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LEVEL-SCREENING DESIGNS FOR FACTORS WITH
MANY LEVELS

BY PHILIP J. BROWN AND MARTIN S. RIDOUT

University of Kent

We consider designs for f factors each at m levels, where f is small
but m is large. Main effect designs with mf experimental points are pre-
sented. For two factors, two types of designs are investigated, termed saw-
tooth and dumbbell designs, based on a graphical representation. For three
factors, cyclic sawtooth designs are considered. The paper seeks optimal and
near optimal designs which involve factors with many levels but few observa-
tions. It also investigates issues of robustness when as much as one third of the
data is structurally missing. An important area of application is in screening
for drug discovery and we compare our designs with others using a published
data set with two factors each with fifty levels, where the dumbbell design
outperforms others and is an example of an inherently unbalanced design
dominating more balanced designs.

1. Introduction. In the context of factorial experimentation, the term screen-
ing design usually refers to designs in which there are many factors and the aim is
to identify the most important of these using designs with a small number of levels
of each factor; see, for example, Box, Hunter and Hunter (2005), Chapters 6, 7. In
contrast, this paper is concerned with experiments with a small number of factors,
but where each factor has a large number of unordered levels. Our defining ex-
ample, from Pickett et al. (2011), has two factors each with 50 levels, comprising
different chemical modifications made at two sites on a target molecule. We do
not assume any knowledge of these levels, either physical or chemical. The aim
is to identify modifications that result in a high level of pharmaceutical activity.
This aim presents a different type of screening problem that has wide applicability
in drug development and other areas and can be supplemented by more informed
knowledge. We refer to such designs as level-screening designs. They should pro-
vide fertile ground in widely used combinatorial chemistry [Thayer (1996)], a lab-
oratory technique in which many molecular combinations, exploiting chemical se-
ries and synthesis routes, are tested for biological activity.

One common feature of both problems is that it may be feasible to include only
a small fraction of all possible combinations of factor levels in the experiment.
Another common feature is a focus on main effects at this initial experimentation
stage, with interactions assumed to be negligible. Conventional interaction models,
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with a parameter for each combination of factor levels, are in any case unwieldy
when factors have many levels and alternative approaches, for example, grouping
factor levels and exploring interactions at the group level [Franck, Nielsen and
Osborne (2013)], seem more promising. In the example of Section 4, the main
effects of the factors appear to be large in relation to any interactions.

In this paper we consider designs for f factors, each at m levels, where f = 2
or f = 3, but m is large, assuming an additive main-effects model. A saturated
design that allows estimation of all main effect parameters, but has no residual
degrees of freedom, requires (m−1)f +1 experimental units. We consider slightly
larger designs, with mf units, since these allow the possibility for the levels of
each factor to be equally replicated. Section 2 presents two basic designs for two
factors, the sawtooth, which has equal replication, and the dumbbell, which does
not. We compare these designs by various criteria, including the average variance
of the estimated difference between two factor levels and the average variance of
the estimated expected response for all combinations of factor levels. Section 3
extends these designs to three factors and focuses particularly on cyclic sawtooth
designs. Section 4 explores the application of these designs to the data of Pickett
et al., and compares them with designs that select combinations of factor levels in
a randomized way [Pickett et al. (2011), Borrotti et al. (2014)]. There are a large
number of missing values in this pharmaceutical application and so an important
issue is the robustness of the designs to missing values. Our results indicate that
for two factors the dumbbell design offers the best combination of efficiency and
robustness. Finally, in Section 5 we discuss extensions and areas for future work.

2. Designs for two factors. We consider factors A and B , each at m levels,
and assume that the response Yijk to replicate k of level i of factor A in combina-
tion with level j of factor B follows the additive model

Yijk = αi + βj + εijk (1 ≤ i, j ≤ m,1 ≤ k ≤ nij ),(1)

where the εijk are independent N(0, σ 2) random variables and where nij is the
number of replicates of the treatment combination AiBj ; usually, nij = 1 and the
subscript k can be omitted. The model is over-parametrized and for estimation we
impose the constraint β1 = 0. Here we have followed the parametrization of Tjur
(1991), whose results we use later. We could also have chosen the more conven-
tional parametrization

Yijk = μ + αi + βj + εijk (1 ≤ i, j ≤ m,1 ≤ k ≤ nij ),

with constraints α1 = β1 = 0. However, the optimality results that we develop are
invariant to the chosen parametrization. In either parametrization, the number of
parameters to be estimated is 1 + 2(m − 1).

We consider designs with 2m experimental units in which all parameters are
estimable. Such designs only provide a single degree of freedom for estimating σ 2.
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However, the objective of this initial screening stage is to identify the “better”
levels of each factor to take through to further stages of experimentation, where in
our application “better” means the factor levels with the largest estimated effects,
interpreted fairly liberally, and in reality further responses would be investigated,
for example, safety and ADME (absorption, distribution, metabolism, excretion)
[Balani et al. (2005)]. The assays for such extra attributes were not done for the
current application. At this stage we are not interested in making formal statistical
inferences, for which a better estimate of σ 2 would be required.

One criterion for comparing designs is to consider the average variance of the
estimated differences α̂i1 − α̂i2 across all pairs of levels of factor A. Of course, one
might equally consider the corresponding average variance for factor B , but the
designs that we consider are symmetrical in A and B , so there is no loss of gener-
ality in considering factor A. We denote this average variance by VA. A design that
minimizes VA within a particular class of designs is said to be A-optimal within
that class [Atkinson and Donev (1992), Section 10.1].

Another criterion, which is arguably more important for the application in Sec-
tion 4, is the average variance over all combinations (i, j) of the estimated ex-
pected responses

μ̂ij = α̂i + β̂j .

For brevity, and because most factor combinations AiBj are not included in the
experiment, we refer to the μ̂ij as predictions, and denote their average variance
by VP . A design that minimizes VP within a particular class of designs is said to
be P -optimal within that class; for continuous predictors, minimizing the average
(integrated) prediction variance over a range of the predictor space is sometimes
known as V -optimality [Atkinson and Donev (1992), Section 10.7] or I -optimality
[Dette and O’Brien (1999)].

A further criterion that is widely used in experimental design is the generalized
variance of a set of parameter estimates, which is proportional to the volume of
a confidence ellipsoid for the parameters. Here, the relevant parameters are the
estimated treatment effects for factor A or, equivalently, for factor B . A design
that minimizes the generalized variance within a class of designs is said to be D-
optimal within that class [Atkinson and Donev (1992), Section 10.1]. Although we
include some results on this criterion, we regard it as less relevant for applications
involving qualitative factors than the earlier criteria.

The generalized variance is calculated here as the product of the nonzero eigen-
values of the covariance matrix of the estimated treatment effects for factor A.
Since this matrix has rank m − 1, the positive (m − 1)th root of the generalized
variance, which we denote by VD and which is sometimes termed the standardized
generalized variance, is more useful for comparing different values of m.
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2.1. Sawtooth designs. Consider the following design, in which the 2m design
points are partitioned into two sets of m, such that each level of A and each level
of B occurs once in each set:

Set 1 Set 2
Factor A 1 2 . . . m − 1 m 1 2 . . . m − 1 m

Factor B 1 2 . . . m − 1 m 2 3 . . . m 1

The left panel of Figure 1 shows a graphical representation of this design for
m = 25, in which a solid line segment joins level i of factor A to level j of factor B

if and only if the combination AiBj occurs in the design. Based on this graphical
representation, we refer to this design as a sawtooth design.

An alternative representation of the sawtooth design is obtained by drawing a
line segment to join two levels of factor A if and only if they occur together in
the design with the same level of factor B , and similarly for the levels of factor B .
It gives rise to the concentric circles shown with dashed lines in the left panel
of Figure 1. Structurally, we can regard the design for factor A as an incomplete
block design with blocks of size 2 defined by the levels of factor B , and similarly
with the factors interchanged, so that A acts as a blocking factor for B . These
are known as loop designs and have been studied, for example, in the design of
microarray experiments [Kerr and Churchill (2001), Vinciotti et al. (2005)]. The
sawtooth design therefore comprises a pair of interlinked loop designs.

FIG. 1. Sawtooth and dumbbell designs for factors with m = 25 levels.
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A general design in which each level of each factor occurs in each set has the
following form:

Set 1 Set 2
Factor A 1 2 . . . m − 1 m 1 2 . . . m − 1 m

Factor B 1 2 . . . m − 1 m π(1) π(2) . . . π(m − 1) π(m)

where the levels of factor B are relabeled if necessary to give the factor combina-
tions in Set 1 and where π(·) is a permutation of {1, . . . ,m}.

Recall that a cycle of length r is a circular sequence x1 → x2 → ·· · → xr → x1,
where the elements x1, . . . , xr are distinct. It is well known that any permutation
can be decomposed into disjoint cycles, and the following lemma, which is proved
in Section 1 of the supplemental material [Brown and Ridout (2016)], shows that
the cycle decomposition of the permutation π(·) is key to understanding the statis-
tical properties of this design. Specifically, let cπ denote the number of cycles of
π(·) and let Xπ denote the corresponding model matrix for the additive model (1).

LEMMA 1. The model matrix Xπ is of rank 2m−cπ , in particular, it is of rank
2m − 1, implying that all parameters are estimable if and only if the permutation
π(·) consists of a single cycle and is not the identity permutation. All such permu-
tations are isomorphic to one another and the matrices X′

πXπ have the same set
of singular values. The product of the (2m − 1) nonzero singular values is 4m2.

That all single-cycle permutations are isomorphic to one another can be seen
by relabeling the sawtooth design according to the permutation. For example, for
m = 6 levels, an example of a single cycle permutation is 1 → 4 → 2 → 3 →
6 → 5 → 1. We would relabel around the sawtooth to give the factor combinations
A1B1, A1B4, A4B4, A4B2, A2B2, A2B3, . . . , A5B1. Because the permutation is
a cycle, the final line segment connects to the initial line segment, completing the
circular sawtooth. Conversely, if the permutation has more than a single cycle, then
the sawtooth cannot be relabeled in this way, and the design becomes disconnected,
implying that it is no longer possible to estimate all the parameters in the model.

The results of this section indicate that, among designs in which the 2m points
can be partitioned into two sets of size m such that each level of each factor occurs
in each set, any design that allows estimation of all 2m − 1 model parameters is
equivalent to the sawtooth design after suitable relabeling.

2.2. Dumbbell designs. The left panel of Figure 1 shows that, although the
sawtooth design is connected, with a path from every factor level to every other
factor level, the path lengths can be large. We show below that, as a result, some
contrasts and predictions have large variances. An alternative design, with short
path lengths, which we term a dumbbell design, is shown in the upper right panel
of Figure 1. In this design, each level of factor B is paired with a single level,
say A1, of factor A and similarly each level of factor A is paired with one level,
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say B1, of factor B . We refer to the treatment combination A1B1 which links the
two parts of the design as the anchor point of the design. By suitable relabeling,
any treatment combination can be chosen as the anchor point of the dumbbell
design. We note that the dumbbell design is a particular instance of a one-factor-
at-a-time (OFAT) design [Daniel (1973)]. Notwithstanding suboptimal behavior in
general, this two factor situation is special and certain optimality results are given
in the next section.

The dumbbell design illustrated in the upper right panel of Figure 1 has two
replicates of the anchor point, indicated by the double edge joining A1 to B1. This
replication ensures that the design has 2m points, but a single replicate only is
needed to allow all parameters in the model to be estimated. An alternative 2m-
point design, which we refer to as a cross-linked dumbbell design, shown in the
lower right panel of Figure 1 has a single replicate of A1B1, but has an additional
factor combination AjBk (j > 1, k > 1) linking the two sides of the dumbbell; in
Figure 1, j = k = 2.

2.3. Comparison of the sawtooth and dumbbell designs. Since we are inter-
ested in the relative values only of variances from different designs, and since
these are all proportional to σ 2, we assume without loss of generality that σ 2 = 1.

We first consider variances of estimated pairwise differences of factor levels.
The sawtooth design for factor A is equivalent to a loop design, so an argument
of Bailey (2007), Section 4.1, applies. Bailey notes that α̂i − α̂i′ can be estimated
by a contrast involving all the observations that link Ai to Ai′ in the sawtooth di-
agram. The contrast coefficients are alternately +1 and −1, so the variance of the
contrast is just the sum of the variances of the observations involved which are in-
dependent by virtue of independence of compounds. Each individual observation
has variance σ 2. With k = |i − i′|, there are 2k independent steps in one direction,
and 2(m − k) in the other direction, giving two uncorrelated estimators, with vari-
ances 2kσ 2 and 2(m − k)σ 2. The least squares estimator α̂i − α̂i′ is a weighted
linear combination of these two estimators, with weights chosen to minimize the
variance of the resulting estimator. This calculation gives

var(α̂i − α̂i′) = 2k(m − k)

m
,

where we have set σ 2 = 1 as indicated above. It follows that the minimum variance
is 2(m − 1)/m, the maximum variance is 2t (m − t)/m, where t is the integer part
of m/2, and the average variance is V saw

A = (m + 1)/3.
This result is a simple example of the approach of Tjur, which exploits an anal-

ogy with electrical networks to calculate variances of contrasts of the form α̂i − α̂i′
and variances of predictions of the form α̂i + β̂j for any 2-factor design, based on
representing the design as a 2-color graph as in Figure 1. The general approach
is more complicated when the graph has circuits, as for the cross-linked dumbbell
design. In Section 2 of the Supplemental Material [Brown and Ridout (2016)], we
use this approach to prove the following theorem.
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TABLE 1
Expressions for VA, VP and VD for the 2-factor sawtooth, dumbbell and cross-linked

dumbbell designs

Design VA VP VD

Sawtooth m+1
3

2m2+1
6m

( 2m−1

m2 )1/(m−1)

Dumbbell 2m−1
m

5m2−6m+2
2m2 (m+1

2m
)1/(m−1)

Cross-linked dumbbell 2m−3
m−1

11m2−20m+8
4m2 ( 1

2 )1/(m−1)

THEOREM 1. Among all designs with 2m points, the dumbbell design is P -
optimal for m ≥ 8 and the cross-linked dumbbell design is A-optimal for m ≥ 4.

Table 1 gives exact expressions for VA, VP and VD for the three designs shown
in Figure 1. By comparing variance to that of a (hypothetical) orthogonal design
we can examine efficiencies. As m → ∞, the A-efficiency and the D-efficiency
of the sawtooth design both approach zero, whereas the A-efficiency and the D-
efficiency of the dumbbell design both approach one. Conversely, as m → ∞, the
P -efficiency of the sawtooth design again approaches zero, but the limiting P -
efficiency of the cross-linked dumbbell design is 10/11. Therefore, our preference
on the basis of efficiency is for the dumbbell design, since it has very similar A-
and D-efficiency to the cross-linked dumbbell, but is somewhat more P -efficient.

For the sawtooth design, the pattern of the variances of pairwise differences
var(α̂i − α̂j ) is very similar to the pattern of variances of predictions var(α̂i + β̂j ).
This pattern is illustrated in Figure 2 for the sawtooth design with m = 25.

A further advantage of the dumbbell design over the sawtooth is that estimates
of differences between factor levels of the form α̂i − α̂i′ are less highly correlated in
the dumbbell design, as are the estimates of expected response α̂i + β̂j ; details are
provided in Section 3 of the Supplemental Material [Brown and Ridout (2016)].

Throughout this paper we assume that the number of levels of factors are the
same. This equality is not necessary but just simplifies formulae. For example, the
dumbbell with an unequal number of levels would just be a lopsided dumbbell; the
sawtooth for mA > mB levels of A and B would require mA + mB observations
where some B levels would be recycled.

2.4. Missing values. The effect of occasional missing values is rather different
for the three designs.

If one of the two replicates of the anchor point of the dumbbell design is lost,
then VA = 2 and VP = (3m2 − 4m + 2)/m2. If both replicates are lost, then the
design becomes disconnected and not all parameters can be estimated. Thus, the
design is problematic unless the anchor point can be chosen to have small proba-
bility of being lost; we return to this point in Section 4.
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FIG. 2. Comparison of variances of pairwise differences and variances of estimated expected re-
sponses for the sawtooth design with m = 25: darker shading corresponds to smaller variances. The
scales of the two graphs differ slightly: LH panel, 0 (black) to 15 (white); RH panel, 0.983 (black) to
14.983 (white).

If any other design point is lost from the dumbbell design, say A1Bj , then the
design provides no information about the parameter βj , and therefore no predic-
tions can be made that involve this parameter. On the other hand, the values of VA

and VP for differences and predicted values that can be estimated are increased
only modestly.

The cross-linked dumbbell provides some robustness against loss of the anchor
point. If the single replicate of the anchor point is lost, but the cross-link is retained,
then we find

VA = 2(m2 + m − 4)

m(m − 1)
and VP = 5m2 − 12m + 9

m2 .

In contrast, for the sawtooth design, if a single point is lost, then all parameters
can still be estimated, but the average variances of differences and predictions
increase considerably. Moreover, if a second point is lost, then the design becomes
disconnected and not all parameters can be estimated.

In Section 4 we examine the practical performance of these designs in the pres-
ence of a considerable number of missing values.

3. Designs for three factors. Although we specifically consider designs for
three factors with 3m points, the ideas in this section could be extended to designs
for f > 3 factors with mf points.

3.1. The 3-factor sawtooth designs. The 2-factor sawtooth design illustrated
in Figure 1 consists of two sets of m design points. Within each set, the levels
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of the two factors are developed cyclically from the generators (1,1) (Set 1) and
(1,2) (Set 2).

With three factors, there are many more possibilities and full-rank designs need
not have a cyclic structure. However, we have focused on designs that extend the
cyclic structure to three sets of three factors so that a design is specified by its three
generators. For example, with m = 5, the generators (1,1,1), (1,2,4) and (1,4,3)

produce the design

Set 1 Set 2 Set 3
Factor A 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Factor B 1 2 3 4 5 2 3 4 5 1 4 5 1 2 3
Factor C 1 2 3 4 5 4 5 1 2 3 3 4 5 1 2

Designs constructed in this way have been termed cyclic superimposed designs
by Hall and Williams (1973). However, their motivation was different. They were
interested in superimposing an additional set of treatments on an existing design,
assuming no interaction between the original treatments and the new treatments.
They focused on two sets of treatments where the initial design was a cyclic in-
complete block design. Our focus here is on designs with three factors, arranged
in three sets, where each level of each factor occurs once in each set.

The factor levels can always be reordered so that the generator for Set 1 is
(1,1,1), as above. We have investigated the performance of generators for the
other two sets for m ≤ 12 numerically. Typically, designs with the same character-
istics can arise from several different sets of generators, but we found that designs
with optimal properties always had at least one representative with generators of
the form

Set 1: (1,1,1), Set 2: (1,2, k + 1), Set 3: (1, k + 1, k),

where 1 ≤ k ≤ m, and where k + 1 is replaced by 1 when k = m. We therefore
consider generators of this form for larger values of m. Finding an optimal design
requires a linear search over the possible values of k, which can be done efficiently
even for moderately large values of m using methods described in Section 4 of
the Supplemental Material [Brown and Ridout (2016)]; for m = 100, for example,
evaluating designs for all possible values of k takes just a few seconds of comput-
ing time. Moreover, the search time can be further reduced by a factor of two by
noting that designs with k = j and k = m + 1 − j have equivalent statistical prop-
erties so that we need consider only 1 ≤ k ≤ r , where r = int{(m + 1)/2}. This
equivalence arises because the design generated by k = j for factors A, B and C

is identical to the design generated by k = m + 1 − j except that factors A and C

are interchanged.
To compare different choices of k using different criteria, we work with effi-

ciencies, as defined below, rather than variances, since the variances for different
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criteria are not directly comparable. In the cyclic design, each factor level is repli-
cated 3 times. To calculate the efficiency, we therefore calculate the ratio of the
variance for an (hypothetical) orthogonal design with three replicates of each fac-
tor level to the variance of the cyclic design. This approach leads to the following
formulas for A-, P - and D- efficiency:

EA = 2

3
V −1

A ,

EP = 3m − 2

3m
V −1

P ,

ED = 1

3
V

−1/(m−1)
D ,

where VA, VP and VD are analogous to the corresponding quantities for 2-factor
designs defined in Section 2.

Figure 3 shows these efficiencies for different values of k for m = 7 and m = 20.
The efficiencies EA and EP are numerically very similar and lead to the same
optimal choice of k in each case. More generally, we found numerically that,
for all m in the range 3 ≤ m ≤ 100, the same value(s) of k maximize(s) EA

and EP .

FIG. 3. Efficiencies of cyclic designs with different choices of k for m = 7,20.
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TABLE 2
Optimal choice(s) of k in the range 1 ≤ k ≤ int{(m + 1)/2}, to maximize EA and EP , for selected

values of m

m 5 10 15 20 25 30 35 40 45 50
Optimal k 2, 3 3, 4 4 6 10, 11 9 6 12 7, 13 7, 8

m 55 60 65 70 75 80 85 90 95 100
Optimal k 21 14, 23 15 16 14, 17, 23 15 16 25 40 28, 37

The efficiency ED gives numerically different values, but these follow a similar,
though less marked, pattern to the other two efficiencies as k varies. For m = 7,
all three criteria give k = 3 (or the equivalent, k = 5) as the optimal choice. For
m = 20, the optimal choice based on EA and EP is k = 6 (or k = 15), whereas for
ED the optimal choice is k = 9 (or k = 12); however, the value of ED for k = 6 is
99.83% of the optimal value.

For a given value of m, we recommend choosing k to optimize EA and EP

because we consider these to be more important criteria than ED for the type of
application that we are interested in, and because ED fluctuates less markedly with
k than EA and EP ; for 3 ≤ m ≤ 100, the resulting value of ED is never less than
99.40% of the optimal value, with this minimum occurring for m = 12.

The optimal choice of k for selected values of m is shown in Table 2.
An efficient algorithm for computing VA and VP for 3-factor sawtooth designs

is given in Section 4 of the Supplemental Material [Brown and Ridout (2016)].
An alternative visual representation of the effect of varying k for fixed m is based
on this algorithm, which generates two sets of m points in 3m-dimensional space,
such that VA is the mean squared distance between points within a group and VP

is the mean squared distance between points in different groups. Figure 4 shows a
2-dimensional representation of these two groups of points for m = 50 using clas-
sical multidimensional scaling (principal coordinate analysis), based on the matrix
of squared distances between points. The points appear as a skew-symmetric “but-
terfly,” with the wings representing the two groups. Thus, insofar as the relative
distances are preserved, what is desirable is small wings and small distances be-
tween the wings; the empirical results indicate that choices of k that are good
under one criterion will also be good under the other. Figure 4 indicates that, in
addition to the optimal choice of k = 7 or k = 8 (circled), other good choices of k

are k = 15,19,22,6,9,12,14,23.

3.2. OFAT designs for 3 factors. A natural way to extend the dumbbell design
is to have an anchor point A1B1C1 replicated three times. The remaining design
points are of the form A1B1Cj , A1BjC1 and AjB1C1 for j = 2, . . . ,m. However,
this design gives larger values of VA and VP (although a smaller value of VD) than
an alternative OFAT design that fixes the factor combinations B1C1, A2B2 and
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FIG. 4. A butterfly plot for m = 50. The mean distance between points within each wing is repre-
sentative of VA and the mean distance between a point on one wing and a point on the other wing is
representative of VP . The circle indicates the optimal choice of k.

A1C2 while varying the factors A, B and C in turn across all their levels. For this
latter design, the following explicit expressions may be obtained:

V OFAT
A = 2(3m2 − 5m + 1)

3m(m − 1)
,

V OFAT
P = 11m2 − 18m + 3

3m2 ,

V OFAT
D =

(
5m + 2

12m

)1/(m−1)

.

It follows that as m → ∞, EOFAT
A → 1/3, EOFAT

D → 1/3 and EOFAT
P → 3/11.

3.3. Comparison of the 3-factor sawtooth and dumbbell designs. Figure 5
shows efficiencies of the 3-factor OFAT design and the optimal 3-factor cyclic
sawtooth design for m ≤ 150. For the cyclic design, the values of EA and EP are
similar and less than ED , whereas for the OFAT design the values of EA and ED

are similar and greater than EP . Over this range of m values, the sawtooth design
is considerably more efficient than the OFAT design in terms of EP and ED , but,
in terms of EA, the OFAT design becomes more efficient for m > 120.

4. Application to lead optimization. We utilize data generated and analyzed
by Pickett et al. that are available at http://pubs.acs.org. The data are intended to
be typical of data arising in the process of lead optimization in drug development,

http://pubs.acs.org
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FIG. 5. Efficiency measures for the optimal 3-factor cyclic sawtooth design and the 3-factor OFAT
design

where a promising compound (the lead) is improved by chemical modifications.
In this application the compound can be modified at two sites, A and B , and 50
possible modifications (chemical reagents) were considered at each site. Thus, A

and B are the factors and the different reagents are the levels of the factors. The
basic compound was an inhibitor and the aim was to synthesize all 50 × 50 pos-
sible modifications and measure their inhibitory strength (pIC50) by means of an
assay. However, the “complete” data matrix has 796 missing values (32%), mostly
because the modified compound could not be synthesized (23%) or because it was
found to be inactive (7%), but also because occasionally the assay failed (1%) or
was not undertaken (1%).

The paper of Pickett et al. (2011) also goes on to apply sequential design through
genetic algorithms to achieve good designs with at most 140 observations. A sim-
ilar brief directs Borrotti et al. (2014) to develop algorithms for sequential design
combining both genetic algorithm and statistical modeling ideas. We have instead
concentrated on statistical design and inference ideas for fixed sample size design,
which may be augmented at a later stage by further samples to explore the design
space and modeling alternatives in the light of information gained.

In the analysis below, we exclude the five levels of each factor that have the
largest number of missing values (A10, A13, A20, A23, A36; B26, B30, B36,
B45, B50) to leave a 45 × 45 array; most of the values omitted (397/426) were
where the modified compound had not been synthesized and the overall incidence



LEVEL-SCREENING DESIGNS 877

of missing values is reduced to 18%. The motivation for excluding these factor
levels was to give a fairer comparison of different designs, as explained below.

Fitting an additive model by adding the factors in either order yields the follow-
ing analyses of variance:

Term d.f. MS Term d.f. MS

A 44 2.92 B 44 31.29
+B 44 31.71 +A 44 3.34
Residual 1566 0.13 Residual 1566 0.13

Evidently, any interaction effects are small in relation to the magnitude of the main
effects. Moreover, while the factors are not orthogonal due to the minimal design
and missing values, it is clear that varying the chemical structure at position B has
a much greater effect on the strength of inhibition than varying the structure at po-
sition A. Indeed, fitting factor B on its own explained about 80% of the variation,
whereas factor A on its own explained only 7.5%.

We consider designs with 2m = 90 points, except for the dumbbell design where
there are no replicated values for the anchor point in the data set and the design
therefore has only 89 points. While Section 2 has given the theoretical efficien-
cies of the sawtooth and dumbbell designs, these results assume that there are no
missing values. Given that 18% of the data are missing, no design will be able
to estimate all of the main effect parameters and different criteria are required for
comparing designs. Moreover, the performance of a design depends on the particu-
lar alignment of missing values. We therefore generated 1000 designs of each type
for comparison and analyzed the available data for each design as outlined below.

For the dumbbell design, we assume that background pharmaceutical knowl-
edge will enable us to select an anchor point that does not yield a missing response.
Alternatively, this inability to synthesize could be checked by testing a single com-
pound prior to the main experiment. If successful, then no extra compounds would
be needed. If unsuccessful, then further compounds would need to be tested. How-
ever, with a proportion of q = 0.18 compounds unable to be made, the expected
waiting time is only q/(1−q) = 0.22 extra compounds. Therefore, for the simula-
tion we selected the anchor point at random from all treatment combinations with
a nonmissing response. We note also that the dumbbell here has potentially 1 less
observation than the sawtooth and other designs since there is no replication of
the anchor point. The remainder of the design is determined by the anchor point.
For the sawtooth, we used the design on the left of Figure 1 (extended to m = 50),
after first applying a random permutation to the levels of A and B as outlined in
Section 2.1.

In addition, we considered two further designs. The first simply chooses 2m =
90 treatment combinations at random, without replacement. The second is the ini-
tial design of Borrotti et al. who explored evolutionary designs based on the same
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data set. Their initial 2m observation fixed design generates treatment combina-
tions by pairing each level of factor A with a randomly chosen level of factor B ,
and each level of factor B with a randomly chosen level of factor A. It is unclear
whether the random choice of levels of the second factor is made with or without
replacement, but we have assumed that this choice is done without replacement,
which gives slightly better performance.

Neither of these latter designs would be desirable in the absence of missing
values, since the probability that the resulting design can estimate all main effect
parameters is small. For the design of Borrotti et al., it follows from Lemma 1 that
this probability is 1/m, since this proportion is the fraction of all permutations of
m objects that consist of just a single cycle. For the completely random design, the
probability would be much smaller. However, in the presence of missing values,
where no design can estimate all of the main effect parameters, these designs may
be more competitive.

Designs were compared using the following criteria:

C1 The number of nonmissing values in the design (maximum 90).
C2 The proportion of the 452 (= 2025) treatment combinations for which pre-

dictions can be made.
C3 The standardized root mean squared prediction error, calculated as

RMSPE/σ̂ , where σ̂ = 0.3571 is the square root of the mean square error from
fitting the additive main effect model to the full set of 452 data points. The RM-
SPE is calculated for all treatment combinations for which prediction is possible,
but excluding the combinations that are present in the design.

C4 The average true response of the 10 treatment combinations that are pre-
dicted to have the highest response. This measure is used by Pickett et al.

C5 The Spearman rank correlation between the parameter estimates α̂i from
fitting the main effect of factor A to the data from the design and the correspond-
ing parameter estimates from fitting the main effect of factor A to the full data set.
A high value indicates reasonable agreement between the data from the experimen-
tal design and the full data set in terms of the rank ordering of the A parameters.

C6 Similar to C5, but based on factor B .

Figure 6 shows boxplots of these different measures, summarizing the 1000 in-
dividual designs of each type. The average number of nonmissing values (C1) was
broadly similar for all types of design, though the values in individual experiments
were more variable for the dumbbell design. If the full data set is used, without
omitting the factor levels with the most missing values, the dumbbell design usu-
ally has fewer missing values than the other designs, because the dumbbell design
is chosen conditionally on the anchor point having a nonmissing response. Ex-
cluding the factor levels with the most missing values means that the designs are
at least broadly comparable.
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FIG. 6. Boxplots for 1000 simulations and m = 45 levels of A and B: comparative criteria, (C3)
root mean square prediction error, (C4) best ten predictors, (C5, C6) rank correlation of predictions,
(C1, C2) direct effect of missingness, for five types of design when applied to the lead optimization
activity data set.

Although it has little advantage in terms of missing values, the structure of the
dumbbell design allows it to predict responses for a higher proportion of the com-
binations of factor levels (C2) on average than the other designs, though it occa-
sionally performs poorly. The purely random design, which has the least structure
of the designs considered, performs poorly on this criterion. Despite making more
predictions on average than other designs, the dumbbell gives the most accurate
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predictions, as judged by the RMSPE (C3). The purely random design does better
than the other two designs on this criterion, but it typically makes fewer predictions
than the other designs.

On average, the mean response of the predicted top-10 treatment combinations
(C4) is higher for the dumbbell design than for the other designs, which all perform
similarly. The dumbbell design also has the best performance in terms of rank
correlation (C5, C6). Rank correlation values are considerably higher for factor B

than for factor A, reflecting the fact that the main effect parameter estimates differ
more for factor B than for factor A in the full data set.

Overall, the dumbbell design appears to be the most satisfactory design, al-
though occasionally it performs poorly due to missing data. This behavior is when
an anchor point is chosen involving an A or B level (or both) for which there are
very few compound combinations. The sawtooth design and the initial fixed de-
sign of Borrotti et al. perform similarly. This concordance is not surprising since
the designs are similar in general structure. In the absence of missing data, the saw-
tooth design performs at least as well and usually better, but the presence of nearly
20% missing data removes this advantage. The random design is not recommended
because typically it leads to fewer predictions than other designs.

These design comparisons remain pertinent to a wider inferential process in
which further responses are compared (see Section 2).

5. Discussion. We have described approaches to design in situations where
there are few factors but each is at many levels. These designs assume main-effects
models. They are evidently good for the data in the application which shows little
interaction. The f m observations or, more generally,

∑f
i=1 mi with mi levels to

the ith factor, are near minimal with just one spare degree of freedom when there
are two factors. Various strategies are natural for augmenting such designs. One
might surmise that interactions are much more likely between factor levels which
have sizeable main effects. There might be information on quantitative variables,
for example, solubility, molecular size and dipole moment, that underlie the fac-
tors, and they may enable grouping of levels through reagent similarity. All these
considerations can be part of an augmentation process which is enabled and facili-
tated by the minimal designs we have described. Much is known about two-factor
designs, but for three-factor and higher designs many questions are still open and
even connectivity issues can be problematic [Wynn (2008)]. The appeal of cyclic
designs [see John and Williams (1995)] is that they are connected and easy to
analyze, and often near optimal, although not necessarily optimal (see below).

The sequential genetic algorithms of Pickett et al. (2011) and the hybrid ver-
sions such as Borrotti et al. (2014) take a more machine learning approach and the
algorithms involve ideas with biological roots such as “crossover” and “mutation”
of levels. In the genetic algorithm of Pickett et al. (2011) there are 10 equal sized
generations, each of 14 observations, allowing a total experimental design of 140
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observations. Borrotti et al. (2014), on the other hand, take a large initial sample
of 100, as detailed in Section 4. This sample size potentially allows estimation of
all main effects provided there are (i) no missing data and (ii) no internal cycles
as discussed in Lemma 1. This initial sample acts as a base for subsequent data
selection guided by random forest modeling, and further sets of 10 observations
are generated with just four generations allowed by the total resource restriction of
140 observations.

The potential Achilles heel of the dumbbell design is the need for an anchor
point. However, it is clear from Pickett et al. (2011) that it need not be a prob-
lem as there is sufficient pharmaceutical knowledge about the availability of some
compounds. In fact, they seed their first generation with two compounds which
were known to be active. When little is known, a pretest of the anchor point can
ensure that the compound can be made.

Although the dumbbell is a one-factor-at-a-time (OFAT) design, with subopti-
mal properties in general, in this two-factor case we have proved it to be P-optimal
and near A-optimal, with a slight modification giving strict A-optimality.

Our use of a particular class of generators for 3-factor cyclic designs was moti-
vated by an exhaustive search of generators for factors with up to 12 levels. How-
ever, we emphasize that these designs are not necessarily optimal outside the class
of cyclic designs. A concrete example of a slightly more efficient design for m = 4
is

Factor A 1 1 1 2 2 2 3 3 3 4 4 4
Factor B 1 3 4 1 2 4 2 3 4 1 2 3
Factor C 1 3 2 2 3 4 4 1 3 4 1 2

Like the cyclic design, it has equal replication of the levels of each factor, but,
unlike the cyclic design, these cannot be arranged into complete “sets.” The effi-
ciency factors for this noncyclic design, with those of the optimal cyclic design in
brackets, are ED = 0.777 (0.774), EA = 0.776 (0.769) and EP = 0.793 (0.787).
An interesting question for future research is whether noncyclic designs can give
more substantial gains in efficiency for larger m.

As we have mentioned above, our statistical approach has focused on the first
stage of experimentation and further observations may be added to tap into data
missing by virtue of inability to synthesize compounds or possible interactions.
A different supplementation in light of first phase analysis would take the kA “sig-
nificant” A effects and kB significant B effects, ordering both sets of effects sep-
arately according to their size. It would then add a further supplementary set of
max(kA, kB) additional observations, pairing the kA levels of A with those of B

in order, recycling if necessary, adding a sawtooth or even completely crossing the
two sets if there are few of them. More formal decision theoretic methods or ones
based on entropy [Meyer, Steinberg and Box (1996)] are also a possible rich area
for further research, especially in the context of multiple responses and their com-
peting demands. Our designs can offer an important ingredient to the process of
lead optimization.
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SUPPLEMENTARY MATERIAL

Supplement: Level-screening, proofs, correlations and code (DOI: 10.1214/
16-AOAS916SUPP; .pdf). The Supplement contains proofs of Lemma 1 and The-
orem 1, results about correlations between estimators and details of efficient com-
putations for the 3-factor sawtooth design.
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