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Capture-recapture data are often collected when abundance estimation
is of interest. In this manuscript we focus on abundance estimation of closed
populations. In the presence of unobserved individual heterogeneity, spec-
ified on a continuous scale for the capture probabilities, the likelihood is
not generally available in closed form, but expressible only as an analyt-
ically intractable integral. Model-fitting algorithms to estimate abundance
most notably include a numerical approximation for the likelihood or use of
a Bayesian data augmentation technique considering the complete data like-
lihood. We consider a Bayesian hybrid approach, defining a “semi-complete”
data likelihood, composed of the product of a complete data likelihood com-
ponent for individuals seen at least once within the study and a marginal data
likelihood component for the individuals not seen within the study, approxi-
mated using numerical integration. This approach combines the advantages of
the two different approaches, with the semi-complete likelihood component
specified as a single integral (over the dimension of the individual hetero-
geneity component). In addition, the models can be fitted within BUGS/JAGS
(commonly used for the Bayesian complete data likelihood approach) but
with significantly improved computational efficiency compared to the com-
monly used superpopulation data augmentation approaches (between about
10 and 77 times more efficient in the two examples we consider). The semi-
complete likelihood approach is flexible and applicable to a range of models,
including spatially explicit capture-recapture models. The model-fitting ap-
proach is applied to two different data sets: the first relates to snowshoe hares
where model Mj, is applied and the second to gibbons where a spatially ex-
plicit capture—recapture model is applied.

1. Introduction. In order to estimate total abundance, capture—recapture data
are often collected on the population under study. Capture-recapture data col-
lection methods involve partially observing the population at a series of capture
events (or using a number of different sources), such that each individual observed
within the study is uniquely identifiable. Assuming that marks are unique and
cannot be lost, a capture history for each individual observed within the study
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can be constructed, detailing whether the given individual is observed or not at
each capture event. Statistical models can be constructed and applied to capture—
recapture data to estimate the number of individuals in the population that are
not observed. We focus on closed population models, where it is assumed that
there are no births/deaths/migrations in the population within the study period.
Applications include estimating the number of injecting drug users [King et al.
(2014), Overstall et al. (2014)], pages on the world wide web [Fienberg, Johnson
and Junker (1999)], disease prevalence [Manrique-Vallier and Fienberg (2008)]
and animal populations [Borchers, Buckland and Zucchini (2002)]. We focus on
statistical models for ecological data where individuals are observed at a series
of capture events. For further discussion of ecological (closed) capture—recapture
data, and the underlying assumptions, see, for example, Borchers, Buckland and
Zucchini (2002), Williams, Nichols and Conroy (2002) and McCrea and Morgan
(2015).

In general, the likelihood of capture-recapture data can be expressed in multi-
nomial form, where the different multinomial cells correspond to each possible
capture history and the cell entries to the number of individuals with the given
capture history. The unknown parameters to be estimated in the likelihood func-
tion are the capture (or detection) probabilities and the total population size (or
number of individuals in the population unobserved at any capture event). Otis
et al. (1978) described three different possible effects on the capture probabilities
corresponding to temporal (¢), behavioral (b) and individual heterogeneity (%) ef-
fects. We adopt the standard notation and describe the different models by M,,
such that a C {¢, b, h}, corresponding to the combination of effects in the given
model.

In this paper we focus on models that include individual heterogeneity (i.e.,
Mj,-type models). Individual heterogeneity is often introduced by specifying the
capture probabilities as a finite or infinite mixture. Finite mixture models lead to
an explicit likelihood expression which can be maximized numerically to obtain
the maximum likelihood estimates (MLEs) of the parameters of interest [Pledger
(2000)]. Infinite mixture models specify the individual heterogeneity as a random
effects model. For the special case of a Beta-Binomial random effects component
the likelihood is available in closed form [Dorazio and Royle (2003), Morgan and
Ridout (2008), Pledger (2005)]. We will consider the more general case, with an
arbitrary individual heterogeneity component leading to an analytically intractable
likelihood. Previous approaches to fit such models to the data include (i) numeral
integration to estimate the marginal (or observed) data likelihood [Borchers and
Efford (2008), Coull and Agresti (1999), Gimenez and Choquet (2010)]; and (ii)
Bayesian data augmentation techniques, using a complete data likelihood approach
(corresponding to the joint probability density function of the capture histories and
individual effects), integrating out the individual heterogeneity component within a
Markov chain Monte Carlo-type (MCMC) algorithm [Durban and Elston (2005),
King and Brooks (2008), King et al. (2009), Royle and Dorazio (2012), Royle,
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Dorazio and Link (2007), Royle et al. (2009)]. We combine these two approaches
defining a semi-complete data likelihood constructed as the product of a complete
data likelihood component for the individuals seen at least once in the study and a
marginal data likelihood component for the unseen individuals. This combines the
advantages of each of the individual approaches. We note that similar approaches
have been previously proposed for specific applications, using bespoke computer
codes. Most notably, Fienberg, Johnson and Junker (1999) propose a conditional
MCMC algorithm for Rasch-type models, employing a block update of the total
population size and individual heterogeneity terms; while Bonner and Schofield
(2014) consider an additional Monte Carlo integration step within the MCMC al-
gorithm applied to individual covariate models. We describe how the latter ap-
proach is a special case of our general semi-complete data likelihood approach in
Section 3.3. Finally, we demonstrate how individual heterogeneity models can be
efficiently fitted using BUGS/JAGS with general prior structures specified on all
the model parameters (including the total population size) and provide the associ-
ated computer codes.

The paper proceeds as follows. Section 2 describes the general closed popula-
tion model structure and associated notation. Section 3 describes previous model-
fitting approaches and the new proposed semi-complete data likelihood approach.
The implications of the BUGS/JAGS specification for the semi-complete data like-
lihood and previous Bayesian complete data likelihood approaches are compared
in Section 4 and the approaches applied and compared for two real examples: the
first example relates to snowshoe hares where model My, is applied and the sec-
ond to a data set of gibbons where a spatially explicit capture—recapture model is
applied. Finally, in Section 5 we conclude with a discussion.

2. Individual heterogeneity models. We assume that within the capture—
recapture study there is a series of T discrete capture occasions. Within the study
a total of n distinct individuals are observed, with the total (unknown) population
size denoted by N. For simplicity, we arbitrarily number the observed individu-

alsi =1,...,n and the unobserved individuals i =n + 1, ..., N. Let p;; denote
the capture probability of individual i =1,..., N at time t = 1, ..., T. Further,
for standard capture-recapture data, x; = {x;; : t = 1,..., T'} denotes the capture
history of individual i =1, ..., N, such that
0, individual i is unobserved on occasion ¢;
Xit = l 1, individual i is observed on occasion 7.

We consider individual heterogeneity specified such that

Pit = g(oa ei)v

for some function g, where @ denotes the model parameters associated with the
capture probabilities (which may include, for example, temporal and/or behavioral
effect terms, regression coefficients for covariate values, etc.) and ¢ = {¢; : i =
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1,..., N} such that &; € S C R¥, corresponding to the individual heterogeneity
term for individual i =1, ..., N. Further, we assume an underlying model for the
individual heterogeneity, such that € is a function of the parameters #, and that
the individual heterogeneity terms, €;, are independent of each other conditional
on 3. The associated joint probability density function of the heterogeneity terms
is given by fe(¢|N,n) = lN=1 fe(eiln), using the conditional independence as-
sumption (and dropping the dependence on N for the conditional density function
of the individual heterogeneity terms for individual 7). Further, to provide a general
framework for both observed and unobserved individual heterogeneity, we addi-
tionally write & = {eObS, eMiS}, where €95 denotes the set of observed individual
heterogeneity components and M the set of unobserved individual heterogeneity
components. Similarly, we write &; = {t:‘obs ?Ais}, fori =1,..., N with obvious
interpretation. Finally, we assume that the capture histories of the individuals are
independent of each other given the capture probability model parameters, #, and
individual heterogeneity terms, €.
The marginal data likelihood can be expressed in the form

Funlx, €N, 0, 7) = /W f fe(x.eIN.0. ) de}" - del®

@ —/W g IN. 0.0 el N m N el

(N n)y H/ f(xi10,¢e;) fe(e; |7])d€Mls

using the multinomial distributional form of the capture—recapture data (omitting
the constant multinomial coefficients for simplicity) and conditional independence
of the random effect terms. The term f.(x, €|N, 6, 5) corresponds to the complete
data likelihood (i.e., the joint probability density function of the capture histories
and individual effects), fx(x|N, 0, €) the conditional likelihood of the capture his-
tories (where the conditioning includes the individual heterogeneity terms), and
fe(e|N, n) the joint probability density function of the individual heterogene-
ity terms. The term f;(x;|0, &;) corresponds to the conditional likelihood of the
capture history for individual i = 1,..., N, and f.(e;|n) the conditional proba-
bility density function of the individual heterogeneity component for individual
i=1,..., N (where in each case we drop the dependence on N).

EXAMPLE 1 (Continuous individual covariates). We consider the case with ¢
time-invariant continuous individual covariates € = {€, ..., &y}, where &; € S C
R? denotes the covariate values associated with individual i =1, ..., N. Since the
covariate values are time-invariant, the associated capture probabilities for each
individual are also time-invariant, so that p;; = p; fort =1, ..., T. Assuming that
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the capture probabilities are linearly related to the covariate values via some link
function, we may specify
g (p)=a+B"e;,

so that = {«, B}. Common choices for g~! include the logit and probit functions.
Additional individual/temporal random effects can be included in the capture prob-
abilities, but we omit these here for simplicity (see Example 2). Further, we specify
a parametric model for the covariate values, assuming that conditional on the ad-
ditional covariate parameters 7, the covariate values are independent.

Assuming that for each individual observed within the study the set of indi-
vidual covariate values is recorded, we have that gObs — {e;:i=1,...,n} and
eMis — {g;:i=n+1,..., N}. More generally, the covariate values may not be
recorded for all observed individuals. For example, the observation process may
include sightings recorded from a distance (rather than physical captures) so that
the covariate may not be able to be obtained if a physical capture is necessary (for
example, if the covariate corresponds to wingspan). In this case the set of unob-
served individual heterogeneity terms is extended to include the unknown covariate
values for observed individuals.

The complete data likelihood is of the form

fe(x, &[N, 0, 1) o« ———— H[ﬂ Pl — pnﬂ‘xn] x fe(eilm)

( i=1Lt=1
(N— ),HPZ' pi)T_yi X fe(€iln),

where p; is of the above form and y; = Zszl Xir (denoting the total number of
times individual i is observed). The first term of the complete data likelihood corre-
sponds to the conditional likelihood (conditional on the individual covariate terms)
and the second term to the individual covariate component.

The marginal data likelihood integrates out the unobserved covariate values
eMis_ For notational simplicity we provide the marginal data likelihood for the
special case where all covariate values are known for individuals observed within
the study (i.e., e ={g;:i =1,. n} and eMS ={g;:i=n+1,...,N}):

fn(x, €% |N, 0, 9) ﬂp;a P fe(eiln)
< T f — p T fu(eiln) des
i=n+1

— : Yier — p\T—i .
_<N—n>!,-:nlp‘ (1= p)" ™ fe(eilm)

N—n
« [f (1— Po)Tfs(é‘olﬂ)dé‘o] ,
&9



SEMI-COMPLETE DATA LIKELIHOOD 269

where g_1 (po)=a+ ﬂTeo. The extension to the case where observed individuals
may also have unknown covariate values is immediate.

We note, in general, the model can be extended to include time-varying indi-
vidual covariates, using the time and individual dependent capture probability, p;;.
This typically substantially increases the number of unobserved covariate values,
since if an individual is not observed, the corresponding covariate value is nec-
essarily also unknown. However, for closed populations, to satisfy the condition
that the population is closed, the study period is generally short in duration so that
changes in time-varying individual covariate values is likely to be limited.

EXAMPLE 2 (Mp-type models). For Mj-type models the individual hetero-
geneity corresponds to an unobserved individual random effect component (so
that €95 = & and eMi* = ¢). For example, for model M) we may set 0 = {«}
and p = {02} such that

&~ N (0, o 2),
fori =1,..., N, where o2 denotes the individual random effect variance and

S = R. For this model, the capture probabilities are again independent of time 7,
so we can write p;; = p; forallt =1,..., T, with

g (p)=a+e,
fori=1,...,Nandt=1,...,T. Common choices for g~ include the logit and
probit functions. The extension to incorporate additional time and/or behavioral
effects is immediate [i.e., models M;j, Mp, and M;py; see, e.g., King and Brooks

(2008)].
The complete data likelihood for model M}, can be written in the form

1

1 ( e? )

exp| — ,
V2mo? P\ 7202

where p; is of the above form and y; = Z,T: 1 Xir- Once again, the first term of the

complete data likelihood corresponds to the conditional likelihood (conditional on

the individual random effect terms) and the second term to the individual effect

component.
The marginal data likelihood integrates out the & terms and (dropping the term

N X
,e|N, 8, ——[]p"a=p)"
fe(x, &l n)oc(N_n)!i:lpl( pi) T x

€9 since no individual heterogeneity terms are observed, i.e., e9° = @) can be
efficiently expressed as
fm (XlNa 07 ”)
Nt L ' 1 ( &7 ) ]”k
X ———— 1-— ——=exp| =5 | dex | ,
v a0t 1= 0™ ez ) e

k=0

where nj = Z,N: 1 I (yi = k) and denotes the number of individuals observed k
times within the study, for k =0, ..., T (so that ng individuals are unobserved and
N =ng+n)and g‘l(pk) = + &.
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EXAMPLE 3 (SECR models). For traditional spatially explicit capture—
recapture models, S € R? and the individual heterogeneity corresponds to the
unobserved activity center of the individual (so that €9% = & and eMis = &). The
range of possible models is greater for SECR than nonspatial capture-recapture,
as SECR models involve multiple traps or detectors at different locations on each
occasion and take account of the location(s) of observations within occasions. To
this end, we define w; = (u;1,u;2) € R2 to be the Cartesian coordinates of trap j,
for j =1,...,J. We consider the likelihood for a study with binary detection data
within occasion, such that

0, individual i is unobserved by detector j on occasion ¢;
Yijr=11, individual i is observed by detector j on occasion .

We consider the case where individuals can be observed by more than one de-
tector at each occasion and we assume that observations by different detectors
within occasions (as well as between occasions) are independent. In this context,
e = (gi1,62) €R2 (i =1, ..., N) denote the Cartesian coordinates of the activity
centers of the N individuals in S C R?. It is usually assumed that these are inde-
pendently uniformly distributed in S and do not change between occasions, so that
fe(e|N, ) = Hl_l fe(&ilp) = A=V, where A is the area of S. The probability of
individual i being observed by detector j at capture occasion ¢, denoted p;j;, is
assumed to depend on only the distance of the detector from the activity center of
individual i, so that p;j; = g(@, |lu; — &;||), where [lu; — &;|| is the vector norm

\/ Z,%Zl (ujx — gix)?. The half-normal form is a common choice for g. For exam-
ple, assuming that the capture probabilities are time-independent, we may specify

o exp(_||“j_€i||2>
Pijt = Pij = Po )

with 8 = {pg, o2}.
The complete data likelihood can be written as

Nt X i L
fo(X,€|N,0,1) o —— H[Hﬂpué — pijo) ' ><f8<e,-|n>},

(N 1Lt=1j=1

where p;j; is of the above form. The first term in the product over individuals
corresponds to the conditional likelihood associated with individual i (conditional
on the individual random effect terms) and the second term to the corresponding
individual effect component.

The marginal data likelihood integrates out the €; terms and can be expressed
as

T (XIN. 8.3) o s H f o TTTT 50 g =5 x oo e,

t=1j=1

once more omlttlng the term € = .
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2.1. Model fitting. In the presence of individual heterogeneity leading to an
analytically intractable marginal data likelihood, a range of different approaches
have been proposed. These include a (classical) numerical integration approach,
approximating the marginal data likelihood and a (Bayesian) data augmentation
approach using the complete data likelihood. For the particular application to Mj,-
type models and SECR, see, for example, Borchers and Efford (2008), Coull and
Agresti (1999), Gimenez and Choquet (2010) (for a classical numerical integration
approach) and Durban and Elston (2005), King and Brooks (2008), Royle and
Dorazio (2012), Royle, Dorazio and Link (2007), Royle et al. (2009) (for Bayesian
data augmentation approaches). We briefly describe the approaches in turn.

2.1.1. Marginal data likelihood. For a general individual heterogeneity model,
the marginal data likelihood may not be available in closed form (exceptions ex-
ist where the heterogeneity component is described as a finite mixture model or
infinite Beta distribution). In this case, the corresponding likelihood is given in
equation (2.1) as a product of integrals. For computational efficiency, we are able
to combine like terms in the likelihood corresponding to each unique encounter
history (corresponding to the combined capture history and observed individual
heterogeneity values). Notationally, let €2 denote the set of possible encounter his-
tories, X, the capture history for € 2, &, the individual heterogeneity terms for
encounter history € €2, ezﬁs the unobserved individual heterogeneity terms for
encounter history @ € 2, and n,, the number of individuals with encounter his-
tory @. The marginal data likelihood can be expressed as

|

N! is |
S (5. €N, 0. m) o< o T [ [ FalN. 8. 0) fo(ealN. n)de?f‘ﬂ :
— ! weQ swls

(N

Thus, this likelihood requires the estimation of a series of integrals each of di-
mension (at most) dim(S), where typically dim(S) is small. For example, in the
presence of ¢ time invariant continuous covariates, dim(S) = ¢, for model M),
dim(S) = 1 and for the standard SECR model dim(S) = 2 (see Examples 1-3
above). The number of integrals in the marginal data likelihood is equal to the
number of unique observed encounter histories plus one (corresponding to the en-
counter history of not being observed). Each integral can, in general, be approx-
imated using standard integration techniques, such as Gauss—Hermite quadrature,
grid-based approaches, etc. Thus, the computational efficiency of this approach
will be dependent on dim(S) and the number of unique encounter histories ob-
served. For closed population models, dim(S) is typically very small. This (ap-
proximate) likelihood can be estimated using standard optimization techniques to
obtain the associated MLEs of the model parameters.

2.1.2. Complete data likelihood. The Bayesian complete data likelihood ap-
proach specifies the unobserved individual heterogeneity terms, eMis, as auxiliary
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variables (or additional parameters). The joint posterior distribution of the param-
eters and auxiliary variables is then formed and given by

(N, 0,5, eM5x, e9%) o fu(x,€|N,0,7)p(N,0,n)
= fX(X|Na 0, €)f€(€|N’ ")P(Nv 07 n)a

where f.(x,&|N,6,n) denotes the complete data likelihood, fx(X|N, @, ) the
conditional likelihood of the observed data (conditional on the full set of indi-
vidual heterogeneity terms), f.(e|N,n) the individual heterogeneity component,
and p(N, 0, n) the prior density specified on N, 6 and 5. The posterior density of
only the model parameters, (N, 8, n|x, e°%), is obtained by integrating out over
the auxiliary variables, eM. However, the integration is analytically intractable
so that an MCMC approach is typically implemented, whereby we construct a
Markov chain with stationary distribution equal to the joint posterior distribution,
(N, 0,7, eMs|x, 9%%), and, subsequently, estimates of the marginal posterior
summary statistics of interest are obtained.

An additional computational model-fitting difficulty arises since & = {e, ...,
ey} and, hence, € is itself a function of the unknown parameter, N. To address
this issue, King and Brooks (2008) describe a reversible jump (RJ) MCMC algo-
rithm for Mj,-type models that is able to explore the joint posterior distribution,
where the number of parameters is able to vary within the constructed Markov
chain. This involved writing bespoke computer code. Alternatively, Durban and
Elston (2005), Royle and Dorazio (2012), Royle, Dorazio and Link (2007), Royle
et al. (2009) use data augmentation techniques that can be fitted in BUGS/JAGS.
The underlying idea is to specify a superpopulation of size M, with associated
individual random effect terms &; fori =1, ..., M. The encounter histories for in-
dividuals n 4 1, ..., M correspond to not being observed within the study. Within
the MCMC algorithm, the random effect term for each individual in this superpop-
ulation is imputed in addition to a binary indicator variable, z; fori =1, ..., M,
identifying which members of the superpopulation are members of the target pop-
ulation of interest (by definition, z; =1 fori =1, ..., n, i.e., for all individuals
observed at least once within the study). This binary indicator variable has been
implemented using two different techniques, each with different consequences.
Durban and Elston (2005) specify the binary variables, such that zy,...,zy =1
and zy+1,...,2m = 0 (i.e., the indicator variables are ordered), whereas Royle,
Dorazio and Link (2007), Royle et al. (2009) do not induce any such struc-
ture on the indicator variables relating to unobserved individuals, setting z; = 1
for i = 1,...,n and modeling each indicator variable z; fori =n +1,..., M.
The estimate of N is obtained as the sum of nonzero indicator variables, that is,
N =¥""  z;. In other words, Durban and Elston (2005) define the indicator vari-
ables, conditional on N, whereas Royle, Dorazio and Link (2007), Royle et al.
(2009) define N, conditional on the indicator variables. For ease of reference we
refer to the complete data likelihood data approach of Durban and Elston (2005)
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as CD:DE (complete data: Durban and Elston) and of Royle and Dorazio (2012),
Royle, Dorazio and Link (2007), Royle et al. (2009) as CD:R (complete data:
Royle).

Several issues arise with regard to these superpopulation data augmentation ap-
proaches. For both approaches M needs to be specified and corresponds to an
upper bound for the total population size. This necessarily leads to a trade-off be-
tween the size specified for M and the computational speed of the code. The larger
the value of M, the greater the computational time due to the imputation of the
random effect term (and binary indicator variable for CD:R) for each individual
in the superpopulation. Too small a value for M will lead to a truncation of the
posterior distribution and biased inference. In addition, for CD:R, since N is de-
rived as a deterministic function of the indicator variables, it has a more limited
prior specification (see Section 3.2 for further discussion regarding prior specifica-
tion). Alternatively, for the approach of CD:DE, due to the more restricted nature
of the indicator variable specification, mixing issues can arise. To aid in the effi-
ciency of the computational algorithm, Durban and Elston (2005) advocate the use
of a pseudo-prior for the corresponding random effect terms for individuals not
in the population (i.e., for ¢; for all i = N + 1, ..., M). The pseudo-prior is ob-
tained from an initial MCMC run, using the estimated posterior distribution for the
random effect of an unobserved individual. For further discussion of data augmen-
tation techniques (particularly focusing on CD:R), see for example, Link (2013)
and Schofield and Barker (2014).

In general, without any prior information, the choice of analysis (classical
marginal data likelihood or Bayesian complete data likelihood) may be data de-
pendent. In general, for a given data set, there is a computational trade-off between
these different approaches. The marginal data likelihood requires the numerical
approximation of the integrals over the individual random effects; the complete
data likelihood is fast to evaluate but the individual random effects need to be up-
dated within the MCMC algorithm (using either RIMCMC or a superpopulation
approach). To avoid the use of explicitly approximating multiple integrals or the
need to use a superpopulation or transdimensional algorithm, we propose a hy-
brid semi-complete data likelihood approach. This involves numerical integration
for the part of the likelihood corresponding to unobserved individuals (as in the
marginal likelihood approach), while for the observed individuals any unobserved
individual heterogeneity terms are treated as auxiliary variables within a data aug-
mentation approach (as in the complete data likelihood approach). In this case,
the number of auxiliary variables is known so that the dimension of the parameter
space is known and fixed. Standard BUGS/JAGS software readily accommodates
this approach, which involves approximation of only a single integral of dimension
dim(S). We describe this approach in more detail next.

3. Semi-complete data likelihood. We propose a semi-complete data likeli-
hood approach, combining the complete data likelihood for the individuals that are
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observed within the study (i.e., individuals i =1, ..., n) with a marginal data like-
lihood for the individuals that are not observed within the study (i.e., individuals
i=n+1,...,N). The semi-complete likelihood is expressed in the form

fs(X,e1:IN,0,0) = fx=(XIN, 0,7, e1.) fe(€1:0|N, 1),

where €1., = {€1,...,&n}, fx=(X|N, 0,1, ¢e1.,) denotes the likelihood of the cap-
ture histories conditional on the model parameters (N, # and 5) and individual
heterogeneity terms for the observed individuals only (¢1.,), and fe(e1:,|N, n) the
joint probability density function of the individual heterogeneity component for
the observed individuals. Further, we let X,., = {Xq, ..., X;} and define the follow-
ing conditional likelihood functions: fx«(X1.,|N, 0, €1.,) for the capture histories
of the observed individuals only, conditional on the model parameters and indi-
vidual heterogeneity terms for the observed individuals (dropping the dependence
on 5 since these are conditionally independent given &1.,); fx*(Xu+1:N|N, 6, 7)
for the capture histories of the unobserved individuals, conditional on the model
parameters; and f+(x;|@,n) for the capture history for unobserved individual
i=n+1,..., N, given the capture probability and individual heterogeneity model
parameters (in the latter two cases dropping the conditioning on €1.,). We express
the conditional likelihood in the form

fxx(XIN, 0,1, e1.,) = fxX1:0IN, 0, €1:) fxr Xnt1:8 N, 0, 7)

N e x [T i)
X x(Xi|0, &) X x* (X
(N —m! ] i=n+1

J— - . . —N' —_ * N-—n
3.1) _};[]fx(xlw,e,)x (N_n)!(l P

where 1 — p* denotes the probability of not being observed within the study (or,
conversely, p* denotes the probability of being seen at least once within the study)
such that

(32) 1—p*= f _ Fi(@=00.6,) f(euln) deo,

and @ = 0 denotes the encounter history of an individual who is unobserved within
the study, fi(@w =010, 5, &4,) the conditional likelihood function associated with
an individual not observed within the study and f; (&40, ) the probability density
function of the associated individual heterogeneity terms for an individual not ob-
served within the study. The product in equation (3.1) corresponds to the likelihood
of the encounter histories, for an individual observed at least once within the study,
conditional on the individual heterogeneity terms. The latter term corresponds to
the contribution to the likelihood relating to the unobserved individuals.
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An alternative (equivalent) model specification is given by

fX*(X|N’ 0, 777 sl:n)
3.3)

N! _
= *)n 1‘[ frxi16, €0) x o (p)" (1 - P,
where p* is as above. The first term corresponds to the conditional likelihood
of the observed capture histories, given that each of these individuals has been
observed within the study and the corresponding individual heterogeneity terms.
The second term corresponds to the Binomial probability of observing the number
of individuals in the study, given the total population size.

We note that the semi-complete likelihood reduces to a single integral [over the
dimension of the individual heterogeneity terms, i.e., dim(S)]. This is in contrast
to the marginal data likelihood which is a product of integrals (see Section 2.1.1),
where the number of additional integrals corresponds to the number of unique
encounter histories observed.

3.1. Bayesian implementation. Notationally, we let eObs and sll\/:[,is denote the
set of observed and unobserved individual heterogeneity terms for the observed
individuals, respectively. The joint posterior distribution for the model parame-
ters and unobserved individual heterogeneity terms for the observed individuals is
given by

(N0, n, e\ |x, e02%) o fy(x, €1:4|N. 0, 9) p(N, 0, 7)
(34) = fX*(X|N’ 07 na ellﬂ)f€(€1:n|N7 n)p(N9 07 1’)7

where f;(x, &1.,|N, 0, n) is the semi-complete data likelihood. Note that, as is
typically the case, we assume that the priors specified for the total population size
and model parameters are independent, so that p(N, 0, n) = p(N)p(@)p(y).

We use a standard Bayesian data augmentation approach for obtaining inference
on the posterior distribution of interest, T (N, 6, n|x, 7. Obsy The number of auxil-
iary variables needed within this Bayesian data augmentatlon approach, using the
semi-complete likelihood, is fixed and simply equal to |&7. ls| (i.e., the auxiliary
variables correspond to the number of unobserved individual heterogeneity terms
of observed individuals). This is in contrast to the use of the joint posterior distri-
bution of the model parameters and all unobserved individual heterogeneity terms,
eMis| given in equation (2.2), since eMis — {sllvgs, €n+1:N} Where N is a param-
eter to be estimated. A number of different approaches have been proposed to
fit individual heterogeneity models. These include trans-dimensional algorithms
using reversible jump MCMC [King and Brooks (2008)], a joint posterior con-
ditional MCMC algorithm [Fienberg, Johnson and Junker (1999)] for Rasch-type
(M;) models and superpopulation data augmentation techniques. The first two
approaches require bespoke code, while the superpopulation data augmentation
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approaches can be implemented within BUGS/JAGS [Durban and Elston (2005),
Royle and Dorazio (2012), Royle, Dorazio and Link (2007)] but require the spec-
ification of an upper bound M and imputation of the (M — n) individual random
effect terms &,41:s (and dependent on the exact coding approach, M binary indi-
cator variables).

Using the semi-complete data likelihood and corresponding posterior distribu-
tion given in equation (3.4), including only the heterogeneity terms for the ob-
served individuals, permits standard (non trans-dimensional) MCMC updating al-
gorithms (such as the Metropolis—Hastings algorithm) to obtain inference on the
parameters 6, » and N. However, the semi-complete data likelihood removes the
necessity to impute the terms €, 1.) and the need to specify an upper bound on
the total population size in general (see Section 3.2). Consequently, the models
can be immediately fitted within BUGS/JAGS packages [see Section 4 for further
discussion and King et al. (2016), for sample JAGS code], with an explicit prior
distribution specified on N. The trade-off of using the posterior distribution with
semi-complete data likelihood, given in equation (3.4), is that the integral in equa-
tion (3.2) needs to be explicitly (numerically) estimated. However, in general this
will be of very low dimension (often only one or two dimensions) for closed popu-
lation models and so computationally fast and able to be accurately estimated (e.g.,
using Gaussian quadrature). We compare the complete data likelihood and semi-
complete data likelihood approaches in Section 4 using JAGS for two different
applications.

3.2. Prior specification for N. We briefly discuss possible prior distribu-
tions that are commonly specified on N and the corresponding Bayesian (and
BUGS/JAGS) implementation. For the Bayesian data augmentation approach of
Royle, Dorazio and Link (2007) (approach CD:R), the prior on N is only de-
fined implicitly, given the prior specification on the indicator function relating to
the probability that an individual in the superpopulation is a member of the pop-
ulation of interest, denoted . The most common form of induced prior on N
is the Uniform prior. However, Link (2013) showed that the uninformative prior
Y ~ U[0, 1] which induces the discrete uniform prior on N can lead to undesir-
able properties. Link (2013) therefore recommended the prior ¥ ~ Beta(0.001, 1)
which is easy implemented in BUGS/JAGS and induces an approximate Jeffreys’
prior on N. More generally, specifying the prior ¥ ~ Beta(a, b) induces the prior
N ~ Beta-Binomial(M, a, b), where M is the superpopulation upper bound. This
is a fairly flexible prior structure, but the computational limitations with regard to
specifying a suitable value of M remain.

For the complete data likelihood approach of Durban and Elston (2005) (ap-
proach CD:DE) and the semi-complete data likelihood approach, an explicit prior
is directly specified on N. Thus, any arbitrary distribution (specified on the set of
non-negative integers) can be specified on the total population size. For example,
Jeffreys’ prior is a commonly used uninformative prior, given by p(N) oc N~!
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[see, e.g., King and Brooks (2008), Madigan and York (1997)]. We note that spec-
ifying Jeffreys’ prior and using the semi-complete data likelihood expression given
in equation (3.3) lead to a standard posterior conditional distribution for N, that is,

(N —n)|x, 0, n ~Neg-Bin(n, p*),

for p* given in equation (3.1).> Consequently, for Jeffreys’ prior, the Gibbs sam-
pler can be implemented for updating N within the MCMC algorithm. In general,
if the prior or posterior conditional distribution for N is of (closed or) standard
form, this also simplifies the specification of the model in BUGS/JAGS, since this
prior or posterior conditional distribution can be explicitly specified in the model
component [see King et al. (2016) for sample JAGS code for the above Negative-
Binomial posterior conditional distribution case]. See also Fienberg, Johnson and
Junker (1999) for further discussion.

Alternative prior distributions include p(N) o« N™¢ for some positive con-
stant ¢, proposed by Fienberg, Johnson and Junker (1999). For ¢ > 1 the tail of
the distribution for N decays faster than for Jeffreys’ prior, while ¢ < 1 leads
to a heavier tailed distribution. Alternatively, for an informative prior distribution
for N, a Poisson or Poisson-Gamma (equivalently, a Negative-Binomial) prior dis-
tribution is often specified on N [King and Brooks (2001)]. It can also be noted that
specifying N ~ Po(X) and A ~ I'(8, §) for small § provides another approximate
Jeffreys’ prior for N. These alternative prior distributions are able to be imple-
mented within BUGS/JAGS [typically using the zeros or ones trick, Lunn et al.
(2013)—see King et al. (2016) for associated sample JAGS code].

3.3. Special case. We note that the approach presented by Bonner and
Schofield (2014) is a special case of the semi-complete data likelihood approach
applied to a covariate model. In particular, Bonner and Schofield (2014) consider
a time invariant individual covariate model given in Example 1 of Section 2. Us-
ing the terminology presented above, so that the notation differs to that given in
Bonner and Schofield (2014), they describe the particular case where eObs =g,
and eMis = €n+1:N- In other words, the individual heterogeneity terms are known
for individuals observed within the study (though it is implied in their discussion
that the approach is more generally applicable). The posterior distribution is then
formed analogous to equation (3.4). The probability of not being observed within
the study, given in equation (3.2), is estimated using Monte Carlo integration.

2We use the form of the Negative-Binomial distribution such that for X ~ Neg-Bin(n, ¢) the prob-
ability mass function is given by

_ x+n-1)!
F& =0

This is the functional form of the distribution used in BUGS/JAGS.

q"(1—g)*.
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4. Examples. We consider two real examples, relating to model M) and
SECR, described in Section 2. We note that as with all performance metrics for
comparing the efficiency of different model-fitting approaches these are dependent
on numerous factors, such as the programming language, specific application, data,
model specification (including the pseudo-priors specified for the superpopulation
approach), initial starting values and machine used. In order to be able to draw
sensible comparisons for each example, we present results obtained from the same
machine and language using the JAGS codes provided in King et al. (2016).

4.1. Model Mp—snowshoe hares. To demonstrate our proposed semi-
complete data likelihood approaches for model M, we revisit the snowshoe
hare data originally examined in the seminal paper of Otis et al. (1978) and
subsequently analyzed by many others [e.g., Coull and Agresti (1999), Dorazio
and Royle (2003), Link (2013), Royle, Dorazio and Link (2007)]. Over T =
6 days of trapping, n = 68 hares were captured with observed frequencies
n = (25,22,13,5,1,2), where n; = Y.}_ I(y; =) and y; = ¥7_; x;; for
t=1,...,T. We assume logit(p;;) =« + ¢; and &; ~N(0,02) fori=1,...,N
andr=1,..., T, with @ = {«} and n = {¢?}.

We fit the semi-complete data likelihood and complete data likelihood Bayesian
superpopulation (CD:R and CD:DE) approaches in R [R Core Team (2014)]
using the rjags package [Plummer (2013)]—see Appendix A of King et al.
(2016) for the associated JAGS code. For each analysis we specify the priors,
o ~ N(0,100) and o2 ~ T'~1(0.01,0.01). We specify Jeffreys’ prior for N, for
the semi-complete data likelihood and CD:DE. For ease of comparison with CD:R
we set Y ~ Beta(0.001, 1), which induces an approximate (truncated) Jeffreys’
prior for N on 1, ..., M [Link (2013)]. We note that we consider two JAGS speci-
fications for the semi-complete data likelihood. The first approach (SCD1) uses the
Jeffreys’ prior specification for N explicitly in the model component of the code.
However, since Jeffreys’ prior is improper, we need to specify an upper bound
for N, which we again denote by M (essentially this is a truncated Jeffreys’ prior
at M). The second approach (SCD2) specifies the (predictive) posterior conditional
distribution for N — n, which is of Negative-Binomial form (see Section 3.2).

Following Link (2013), we specify an upper bound of M = 1000 for the max-
imum total population size for the complete data likelihood superpopulation ap-
proaches and the first semi-complete data likelihood approach (SCD1) in JAGS.
For the semi-complete data likelihood approach, the integral in equation (3.2) is
evaluated using Gauss—Hermite quadrature:

q

@.1) 1—pray i ,
= [l +exp (\/zavj +a)]T

where w; and v; are the weights and nodes corresponding to g quadrature points
[see McClintock et al. (2009)]. The degree of accuracy of this approximation in-
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TABLE 1
Posterior summaries for snowshoe hare abundance (N) under model My, using the semi-complete
data likelihood (SCD) approach, CD:R and CD:DE. The semi-complete data likelihood approaches
correspond to specifying the prior for N (SCD1) and the posterior conditional distribution for
N —n (SCD2) in the model component of the JAGS code. For SCD1, CD:R and CD:DE, we specify
an upper limit of M = 1000. Effective sample size (ESS) and effective sample size per second
(ESS/s) are included for each approach obtained using the R package, coda. A total of 30 million
iterations are used in each case with the realizations thinned by 10

Method Mean Median SD 95% CI ESS ESS/s
SCD1 100.3 93 32.8 (74, 171) 168,347 7.67
SCD2 101.1 93 74.9 (74, 173) 167,680 7.74
CD:R 100.6 93 32.7 (74, 171) 13,080 0.10
CD:DE 101.3 93 36.2 (74, 178) 9626 0.03

creases with ¢, and larger ¢ is required for larger . For our analyses, we specify
q = 100.

For each approach, we ran three chains of 10 million iterations (after initial pilot
tuning and burn-in) from overdispersed starting values, thinning the realizations
by 10 for memory storage purposes. Chain convergence was assessed based on
visual inspection and Brooks—Gelman—Rubin diagnostics (no lack of convergence
was identified). On a computer running 64-bit Windows 7 (3.4 GHz Intel Core
i7 processor, 16 Gb RAM), the analyses required about 6.1 hrs for the first semi-
complete data likelihood (prior distribution for N specified) approach, 6.0 hrs for
the second semi-complete data likelihood (posterior conditional distribution for
N — n specified), 35.1 hrs for CD:R and 83.3 hours for CD:DE. We note that the
run times should be interpreted comparatively, as they will in general differ across
different computers as a result of different processors, operating systems, etc. The
marginal posterior summaries are provided in Table 1, coupled with the effective
sample sizes (per second) using the R package coda [Plummer et al. (2006)] for
each approach.

Although setting M = 1000 may appear conservative, this did appear to in-
fluence the skewness of the right tail of the marginal posterior distribution for
N relative to the (unbounded) posterior distribution for N when using the sec-
ond semi-complete data likelihood approach (SCD2). We therefore reran the
first semi-complete data likelihood (SCD1) analysis with M = 10,000, leading
to posterior summary results more similar to the second complete data likeli-
hood approach [N posterior mean = 100.9, median = 93, SD = 56.1, 95% cred-
ible interval (CI) = (74, 172)], but with noticeably reduced effective sample size
(ESS = 74,928) and increased computation time (ESS/s = 2.81). Nevertheless,
specifying larger M for the first semi-complete data likelihood approach comes at
considerably less computational cost compared to the superpopulation complete
data likelihood approaches (CD:R and CD:DE). Avoidance of the need to specify
M when using BUGS/JAGS remains an advantage of the general semi-complete
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data likelihood approach (this is true even when using Jeffreys’ prior on N by spec-
ifying the posterior conditional distribution for N — n in the model component of
the code).

For approach SCD1, using an explicit Negative-Binomial or Beta-Binomial ap-
proximation to Jeffreys’ prior [code is provided in Appendix A of King et al.
(2016)] unsurprisingly led to similar results in terms of ESS and ESS/s as for the
use of the explicit (truncated) Jeffreys’ prior. However, within the model specifi-
cation code, using the distributions’ hierarchical form where an auxiliary variable
is introduced for the Poisson mean or Binomial probability and imputed within
the MCMC algorithm led to lower ESS and ESS/s as a result of poorer mixing
due to posterior correlation between parameters. We do not consider these prior
specifications further.

Finally, we note that ¢ = 100 appeared to be sufficient in the Gauss—Hermite
quadrature approach for these analyses, but in general proper specification of g
will be case dependent. For example, using our estimated posterior median o =
—1.2 and the 99.9% quantile o = 3.3, equation (4.1) with ¢ = 100 is accurate to a
precision of five decimal places. However, for o = 10, ¢ = 100 it is only accurate
to two decimal places. Care must therefore be taken when specifying ¢ using the
semi-complete data likelihood approach in JAGS. If computation speed is of little
concern, equation (3.2) could alternatively be approximated in OpenBUGS using
the inbuilt integral function, which also has an inbuilt default value for g.

4.2. Model SECR—gibbons. To illustrate the proposed semi-complete data
likelihood approach in the context of SECR models, we use acoustic survey data
from a population of northern yellow-cheeked gibbon from northeastern Cambo-
dia. These data were collected from 13 replicate survey locations, each consisting
of a 3 by 1 linear array of listening posts spaced 0.5 km apart. Each listening
post was manned by a single human observer who recorded the timing of calls
at each and an estimated compass bearing to each detected gibbon group. Recap-
tured groups were determined using the estimated bearings and detection times.
Over T =1 survey days a total of n =77 gibbon groups were detected across the
13 arrays. We specify the half-normal function for g of the form

lu; —e; ||2>
202 ‘

For each analysis we specify the prior o ~ U[0, 10] and assume that the home
range centers are uniformly distributed over the given area, that is, f:(e;j|p) = %,
where A is the area of S for eachi =1, ..., N (in this case A = 546 km?). Thus,
we set ¥ ~ Beta(0.001, 1) for the superpopulation approach CD:R and Jeffreys’
prior for N for the complete data likelihood (CD:DE) semi-complete likelihood
approaches.

As in Section 4.1, we fit both forms of the semi-complete data likelihood [equa-
tions (3.1) and (3.3)] and the superpopulation complete data likelihood Bayesian

Dijt = exp(—
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TABLE 2
Posterior summaries for gibbon group abundance (N) under the SECR models using the
semi-complete data likelihood (SCD) approach, CD:R and CD:DE. The semi-complete data
likelihood approaches correspond to specifying the prior for N (SCD1) and the posterior
conditional distribution for N — n (SCD?2) in the model component of the JAGS code. For SCD1,
CD:R and CD:DE, we specify an upper limit of M = 1000. Effective sample size (ESS) and effective
sample size per second (ESS/s) are included for each approach using the R package coda. A total
of 500,000 iterations are used in each case

Model Mean Median SD 95% CI ESS ESS/s
SCD1 357.1 328 176.2 (119, 766) 2763 1.01
SCD2 357.7 327 178.4 (120, 775) 3872 1.56
CD:R 355.3 326 176.9 (118, 768) 865 0.09
CD:DE 362.7 338 173.2 (122, 765) 622 0.03

approaches CD:R and CD:DE using the rjags package [see Appendix B of King
et al. (2016) for sample JAGS code]. For the complete data likelihood approaches
and first semi-complete data likelihood (specifying Jeffreys’ prior on N within the
model component of the JAGS code), we specify an upper bound of M = 1000
for the discrete support of N. For both semi-complete likelihoods the integral in
equation (3.2) was approximated by a summation over a rectangular grid of 4200
points. Note that a suitable choice of grid will be case dependent, with increases
in accuracy resulting from greater spatial extents and decreased distances between
neighboring grid points, but at the expense of computational time. An exploratory
analysis suggested that the grid used was relatively conservative, achieving good
numerical accuracy.

To compare the performance of the different approaches, each MCMC algo-
rithm is run for 500,000 iterations, following a burn-in period of 10,000 itera-
tions (no lack of convergence was identified for simulations of this length). On a
computer running Windows Server 2008 R2 Enterprise (3.1 GHz Intel Xeon CPU
E5-2687, 256 Gb RAM), the analyses required about 46.6 minutes for the first
semi-complete data likelihood [SCD1; specifying (truncated) Jeffreys’ prior on
N in the model component] approach, 42.3 minutes for the second semi-complete
data likelihood (SCD2; specifying the posterior conditional distribution for N —n),
2.5 hours for CD:R and 6.8 hours for CD:DE. The marginal posterior summaries
were similar for all parameters using all approaches, but the semi-complete data
likelihood approaches required far less computation time and yielded greater ef-
fective sample sizes than the data-augmented complete data likelihood approaches
(Table 2).

5. Discussion. For closed population models, the semi-complete data likeli-
hood specifies the joint probability density function of the model parameters and
associated unobserved individual heterogeneity terms for only those individuals
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observed, conditional on the observed capture histories and observed individual
heterogeneity components. This likelihood is specified as an integral of the in-
dividual heterogeneity component for the unobserved individuals. The integral is
analytically intractable but of dimension equal to the dimension of the individual
heterogeneity component of the model, and hence typically small. This permits
the use of standard (efficient) numerical approximation techniques to estimate the
integral (for example, in OpenBUGS, the inbuilt integral function can be used
to conduct one-dimensional integration; with similar inbuilt functions in R for one
or multi-dimensional integrals). The semi-complete data likelihood approach can
be applied to a range of different individual heterogeneity models.

Using this semi-complete data likelihood within a Bayesian analysis of closed
capture-recapture data in the presence of individual heterogeneity removes the
need for trans-dimensional algorithms to explore the posterior distribution of the
parameters due to the “unknown number of parameters” problem. Consequently,
the models can be fitted efficiently in standard software, such as BUGS/JAGS
without using a superpopulation approach. The semi-complete data likelihood
approach is significantly more efficient than the previous superpopulation ap-
proaches, as demonstrated in Section 4, where the improvement for the examples
that we considered using the codes provided in King et al. (2016) was up to two
orders of magnitude. The improvement is in terms of both computational time and
effective sample sizes (as a result of improved mixing within the MCMC algo-
rithm). The efficiency of the superpopulation approaches is heavily dependent on
the upper limit specified for the superpopulation, M. This makes the Bayesian ap-
proach feasible for fitting to a significantly wider range of data, particularly for
spatially explicit capture—recapture, where the use of a Bayesian data augmenta-
tion technique can be particularly inefficient. In general, the ESS and ESS/s for the
different approaches is dependent on numerous factors, including the exact form
of the model specification, the pseudo-priors specified in the superpopulation ap-
proach, initial starting values and the computer on which the simulations are being
run.

This semi-complete data approach has been developed for closed population
models in the presence of individual heterogeneity. As discussed in Example 1
of Section 2, the inclusion of additional observable individual level covariates is
immediate and can be seen to be a generalization of the Monte Carlo in MCMC
approach proposed by Bonner and Schofield (2014) (see Section 3.3). The individ-
ual heterogeneity terms correspond to the covariate values and are typically known
when individuals are observed, though this need not be the case (missing covari-
ate values for individuals observed within the study can again be treated as aux-
iliary variables within the complete data likelihood component). In the presence
of time-varying continuous individual covariates, the increase in dimension of the
necessary integral in the associated marginal data likelihood can be reduced by
efficiently approximating the underlying state process as a hidden Markov model
[Langrock and King (2013)]. The approach can also be immediately applied to
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other forms of data. For example, these include stopover models permitting ar-
rivals to, and departures from, the study population [Pledger et al. (2009)] and
conventional distance sampling [Buckland et al. (2001)]. For the latter case the
capture history is a univariate binary term (1 if an individual is observed and O
if unobserved), and the individual heterogeneity component is the perpendicular
distance of the individual from the line/point transect (known for observed indi-
viduals), assumed to have a uniform distribution (for line transects) or triangular
distribution (for point transects); see, for example, equation (7.10) on page 141
of Borchers, Buckland and Zucchini (2002). Further work lies in identifying and
developing similar approaches for different forms of data. In addition, for more
general Bayesian analyses, highly correlated parameters often lead to an inefficient
MCMC algorithm, due to poor mixing. To address this issue, a reparameterization
may often be used and/or block-updates implemented. An alternative approach,
motivated by this semi-complete data approach, would be to identify and integrate
out (using a numerical approximation) the highly correlated parameters. This is an
area of current research.
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SUPPLEMENTARY MATERIAL

Supplement to ‘““Capture-recapture abundance estimation using a semi-
complete data likelihood approach” (DOI: 10.1214/15-A0AS890SUPP; .pdf).
The supplement consists of Appendices A and B that provide sample JAGS codes
for the examples provided in the text using the different model-fitting algorithms
(referenced in Sections 3.2, 4.1 and 4.2).
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