
The Annals of Applied Statistics
2016, Vol. 10, No. 2, 812–833
DOI: 10.1214/16-AOAS913
© Institute of Mathematical Statistics, 2016

UNDERSTANDING RESIDENT MOBILITY IN MILAN THROUGH
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We consider an urban planning application where Telecom Italia col-
lected mobile-phone traffic data in the metropolitan area of Milan, Italy,
aiming to retrieve meaningful information regarding working, residential,
and mobility activities around the city. The independent component analy-
sis (ICA) framework is used to model underlying spatial activities as spatial
processes on a lattice independent of each other. To incorporate spatial depen-
dence within the spatial sources, we develop a spatial colored ICA (scICA)
method. The method models spatial dependence within each source in the
frequency domain, exploiting the power of Whittle likelihood and local linear
log-spectral density estimation. An iterative algorithm is derived to estimate
the model parameters through maximum Whittle likelihood. We then apply
scICA to the Italian mobile traffic application.

1. Introduction. Urban planning is the technical procedure for developing
urban areas, designing buildings, streets and other infrastructures related to trans-
portation/logistic distribution networks. Several processes affect the everyday life
in an urban area. In particular, working, residential and mobility activities are cru-
cial for the well-being of an urban area. For instance, as highlighted in Sheller
and Urry (2006) and Kaufmann (2012), changes in management of resident mo-
bility are crucial to understanding temporal and spatial modes of social life, thus
structuring the urban areas.

The current paper concerns urban planning issues for the metropolitan area of
Milan, located in the North of Italy, and in particular connects with the Green
Move Initiative [Luè et al. (2012)], which aims at designing a 2nd generation elec-
tric vehicle sharing system for the city. Milan is the most populated province of
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Italy and the fifth largest metropolitan area of Europe in terms of number of in-
habitants, with a density of more than 1000 inhabitants per km2. The urban area of
Milan provides about 10% of the Italian gross domestic product. An Organization
for Economic Co-operation and Development review [OECD (2006)] identified
housing, transportation and congestion as the principal limitations for future de-
velopment of Milan.

To help understand such issues, there is pressing need for a deep quantitative
analysis of the main features about working, residential and mobility activities.
Ratti et al. (2006) voiced interests in analytical answers to several long-standing
questions in architecture and urban planning such as follows:

• How do you map vehicle origins and destinations?
• How do you understand the patterns of pedestrian movement?
• How do you highlight critical points in the urban infrastructure?
• What is the relationship between urban forms and flows?

Our research in this paper will help shed lights on such critical questions, and has
general applicabilities for other large metropolitan areas as well.

Urban activities are difficult to be directly recorded due to their complexity. Sev-
eral experimental studies [Ahas and Mark (2005), González, Hidalgo and Barabási
(2008), Ratti et al. (2006)] have pointed out that mobile phone usage data offer in-
direct measurements with great potentials to study population behaviors and mon-
itor urban dynamics in real time. The earlier studies are qualitative in nature. To
complement them, we quantitatively analyze mobile usage data provided through
the courtesy of Telecom Italia, the biggest mobile company in Italy, as part of the
Green Move Initiative, through a research agreement between Telecom and Politec-
nico di Milano. The data describe the mobile traffic on the urban area of Milan,
anonymously recorded as the average number of simultaneous contacts in a time
unit on a tessellation of the territory in rectangular areas (i.e., pixels). Hence, the
data can be regarded as a collection of spatially distributed signals varying along
time. More details of the data are provided in Section 5.

As discussed above, the problems of interest are to identify interesting signif-
icant spatial-temporal features of resident mobility through analyzing the spatial-
temporal mobile usage data. The resident mobility features of interest are unfortu-
nately hidden. Hence, we view the application as a blind source separation (BSS)
problem, and approach it using independent component analysis (ICA) [Comon
and Jutten (2010), Hyvärinen and Oja (2000)]. The classical ICA application is
the cocktail-party problem, where several microphones in a room record sound
signals produced by independent sources. The goal then is to recover the original
audio signals through such recordings.

By analogy, our current application is to decompose the mobile usage data as
a mixture of spatial sources that are independent of each other (i.e., urban ac-
tivities) mixed across time. More specifically, we anticipate to localize resident
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activities to specific spatial regions, that are also distinct across components, de-
scribing different resident mobility behaviors that vary across time. For example,
the numerical results (Section 5) identify the financial district in the city center,
major railway stations in the suburban area and major outflow streets from the city
center, respectively, as the three major spatial independent components.

The nature of our application suggests that each spatial source exhibits cer-
tain spatial dependence across the spatial lattice in the Milan area [Manfredini
et al. (2015), Secchi, Vantini and Vitelli (2015)]. Such spatial dependence should
be incorporated in the ICA procedure. Many ICA methods have been developed,
as well as documented by Comon and Jutten (2010) and Lee et al. (2011). We
highlight several major statistical approaches in the last decade: Chen and Bickel
(2005, 2006), Eloyan, Crainiceanu and Caffo (2013), Guo (2011), Hastie and Tib-
shirani (2010), Matteson and Tsay (2016). As we are aiming at extracting inde-
pendent spatial components, there exist some relevant spatial ICA methods in the
fMRI literature that identify independent brain maps. [See, e.g., Calhoun et al.
(2001) and van de Ven et al. (2004).]

However, to the best of our knowledge, no existing ICA methods (including the
spatial ICA ones) incorporate spatial dependence within the (spatial) sources. The
existing spatial ICA methods assume spatial independence within each indepen-
dent component. The colored ICA (cICA) method of Lee et al. (2011) is the clos-
est one that is motivated by the temporal ICA of fMRI data and takes into account
temporal dependence within brain signals. To apply cICA to the mobile data, we
need to first transpose the data matrix (for spatial ICA), and then concatenate the
2-dimensional (2D) spatial map recorded at each time point into a 1-dimensional
vector (1D), before applying cICA to estimate the resulting 1D dependence struc-
ture. The concatenation destroys the inherent 2D spatial dependence in the original
data, which is undesirable especially when the dependence is directional.

Hence, to address the spatial dependence challenge in the application, we de-
velop spatial colored independent component analysis (scICA) to directly incor-
porate the 2D spatial dependence, which extends the (spatial) ICA literature. We
model the spatial sources as independent spatial processes on a lattice, and derive
the Whittle likelihood [Whittle (1952)] in the frequency domain. The model pa-
rameters are then estimated through maximizing the Whittle likelihood iteratively.
The spectral densities of the sources are modeled nonparametrically using local
linear log-spectral density estimation [Fan and Kreutzberger (1998)].

A similar iterative estimation algorithm is implemented in Lee et al. (2011).
We point out two major differences between our algorithm and theirs. We model
the spectral densities sources nonparametrically. This enables more flexible mod-
eling of spatial dependence within each independent component, comparing to the
parametric approach of Lee et al. (2011). This also removes the difficulty of order
selection for parametric spatial processes. Furthermore, in the step of estimating
the unmixing matrix, we can not use the Lagrange multiplier method of Lee et al.
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(2011) due to ill-conditioning caused by the nonparametric spectral density esti-
mation. Instead, we implement an alternative optimization algorithm that makes
use of eigen decomposition. Details are provided in Section 3.

The rest of the paper is organized as follows. In Section 2, we introduce our
model, providing some details about spatial processes on lattices and their spectral
density functions, as well as Whittle likelihood. Then, in Section 3, we describe
the iterative estimation algorithm for maximizing the Whittle likelihood. We apply
scICA to two simulation studies to show the advantages of scICA in Section 4. As a
comparison, we consider cICA and (spatial) fastICA [Hyvärinen and Oja (2000)],
one of the most popular ICA methods. Section 5 concludes the paper analyzing
the Milan mobile data. We also discuss the unique insights obtained by scICA.
The numerical studies nicely highlight the advantage of incorporating spatial de-
pendence. Given the popularity of ICA in the fMRI literature, one future research
direction is to extend scICA to incorporate 3-dimensional spatial dependence so
that the method can be applied to analyze fMRI data. (The motivating mobile data
are distributed on a 2-dimensional spatial surface.)

All the numerical studies are carried out using the R statistical software [R Core
Team (2013)]. Furthermore, we develop an accompanying R package that imple-
ments the cICA and scICA methods, named coloredICA and available on the
CRAN website—http://cran.r-project.org/web/packages/coloredICA/index.html.

2. Spatial colored independent component analysis. This section presents
the modeling details of our proposed spatial colored ICA (scICA) method. Under
the ICA framework, we model the spatial independent sources as spatial fields on a
spatial lattice that are independent of each other, where each spatial source exhibits
certain dependence structures. We start with a brief mathematical formulation of
ICA in Section 2.1. We then introduce some basic concepts and notation about
spatial stochastic processes in Section 2.2. Finally, we derive the Whittle likelihood
[Whittle (1952)] for the model based on all the independent sources in Section 2.3.

2.1. Mathematical formulation of ICA. Mathematically, ICA can be expressed
using the following latent variable linear model:

Xj = cj1S1 + · · · + cjpSp, for j = 1, . . . , p,(1)

where the random variables X1, . . . ,Xp are observed linear combinations of p

unknown (latent) random independent sources S1, . . . , Sp . In vector-matrix form,
model (1) becomes

X = CS,(2)

where X and S are random vectors in R
p , and C is a (p,p) mixing matrix.

In applications, we observe x1, . . . ,xn ∈ R
p , realizations of the random vector

X, while the corresponding realizations of S are unknown as well as the mixing

http://cran.r-project.org/web/packages/coloredICA/index.html
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matrix C. Let X be the (n,p) data matrix whose rows are the n observations in the
sample. Then we can rewrite (2) as

X= SC′,(3)

where S is a (n,p) matrix containing the n unknown realizations of the p sources.
For blind source separation, one usually first estimates the unmixing matrix W =
C−1, given X, and then recovers the hidden sources S through

S = XW ′.(4)

For our motivating mobile-usage data, the matrix X contains the traffic intensity
measurements at p spatial grids across n time points, while the matrix S includes
the p underlying spatial independent sources.

2.2. Spatial stochastic processes on a lattice. We assume the sources S1, . . . ,

Sp as weakly stationary spatial processes. For a specific source Sj , let s ∈ R
2

be a spatial generic location in a 2-dimensional Euclidean space. Suppose that the
potential datum S(s) at the location s is a random quantity. Note that, for simplicity,
we omit the subindex j here and beyond in places where the omission doesn’t
cause ambiguity.

Consider a spatial index set D ⊆ R
2, a fixed regular collection of count-

ably many spatial points, say, D = {s = (u, v)′ : u = . . . ,−1,0,1, . . . ;v =
. . . ,−1,0,1, . . .}. As s varies over the index set D, we obtain the spatial random
field {

S(s); s ∈ D
}
.(5)

In this case (5) is called a spatial process on a lattice [Cressie (1993)]. A realization
of (5) is denoted as {s(s); s ∈ D}.

For a weakly stationary process {S(s)}, its covariance function CS(u) is defined,
for every u ∈ Z

2, as

CS(u) = Cov
(
S(s + u), S(s)

)
, ∀s ∈ D.

If the covariance values form an absolutely summable sequence, then we can de-
fine its Fourier Transform as

fS(ω) = 1

(2π)2

∑
u∈Z2

C(u)e−iu′ω,

with (ω1,ω2)
′ = ω ∈ �2 = [−π,π ] × [−π,π ]. The function fS(ω) is the spectral

density of the stochastic process S(s). The covariance function at lag u can be
recovered by the Inverse Fourier Transform of the spectral density as

CS(u) =
∫
�2

fS(ω)eiu′ω dω.

Therefore, the covariance and spectral density functions form a Fourier pair.
A detailed description of spatial stochastic processes and their properties can be
found, for instance, in Gebizlioğlu (1988) and Cressie (1993).
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2.3. The Whittle likelihood. The approach of the Whittle likelihood was first
introduced by Whittle (1952) in the context of time series, which was later ex-
tended into spatial processes. The Whittle likelihood is defined in the frequency
domain through the use of the periodogram, that is, sample spectral density [Box
and Jenkins (1970)]. Under the ICA framework, below we first introduce the Whit-
tle likelihood for a single source, which is then used to derive the complete Whittle
likelihood based on all sources.

Consider a spatial process S observed on a regular grid D = {s = (s1, s2) : s1 =
0, . . . , n1 − 1; s2 = 0, . . . , n2 − 1}, D ∈ R

2, n = n1 · n2. The corresponding spatial
periodogram at a frequency ω ∈ �2 is given by

I (ω, S) = 1

(2π)2n

∣∣∣∣∑
s∈D

S(s) exp
(−is′ω

)∣∣∣∣2.
The periodogram is usually computed at the set of bidimensional Fourier frequen-
cies ωk = (ωk1,ωk2):

ωk1 = 2πk1

n1
k1 = 0,±1, . . . ,±m1 where m1 =

⌈
(n1 − 1)

2

⌉
,

ωk2 = 2πk2

n2
k2 = 0,±1, . . . ,±m2 where m2 =

⌈
(n2 − 1)

2

⌉
,

where �·� denotes the smallest integer not less than the operand.
As discussed in Whittle (1952), the spatial periodogram I (ω, S) has an asymp-

totic distribution of fS(ω)χ2
2 /2. Furthermore, through an approximation of the

quadratic form of the log-likelihood, the negative Whittle log-likelihood can be
defined as

L(fS;S) =
∫
�2

(
I (ω, S)

fS(ω)
+ logfS(ω)

)
dω.(6)

We refer to Whittle (1952) for more details on the derivation of (6) and to Crujeiras
(2006) for a detailed description of the 2D case. In Crujeiras (2006) it is also high-
lighted that the negative log-likelihood (6) can be interpreted as the Kullback–
Leibler divergence between the periodogram function I (ω,S) and the spectral
density function fS(ω). Note that, taking into account the asymptotic indepen-
dence of I (ω,S) across different Fourier frequencies ωk , (6) in practice is approx-
imated by the following discretized version:

∑
k

(
I (ωk, S)

fS(ωk)
+ logfS(ωk)

)
,(7)

where the sum extends over all the Fourier frequencies.
We now consider the random vector of the p sources, S = (S1, . . . , Sp)′ in R

p ,
defined on a finite lattice D with n sites. For the j th source, define its spectral
density and the periodogram as fSj

(ω) and I (ω, Sj ), respectively. Then, due to
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the assumption of independence, we can write the complete Whittle negative log-
likelihood as the sum of the Whittle negative log-likelihood for each individual
source:

L(fS;S) =
p∑

j=1

n∑
k=1

(
I (ωk, Sj )

fSj
(ωk)

+ ln
(
fSj

(ωk)
))

,(8)

where fS is the diagonal spectral density matrix of the sources (diagonal because
the sources are assumed independent).

In practice, we do not observe the sources, but rather the mixed spatial pro-
cesses X. So, exploiting equation (2), the Whittle negative log-likelihood (8) can
be rewritten as

L(W,fS;X) =
p∑

j=1

n∑
k=1

(e′
jW

′I (ωk,X)Wej

fSj
(ωk)

+ ln
(
fSj

(ωk)
))

(9)
− n ln

∣∣det(W)
∣∣,

where I (ωk,X) is the matrix periodogram of the mixed signals at the Fourier
frequency ωk , and ej = (0, . . . ,0,1,0, . . . ,0)′ with the j th entry being 1. As a
side comment, a typical preprocessing procedure in ICA is to prewhite the data
[Hyvarinen, Karhunen and Oja (2001)]. It follows then that W is orthogonal, which
allows us to drop the last term in (9).

As one can see, the complete Whittle likelihood (9) is a function of both the
unmixing matrix W and the source spectral densities fSj

, for j = 1, . . . , p (as well
as their parameters). Below in Section 3, we discuss the algorithm that derives the
parameter estimates through minimizing the negative Whittle log-likelihood (9),
that is, maximizing the Whittle likelihood.

3. Parameter estimation. We implement an iterative algorithm, alternating
between a step where the source spectral densities are estimated and a step where
an estimate Ŵ of W is obtained. We consider here an adaptation to the 2D case of
the cICA algorithm presented in Lee et al. (2011). We use the same convergence
criterion, stopping the algorithm when the difference between Ŵnew and Ŵold is be-
low a convergence threshold, where the difference is measured through the Amari
error, a criterion widely used in the ICA framework.

Consider two p × p matrices W1 and W2 where W2 is invertible. According to
Amari, Cichocki and Yang (1996), we define the Amari error between W1 and W2
as

1

p

p∑
i=1

(∑p
j=1 |wij |

maxj |wij | − 1
)

+ 1

p

p∑
j=1

(∑p
i=1 |wij |

maxi |wij | − 1
)
,

where the wij ’s are the entries of W1W
−1
2 .
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3.1. Spectral density estimation. We consider the unmixing matrix W as fixed
and estimate the spectral densities for the sources. Since (9) involves a sum over
the p sources, we can obtain estimates of the p spectral densities separately.

We start with describing how to obtain an estimate for a generic fS through
minimizing (7). Different from the cICA algorithm of Lee et al. (2011), we perform
nonparametric local linear estimation of the spectral densities based on the discrete
approximation (7) [Crujeiras and Fernández-Casal (2010), Fan and Kreutzberger
(1998)]. The nonparametric approach offers us greater flexibility to incorporate a
wide range of spatial dependence. On the other hand, parametric approaches can be
too restrictive and involve a large number of parameters even for spatial processes
of low order, not to mention the difficulty of order estimation for the parametric
models.

It can be shown that minimizing (7) is equivalent to maximizing∑
k

(
Y(ωk, S) − mS(ωk) − eY(ωk,S)−mS(ωk)

)
,

where Y(ωk, S) = log(I (ωk, S) and mS(ωk) = logfS(ωk). We use a multidimen-
sional local linear regression to estimate the log-spectral density function mS(ωj ).
At each Fourier frequency ωl , we approximate mS(ωl) using al + b′

l(ωl − ω) for
ω in a sufficiently small neighborhood of ωl . The parameters al and bl are then
estimated by the solution to the following optimization problem:

max
al,bl

∑
k

(
Y(ωk, S) − al − b′

l(ωl − ωk)

(10)
− eY(ωk,S)−al−b′

l (ωl−ωk)
)
KH(ωl − ωk),

where KH(ω) = |H |−1/2K(H−1/2ω) is a rescaled bidimensional kernel, with H

being a bidimensional bandwidth matrix. Then âl is the local linear estimate of
mS(ωl).

It then follows that, to minimize (9) for fixed W to obtain the estimates for
fSj

, j = 1, . . . , p, we can solve (10) by letting Y(ωk, Sj ) = log(I (ωk, Sj )) =
log(e′

jW
′I (ωk,X)Wej ), which is known once W is fixed.

3.2. Unmixing matrix estimation. We now fix fSj
for j = 1, . . . , p and discuss

how to estimate the unmixing matrix W . Note that one needs to impose orthog-
onality constraints on W to make the problem identifiable. For that purpose, Lee
et al. (2011) use the method of the Lagrange multiplier and minimize a penalized
version of (9) through Newton–Raphson updating. Their optimization algorithm
involves the inverse of the Hessian matrix, which can be ill-conditioned in our
setting due to the nonparametric spectral density estimates.

Hence, we propose an alternative optimization algorithm. In particular, for every
j = 1, . . . , p, we minimize

L̃j (W,fS;X) = w′
j (Aj + τCj )wj ,(11)
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where wj = Wej is the j th column of W , Aj = ∑n
k=1

I (ωk,X)
fSj

(ωk)
, Cj = ∑j−1

l=1 wlw′
l ,

and τ is a positive tuning parameter. The matrix Cj provides an orthogonality con-

straint in the sense that w′
jCj wj = ∑j−1

l=1 〈wj ,wl〉2, which is non-negative, with
equality when wj is orthogonal to w1, . . . ,wj−1. Hence, w1 is estimated first with-
out considering the constraint term C1, and w2, . . . ,wp are then estimated taking
into account the corresponding orthogonality penalty term.

The alternative criterion (11) provides a straightforward way of estimating wj .
Indeed, it is easy to observe that the matrix Aj + τCj is symmetric and positive-
definite. Hence, the argmin of (11) is the eigenvector of Aj +τCj that corresponds
to the smallest eigenvalue.

One still needs to choose the tuning parameter τ . To ensure the orthogonality,
we begin with an initial (small) value for τ and then proceed in the following
alternating manner:

(a) obtain Ŵ from minimizing (11);
(b) if the orthogonality error is below a certain threshold, we retain Ŵ as the

estimate for W ; otherwise, repeat Step (a) with the tuning parameter being 2τ .

Note that the orthogonality error is measured by ‖ŴŴ ′ − Ip‖F , with ‖ · ‖F being
the Frobenius norm.

REMARK 3.1. The numerical results shown in the rest of our paper are ob-
tained through minimizing the criterion (11). In any case, we point out that, in those
situations where the Hessian matrix is not ill-conditioned, the two approaches give
similar estimates. In our R package, we allow the user to choose either algorithm
to estimate the unmixing matrix.

3.3. Summary of the iterative algorithm. Our iterative algorithm can be sum-
marized as follows. We begin with some initial estimate Ŵ . Then, while the Amari
error is greater than a certain threshold, we alternate between the following steps:

(1) estimate the source spectral densities through the nonparametric algo-
rithm (10);

(2) update Ŵ by minimizing (11).

The iterative algorithm considerably simplifies the minimization of the Whit-
tle negative log-likelihood (9). The same iterative idea has been successfully used
in Lee et al. (2011). In all our numerical studies, the algorithm always converges,
usually in less than 10 iteration steps. We demonstrate empirical convergence of
our algorithm in more details via the simulation studies in Section 4.3. Our es-
timation algorithm and the one in Lee et al. (2011) are both implemented in our
coloredICA R package. We are currently working on updating the package, ex-
ploiting the seamless interaction of R with C++ [see Eddelbuettel and François
(2011)]. The update expects to speed up computation by up to 4 or 5 times.
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REMARK 3.2. ICA methods are known to have permutation and scale am-
biguity problems [Hyvärinen and Oja (2000)]. Scale ambiguity is often avoided
thanks to the pre-whitening procedure, which results in sources with unitary vari-
ance. Permutation ambiguity is not of concern in a lot of applications. Otherwise
one can use the procedure described in Lee et al. (2011) to order the sources during
each updating.

4. Simulation studies. In this section we present two simulation studies,
comparing scICA with fastICA and cICA. The numerical comparisons clearly
show that scICA performs the best. Both simulation studies are carried out on a
n1 × n2 grid, with n1 = n2 = 20. In the first simulation, we model the dependence
within each spatial source using spatial autoregressive moving-average (SARMA)
models [Gebizlioğlu (1988)], while, in the second one, we consider spatial sources
with irregular dependence structures.

4.1. Simulation study 1: Symmetric SARMA processes of order one. The sim-
ulation involves two sources and two mixtures. We perform 100 different runs,
and, for each run, the entries of the mixing matrix C are randomly generated from
the standard uniform distribution.

A SARMA model for S(s) ≡ S(u, v) is defined as

S(u, v) =
+∞∑

l=−∞

+∞∑
m=−∞

φlmS(u − l, v − m) +
+∞∑

l=−∞

+∞∑
m=−∞

θlmε(u − l, v − m),

where φ00 = θ00 = 0, and ε(·, ·) is white noise with zero mean and variance σ 2.
Note that a SARMA model can be reduced to a spatial autoregressive (SAR) or
spatial moving-average (SMA) model by respectively setting the MA coefficients
θlm = 0 or the AR coefficients φpm = 0. Certain SAR and SMA models are used
in this simulation study as discussed below.

The n realizations of the first spatial source are generated according to the fol-
lowing SAR model of order one:

S1(u, v) = φ1S1(u − 1, v) + φ2S1(u + 1, v) + ε(u, v),

with φ1 = −0.35, φ2 = 0.7, and ε(u, v) being Gaussian with zero mean and vari-
ance σ 2 = 0.32. The n realization of the second spatial source are generated ac-
cording to the following SMA model of order one:

S2(u, v) = ε(u, v) + θ1ε(u − 1, v) + θ2ε(u + 1, v),

with θ1 = 0.38, θ2 = −0.45, and Gaussian noise ε(u, v) with zero mean and vari-
ance σ 2 = 0.32. Then we generate the mixing matrix C randomly from the stan-
dard uniform distribution, and the data X according to model (3).

As such, we consider two spatial sources with spatial dependence only in the
horizontal direction. Note that, to run cICA on the simulated data, the spatial lat-
tices are vectorized in the vertical direction; hence, this configuration enables us
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FIG. 1. Simulation 1—Left panel: boxplots of the Amari error for the three methods. Right panel:
density plot of the difference of the Amari error between scICA and cICA.

to investigate whether the unidirectional vectorization necessary for cICA distorts
its estimation performance when the spatial dependence exists in a direction that
does not align with the vectorization direction. The following results confirm that
this is indeed the case, which further supports the necessity of incorporating 2D
dependence directly, without vectorization, as in scICA.

The left panel of Figure 1 shows the boxplots of the Amari errors for every
method considered. Indeed, scICA outperforms cICA (and both colored methods
outperform fastICA). If we consider the pairwise comparison between the two
errors for every run, then scICA is indeed significantly better than cICA—the pair-
wise t-test has a p-value of 
7 · 10−8.

In BSS problems, we are interested in not only accurate estimation of the mixing
matrix, but also efficient reconstruction of the sources. For this reason, we com-
pare the absolute difference between the recovered sources and the true sources,
respectively, by scICA and cICA. (We focus only on the colored methods because
fastICA clearly performs worse than the other methods.) Specifically in Figure 2,
we plot the mean absolute reconstruction error on the entire lattice, averaged over
the 100 runs, for scICA (on the left) and cICA (on the right), using the same color
scheme. The top row is for reconstructing Source 1, while the bottom row is for
Source 2.

It is evident that scICA has uniformly better accuracy than cICA. For every
run, we also evaluate the mean absolute reconstruction error over the 400 pixels
of the 20 × 20 lattice. The p-value for the corresponding pairwise t-test is around
10−8 for each source, which provides strong evidence that scICA reconstructs the
sources better than cICA.
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FIG. 2. Simulation 1—Mean absolute reconstruction error of the sources over the 100 runs made
by scICA (on the left) and cICA (on the right).

4.2. Simulation study 2: Spatial sources with irregular structures. We now
consider two sources following irregular patterns as shown in Figure 3.

We perform 100 simulation runs. For each run, the source matrix is composed
by adding the sources in Figure 3 with independent Gaussian noises of zero mean
and different variances for each source: σ 2

1 = 22 for Source 1, and σ 2
2 = 0.12 for

Source 2. We then generate the mixing matrix randomly at each run from the stan-
dard uniform distribution and obtain the data matrix according to model (3).

The left panel of Figure 4 presents the boxplots of the Amari errors for every
method considered. Similar to the first simulation, the two colored methods clearly
outperform fastICA. What is different is that, in this case, the improvement of
scICA over cICA is much bigger, as evidenced from the right panel of Figure 4
and the extremely small p-value (of 3.05 · 10−15) from the corresponding pairwise
t-test for the Amari error.
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FIG. 3. Simulation 2—The two spatial sources.

Furthermore, Figure 5 compares the performance for reconstructing the sources,
which again shows that scICA significantly outperforms cICA. Note that the two
bright rectangle regions in Source 2, shown in Figure 3, are evident in the cICA re-
construction error plots, especially for reconstructing Source 1 (the top row of Fig-
ure 5). This suggests that cICA has trouble separating the two spatial sources. Pair-
wise t-tests also yield extremely small p-values (of 1.67 · 10−17 and 1.65 · 10−18,
respectively), which again shows that scICA recovers the sources significantly bet-
ter than cICA.

FIG. 4. Simulation 2—Left panel: boxplots of the Amari error for the three methods. Right panel:
density plot of the difference of the Amari error between scICA and cICA.
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FIG. 5. Simulation 2—Mean absolute reconstruction error of the sources over the 100 runs made
by scICA (on the left) and cICA (on the right).

There are two reasons for the great improvement of scICA over cICA for this
simulation study. First of all, scICA is specially designed for 2D spatial structures,
while cICA is for 1D data. Furthermore, scICA models the dependence through
the nonparametric local spectrum approach, which is another difference from the
parametric cICA method.

4.3. Empirical convergence. We conclude the simulated studies with a brief
analysis of the empirical convergence of the scICA method, as mentioned at the
end of Section 3. In both simulation studies, using a tolerance level of 10−3 for
the Amari error, the algorithm usually converges in very few iterations: the av-
erage number of iterations needed for convergence is 7 and 3 (rounded), respec-
tively. Furthermore, we show in Figure 6, for both studies, a plot of the Whittle
log-likelihood at each iteration for a representative run in order to better illustrate
empirical convergence of the algorithm. Each representative run is chosen where
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FIG. 6. Empirical convergence: Whittle log-likelihood versus number of iterations, for one repre-
sentative run in Simulation 1 (left panel) and Simulation 2 (right panel).

the number of iterations needed for convergence is higher than the average in order
to avoid showing a particularly “lucky” simulation run.

5. Analysis of the Telecom Italia data. In this section, we present the mo-
tivating application of analyzing the real mobile-phone traffic data collected in
the metropolitan area of Milan (Italy). The data have been previously analyzed in
Manfredini et al. (2015) and Secchi, Vantini and Vitelli (2015) through basis rep-
resentations, where a first attempt to consider spatial dependence is done through a
bagging Voronoi approach. In this paper we analyze the dataset in the ICA frame-
work, taking into account the spatial structure of the sources using scICA.

The aim of the analysis is to decompose the traffic patterns as a time-varying
linear combination of independent spatial pattern maps. We demonstrate the com-
parison of scICA with fastICA [Hyvärinen and Oja (2000)] and cICA [Lee et al.
(2011)]. The benchmark fastICA is the most popular ICA method in the literature.
To perform cICA, we vectorize the 2D observations binding the columns and use
the software from Lee et al. (2011). The comparison between cICA and scICA sug-
gests that directly incorporating the 2D dependence gives more meaningful results
than only incorporating 1D dependence as in cICA.

It takes about 100 seconds for our current R implementation of scICA to produce
results. We expect to speed up the computation by a factor of 4 or 5 with the
next update, incorporating integration of R with C++. On the other hand, it takes
fastICA and cICA 0.5 and 2 seconds, respectively, to analyze the data.

The reported analysis of this mobile-phone dataset clearly highlights the bene-
fits achieved from using scICA. As we will see, taking into account potential spa-
tial dependence within the sources, scICA obtains more meaningful spatial maps.
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This is crucial so that one can exploit these results for urban planning purposes—
the clearer the pattern shown in the spatial maps, the easier the association to a
specific type of urban activity within the city. Then the information can be used
to understand times and areas where, for instance, public transportation should be
enhanced or which areas are occupied by more people during specific hours of a
day and, hence, more services are needed.

5.1. Data description. We analyze here the municipality of Milan divided into
a lattice D0 of 25 × 28 pixels (232 m × 309 m each). For each pixel of the covered
area we observe the Erlang every 15 minutes for 14 days from March 18th to
March 31st, 2009. The Erlang is a dimensionless unit calculated as the sum of the
length of every call in a given time interval divided by the length of the interval
(i.e., 15 minutes). For each pixel and for each quarter of an hour, this measure
represents the average number of mobile phones simultaneously calling through
the network. The Erlang can be approximately considered as proportional to the
number of active subscribers in that area at that time. Hence, the data describe the
number of subscribers in a 2D-space at different instants of time, which can be
depicted as a spatial surface varying along time in the two panels of Figure 7.

For illustration purposes, Figure 8 highlights three major spatial structures in
Milan that we will discuss later in connection with the ICA results. The biggest
circular white curve represents a circular big road that is very crucial for Milan
mobility. Indeed, the center of Milan (indicated by the white big circle, also in
Figure 9) is a congestion charge area, hence, very few vehicles can go inside. For
this reason, the circular big road is the most common way to “pass through” the
city. This crucial ring road is identified in the 3rd independent component (IC)
extracted by our scICA method (Figure 11). Furthermore, the small white circle
in the upper right corner corresponds to the central railway station of Milan (Fig-

FIG. 7. Telecom Italia, spatial and temporal pattern of Erlang—Left: Erlang distribution on the
lattice at a fixed instant of time. Right: Erlang profile at a fixed spatial pixel.
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FIG. 8. Telecom Italia, three major spatial structures: Circular road, center city (circle in the
middle), central railway station (circle in the upper right corner).

ure 10), which is the main railway station of the city and the main transportation
center of the entire northern part of Italy for both workers and occasional visitors.

Due to discontinuities in the information provided by the Telecom antennas,
preprocessing is needed before formal data analysis. For this purpose, we follow
the steps described in Manfredini et al. (2015) and Secchi, Vantini and Vitelli
(2015). Without going too much into the details, a pixel-wise smoothing of the
Erlang through a Fourier basis expansion of a period of one week is performed.
We then sample the measurements at p = 200 instants of time regularly spaced in
the time span of the data collection.

5.2. Comparison between fastICA, cICA and scICA. In Figures 9 to 11, we
respectively present the first three dominant ICA components identified by scICA
(top panels), fastICA (middle panels) and cICA (bottom panels). With each panel,
the recovered spatial sources are depicted on the left, while the corresponding tem-
poral profiles are shown on the right. It is worth to point out that, in the temporal
profile graphs, each week goes from Wednesday to Tuesday, while the vertical red
and green solid lines represent midnights and middays, respectively.

Regarding the first independent component (IC), Figure 9 suggests that it cap-
tures working activities according to the spatial/temporal profiles. All three meth-
ods give quite similar temporal profiles, which are higher for the weekdays than
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FIG. 9. IC1—Working activities: spatial maps (on the left) and temporal profiles (on the right)
identified by scICA (top), fastICA (middle) and cICA (bottom). The green spatial regions highlight
the areas with lots of working activities.

the weekend, and, within each day, high during the daily hours and low during
the nights. The blue areas (inside the internal circle) in the corresponding spatial
sources highlight the financial districts in the center of the city (i.e., the areas with
high mobile activities during working hours); also see Figure 8.
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FIG. 10. IC2—Railway stations: spatial maps (on the left) and temporal profiles (on the right) iden-
tified by scICA (top), fastICA (middle) and cICA (bottom). All temporal profiles present a peak around
6 pm of the working days. fasICA and cICA highlight only the central railway station (“Cen”). scICA
identifies both the Central station and the large Garibaldi station (“Gar”).

For the second IC, Figure 10 corresponds to the subscriber behavior at the
railway stations. Indeed, the temporal profiles present a peak every working day
around 6 pm, when people take the train to go home after work. Milan has two
major railway stations—the biggest Central station (Figure 8) and the Garibaldi
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FIG. 11. IC3—Traffic after work: spatial maps (on the left) and temporal profiles (on the right)
identified by scICA (top), fastICA (middle) and cICA (bottom). The temporal profiles have a peak
around 6 pm. The scICA spatial component clearly highlights the big outflow streets of the city.

station. In the spatial map, all three methods highlight the Central station (labeled
as “Cen”); however, only scICA is able to identify the Garibaldi station (labeled
as “Gar”). We also want to comment on the red region shown inside the circle in
the bottom right quadrant of all three spatial maps. This area is not particularly
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interesting with respect to the neighborhood, and the negative large absolute value
is caused by unusual high usage activity recorded at one particular pixel in the
middle of the red region.

The third IC presents the most interesting comparison among the three methods,
as depicted in Figure 11. This comparison shows where the improvement from
incorporating the spatial dependence is the most evident. The temporal profiles are
similar to those in the first IC, except with a peak around 6 pm. This component
seems to describe the traffic pattern after working hours. The scICA spatial map
clearly identifies the areas around the city center and highlights the big outflow
streets (identified by the black arrows in the top panel). These are part of the crucial
ring road depicted in Figure 8 which are major roads for people to go through the
city. As a comparison, fastICA and cICA only identify a less clear spatial pattern.
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