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The prevalence of sequencing experiments in genomics has led to an in-
creased use of methods for count data in analyzing high-throughput genomic
data to perform analyses. The importance of shrinkage methods in improving
the performance of statistical methods remains. A common example is gene
expression data, where the counts per gene are often modeled as some form
of an overdispersed Poisson. Shrinkage estimates of the per-gene dispersion
parameter have led to improved estimation of dispersion, particularly in the
case of a small number of samples.

We address a different count setting introduced by the use of sequencing
data: comparing differential proportional usage via an overdispersed binomial
model. We are motivated by our interest in testing for differential exon skip-
ping in mRNA-Seq experiments. We introduce a novel shrinkage method that
models the overdispersion with the double binomial distribution proposed by
Efron [J. Amer. Statist. Assoc. 81 (1986) 709–721].

Our method (WEB-Seq) is an empirical Bayes strategy for producing a
shrunken estimate of dispersion and effectively detects differential propor-
tional usage, and has close ties to the weighted-likelihood strategy of edgeR
developed for gene expression data [Bioinformatics 23 (2007) 2881–2887,
Bioinformatics (Oxford, England) 26 (2010) 139–140]. We analyze its be-
havior on simulated data sets as well as real data and show that our method
is fast, powerful and gives accurate control of the FDR compared to alterna-
tive approaches. We provide implementation of our methods in the R package
DoubleExpSeq available on CRAN.

1. Introduction. In genomic studies, a common approach to high-dimensio-
nal data is to marginally examine the effect of each feature with a simple statistical
test in order to find the most promising features—for example, a t-test per feature
to detect differences between two groups of samples. Gene expression studies are
a well-known example of this type of marginal testing, where the features of each
sample consist of measurements of the mRNA levels of tens of thousands of genes
from the sample. Generally, this setting consists of few samples (sometimes on
the order of 10 or less) and thousands of features or genes. In such a paradigm,
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previous work shows that shrinkage of the individual parameter estimates or test
statistics greatly improves the results.

Due to the growth of relatively cheap sequencing technologies, sequencing has
become the preferred technology for many genomic experiments. Sequencing ex-
periments generally result in a count of the number of sequences matching a cri-
terion, such as the number of sequences from a particular gene. However, the set-
ting for many commonly used shrinkage routines was originally in the context of
continuous, roughly log-normal intensity data from microarray experiments. As a
result, there has been a growth in analytical methods that effectively use discrete
distributions in settings that previously relied on normal data. For marginal testing
approaches, new methods for sequencing data include appropriate use of overdis-
persed distributional models as well as shrinkage techniques.

A common type of analysis in sequencing experiments compares the counts of
sequences measured across different conditions, such as the two-group setting de-
scribed above. For example, one can search for variations in the mRNA levels of a
gene in different conditions, where the data are a count of the number of sequenced
mRNA for each gene. Samples differ in the total number of sequences, so a sen-
sible metric may be whether the proportion of sequences from a given gene varies
across conditions. A sample has millions of sequences spread across thousands of
genes, so the proportion from a single gene is quite small. For this reason a Poisson
distribution is an obvious choice for modeling the counts, with an offset parame-
ter equal to the total number of sequences [Marioni et al. (2008)]. Most preferred
gene-expression methods now use overdispersed models, typically the negative-
binomial distribution [Robinson and Smyth (2007)], though some methods have
incorporated overdispersed binomial distributions such as the beta-binomial. For
these gene expression methods, shrinkage estimators of the dispersion parame-
ter have greatly improved the performance of the methods in small sample sizes
[Anders and Huber (2010), Leng et al. (2013), Robinson and Smyth (2007), Wu,
Wang and Wu (2013), Yang et al. (2012), Yu, Huber and Vitek (2013), Zhou, Xia
and Wright (2011)].

We are interested in a slightly different setting, namely, marginal testing that
compares proportions that take on the full range of values from 0 to 1. Our motiva-
tion for considering such proportions is detecting differences in alternative splicing
between conditions. Specifically, we are interested in an approach that measures
per exon whether an exon is excluded (“spliced out”) more frequently in some
conditions than others, often summarized by the proportion of sequences show-
ing inclusion called the proportion spliced in (PSI or �) [Barbosa-Morais et al.
(2012), Brooks et al. (2014), Pan et al. (2008), Shen et al. (2012), Venables et al.
(2009), Wu et al. (2011)]. Focusing on PSI per exon has the advantage that it is a
relatively simple summary of the data that also makes use of the large amount of
information available in those sequences that span introns. We describe and give
the necessary background to this problem in Section 2 below.
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Unlike gene expression settings, a Poisson approximation to the binomial dis-
tribution is not adequate in this setting because the proportion parameter of the
binomial distribution cannot be assumed small, a characteristic that also excludes
the many existing shrinkage and overdispersion methods that improve upon the fit
of the basic Poisson model. We propose modeling the data with an overdispersed
binomial distribution that is a member of a general family of dispersed exponen-
tial distributions proposed by Efron (1986), called the double exponential family
of distributions.

Using this family of distributions, we develop novel shrinkage estimates of the
dispersion parameter for data whose distribution is a member of the double expo-
nential family of distributions. Our estimates are empirical Bayes estimates that
are general to any distribution in the family of distributions and are based on the
fact that the distribution of the dispersion parameter of this family of distributions
can be shown to be approximately Gamma distributed, which we develop below.
The double exponential family produces estimates that have close ties to quasi-
likelihood estimates, which are widely used for estimation of binomial overdis-
persion. Given this close connection, our method is effectively an empirical Bayes
method for quasi-likelihood estimation of the dispersion parameter.

Our empirical Bayes framework provides two related versions. The first is the
standard empirical Bayes estimator (DEB-Seq). The second (WEB-Seq) is also
an empirical Bayes estimator with a different parameterization of the prior; it is
related to the weighted likelihood method of shrinkage of Robinson and Smyth
(2007) applied to the double exponential family of distributions, but, unlike that
approach, our empirical Bayes methodology provides a data-driven estimate for
the tuning parameter.

We compare the performance of our method to other methods and demonstrate
that, in addition to providing a fully automated method for shrinkage, our meth-
ods have superior performance on simulated data in the exon inclusion setting. We
also apply these methods to mRNA-Seq data from real tumor samples generated
by the Cancer Genome Atlas project [Cancer Genome Atlas Research Network
(2011)], and the results suggest that our method can similarly control the false dis-
covery rate and find promising targets of splicing when applied to actual mRNA
sequencing data. Furthermore, our methods have very little computational over-
head compared to many existing methods.

2. Differential exon usage.

2.1. Alternative splicing. The static genetic code found in the DNA of each
cell must be read and converted into the molecular products that are used through-
out the cell, for example, proteins. Specifically, a portion of the DNA, called a
gene, encodes which specific amino acids will make up a protein. When a protein
is needed, the corresponding DNA is transcribed into an independent copy of the
DNA, called mRNA; the genetic code contained in the mRNA is then translated
into the string of amino acids that form the protein.
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In eukaryotic cells, the process of copying the DNA into mRNA itself has
stages. A direct copy of the DNA is created, called a pre-mRNA, and the pre-
mRNA is then further processed into an mRNA. In many eukaryotes, the process-
ing of pre-mRNA includes removing portions of the pre-mRNA. This means that
the code for the protein contained in the final mRNA transcript is not an exact
copy of the code found in the DNA of the cell. The process of cutting out portions
of the mRNA product is called splicing. In many complex organisms, including
human and many model organisms like fruitflies and mice, the splicing of a pre-
mRNA product is more complex because the cell can remove different parts of the
pre-mRNA depending on the environment. The end result is that a single gene or
stretch of code on the DNA can result in a diversity of mRNA transcripts. This is
referred to as alternative splicing [see Figure 1(a) for an illustration].

The different possible transcripts that can result from a single gene are often
called isoforms of the gene. The DNA of a gene can be thought of as being divided
into introns (the portions that will be removed) and exons (the portions that will
remain), though because of alternative splicing some regions may be retained in
one isoform and removed in another isoform. Exons that are contained in all iso-
forms are called constitutive exons, versus alternatively-spliced exons that are only
in a subset of the isoforms. The number of isoforms present in a gene and the ex-
tent of overlap between isoforms vary by gene. Determining the possible isoforms
based on the DNA of a gene is difficult, and the set of all possible isoforms is not
completely determined even for well-characterized genomes like human.

2.2. Sequencing of mRNA for alternative splicing. Sequencing technologies
allow researchers to determine the DNA nucleotides that make up the input DNA
strand(s) (or mRNA). Advances in the efficiency of such technologies now make
it practical to intensively sequence the mRNA in a cell in order to quantify the
relative amounts of different mRNA in a cell (also called mRNA expression). Un-
like earlier microarray technologies, sequencing the mRNA in a cell measures all
mRNA without needing any prior information as to what genes or isoforms exist.
Due to this, the sequencing of mRNA provides a great deal of information about
alternative splicing in the cell.

While sequencing methods allow for direct sequencing of mRNA, the most
commonly used technologies for mRNA still do not allow for an entire mRNA
transcript to be sequenced. Instead, the mRNA must be cut into smaller fragments
before sequencing, meaning that the sequences that are obtained are only a por-
tion of the mRNA from which they came. To determine mRNA abundance, these
partial fragments must be identified with a gene or isoform, usually by aligning or
mapping the sequences to the known genome.

If the mRNA has undergone splicing, then the mRNA fragment may not di-
rectly match the genome, but it is usually possible to match a fragment back to
the genome by allowing gaps in the match of the mRNA to the genome, which
will correspond to introns that were removed due to splicing [see, for example,
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FIG. 1. Illustration of alternative splicing and sequencing. (a) Illustration of the process of creating
multiple isoforms from a single gene (DNA) courtesy of National Human Genome Research Institute
(2014) (www.genome.gov). A RNA copy of a gene is created (pre-mRNA) that contains all the gene’s
exons and introns. The pre-mRNA in this example can then be spliced in one of three ways, and
each possibility leads to a different mRNA (isoform) and protein product. (b) Illustration of aligned
sequenced fragments when a gene has multiple isoforms. The top set of small boxes represents the
sequenced fragments, while the bottom boxes represent the annotation of a gene region [not the same
gene as in (a)]. The sequenced fragments on top are shown based on their alignment to the genome
below. Most sequenced fragments are represented as a single box, meaning they completely match a
genome region. Some sequenced fragments have to be split into smaller boxes with connecting lines;
these represent junction fragments, where because of alternative splicing the fragment matches two
disconnected regions of the genome. The annotation below the sequenced fragments consists of all
known exons (i.e., the gene), shown by the grey exons; below the gene are its three isoforms and their
corresponding exons. Where possible, the sequenced fragments are also colored by the isoform to
which they can be uniquely identified; most fragments are grey because it is not possible to identify
the isoform from which they originate.

http://www.genome.gov
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Trapnell, Pachter and Salzberg (2009), Wu and Nacu (2010)]. Such fragments that
do not directly map to a single exon but rather span multiple exons are often called
junction fragments or split-reads [Figure 1(b) shows examples]. Junctions frag-
ments are often interesting for alternative splicing because they can give direct
evidence of splicing. For example, in Figure 1(b), isoforms A and B differ because
B includes an exon 2 and A does not (called an exon skipping event); fragments
that connect exon 1 to exon 3 without including exon 2 must come from isoform A,
while those fragments that connect exon 2 to the adjacent exons 1 and 3 must come
from isoform B.

Most fragments entirely match the genome and are even contained entirely
within an exon. Since the bases just around the junctions between exons repre-
sent only a small portion of mRNA, junction fragments are much less common
than fragments mapping within the exons, and therefore fragments matching the
genome are important for accurate quantification of the overall expression of the
mRNA. Within-exon fragments are less likely to provide direct evidence as to the
isoforms from which they came [though we give an example in Figure 1(b) of a
fragment contained entirely within an exon that must come from isoform C]. How-
ever, the quantity of fragments mapping to different regions can provide indirect
evidence of alternative splicing. For example, in the case of the skipping of exon 2,
described above, expression of isoform A implies less total expression of exon 2
(i.e., fewer fragments mapping to it) relative to exons 1 and 3.

2.3. Measuring differential alternative splicing. The information in the se-
quenced fragments may be summarized in different ways with respect to detecting
differences in alternative splicing. Such summaries can be roughly thought of as
making different use of fragments mapping to the junctions versus the interior of
the exons. Depending on how the information is summarized, different statistical
approaches are appropriate. Our methods here focus on analyzing data resulting
from one particular approach to summarizing the information regarding alterna-
tive splicing. This method makes use of the junction fragments, and we call this
an inclusion–exclusion summarization, with the summary statistic often called the
percent spliced in or exon inclusion percentage.

The inclusion–exclusion approach simplifies the information in isoforms into
two contrasting patterns of interest and counts how many fragments agree with
one pattern compared to the other. The comparison of isoforms A and B based on
their junction fragments described above is such an example. In this case, junctions
that skip exon 2, joining exons 1 and 3, show evidence of isoform A, while those
that include exon 2 show evidence of isoform B. This comparison ignores any
other exons in the gene, only considering the three exons relevant for assessing the
exon skipping event. To summarize this information, we calculate the proportion of
these fragments including exon 2, which is called the percent spliced in for exon 2
abbreviated PSI or � . More generally, the inclusion–exclusion approach breaks



696 S. RUDDY, M. JOHNSON AND E. PURDOM

each gene into well-defined simple alternative splicing patterns (e.g., skipping ex-
ons, alternative 5′/3′ splice starts), and evaluates whether the PSI changes between
different conditions across all genes [see Barbosa-Morais et al. (2012), Brooks
et al. (2014), Pan et al. (2008), Shen et al. (2012), Venables et al. (2009), Wu et al.
(2011) for examples]. Programs like MATS [Shen et al. (2012)], JuncBase [Brooks
et al. (2011)], DiffSplice [Hu et al. (2013)] and SpliceTrap [Wu et al. (2011)] take
an annotation file of the transcriptome and create counts for these types of alterna-
tive splicing events.

In our data analysis that follows, we consider PSI values defined more broadly
than just these classical definitions of splicing. These classical alternative splicing
events are difficult to identify computationally for the whole genome, and they
also do not include many other more complicated events. We define a PSI for
each exon based on the percentage of counts—from any isoform—that include the
exon out of all fragments that either include or skip the exon [see Supplementary
text, Section 3.5.1, for more details Ruddy, Johnson and Purdom (2015a)]. This
approach creates a measure of PSI for every exon in the annotation, which we find
more satisfying than limiting to just exons that are in simple types of combinations.

We emphasize that, regardless of how we define an “event,” all of these
inclusion–exclusion summarizations result in the same kind of data structure from
a statistical point of view: Y successes out of m trials for each event.

Alternative splicing between samples can be compared using other summaries
of mRNA-Seq data. Our methods are not generally appropriate for these types of
summaries (except as noted below), but we mention them here so as to make clear
the distinction.

Isoform estimation. Another way to summarize the information in a gene is
to estimate the individual isoform estimates directly. Most fragments do not map
uniquely. This results in a deconvolution problem, where the observed expression
of a fragment is a convolution of the expression of the individual isoforms from
which it could originate [Denoeud et al. (2008), Jiang and Wong (2009), Katz
et al. (2010), Richard et al. (2010), Salzman, Jiang and Wong (2010), Trapnell
et al. (2010)]. Individual isoform expression levels can be individually compared
in a similar way to gene expression estimates [see EBSeq, Leng et al. (2013)]
which provides for corrections specific to isoform analysis) or specific features of
the isoforms can be compared for differential isoform usage [e.g., rSeqDiff, Shi
and Jiang (2013)].

Furthermore, some researchers use isoform expression measures to create PSI
values per exon, where instead of using inclusion–exclusion counts, they use the
isoform measurements to calculate, per exon, the percentage of the overall isoform
expression that comes from isoforms including the exon [Shi and Jiang (2013)]. In
our simple example, exon 2 is contained only in isoform B, and the isoform-based
PSI for exon 2 is the isoform abundance for isoform B as a fraction of the total
(sum) abundance for the gene (this estimates a similar quantity to our preferred
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way of calculating PSI per exon described above). Since isoform estimates are
continuous, and not counts, this form of a PSI would not have the discrete statistical
structure of Y successes out of m trials; however, it is common to convert isoform
expressions into expected counts, in which case the expected counts would have
that discrete nature.

The ability to estimate isoform expression levels depends on having complete
knowledge of all possible isoforms in the gene (called the transcriptome), as well
as having enough distinguishing information between the isoforms to deconvolve
the isoform expression from the overall expression. However, many organisms of
interest to researchers do not have well-established transcriptomes. Some compu-
tational methods attempt to construct the set of isoforms de novo, based on mRNA-
Seq data [Guttman et al. (2010), Richard et al. (2010), Trapnell et al. (2010)], but
this problem is extremely complicated, and these de-novo methods can be unreli-
able and unstable if used on a single, small experiment or without sufficient num-
bers of sequenced fragments. For this reason, it can be preferable to use alternative
methods of summarizing the data for detecting differential alternative splicing.

Relative exon usage. Another approach to alternative splicing evaluates the
relative expression of exons to detect alternative splicing, ignoring the specific in-
formation in the junction fragments. As we noted above, if isoform A is expressed,
this should be apparent in relatively less total number of counts overlapping exon 2;
this can be assessed without any recourse to what specific exons are joined together
by junction fragments. Therefore, the input per exon is the counts of all fragments
overlapping an exon, and relative exon usage does not make use of the information
of how junction fragments skip the exons, except in their contribution to the count
of fragments overlapping an exon.

In practice, many technical aspects of sequencing can create biases so that some
exons are more likely to get sequenced, which affects the overall count of an exon
relative to other exons in the gene. For this reason the goal of methods based solely
on exon counts is to find differential changes in relative exon expression across
groups. This is based on the assumption that the sequencing-related biases would
be the same across samples, which may not be true.

Methods that analyze relative exon counts to detect differential alternative splic-
ing, like DEXSeq [Anders, Reyes and Huber (2012)] and the diffSplice method of
voom [Law et al. (2014)], fit a linear model per gene to the counts per exon, in-
cluding an individual exon effect to quantify the relative exon expression, that is,
how different an exon is from the overall mean gene expression. Then, they find
differentially spliced exons by detecting exons who have different exon effects in
the two groups. In fitting this model, standard count distributions like the negative
binomial model, along with the corresponding shrinkage of the dispersion, can be
used in the same manner as for gene expression.

Like the inclusion–exclusion approach, relative exon usage does focus on indi-
vidual exons rather than global isoform estimates. However, the linear model also
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implies that the effect for an exon is defined relative to all other exons in the gene,
which means that identification of an exon effect in the linear model does not
directly translate to alternative splicing differences in that exon [Anders, Reyes
and Huber (2012)]. For example, if many of the exons in a gene are alternatively
spliced, then, relative to the mean, the unusual exons with large exon effects are ac-
tually the few that are not alternatively spliced. Similarly, introns should not be in-
cluded in a relative exon usage analysis since they will overwhelm the gene model.
Neither of these situations are a problem with the inclusion–exclusion framework,
where the measurement of splicing given by the PSI is local and independent of
other, nonadjacent, exons in the gene. On the other hand, relative exon counts can
find differential usage of exons that cannot have inclusion–exclusion data, for ex-
ample, exons at the beginning or end of a gene do not produce skipping fragments
even if some isoforms do not use those exons.

We note that, in addition to targeting the correct exon, the paradigm of
inclusion–exclusion offers one possibly significant advantage compared to an anal-
ysis of the relative usage of exon counts, regardless of the specific statistical
method. In the inclusion–exclusion paradigm, those exons that show no fragments
skipping the exon in any sample of any group are naturally excluded by getting a
p-value of 1 by definition (and similarly for those exons which are always skipped,
such as introns). To get a sense of the value of using information about junctions,
we look at our real data example of 30 samples from 2 tissue types (described in
Section 5.4) and compare the exons with skipping junctions to our preexisting an-
notation of the gene. Of the exons annotated as constitutive (12.7% of the exons in
the data), only 1% (529 exons) show any junction fragments skipping the exon in
any of the 30 tissue samples, while 35.0% of those exons annotated as alternatively
spliced have such junction fragments. This strongly suggests that the implicit re-
moval of exons with no skipping junctions is preferentially removing exons that
are not alternatively spliced, which ultimately can increase the power [Bourgon,
Gentleman and Huber (2010)]. Such exons are not easily excluded in the linear
model analysis of exon counts; to the contrary, the constitutive exons are actually
important in building the gene model—though a post-analysis filtering could be
implemented to eliminate exons that were never skipped.

Clearly, this implicit filtering can also be a disadvantage if many alternatively
spliced exons are excluded because of a lack of sufficient sequenced fragments to
detect the skipping event. We view this as less of a practical disadvantage because
we find that, in practice, practitioners are likely to want evidence in the form of
junction fragments skipping an exon in order to have faith in the call of an exon
as alternatively spliced or to design an experiment to test the result. But a more
general concern is that because the inclusion–exclusion paradigm relies heavily on
fragments that span the junctions of exons—a small percentage of all fragments—
it relies on a lower number of fragments and could have lower power.
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3. Modeling the dispersion. Several different distributional choices are pos-
sible for the dispersion model for the binomial. A common choice is the beta-
binomial model which places a beta prior on the proportion parameter of a standard
binomial distribution. This distribution is not a member of the exponential family,
and the solution for the MLE does not have a closed form. This model was used
recently in the setting of methylation data [Dolzhenko and Smith (2014), Feng,
Conneely and Wu (2014), Sun et al. (2014)], but less so in that of gene expres-
sion settings [with Zhou, Xia and Wright (2011) and Hardcastle and Kelly (2013)
being exceptions]. In a related fashion, the MATS method of Shen et al. (2012)
creates a dispersed model by placing a uniform prior on the proportion parameter
of the binomial which is a specific example of a beta prior where the beta param-
eters (and thus dispersion) are set in advance; unlike the other methods previously
cited, MATS was actually developed for the setting of measuring PSI and detecting
alternative splicing from mRNA-Seq data.

Another common approach is quasi-likelihood methods; the estimates for the
proportion (mean) remain the same as that found from a binomial model, but
the distribution of the estimate of the mean depends on a dispersion parameter.
The presence of overdispersion results in greater variability of the mean than the
nondispersed model (or less if underdispersed). An existing method of analyzing
proportions in a genomic setting is the modified extra-binomial (EB2) method of
Yang et al. (2012), which follows an alternative quasi-likelihood approach given
in Williams (1982) where the variance is aligned to match that of a beta-binomial;
again, this was not developed for differential exon splicing, but for comparing al-
lele frequencies between populations.

We focus our methods on the double exponential family [Efron (1986)], which
is a set of proper probability distributions that result in estimates closely related to
the quasi-likelihood method. This class of distributions, which we will describe in
detail below, adds a dispersion parameter to any member of the exponential family.
This distribution has the advantage of being closely related to the quasi-likelihood
approach and yet still provides a likelihood platform for the development of shrink-
age methods. Furthermore, the distribution is itself in the two-parameter exponen-
tial family, making calculations and approximations straightforward. Because our
method of shrinkage for dispersion estimates generalizes beyond just the binomial
distribution, we will describe the development in general terms using notation for
the entire double exponential family of distributions rather than concentrating on
the binomial setting (which we will refer to as the “double binomial” distribution).

Notation. In what follows, the data from every exon consists of a pair Yij and
mij . Yij refers to the count of the number of times event j was included for sam-
ple i. For the setting of exon inclusion, Yij would be the number of fragments over-
lapping exon j . mij gives the total possible number of counts related to event j ;
in the exon setting this would be the total number of fragments for the exon—the
sum of the number of those expressing exon j and those skipping exon j . The



700 S. RUDDY, M. JOHNSON AND E. PURDOM

value Yij /mij is the “percent spliced in” (PSI) value and is the standard binomial
estimate of the probability of inclusion. For concreteness, we will assume that the
PSI is per exon, with the understanding that the same methods could be applied to
other ways of defining “included” and “excluded” fragments. The mij we will call
the total count, meaning the total number of fragments for the exon, both including
and skipping the exon.

For the rest of this section, we will focus on the modeling of the distribution of
Yij for just a single exon j , and therefore we will drop the subscript j when the
meaning is clear.

3.1. The double exponential family of distributions. The double exponential
family of distributions of Efron (1986) generalizes any distribution in the expo-
nential family of distributions by including an overdispersion parameter. Specifi-
cally, assume that the naive choice for the distribution of Yi is a distribution in the
exponential family, such as Binomial or Poisson. We also assume that each Yi has
a corresponding “sample size” mi . For the binomial, mi is clearly the total number
of trials. For other distributions, mi might be taken as 1 for all samples. We follow
the notation of Efron (1986) so that we transform Yi into a random variable Zi

whose mean μ under the naive distribution is independent of the sample size mi ,
for example, Zi = Yi/mi for the binomial family. We write the p.d.f. of the naive
distribution in canonical exponential family form by

gmi
(zi) = exp

(
mi

(
ηzi − ψ(μ)

))
dGmi

(zi),

where η = η(μ) is the link function relating the mean μ to the canonical parame-
ter η, and ψ(μ) is the normalizing function. For the case of binomial, the link func-
tion is the standard logit function, η(μ) = log(

μ
1−μ

), and the normalizing function
ψ is given by ψ(μ) = − log(1 − μ). We can also define the standard deviance
residual of Zi from the mean μ in terms of the canonical parameters of the expo-
nential family,

D(Zi,μ) = 2mi

{(
η(Zi) − η(μ)

)
Zi − (

ψ(Zi) − ψ(μ)
)}

.

Note that D(Zi,μ) is the deviance based on the naive (nondispersed) model.
Efron (1986) proposes adding a dispersion parameter φ to any distribution in

the exponential family so that the dispersed distribution has a p.d.f. given by

c(μ,φ,mi)√
φ

exp
{
−D(zi,μ)

2φ

}
dFmi

(zi),

where c(μ,φ,mi) is a normalizing constant. The role of φ is reminiscent of
the role of the variance parameter in a normal distribution where φ > 1 implies
overdispersion and φ < 1 implies underdispersion.
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Approximating c(μ,φ,mi). The normalizing constant c(μ,φ,mi) can be
computationally expensive to calculate, especially in the context of genomic stud-
ies where the maximization routines will need to be calculated for every exon.
Efron shows that c(μ,φ,mi) → 1, as mi → ∞. In our exon setting mi is the total
number of fragments for the exon in a particular sample—including both the frag-
ments overlapping the exon and the junctions skipping the exon—and is not the
number of samples.

The accuracy of this approximation for finite mi depends on the values of μ

and φ. For the ranges of φ that we see in the data, the approximation generally
holds well for μ away from the boundary values of 0 or 1, and our shrinkage
procedure further mitigates the negative effects seen due to the approximation in
estimating φ̂ in these boundary settings, as we discuss further in the Supplementary
text, Section 1.4 [Ruddy, Johnson and Purdom (2015a)].

Approximating c(μ,φ,mi) with 1 results in the mean of Zi remaining approx-
imately μ while the variance of Zi from the overdispersed distribution becomes
approximately φ

V (μ)
mi

, where V (μ) is the variance function for the naive (nondis-
persed) distribution from the exponential family. If the naive distribution is the
binomial distribution, the corresponding overdispersed distribution has variance
approximately φ

μ(1−μ)
mi

, while for a Poisson the overdispersed distribution has
variance approximately φμ.

Comparison of double binomial to beta-binomial. By analogy, the beta-
binomial distribution can be parameterized in terms of the mean μ and dispersion
parameter ρ ∈ (0,1), which represents the correlation between the mi Bernoulli
draws. Then the variance of Zi from a beta-binomial is given by

1

mi

μ(1 − μ)
(
1 + (mi − 1)ρ

) = V (μ)

mi

(
1 + (mi − 1)ρ

)
.

Note that beta-binomial only allows for overdispersion, unlike the double bino-
mial, though that is not of great concern in most genomic studies where we expect
overdispersion.

We compare their density functions in Supplemental Figure S1 after aligning
their first two moments [i.e., choosing ρ so that φ = (1 + (mi − 1)ρ)]. Not sur-
prisingly, for low levels of dispersion, the double binomial and beta-binomial are
quite similar since they both converge to a binomial distribution as the dispersion
vanishes. They show the greatest differences for large dispersion parameters or
when the mean is near the boundary of values of 0 and 1. When the dispersion is
extremely large [log(φ) = 3], the double binomial puts more mass on the bound-
ary values compared to the beta-binomial. However, dispersion values this large
are rare in the data we are examining (Supplemental Figure S2). More applica-
ble for our data is the differences between the two distributions when μ is near 0
(or 1), where the beta binomial concentrates the mass much closer to 0 while the
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double binomial allows for more variability; when we look at the number of zeros
in real data, it matches simulations from a double-binomial more closely than that
of a beta-binomial (Section 4.3). Over the rest of the range of parameters, the dis-
tributions are relatively similar, but the distribution of the beta-binomial is more
difficult to work with analytically than the double binomial, particularly when we
use the approximation of c(μ,φ,mi) = 1 for the double binomial.

Multiple groups. For applications, we are interested in the case with covariates
that give rise to different μ for different samples i. We focus on the common case
in genomic studies where the covariates simply define K separate groups of sam-
ples, and we want to compare the mean proportion between the groups for every
exon. The most common example is the two-group comparison where K = 2. The
two groups might be disease and normal samples, samples with a gene knocked
out versus those without, or any comparison of treatment samples versus control
samples. Higher values of K correspond to multiple group comparisons, such as
time course data, where each group might correspond to observations observed at
the same time point.

In the case of multiple groups, we have a separate mean μk for each group k.
Maximizing the joint likelihood with the approximation that c(μk,φ,mi) = 1
gives simple analytical MLE estimates for μk and φ,

μ̂k = ∑
i∈k

mi

Mk

zi, φ̂ = 1

n

∑
k

∑
i∈k

D(zi, μ̂k),

where Mk = ∑
i∈k mi is the total coverage of all samples in group k. Thus, the

approximation c(μk,φ,mi) = 1 results in the standard estimates of μk from the
nondispersed distribution and estimates of the dispersion based on deviance resid-
uals. These estimates are the same as those in the quasi-likelihood setting, giving a
likelihood-based method that closely resembles the results of the quasi-likelihood
method [Efron (1986)].

This approximation leads to enormous computational savings as well as align-
ment with the standard quasi-binomial approach, and the methods we develop as-
sume this approximation.

3.2. Distribution of φ̂. A key component in our methods of shrinkage is a
statistic that relies solely on the parameter φ and is independent of μ. This allows
us the opportunity to shrink the estimates of φ based on shared information across
exons independently of the value of μ for a particular exon.

Distributions from the double exponential family are also members of the two-
parameter exponential family. This implies that the conditional distribution of φ̂|μ̂
defines a conditional likelihood independent of μ and that the conditional distribu-
tion can be easily approximated using a modified profile likelihood [see Pawitan
(2001) for a review]. This conditional likelihood can be used for shrinkage of the
estimates φ̂ as in Robinson and Smyth (2007).
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However, if we further make use of the approximation c(μk,φ,m) = 1, it can
be shown that φ̂ is asymptotically independent of the vector of sample means, μ̂.
Furthermore, φ̂ is asymptotically Gamma distributed,

φ̂
L→Gamma

(
n − K

2
,

2

n
φ

)
,

where 2
n
φ is the scale parameter of the Gamma [see Supplementary text, Section 1,

Ruddy, Johnson and Purdom (2015a)]. The quality of this approximation depends
heavily on the parameters μ and mi in a similar manner as the approximation of
the normalization constant, and exons with boundary values of μ have a poor ap-
proximation. The quality of the approximation does not appear to be very sensitive
to small samples sizes n [see discussion in the Supplementary text, Section 1.4,
Ruddy, Johnson and Purdom (2015a)].

This approximation does not depend on which naive distribution formed the
starting point of the analysis, though we will use the binomial distribution since
we are analyzing percentages (PSI). For example, it could similarly be used for an
overdispersed Poisson distribution for gene expression analysis, which we discuss
in the conclusion.

4. Development of empirical Bayes methods. We now develop the method-
ology underlying our two shrinkage methods for the dispersion, as well as test
statistics for comparing differential skipping between groups.

Our methods rely on the empirical Bayes strategy for shrinkage of the disper-
sion parameter, which is widely used in genomic settings. For example, EBSeq
[Leng et al. (2013)] and DSS [Wu, Wang and Wu (2013)] proposed empirical
Bayes methods for differential gene expression detection in sequencing data, and
in microarrays analysis the widely used limma method [Smyth (2005)] provides
empirical Bayes shrinkage of the variance parameter of a normal distribution. We
develop an empirical Bayes method for the family of double exponential distribu-
tions, which we call DEB-Seq (Double exponential Empirical Bayes with applica-
tion to Sequencing).

We also consider the weighted likelihood approach to shrinkage implemented
for the negative binomial distribution in the widely used gene expression method
edgeR [Robinson and Smyth (2007)]. We show that when applied to the approx-
imate likelihood of φ̂ based on the double exponential family of distributions, it
gives an estimator of a similar form as our empirical Bayes estimator, except with a
different parameterization of the prior distribution. To distinguish the method with
this form of parameterization, we refer to this as the WEB-Seq method (Weighted
Empirical Bayes shrinkage with application to Sequencing).

4.1. Double exponential empirical Bayes. Empirical Bayes estimation of the
dispersion parameters via an explicit likelihood formulation is a natural way to
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provide shrinkage estimators of the dispersion parameter. By this we mean the
following general strategy for estimating a parameter θ : formulate a Bayesian
model Yj |θj ∼ F and θj ∼ Gα , let the estimate θ̂αj be given by Eα(θj |Y), and
then choose the parameter α by estimating α from the joint marginal distribution
of Y1, . . . , Yn|α based on the observed data, Y1, . . . , Yn. This results in an estimate
θ̂α̂j which not only has the desirable shrinkage properties of Bayesian estimators
but is also an explicit method for estimating the parameter α.

Many distributions, including the distributions in the double exponential family,
do not have a prior that gives a tractable form for the marginal distribution of Y

to permit easy estimation of α from the data. However, if we make the approxi-
mation that the normalizing constant is equal to 1, we show in Section 1 of the
Supplementary text that φ̂ is approximately Gamma distributed [Ruddy, Johnson
and Purdom (2015a)].

This suggests a simple Bayesian model of φj for each exon j . A conjugate prior
for the scale parameter of a gamma distribution with a known shape parameter is
the inverse gamma distribution, IG(α0, β0)

2. Applying this conjugate prior to the
scale parameter φj , we can formulate the Bayesian model

φ̂j |φj ∼ 


(
n − K

2
,

2

n
φj

)
, φj ∼ IG(α0, β0).

We then can define a Bayesian point estimate for the precision (1/φj ) as the mean
of the posterior distribution, and use this to give a Bayesian estimate of φ (see
Supplemental text, Section 2.2, for details),

φ̂
j
Bayes = nφ̂j + 2β0

n − K + 2α0
.(1)

To give an empirical Bayes solution, we estimate α0 and β0 from the marginal
distribution of the φ̂j across all exons, making the assumption that the φ̂j are inde-
pendent across exons. Critically, the approximate distribution of φ̂j is independent
of the individual total counts, mij , per exon and sample. This means that under
the Bayesian model above, the φ̂j are marginally identically distributed and we
can use the joint marginal likelihood of φ̂j to find estimates α̂0 and β̂0. Because
the Inverse Gamma prior for φ is a conjugate prior, this results in an analytical
expression for the marginal density of φ̂j which we use to estimate α̂0 and β̂0 via
ML estimation (see Supplemental text, Section 2.2, for details).

Substituting our estimates α̂0 and β̂0 into our standard Bayesian point estimate
in equation (1) gives the empirical Bayes estimate of φj . We call this estimation
procedure Double exponential Empirical Bayes with application to Sequencing
(DEB-Seq) and refer to the estimate as φ̂

j
DEB.

2Recall that if X ∼ IG(α0, β0), this implies that 1/X ∼ 
(α0, β0) where β0 is the rate parameter.
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4.2. Empirical Bayes based on weighted likelihood. Wang (2006) gives a gen-
eral strategy for combining likelihoods by creating a (weighted) average of the
log-likelihoods of all the experiments. The edgeR method of Robinson and Smyth
(2007) adapts this idea to the gene-expression setting to make it gene-centric. Each
gene j is given a separate weighted log-likelihood �

j
WL(φ) which is the weighted

sum of the individual gene’s log-likelihood for gene j , �j (φ) and a common log-
likelihood �CM(φ), which is the average of the individual gene log-likelihoods over
all genes,

�
j
WL(φ) = �j (φ) + δ�CM(φ), �CM(φ) = 1

p

p∑
j=1

�j (φ).

Then for each gene j , we maximize �
j
WL(φ) to obtain the shrunken estimate φ̂j .

The weight δ given to the common log-likelihood �CM(φ) is a tuning parameter
that must be chosen. McCarthy, Chen and Smyth (2012) suggest that it be chosen
so that it is proportional to sample size adjusted by degrees of freedom, with edgeR
assigning a default value for δ equal to 20

n−K
.

In order to apply this to the dispersion parameter of a negative binomial,
Robinson and Smyth (2007) use the conditional likelihood of φ̂|∑p

i=1 Yi to de-
fine a conditional log-likelihood �j (φ) which is independent of μ assuming all mi

are equal. This is not the case in typical RNA-Seq experiments, so Robinson and
Smyth (2008) provide a method of getting pseudo-totals by implementing what
they call a quantile-adjusted conditional maximum likelihood procedure (qCML).
Essentially, the observed data is adjusted via an iterative algorithm to simulate
pseudo-data that is distributed from a negative binomial with equal library sizes.

We can follow the same weighted likelihood strategy to create a weighted
likelihood for a distribution from the double exponential family. Again, if we
assume that c(μk,φ,m) = 1, we have that φ̂j is approximately distributed
Gamma(n−K

2 , 2
n
φ). Unlike the negative binomial distribution, the approximate

likelihood of φj does not depend on the mij , eliminating the need to create pseudo-
data in the implementation. Also, unlike the negative binomial distribution, the re-
sulting estimate from maximizing the weighted log-likelihood with respect to the
precision 1/φ has an analytical solution given by

φ̂
j
WL(δ) = n

n − K

φ̂j + δφ̄

1 + δ
,(2)

where φ̄ = 1
p

∑p
j φ̂j is the average of the φ̂j over all exons in the data (see Supple-

mental text, Section 2.3).

WEB-Seq. One major advantage of the empirical Bayes method in estimating
the dispersion is that the amount of shrinkage performed is entirely determined
from the data, unlike the weighted likelihood method.
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It is clear from comparing the (1) with (2) that the weighted likelihood estimate
takes on the same form as that of the empirical Bayes estimate. Specifically,

α0 = δ
n − K

2
, β0 = δ

n

2
φ̄.

This implies that the weighted likelihood method can be written as an empirical
Bayes solution where the prior is parameterized by a single variable δ rather than
the two parameters α0 and β0. (We are implicitly treating φ̄ as a fixed value, rather
than explicitly conditioning on it, but φ̄ will normally be the average of thousands,
if not tens-of-thousands, of exons.) Note that in the weighted likelihood approach,
δ is assumed to be strictly positive, and φ̄ will similarly be positive, satisfying the
assumptions for α0 and β0 to yield a true density.

This naturally suggests an estimator based on this alternative parameterization
to fuse these two methods together. Using this parameterization for the Gamma
prior, and maximizing the marginal joint likelihood of φ̂j |δ, gives us an estimate δ̂

and represents the amount of shrinkage that should be performed in the weighted
likelihood method [for details concerning estimation of δ see Supplementary text,
Section 2.3, Ruddy, Johnson and Purdom (2015a)]. We call the resulting dispersion
estimates a Weighted-likelihood Empirical Bayes shrinkage with application to

Sequencing (WEB-Seq), and denote them as φ̂
j
WEB = φ̂

j
WL(δ̂).

We will see that WEB-Seq has similar performance to the original empirical
Bayes approach, though it is more conservative and, as a result, slightly less pow-
erful. Both methods perform well, and we choose to focus on this method largely
because it appears to be more robust in simulations to violations of the model due
to being more conservative (Section 5).

4.3. Estimates of underdispersion near the boundary. In initial simulations,
estimated proportions lying on the boundary (i.e., Yij /mij either exactly 1 or 0)
had a large and adverse effect on the false discovery rate (FDR) as the sample size
increases [see Supplementary Figure S3, Ruddy, Johnson and Purdom (2015b)].
These exons are either never skipped or always skipped in one or more samples.
This poor performance is particularly detrimental for the exon skipping applica-
tion, since many exons may be rarely skipped or rarely expressed, particularly if
introns are included in the analysis.

The poor behavior is due to the fact that the methods estimate under-dispersion
for such boundary exons, leading to a large number of false discoveries. Ironically,
the effect is worse with larger sample sizes: the effect becomes noticeable around
5–10 samples per group and for increased sample sizes the FDR grows without
control. The reason for this is that in low sample sizes those exons whose true
proportion lies near the boundary are more likely to have all observed proportions
equal exactly 0 or 1; exons with proportions all 0 or 1 across all samples auto-
matically get a p-value of one regardless of φ̂, and so they are removed from con-
sideration by our method before the shrinkage is calculated. Larger sample sizes
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have an increased chance that at least one nonboundary sample will be observed,
allowing the exon to remain in the analysis and have an effect on the FDR results.

One approach to address this issue could be to further filter exons to remove
those with mean proportion close to the boundary. Another approach would be to
not allow underdispersion by setting the dispersion in such cases to one, that is,
that of a binomial distribution.

We obtained better results by defining an effective sample size, neff, the maxi-
mum of the number of nonboundary samples and K +1, where K is the number of
groups being compared. We use this neff to adjust the degrees of freedom, n − K ,
that appear in the Gamma prior, changing it to be neff − K instead. Note that this
means that each exon has a slightly different effective sample size. A similar differ-
ence in effective sample size can also result when a sample has mij = 0, in which
case the sample cannot be included in the analysis of that exon [see Supplementary
text, Section 2.4, for details Ruddy, Johnson and Purdom (2015a)].

Using these effective degrees of freedom, our methods are less likely to erro-
neously estimate underdispersion on the boundary, though it remains technically
possible to estimate underdispersion. With this adjustment, we report no underdis-
persion at any sample size for any exon in our simulated or real data sets, while
previously exons with proportion parameters near the boundary were frequently
estimated to be underdispersed and thus given inflated significance. Furthermore,
we estimate a continuous range of dispersion values φ for these boundary exons.
We find this to be more natural than forcing them all to have no dispersion, which
would be the case if we arbitrarily set those with underdispersion estimates to have
φ̂ = 1.

In Supplementary Table S1 [Ruddy, Johnson and Purdom (2015c)] we compare
the proportion of exons that are affected by our adjustment for data simulated under
either a double binomial or beta-binomial distribution, as well as the real data. We
see that 78% of the exons are affected by these changes, with 43% having a large
reduction of 5 or more. This highlights the importance of boundary control in the
exon skipping problem. Interestingly, we see that the real data more closely follows
the double binomial simulations in this respect, rather than the beta-binomial.

4.4. Comparison of conditions. After obtaining estimates of φ for each exon
based on shrinkage across the exons, we then return to our question of testing
differences of inclusion between conditions. These can be formulated in the form
of contrasts on the vector η(μ), and we can test the significance of the contrast
per exon. In our implementation, we focus on the common two-group comparison,
though all of the methods carry through to the more general setting of contrasts of
groups. In the setting of comparing two groups, we reparameterize so that β1 =
η2 − η1 is the value of the contrast defined by the difference of the two groups
(the log-odds ratio for a double binomial distribution). We test the null hypothesis
H0 : β1 = 0.
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Let φ̂∗ be an estimator of φ under the full model with no constraints on β1 (e.g.,
DEB-Seq or WEB-Seq, or the MLE φ̂). When testing the null hypothesis β1 = 0,
the standard GLM approach defines the likelihood ratio statistic as

W
φ̂∗ = log

L(β̂
H0
0 , β1 = 0; φ̂∗)

L(β̂0, β̂1; φ̂∗)
= SH0 − S

φ̂∗ ,

where S and SH0 are one-half of the sum of the deviance residuals of the full or
null model, respectively [i.e., 1/2

∑
k

∑
i D(Zi, μ̂k) for μ̂k estimated under the full

or null model, respectively].
Because our shrinkage methods give analytical solutions for the estimates of φ,

we can easily compare the effect of using the shrinkage estimator φ̂
j
WEB instead

of the original MLE φ̂j on the statistic W . W
φ̂

j
WEB

will be smaller than W
φ̂j

if

φ̂j is less than φ̄, the mean of the φ̂j across all exons. Therefore, those exons
with small estimates of variability will become less significant after shrinkage.
If the distribution of φ̂j is roughly gamma, this implies that the majority of test
statistics are reduced in significance since the gamma distribution is skewed right
and therefore the median is less than the mean.

Asymptotically, W
φ̂

should follow a F distribution with (K − 1) and (n − K)

degrees of freedom [Jørgensen (1997)]. We find that the shrinkage methods result
in less variability in the estimate of φ̂, with the result that the likelihood ratio
statistic more closely follows a χ2

n−K distribution than the standard F distribution
for unshrunken estimates.

Based on our simulations, we also find that this approximation is poor for small
sample sizes, for example, when the size of each group is five or less, leading to
poor control of Type I errors. Instead we propose an alternative statistic, which
re-estimates φ under the null and alternative, that has much better performance in
small sample sizes,

W
φ̂∗,φ̂∗

H0
= log

L(β̂
H0
0 , β1 = 0; φ̂∗

H0
)

L(β̂0, β̂1; φ̂∗)
= SH0

φ̂∗
H0

− S

φ̂∗ + n

2
log

(
φ̂∗

H0

φ̂∗

)
.

This means the likelihoods are not strictly nested, so that W
φ̂,φ̂H0

can technically

take on negative values. Here, φ̂∗
H0

and φ̂∗ are estimates of φ based on the null
(K = 1) and the full (K = 2) models, respectively. For our shrinkage estimates of
φ, this means that the value of K and the unshrunken ML estimate φ̂j in equations
(1) and (2) change. The estimates α̂0, β̂0, δ̂ and φ̄ are all based on the distribution
of the unshrunken estimates of φ, and so we accordingly also re-estimate their
values under either the assumption that K = 1 or K = 2.

5. Evaluation of methods. We evaluate WEB-Seq and DEB-Seq on simu-
lated and real data sets. Our evaluations consider the two-group comparison in
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everything that follows, and we will denote nG to be the number of samples per
group, so that n = 2nG.

We also compare our methods to other existing methods that provide shrinkage
of the dispersion parameter when comparing proportions across groups. The mod-
ified extra-binomial shrinkage method (EB2) [Yang et al. (2012)] was developed
to test for differences in allele frequencies, though it can be easily applied to the
setting of differential exon usage. The method employs shrinkage by reparameter-
izing the variance function in terms of two global parameters that are estimated via
linear regression by combining data across all SNPs. MATS [Shen et al. (2012)],
mentioned above, was developed for detecting differences in PSI and assumes a
uniform prior for the proportion parameter of a binomial and further adds a cor-
relation between the two conditions being compared; this parameter is assumed
shared by all the exons and thus provides implicit shrinkage. BBSeq [Zhou, Xia
and Wright (2011)] is a method developed for gene expression studies that shrinks
the dispersion parameter of a beta-binomial model. Their shrinkage method fits
a cubic polynomial to the independently estimated, logit-transformed dispersion
parameters as a function of the fitted values of the observed data. The method of
Feng, Conneely and Wu (2014) provided in the DSS package was developed for
DNA methylation data and also provides shrinkage of the dispersion parameter
of a beta-binomial distribution. They do so by fitting an empirical Bayes model
that assumes the dispersion parameter has a log-normal prior distribution and their
computations are based on method of moments estimators for the beta-binomial.
For convenience, we will refer to this as the DSS method, though DSS actually
refers to the corresponding gene expression technique that the same authors devel-
oped earlier in Wu, Wang and Wu (2013).

5.1. Description of the simulation. We simulated exon counts under a two-
group comparison setting. For the purpose of imitating real data, we chose simula-
tion parameters based on fitting models to 170 Acute Myeloid Leukemia samples
generated by the Cancer Genome Atlas project [Cancer Genome Atlas Research
Network (2011)]; see Supplementary text, Section 3.4, for details [Ruddy, Johnson
and Purdom (2015a)]. We generated data under a double binomial distribution and
also a beta-binomial distribution for evaluation of the robustness of our techniques
which were developed assuming the data come from a double binomial distribu-
tion. We randomly selected either 1% or 10% of the exons to show differential
usage between the groups; for these non-null exons, we chose the treatment ef-
fect, β1, uniformly from the union of [−3,−0.5] and [0.5,3], to account for both
decreased and increased exon usage. Otherwise, we gave exons a treatment effect
of 0, comprising our null set of exons. For each simulation, we simulated 85,373
exons and applied a basic filtering process to remove exons with proportions all
equal to 1 or all equal to 0 across the samples (these result in p-values of 1).

We used the simulated data to evaluate the methods developed above: (1) the
empirical Bayes method with a single parameter prior (WEB-Seq), (2) the gen-
eral two-parameter empirical Bayes method for the prior parameters (DEB-Seq),
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and (3) the weighted likelihood method with δ fixed to be equal to the default
value implemented in edgeR (δ = 20

n−K
). In addition to our dispersion-shrinkage

methods, we implemented the shrinkage methods of BBSeq, EB2 and DSS, briefly
described above. The MATS method does not take as input inclusion and exclu-
sion count matrices, but rather creates its own from BAM alignment files, and thus
could not be compared on the simulated data.

We also implemented three methods that fit a dispersion parameter per exon but
with no shrinkage across exons: quasi-binomial GLM estimation as implemented
in the glm function in R [R Core Team (2013)], maximum likelihood estimation
based on a beta-binomial distribution implemented using the betabin function
from the aod package in R, and maximum likelihood estimation based on an ap-
proximate double binomial distribution where the normalizing constant is set to 1.
The quasi-binomial GLM and the double binomial MLE are closely connected, as
described in Section 3.1, and are both nonshrinkage counterparts to our methods.
However, the quasi-binomial estimation by default uses Pearson residuals to esti-
mate the dispersion, rather than deviance residuals. The beta-binomial maximum
likelihood method is the nonshrinkage counterpart of the BBSeq and DSS methods
that rely on the beta-binomial distribution.

For each method, we implemented the estimation routines and then adjusted
the p-values to control the FDR to a 0.05 level using the standard Benjamini–
Hochberg FDR procedure [Benjamini and Hochberg (1995)] as implemented in
the p.adjust function in R [R Core Team (2013)]. The final measures of per-
formance were the methods’ ability to control false discoveries and their power to
detect non-null exons over the 100 simulations.

5.2. Comparison of double binomial methods on simulated data. We first
compare the performance of WEB-Seq and DEB-Seq to other methods that also
rely on the double binomial distribution, particularly those without shrinkage. As
hoped, the shrinkage methods improve upon the estimation of the dispersion pa-
rameter, reducing the mean squared error (MSE) significantly from the unshrunken
versions of the double binomial [Supplementary Figure S5, Ruddy, Johnson and
Purdom (2015b)]. DEB-Seq had the smallest MSE, followed by WEB-Seq, and
both were a significant reduction compared to double binomial estimation meth-
ods with no shrinkage.

We compare their ability to control the false discovery rate across a range of
sample sizes for a fixed FDR cutoff (Figure 2) and see that WEB-Seq and DEB-
Seq were also superior in control of FDR across a range of samples sizes. For data
simulated as double binomial, they both control the FDR well, while unshrunken
methods have high rates of FDR compared to the target 5%. Weighted likelihood
shrinkage for the double binomial with a predetermined tuning parameter (based
on edgeR default) is erratic in its control of FDR for small sample sizes (nG ≤ 5),
but then adequately controls FDR. However, the predetermined tuning method be-
comes over-conservative for large sample sizes, and the result is a large drop in
power for weighted likelihood for large sample sizes.
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FIG. 2. Double binomial methods compared across different sample sizes for a fixed 5% FDR
cutoff. We plot the average power (y-axis) against the FDR (x-axis) on simulated data for various
sample sizes based on p-values adjusted to provide a 5% FDR level. The calculated values of average
power and FDR are plotted with the sample size nG as the plotting character. The results for a
single method across different sample sizes are connected by a line. The 5% FDR boundary is given
by the dotted vertical line. The results are based on 100 simulations under (a) a double binomial
distribution and (b) a beta-binomial distribution; the simulations set 1% of exons as differentially
used. The plot compares only methods that assume the data follow a double binomial distribution,
with different methods being distinguished by different line types and grey scales. The joint MLE,
ACML and common likelihood are not shown in the beta-binomial simulation because their FDR
values were beyond the limits of the plot.

To evaluate the robustness of the methods, we consider data that do not follow
the double binomial distribution, but rather the beta-binomial distribution. Again,
in small sample sizes (nG ≤ 4) both WEB-Seq and DEB-Seq control the FDR
accurately. For moderate sample sizes (nG ≤ 10), the more conservative WEB-
Seq maintains control of the FDR; DEB-Seq still has greater power, but has an
increase of FDR to about 10% for these moderate sample sizes. Large sample sizes
(nG ≥ 10) show an underlying bias, probably because the p-values were calculated
under the wrong model and, as a result, the FDR of both WEB-Seq and DEB-Seq
starts growing well beyond the 5% target.

5.3. Comparison to other methods on simulated data.

FDR control. In Figure 3, we compare how WEB-Seq controls the FDR in
small sample sizes (nG = 5) compared to other existing methods. WEB-Seq shows
superb control of the FDR, while all of the other methods—both those that use
shrinkage and those that do not—have FDR rates far beyond what their adjusted
p-values would indicate. This pattern holds for different distributions of the data
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FIG. 3. Control of FDR. We plot the true FDR level against the reported FDR for different methods,
with methods indicated by different colors. The reported FDR refers to the cutoff used for calling
exons significant based on FDR-adjusted p-values. The true FDR is calculated for those exons called
significant by knowing which exons are truly false discoveries in our simulations. The dotted line is
the y = x line. We simulate the data under (a) a double binomial distribution and (b) a beta-binomial
distribution. Here the percent of non-null exons was 1% and nG = 5. For 10% non-null and other
sample sizes, see Supplementary Figures S7–S14 [Ruddy, Johnson and Purdom (2015b)].

(double binomial or beta-binomial), for different choices of sample sizes, for un-
balanced sample sizes, and for different choices of the percent of non-null exons
[Supplementary Figures S7–S12, Ruddy, Johnson and Purdom (2015b)].

Among the alternative methods, the beta-binomial MLE with no shrinkage per-
forms the best in controlling the FDR under both distributions, but still has an FDR
much larger in small sample sizes than that indicated by their adjusted p-values,
even when the data is distributed according to a beta-binomial distribution (e.g.,
10–15% FDR instead of the target rate of 5%). The performance is even worse for
double binomial distributed data, indicating a lack of robustness to the modeling
assumptions. Quasi-binomial (also with no shrinkage) appears to perform similarly
to the beta-binomial MLE in Figure 3, but evaluations of other sample sizes [Sup-
plementary Figures S6–S10, Ruddy, Johnson and Purdom (2015b)] shows that its
FDR performance is erratic and can be much larger than its target value; similarly,
the double binomial GLM (not plotted) fails to control the FDR at any sample size
we explored and converges to an FDR at around 40%.

The alternative methods we consider that do perform shrinkage (EB2, BBSeq
and DSS) also rely on beta-binomial dispersion models, but do quite badly in FDR
control even for beta-binomial data. The true FDR rates for BBSeq and EB2 start
at 0.96 and 0.98 for small sample sizes (nG = 3) and remain poor even for nG = 75
with FDR of 0.27 and 0.41, respectively. DSS is slightly better since it eventually
controls the FDR with larger n, but it only does so starting at sample sizes that are
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quite large for genomic studies (nG > 20); for nG = 3 and nG = 5 per group, itself
true FDR rates are 0.53 and 0.28, respectively.

In contrast, WEB-Seq controls the FDR at the desired level for the double bi-
nomial data and beta-binomial data in small sample sizes, and only shows poor
control of the FDR for fairly large sample sizes (nG > 10), and even then only for
beta-binomial distributed data.

Due to multiple testing corrections, the comparative performance of the various
methods hinges on the distributional behavior of their test statistics far in the tails
of the distribution. At standard levels of individual (per exon) Type I error control
(e.g., 0.01–0.05), the p-values of all of the methods do a reasonable job of control-
ling the Type I error. However, after controlling for multiple testing, the effective
raw p-value cutoff for significance at a target FDR rate of 5% is around 0.0001
if only 1% of the exons are non-null (and 0.001 if 10% are non-null). In this tail
of the distribution, the test statistics can perform quite differently with respect to
Type I error control and their resulting power. In our simulations, WEB-Seq con-
trols Type I error even far into the tails of the distribution, unlike any other method
(Supplemental Figures S25–S28), indicating that the performance of the methods
in the tail of the distribution (and not the p-value adjustment method) leads to this
discrepancy.

All of the specific numbers given above assume 1% of exons are differentially
used; the same lack of control holds for 10%, though with different specific values.
We would also note that for exon analysis, the number of exons evaluated can be
quite high compared to gene expression analysis (easily 50,000–100,000 exons),
and in many studies we would not expect the percent of exons that are skipped
differentially between groups to be very large: even 1% translates to hundreds of
differentially spliced exons. With an even smaller percentage of true non-nulls,
which could be common in studies with subtle effects, control of the FDR will
become even worse for these other methods.

Power. For comparison of the power of the methods, we must similarly focus
on the power exhibited for small levels of Type I error control to be relevant for
multiple testing corrections. Traditional ROC curves in this range [Supplementary
Figures S15–S18, Ruddy, Johnson and Purdom (2015b)] show that WEB-Seq re-
sults in greater power than all the other methods except DSS when the data comes
from a double binomial distribution; for data distributed under a beta-binomial dis-
tribution, it still has slightly greater or equivalent power to all the methods except
DSS. This again illustrates the robustness of WEB-Seq to the modeling assump-
tions. DSS is the only method that has clearly improved power, mainly in small
samples sizes (e.g., power of 3% for WEB-Seq versus 8% for DSS when nG = 3);
however, as we have seen, DSS also shows very poor control of the FDR for those
sample sizes.

Many biological studies focus on the top performing exons for validation and
followup analysis, especially when large numbers of significant results are found.



714 S. RUDDY, M. JOHNSON AND E. PURDOM

FIG. 4. False discoveries by rank. Plotted is the average proportion of false discoveries (y-axis)
in the top x exons (x-axis) for a 3 versus 3 simulation with 1% of exons alternatively spliced. All
methods but WEB-Seq, DEB-Seq, DSS and beta-binomial had false discovery rates too large to be
shown on the range of values used for the y-axis in this plot. The horizontal lines at the bottom give
an indication of the rank of just the first false discovery for each method (where larger values mean
better performance); the horizontal lines indicate the 2.5% to the 97.5% percentiles of the rank of the
first false discovery across the 100 simulations. The average rank of the first false discovery across
simulations is marked by an asterisk.

We find that the WEB-Seq method provides p-values that do well at prioritizing
the truly non-null exons in small sample sizes. In Figure 4, we plot the average
proportion of false discoveries in the top-ranked exons for simulations with nG = 3
samples per group. We see that for this small sample size, the alternative methods
have a much higher proportion of false positives in the top-ranked exons compared
to WEB-Seq, regardless of whether the data is distributed beta-binomial or double
binomial. Beta-binomial MLE performs clearly worse in rankings for small sample
sizes, even when the data is distributed according to a beta-binomial. For slightly
larger sample sizes (e.g., nG = 5), DSS outperforms our method in ranking the
exons, but again has poor control of the FDR. For much larger sample sizes (e.g.,
nG = 10), the difference between the DSS, beta-binomial and WEB-Seq methods
is minimal and they all perform better than any of the other competing methods
[Supplementary Figures S19–S22, Ruddy, Johnson and Purdom (2015b)].

Because we have exact analytical solutions for our estimators of WEB-Seq, the
calculation of our shrinkage parameters is also quite fast, so that WEB-Seq can be
run for any sized experiment on a single core, personal laptop in under a minute.
Several of the other methods that we compared require hours of computation time
[see Supplementary text, Section 3.2, Ruddy, Johnson and Purdom (2015a)].

In summary, WEB-Seq is much superior in giving accurate FDR adjusted p-
values across the ranges of sample sizes that correspond to those frequently seen
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in practice, while every other method performs poorly, and often dramatically so.
WEB-Seq also shows high power compared to the other methods and performs
well at prioritizing exons. For some ranges of sample sizes the DSS method has
more power than WEB-Seq, but at those same sample sizes, DSS has highly inac-
curate p-values for assessing significance. The main competitor in small sample
sizes when considering both FDR control and power is the beta-binomial MLE
with no shrinkage, but it still has poor FDR control, less power and worse rank-
ings of the exons in small sample sizes—even when the data is actually simulated
from the beta-binomial distribution.

5.4. Comparison of methods on TCGA data. In order to have a reasonable set-
ting for detecting differential alternative splicing, we downloaded RNA-Seq data
from two different tumor types also sequenced by the TCGA: Stomach and Ovar-
ian. For comparisons between these two sets of tumors, we expect large differences
in alternative splicing due to the simple fact that the tumors originated from two
different tissue types, and tissue-specific alternative splicing is well documented
[Pan et al. (2008)]. In fact, the differences in tissue types is a rather extreme ex-
ample since in this case we do expect a large number of significant exons. See
Supplementary text, Section 3.5, for details about the processing of the raw BAM
files [Ruddy, Johnson and Purdom (2015a)].

We create a “null” situation to compare the methods, where the two groups
that are compared are both of the same tissue type. We note that these are tumor
samples, so differential alternative splicing in the different tumors may exist even
though they are the same tissue type, but since these samples are randomly as-
signed to the two groups, this is unlikely to be a significant factor. We ran the
double binomial methods, as well as the other methods on the TCGA data sets
(Table 1). MATS could only be run in the null setting, as the stomach and ovarian
samples were of different read lengths and the MATS software did not support this.

We compare the proportions of exons called significant in the null setting across
methods based on FDR adjusted p-values. Note that this is not a measure of FDR
or traditional Type I error; in fact, if no significant exons exist, any discoveries
in an all-null setting would technically imply that the FDR is 1. For comparison,
if 10% of the exons were truly non-null and the method had 100% power, the
percentage of false positives would have to be 0.6% to get an FDR at the target
level 5%; 1% of exons non-null would require the percentage of false positives
to be 0.05%. A 3–7% false positive rate would then mean a minimum FDR of
21–38%. In practice, the false positive rate would need to be much lower since no
method has anywhere near 100% power (in fact, the power is quite low for these
small sample sizes).

Focusing on just our double binomial-based shrinkage methods (WEB-Seq and
DEB-Seq), both call essentially 0% of exons significant in the null case [see Sup-
plementary Table S2, Ruddy, Johnson and Purdom (2015c)]. Examining individual
simulations rather than the average of 100 simulations shows that in the majority
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TABLE 1
Comparison to alternative methods. Shown in the table below are the average percentage of exons
called significant based on FDR corrected p-values from the Tissue Data under 100 simulations of
the null and real scenarios described above. DEXSeq was post-filtered to have the same set of exons

as the inclusion–exclusion setting. For all the results shown below, except for MATS, the total
number of starting exons is 412,002, k but the rates are percentages out of only those exons that
had at least one skipping event, a number which varies with sample size but is roughly 1/4 of all

exons. The results from MATS are based on a different set of exon data produced internally by
MATS, roughly 35,000 exons; WEB-Seq results are not shown on this set of exons, but WEB-Seq
makes at most one significant call on the MATS set of exons for any sample size. Furthermore,

MATS was run on a single random sample because of the time involved in processing a single run of
the data (see Supplemental text, Section 3.2). See Supplemental Table S4 for the precise number of

exons called and the results from methods not shown here

DEXSeq EB2 BBSeq MATS DSS Beta-bin. WEB-Seq
Sample
size Real Null Real Null Real Null Null Real Null Real Null Real Null

2 vs 2 13.5 1.46 11.08 7.47 18.78 6.56 3.45 10.43 1.31 5.06 0.00 0.89 0.00
3 vs 3 17.17 0.62 11.56 7.20 24.95 7.37 1.77 12.19 0.58 9.70 0.00 2.82 0.00
4 vs 4 21.77 0.12 11.94 6.85 28.90 6.20 2.45 14.50 0.19 13.73 0.00 6.73 0.00
5 vs 5 26.63 0.08 12.67 6.54 31.28 6.02 2.74 17.37 0.16 17.73 0.00 12.16 0.00
6 vs 6 30.00 0.11 13.27 6.26 32.62 5.73 3.93 19.44 0.18 20.41 0.01 15.94 0.00
7 vs 7 33.86 0.06 14.08 6.00 33.82 4.98 3.39 22.03 0.14 23.42 0.00 20.26 0.00

of the simulation in every sample size, exactly zero exons are called significant.
As in the simulations, WEB-Seq has slightly less “power” than DEB-Seq in that it
makes fewer significant calls under the real setting where we compare the different
tissue types.

Turning to the alternative methods, the average false positive rates (based on
FDR corrected p-values) given the null analysis in Table 1 suggest BBSeq and
EB2’s poor control of the FDR in the simulated data is echoed in the real data.
Across the samples sizes, EB2 finds roughly 7% of the exons significant and BB-
Seq finds 4–6% significant in the null setting. DSS shows better performance in the
null analysis with less than 1% false calls (except for nG = 2); but in the exon set-
ting with many exons to evaluate, this still ranges from around 700 exons (nG = 3)
to 170 exons (nG = 7) incorrectly called significant compared to only 4 and 1 in-
correct exon calls for WEB-Seq in those same sample sizes, respectively [see Sup-
plementary Tables S4 and S3, Ruddy, Johnson and Purdom (2015c)]. For compar-
ison with MATS, we applied WEB-Seq to the inclusion–exclusion count matrices
produced by MATS. In the null setting, MATS appears to have a call rate between
1.8% and 3.9% (646 to 1557 exons called significant), while WEB-Seq makes at
most one call for any given sample size. These results, when roughly translated to
FDR rates assuming 1% or 10% non-null exons, indicate that the lack of control
of FDR shown in our simulations appears to be supported by implementation on
the real data.



SHRINKAGE OF DISPERSION PARAMETERS IN THE BINOMIAL FAMILY 717

FIG. 5. Evaluation on TCGA data, nG = 3. (a) Type I error for TCGA “null” setting where we plot
the percent of exons found significant in the null setting as a function of the p-value cutoff based on
uncorrected p-values. (b) We show Venn diagrams of the analysis of differences between tissues for
WEB-Seq (black), DEXSeq (blue), Beta-binomial MLE (yellow) and DSS (red). DEXSeq is limited
to only those exons also found to have skipping events and so also considered by the other methods.
Numbers in the Venn diagrams are based on overlapping counts averaged over the 100 simulations.
See Supplemental Figure S29 for nG = 6.

The only other method that gives comparable results to WEB-Seq is the beta-
binomial MLE method. However, since the needed false positive rate based on
adjusted p-values must be so small in many real settings, it is difficult to compare
these two on just these evaluations. Instead, in the null setting we directly compare
the Type I error rate based on the uncorrected p-values as we vary the cutoff (see
Figure 5(a) and Supplementary Figure S29); we see that the performance directly
echoes that seen in the simulations (Supplementary Figures S25–S28) [Ruddy,
Johnson and Purdom (2015b)]. Only WEB-Seq (and DEB-Seq) controls Type I
error in the tails of their distributions for small sample sizes. As in the simulations,
beta-binomial is the next best, but still has an increase in its Type I error com-
parable to that of the simulations, which in simulations resulted in FDR rates of
around 15% rather than the target 5%. All of these analyses strongly suggest that
the problems we see in controlling the FDR in simulations are real and will appear
in analyzing real data sets.

For the comparison of two different tissue types, we see many more calls made
by the other methods compared to WEB-Seq. Given the problems these methods
have in obtaining accurate FDR control in both the null setting and our simulations,
we expect that some portion of these additional calls in the real setting are due to
a much higher level of false discoveries than reported. We compare the overlap
in these calls [Figures 5(b), 6 and Supplementary Figure S29, Ruddy, Johnson
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and Purdom (2015b)], and we see that in low sample sizes almost all of the calls
made by WEB-Seq are also found significant by another method. If we look at
the overlap of WEB-Seq with the six alternative methods we considered here, we
see that 85% of WEB-Seq’s calls are supported by at least four other methods for
nG = 3. Beta-binomial MLE is the next best candidate, yet only has 20% of its
calls so strongly supported, in spite of the fact that two of the other methods (DSS
and BBSeq) are also based on the beta-binomial distribution.

5.5. Comparison to relative exon usage. We made a further comparison of
the performance of our method to another popular method of finding differential
alternative splicing in exons, DEXSeq [Anders, Reyes and Huber (2012)]. The
DEXSeq method relies on the relative exon usage framework described above
in Section 2.3 and only uses exon counts, without using information about how
the junctions skip exons. Therefore, DEXSeq is not just an alternative statistical
method, but also uses a fundamentally different summarization of the mRNA-Seq
data as compared to the inclusion–exclusion setting for which our methods are
developed. For these reasons, we must be cautious in comparing between the two.

As we discussed in Section 2.3, relative exon usage evaluates all the exons, not
just those showing skipping events. We concentrate on comparing the performance
of DEXSeq for just those 125,398 exons that show skipping in at least one of
the 30 samples; to do this, we ran DEXSeq on all 412,002 expressed exons, as
required by the algorithm, then filtered down to the 125,398 exons with skipping,
and calculated adjusted p-values based only on these filtered exons. For this set
of exons the false positive rate of DEXSeq is similar to that of DSS, particularly
for the smaller sample sizes (Table 1), as is its control of the Type I error rate on
the “null” setting [Figure 5(a) and Supplementary Figure S29, Ruddy, Johnson and
Purdom (2015b)]. This suggests that DEXSeq will have similar problems as DSS
in having much higher rates of false discoveries than indicated by the adjusted
p-values.

DEXSeq clearly calls more exons significant in the real setting than any of the
methods based on junction counts, even when limited to the same set of exons.
This could be a sign of increased power when using the exon counts, as mentioned
above. When we look at the overlap of DEXSeq with other methods in Figures 5(b)
and 6, we see that this increase constitutes tens of thousands of additional exons
called significant, and 30–40% of the calls of DEXSeq are not supported by any
of the junction count methods, regardless of sample size (Figure 6). Furthermore,
as we explained in Section 2.3 (and has been noted by the authors of DEXSeq),
relative exon usage does not always reliably indicate the right exon within the
gene that has differential usage. The additional calls may also be a reflection of
this problem, not only increased power.

We consider DEXSeq’s performance more broadly and consider their calls on
all exons, even those without skipping fragments. About 12% of constitutive exons
are called significant by DEXSeq (Supplemental Table S6). This is roughly their
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FIG. 6. Percentage overlap with calls by other methods, nG = 3. For each method, we determine
which significant exons were also called significant by other methods. For each method, the above
barplot gives the percentage of significant exons for that method that were called significant by other
methods, broken down by how many other methods called the exons significant. The gray scale of
each bar indicates how many other methods called the exons significant (ranging from 0–6). For
more detailed plots of how the methods overlapped or for results on nG = 6, see Supplementary
Figures S30–S31 [Ruddy, Johnson and Purdom (2015b)].

total representation in the data so DEXSeq does not appear to be preferentially
finding exons annotated to be alternatively spliced. If we instead compare only
exons that are the sole exon called significant in their gene, following the theory
they are more likely to be targeting the correct exon, even a larger percentage are
annotated as constitutive and, furthermore, have no fragments skipping them in the
data for any of the 30 samples (18–46%, Supplemental Table S6). In comparison,
in WEB-Seq, 0.2% of its significant exons (or 76 exons) are annotated as constitu-
tive and all of them, by definition, have fragments skipping them to at least justify
the call of significance.

We can also evaluate the data properties of the significant exons to evaluate
whether they demonstrate data characteristics that would lead us to trust the call.
We compare the density of the log-fold-change of the odds-ratio of skipping an
exon for the significant calls made by both methods [Supplementary Figure S24,
Ruddy, Johnson and Purdom (2015b)]. WEB-Seq clearly has a much stronger ten-
dency to find exons with large differences in the skipping proportion, which is not
surprising given that is the basis of its test statistic, unlike DEXSeq. More striking
is that DEXSeq has significant peaks at 0, indicating many of the exons found sig-
nificant by DEXSeq do not show evidence of differential exon usage in the form of
a difference in the proportion of skipping counts. The constitutive exons found by
DEXSeq, in particular, are completely centered at zero. This could be because of
the lack of identification of the correct exon, explained above; when we examine
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the “single-exon” genes which are presumed to target the appropriate exon, these
exons show slightly greater propensity to be removed from zero [Supplementary
Figure S23c, Ruddy, Johnson and Purdom (2015b)].

Ultimately, we find the inclusion–exclusion paradigm concentrates the analysis
on those exons with tangible evidence of alternative splicing as well as directly
highlighting the specific exons of interest. We suspect this will also be an effective
way of preventing a large source of false discoveries as well as being robust to the
behavior of the other exons in the gene.

6. Discussion. We have developed a novel method for providing shrinkage
estimators for the dispersion parameter of a dispersed exponential family of dis-
tributions. We rely on a dispersion model that is closely connected to the com-
mon quasi-likelihood method for providing overdispersion to a binomial, which is
widely used and numerically robust. By making use of the distributional form of
Efron (1986), we have shown a simple formulation of the approximate distribution
of the dispersion parameter and that this form provides a straightforward empirical
Bayes method to estimate shrinkage. In effect, we provide a likelihood-based em-
pirical Bayes method for quasi-likelihood estimation of the dispersion parameter.
By further relating this empirical Bayes method to weighted likelihood shrinkage
methods [Robinson and Smyth (2007)], we give a nonstandard parameterization
of the Gamma prior that leads to an alternative estimator in this class of estimators
that demonstrates some areas of improved performance. Further, our distributional
form and the empirical Bayes method that results do not require any tuning param-
eters, unlike the weighted likelihood methods of edgeR.

In comparison to other methods for analyzing exon-skipping events, we showed
in both simulated and real data that our method is the only one that can accurately
control the FDR in the sample sizes that are commonly seen in genomic studies
(often less than 5 samples per treatment group), with the other methods having
very large false discovery rates compared to their reported rate. We also show that
our method has good power and the ability to prioritize truly significant genes.

For detecting differential alternative splicing, we have discussed that alternative
summaries of the data require different statistical techniques than those presented
here. The PSI statistic may not be the most appropriate for every setting. We com-
pared directly to one such alternative approach—using only exon counts without
using the information in the junction fragments—and we illustrated that reliance
on junction fragments naturally filters the problem to those exons most likely to be
differentially used. Another alternative approach relies on estimating the expres-
sion levels of individual isoforms, and this may give more insight into alternative
splicing, particularly when a great deal of information about the transcriptome is
known. However, in our experience many situations arise where researchers find
themselves without a well-constructed annotation of the transcriptome and would
have to rely on de novo methods to construct genes and/or transcripts. This is an
extremely complicated problem, and these de novo methods can be unreliable and
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unstable if used on a single, small experiment or without significant depth [see also
Anders, Reyes and Huber (2012) for a discussion of isoform versus exon analy-
sis]. In contrast, inclusion–exclusion counts rely on detection of exons and splice
sites, which are much simpler problems. In short, inclusion–exclusion counts pro-
vide useful, interpretable information about the undergoing of alternative splicing
within the organism and our method gives a reliable technique for the statistical
analysis of such data.

While our shrinkage method is quite general, we have focused on our moti-
vating example, detecting differential usage of exons between conditions in order
to detect group-specific alternative splicing. In particular, our data examples were
drawn from mRNA-Seq data, and the simulations were based on parameters es-
timated from that same data. Other genomic settings also require the comparison
of a large number of proportions between groups, for example, in the setting of
comparing allele frequencies or differential methylation, and it is possible that the
performance would differ in those settings due to differences in the properties of
the data.

Because of our interest in exon inclusion probabilities, our evaluation of the
shrinkage method was based on the binomial distribution (our initial “naive” dis-
tribution), but our entire methodological development is general and can be ap-
plied to any distribution from the exponential family. While every type of data
should have careful development for its unique properties, it is useful to have a
single framework that can be the starting point for so many settings. Possible ex-
amples could be that of analyzing differential gene expression data (based on the
Poisson distribution) or differential proportions of isoforms (based on multinomial
distribution). Indeed, we tested a Poisson-based version of our WEB-Seq on gene
expression data along with fourteen other gene expression techniques from the lit-
erature and found that on simulated data our method performed well compared
to the other methods across the range of distributions we tried. WEB-Seq ranked
the significant genes better than most other methods (Supplemental Figures S32,
S33). Its control of the FDR was also better than many common methods, particu-
larly in small sample sizes (Supplemental Figure S34), though not giving accurate
FDR control like we presented in the exon setting (with true FDR for nG = 5 of
around 7% rather than target of 5%). Furthermore, these conclusions hold true
with data simulated under the negative binomial distribution which is the distri-
bution for which most of the other methods (except ours) were developed. The
only methods that did equivalent or better in both FDR control and power were
voom [Law et al. (2014)] and baySeq [Hardcastle and Kelly (2010)]; notably, the
popular edgeR [Robinson, Mccarthy and Smyth (2010)] and DESeq [Anders and
Huber (2010)] methods did not do as well in either power or control of FDR. We
find this particularly encouraging for the general use of our shrinkage method in
other settings, since we did not change or adjust the method in any way for the
gene expression setting, other than switching the choice of distribution within the
exponential family.
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In summary, our method gives reliable and robust improvement to the analysis
of exon splicing, which is a straightforward but important approach to analyzing
the complicated structure of alternative splicing. Furthermore, because the shrink-
age ideas apply generally to an exponential family of distributions and have close
links to the common GLM approach for analyzing data, it has the potential to be
relevant for other applied problems.
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