
computational burden of calculating doubly-intractable normalizing constants in
the autologistic and Potts models, in practice, we may conduct the multiple im-
putation based on a simple imputation model that ignores the spatial interactions,
and then apply the proposed models that account for the spatial interactions. In
general, handling missing data for the models with doubly-intractable normalizing
constants remains a very challenging problem due to the complexity of posterior
calculation. It is a topic worthy of further research.

When there are many covariates, a certain variable selection procedure may
be needed to obtain a parsimonious model. In general, Bayesian model selection
for the models with doubly-intractable normalizing constant is a very challenging
problem because of the difficulty of calculating posteriors. A simple and practical
approach is to use the traditional forward and backward variable selection proce-
dure based on whether the 90% or 95% credible interval of the parameter estimates
includes 0.

Although our modeling approach has been developed for the analysis of dental
caries assessment data, it can be readily extended to handle general bivariate spa-
tial data with mixed binary and multinomial outcomes. Our proposal can also be
extended into various directions. Longitudinal clinical trials on dental caries, such
as the X-ACT trial [Bader et al. (2013)], lead to a spatio-temporal setup in which
our methods can be conveniently explored. In this paper, we focused entirely on
the efficient risk assessment to understand the complex covariate-response rela-
tionships for progression of dental caries. Certainly, prediction (determining re-
sponses at future time points) can be an important direction of research, primarily
under a spatio-temporal setting, where the objective is to understand whether the D
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and F surfaces might progress to more severe carious states (say, M). Our current
framework is entirely parametric and can be conveniently applied to the evaluation
of other dental caries datasets. Under model misspecification of the parametric
framework (say for the Potts model), one can investigate various nonparametric
specifications as in Johnson et al. (2012). These suggestions are also viable areas
for future research.

APPENDIX A: THE FORM OF NORMALIZING CONSTANTS

The intractable normalizing constant of the autologistic model is

κ(θA) = exp

[∑
(i,j)

xij

{
αM +

7∑
l=1

βM,lZi,l + RA,i

}

(A.1)

+ 1

2
ψA

∑
(i,j)

∑
(ij)∼(ij)′

{
xij x(ij)′ + (1 − xij )(1 − x(ij)′)

}]
,

where X is the sample space of xij . The intractable normalizing constant of the
Potts model is

κ(θP ) = ∑
∀y∈Y

exp

[ ∑
(i,j,s)

I (yijs = 2)

{
αD +

7∑
l=1

βD,lZi,l + RP,i

}

(A.2)

+ ∑
(i,j,s)

I (yijs = 3)

{
αF +

5∑
l=1

βF,lZi,l + RP,i

}
+

6∑
q=1

ψP,qSP,q

]
,

where Y is the sample space of yijs .

APPENDIX B: MCMC UPDATES

When updating ψA, αM , βM simultaneously in the autologistic model using the
approximate exchange algorithm, the MH ratio can be derived from equation (4.1)
as follows:

(B.1) r
(
θA, θ ′

A,x′|x) = π(θ ′
A)

π(θA)
· f (x|RA, θ ′

A)

f (x|RA, θA)
· f (x′|RA, θA)

f (x′|RA, θ ′
A)

· f (ψ ′
A,ψP |ρ)

f (ψA,ψP |ρ)
.

When updating σ 2
A in the autologistic model, the MH ratio can be derived from

equation (4.1) as follows:

(B.2) r
(
σ 2

A,σ 2′
A |RP

) = π(RA|σ 2′
A )π(σ 2′

A )

π(RA|σ 2
A)π(σ 2

A)
.

When updating RA,i sequentially in the autologistic model, the MH ratio can be
derived from equation (4.1) as follows:

(B.3) log
{
r
(
R′

A,i,RA,i |σ 2
A

)} =
∑

(i,j) xijR
′
A,i∑

(i,j) xijRA,i

×
∑

(i,j) x
′
ijRA,i∑

(i,j) x
′
ijR

′
A,i

.
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When updating ψP , αD , βD , αF , βF simultaneously in the Potts model using the
approximate exchange algorithm, the MH ratio can be derived from equation (4.1)
as follows:

(B.4) r
(
θP , θ ′

P ,y′|y) = π(θ ′
P )

π(θP )
· f (y|RP , θ ′

P )

f (y|RP , θP )
· f (y′|RP , θP )

f (y′|RP , θ ′
P )

· f (ψA,ψ ′
P |ρ)

f (ψA,ψP |ρ)
.

When updating σP in the Potts model, the MH ratio can be derived from equa-
tion (4.1) as follows:

(B.5) r
(
σ 2

P ,σ 2′
P |RP

) = π(RP |σ 2′
P )π(σ 2′

P )

π(RP |σ 2
P )π(σ 2

P )
.

When updating RP,i sequentially in the Potts model, the MH ratio can be derived
from equation (4.1) as follows:

log
{
r
(
R′

P,i,RP,i |σ 2
P

)} =
∑

(i,j,s){I (yijs = 2) + I (yijs = 3)}R′
P,i∑

(i,j,s){I (yijs = 2) + I (yijs = 3)}RP,i
(B.6)

×
∑

(i,j,s){I (y′
ijs = 2) + I (y′

ijs = 3)}RP,i∑
(i,j,s){I (y′

ijs = 2) + I (y′
ijs = 3)}R′

P,i

.

The MH ratio for updating ρ is

(B.7) r(ρ|ψA,ψP ) = π(ψA,ψP |ρ′)
π(ψA,ψP |ρ)

f (ρ ′)
f (ρ)

.

For the separate model, equation (B.1) and equation (B.4) will be changed as fol-
lows:

r
(
θA, θ ′

A,x′|x) = π(θ ′
A)

π(θA)
· f (x|RA, θ ′

A)

f (x|RA, θA)
· f (x′|RA, θA)

f (x′|RA, θ ′
A)

,

(B.8)

r
(
θP , θ ′

P ,y′|y) = π(θ ′
P )

π(θP )
· f (y|RP , θ ′

P )

f (y|RP , θP )
· f (y′|RP , θP )

f (y′|RP , θ ′
P )

.
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SUPPLEMENTARY MATERIAL

Supplement to “A Bayesian hierarchical spatial model for dental caries
assessment using non-Gaussian Markov random fields” (DOI: 10.1214/16-
AOAS917SUPP; .zip). We provide the C code and associated instructions for im-
plementing our Bayesian two-level hierarchical model [Jin and Yuan (2016)].
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