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A STOCHASTIC SPACE-TIME MODEL FOR INTERMITTENT
PRECIPITATION OCCURRENCES1

BY YING SUN AND MICHAEL L. STEIN

King Abdullah University of Science and Technology and University of Chicago

Modeling a precipitation field is challenging due to its intermittent and
highly scale-dependent nature. Motivated by the features of high-frequency
precipitation data from a network of rain gauges, we propose a threshold
space-time t random field (tRF) model for 15-minute precipitation occur-
rences. This model is constructed through a space-time Gaussian random
field (GRF) with random scaling varying along time or space and time. It
can be viewed as a generalization of the purely spatial tRF, and has a hi-
erarchical representation that allows for Bayesian interpretation. Developing
appropriate tools for evaluating precipitation models is a crucial part of the
model-building process, and we focus on evaluating whether models can pro-
duce the observed conditional dry and rain probabilities given that some set of
neighboring sites all have rain or all have no rain. These conditional probabil-
ities show that the proposed space-time model has noticeable improvements
in some characteristics of joint rainfall occurrences for the data we have con-
sidered.

1. Introduction. Because of its intermittent nature, high variability, and
strong scale dependence in space and time, precipitation poses significant chal-
lenges for both measurement and modeling methods. Stochastic models, or
stochastic generators, for precipitation can facilitate the understanding of its prob-
abilistic structure, and can be used to generate simulations as input into hydrologic
and agricultural models, such as for flooding, runoff, stream flow, and crop growth.
Stochastic models are also useful for many other precipitation-related problems,
such as estimating precipitation from a set of rain gauges or validating satellite pre-
cipitation observations with surface observations [Bell and Kundu (1996, 2003)],
and statistical downscaling using stochastic precipitation generators [Maraun et al.
(2010) and Wilks (2010)]. There is a substantial literature on stochastic model-
ing of precipitation dating back to Le Cam (1961). Earlier works also include
Waymire, Gupta and Rodríguez-Iturbe (1984) on spectral theory of rainfall inten-
sity, Cox and Isham (1988) on spatio-temporal modeling, and Rodriguez-Iturbe,
Cox and Isham (1987, 1988) and Cowpertwait (1994) on point process models
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for rainfall. Stochastic modeling of precipitation continues to receive the atten-
tion of statisticians and hydrologists, for example, Berrocal, Raftery and Gneit-
ing (2008) used latent Gaussian processes for short-term mesoscale precipitation
forecasting, Sigrist, Künsch and Stahel (2012) proposed a dynamic nonstationary
spatio-temporal model for short-term prediction of precipitation, and Kleiber, Katz
and Rajagopalan (2012) considered daily spatio-temporal precipitation simulation
using latent and transformed Gaussian processes.

One challenge in precipitation modeling is that the probability distribution
of precipitation depends on the space-time averaging scale [Kundu and Siddani
(2007)]. Precipitation data are generally measured as averages over space-time
scales determined by the mechanism and resolution achieved in a particular in-
strument. For example, satellite observations provide a precipitation image with a
spatial resolution of the order of 1 km; rain gauge observations yield rain rate mea-
surements with collecting area as small as 200 cm2 and time resolution as short as
1 minute, depending on the gauge. By analyzing rain rates on different space-time
averaging scales, it is easy to see that precipitation statistics are strongly scale
dependent. For example, the range of spatial dependence for monthly rain rates
is much larger than that for hourly or daily rain rates. Similarly, time dependence
scales for area-averaged rain rates are larger for larger areas. To reflect the property
of scale dependence, Kundu and Siddani (2011) developed an empirical model of
the space and time scaling properties for rainfall occurrences. In addition, multi-
fractal modeling in terms of a multiplicative random cascade process is a fairly
popular choice among many other methods, for describing spatial, temporal, or
space-time multiscaling [Over and Gupta (1996), Marsan, Schertzer and Lovejoy
(1996)]. These models tie a wide range of scales together by building multiplica-
tive cascades and produce dependence among different scales of the resulting pro-
cess. From a statistical modeling point of view, the rain rate can be treated as a
stochastic field, and it is desirable to have a consistent space-time model to pro-
duce precipitation features at different scales, rather than to have a separate model
for each scale. Therefore, it is important for any sensible precipitation models to
characterize the complex dependence structure precisely at small space-time scales
in order to produce the desired statistical properties at larger scales. For example,
averaging over adjacent space-time regions of zero and nonzero rain produces a
region that is rainy when viewed on a coarser scale. To obtain such a wet or dry
region through aggregation, the wet and dry spells on the finer scale, driven by the
spatio-temporal dependence, are essential.

Another challenge arises due to a particular feature of precipitation fields, the
intermittence, especially for small time scales. A mixed distribution with a point
mass probability of zeros is often used to describe the frequent occurrence of rain-
fall zeros [Bell (1987)]. Precipitation occurrence is an important component in
stochastic weather simulations, where other variables of interest, such as tempera-
ture, humidity, solar radiation, and wind speed, are generally modeled conditional
on the occurrence of precipitation. For instance, Richardson’s model [Richardson
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(1981), Richardson and Wright (1984)] has been prevalent in climate impact stud-
ies. It simulates daily time series of precipitation amount, maximum and min-
imum temperature, and solar radiation conditional on precipitation occurrence.
Katz (1996) studied the statistical properties of a simplified version of Richard-
son’s model and used the conditional models to generate climate change scenar-
ios. The spatio-temporal dependence in rainfall zeros is a critical aspect of any
space-time stochastic model for precipitation. On the daily time scale, Katz (1977)
used a Markov chain model to describe the temporal dependence of precipitation
occurrence at individual locations, Zheng and Katz (2008) and Zheng, Renwick
and Clark (2010) extended the Markov chain model for simulations of the multi-
site precipitation, Hughes and Guttorp (1999) introduced a spatio-temporal model
of precipitation occurrence using hidden Markov models, and Ailliot, Thompson
and Thomson (2009) developed a hidden Markov model using censored Gaussian
processes.

For many meteorological applications, especially flood warning and drainage
management, good short-term simulations of multisite precipitation are required.
Modeling the spatio-temporal dependence is necessary to better characterize the
movement or the spatial patterns of the precipitation over short time scales. Al-
though much progress has been achieved in the development of precipitation
modeling, the generation of multisite precipitation sequences with realistic spa-
tial dependence remains a challenge even for the daily time scale. Precipitation
models in previous works are commonly developed for daily data and mostly
focus on reproducing means of the precipitation. In this paper, we assess model
performance in terms of reproducing spatio-temporal dependence in precipitation
occurrence. In addition to the challenge of capturing the marginal characteristics
of the rainfall distribution, the 15-minute time scale we consider here brings ex-
tra challenges in capturing the spatio-temporal dependence, as well as handling
high-frequency data in time. We take advantage of high-quality precipitation data
from a network of research rain gauges in Virginia, Maryland, and North Car-
olina that was deployed as part of the NASA Tropical Rainfall Measuring Mission
(TRMM) ground validation effort [Tokay, Bashor and McDowell (2010)], and de-
velop a consistent space-time stochastic model for 15-minute rain rates measured
by the rain gauges. The proposed model is based on a truncated and transformed
spatio-temporal non-Gaussian random field, where the truncation determines the
occurrence of precipitation, and the transformation describes the distribution of
the positive rainfall amounts. In this paper, we focus on the statistical properties
of precipitation occurrence using models based on considering when a continuous
random field is above some cutoff, so that strictly monotonic marginal transfor-
mations have no impact on our model (assuming the cutoff is subject to the same
transformation).

To model precipitation occurrences, a threshold random field model is a natu-
ral choice. For example, the truncated Gaussian random field model used by Bell



A SPACE-TIME MODEL FOR PRECIPITATION OCCURRENCES 2113

(1987) for the rain rate W(x) at a location x over some specified time interval is
defined as

W(x) =
{

f
(
Z(x)

)
, Z(x) > c;

0, Z(x) ≤ c,

where Z(·) is a stationary Gaussian random field with mean 0 and var(Z(x)) = 1,
c is a cutoff chosen to make the probability of positive rainfall equal a speci-
fied value, and f (·) is a positive monotonic function chosen to obtain a specified
marginal distribution, for instance, lognormal distribution, for the positive rainfall
amounts. Stein (1992) considered Monte Carlo methods for prediction and infer-
ence for truncated spatial data based on this model. Bárdossy and Plate (1992)
proposed a spatio-temporal version of the truncated and power-transformed Gaus-
sian model, and Glasbey and Nevison (1997) considered a different transforma-
tion family. Sansó and Guenni (1999) also considered a spatio-temporal truncated
model and used a Bayesian approach for model inference. Moreover, Hernández,
Guenni and Sansó (2009) studied the distribution of rainfall extremes under a trun-
cated model. However, this model may not be adequate for 15-minute precipita-
tion. Even though consistent and accurate rain gauge data are available to estimate
such a model on the 15-minute time scale, there are two main issues we need to
address. First, to model 15-minute rain rates, the value of c usually needs to be
quite large to account for the high proportion of rainfall zeros. As a consequence,
precipitation occurrence is driven by the joint probabilities of multivariate nor-
mal distributions exceeding a high threshold, and these distributions may not have
sufficient flexibility at high thresholds to capture joint probabilities of occurrence
accurately. Second, since there is necessarily temporal dependence for 15-minute
rain rates, it is desirable to have a space-time model rather than a purely spatial
model to capture the spatio-temporal dependence. Furthermore, it is also neces-
sary to fit the complicated model effectively and to develop meaningful statistics
and visualization methods for the assessment of the model fitting.

In this paper, we develop a rich class of models for high-frequency rainfall
occurrence. We propose to model the 15-minute precipitation occurrences by
a threshold space-time t random field (tRF) model. This model is constructed
through a space-time Gaussian random field (GRF) with random scaling varying
along time. The temporal dependence in the scaling process is essential for pro-
ducing a continuous space-time t process. The space-time tRF can be viewed as a
generalization of the purely spatial tRF, and has a hierarchical representation that
allows for Bayesian interpretation as well. It includes the GRF model as a spe-
cial case, and is particularly useful for precipitation modeling on short time scales.
The model structure is motivated by the representation of a univariate t random
variable

T = Z√
V/ν

,
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where Z has the standard normal distribution, V has a χ2 distribution with ν de-
grees of freedom, and Z and V are independent. The random variable T has a
heavier tail distribution than Z due to the random scaling

√
V/ν. Similarly, the

randomness of the scaling process in the tRF also increases the variability across
realizations from the GRF, which allows for a higher probability that realizations
from the tRF exceed the cutoff at more locations for a given time. In our analysis
of the 15-minute precipitation occurrences, we generalize the threshold space-time
tRF model by letting the cutoff depend on locations and time, as well as including
seasonality. The seasonal variations in the marginal probability of occurrence are
fitted using logistic regression on a series of harmonics of the annual frequency.

We also develop various quantitative and visual tools for evaluating the depen-
dence structure implied by rainfall occurrence models. It is a challenge to capture
all of the probabilistic characteristics of joint rainfall occurrences from n sites
(n > 1), since there are totally 2k possible events for k sites of interest, where
k = 2, . . . , n. We propose to evaluate whether models can produce the observed
conditional dry and rain probabilities given the neighboring sites have rain or no
rain, then use the conditional probabilities, along with the marginal rainfall prob-
abilities, to summarize the dependence captured by the model. The conditional
probability plot is then developed to display the information. For model fitting and
validation, a feature-based approach is used, where the quality of fit is assessed
graphically by comparing a set of the conditional probabilities calculated from
simulations of the fitted models to observed conditional probabilities. It is shown
that the extra flexibility the proposed model allows results in noticeable improve-
ments in some characteristics of joint rainfall occurrences for the data we have
considered.

The rest of our paper is organized as follows. Section 2 gives a detailed descrip-
tion of the rain gauge data. The dependence structure in rainfall occurrences shown
in the preliminary analyses motivates our statistical modeling. In Section 3, we
compare by simulations the threshold Gaussian random field model to the thresh-
old t random field model with different degrees of freedom. In Section 3.1, the
purely spatial threshold t random field is introduced, and several important statis-
tics for precipitation occurrences are proposed under the threshold model. We then
develop useful graphical tools to display these statistics in Section 3.2. Simulation-
based model comparisons are shown in Section 3.3, and the spatio-temporal thresh-
old t random field model for precipitation occurrences is proposed in Section 3.4.
Section 4 presents the detailed analysis of the rain gauge data using the proposed
threshold spatio-temporal t random field model, including model inference and di-
agnostics. Some limitations and possible improvements are discussed in Section 5.

2. Rain gauge data. The deployment of the rain gauge network is described
in detail in Tokay, Bashor and McDowell (2010) as part of the NASA Tropical
Rainfall Measuring Mission (TRMM) ground validation effort. For quality control
and reliability, each site in the network has two or three research-quality 8-inch
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FIG. 1. Locations of the 12 rain gauges used in this study with the percentage of 15-minute rainfall
occurrences (in parentheses) for each gauge site during the period of study.

tipping-bucket rain gauges. These gauges are colocated with at least one rain gauge
from an operational rainfall monitoring network. From the 20 sites in the network,
we select 12 that have essentially complete data for the three-year period from
2004-05-19 to 2007-05-17. The map in Figure 1 shows the 12 irregularly sited
gauges used in Virginia, Maryland, and North Carolina.

The gauges record the time of each bucket tip; one tip is equal to 0.254 mm
(0.01 inches) of rain. Bucket tips are converted to rain rates by counting the num-
ber of tips within specified intervals. We convert bucket tips to rain rates (unit:
mm/hr) within time intervals from 10-minute to 91-day. Table 1 shows the per-
centage of rainfall nonzeros for different averaging time windows. For this data
set, Sun et al. (2015) used a Matérn model to describe the spatial covariance struc-
ture for different time scales. We can see that for shorter averaging times, there are
a large number of zeros. The fact that the 30-min frequency is nearly double the
15-minute frequency suggests that at least some of the 0’s at the 10 and 15 minute
scales are not actually times with no rain, but intervals with not enough rain to
tip a bucket. In order to account for this effect, we could let the cutoff for a rain-
fall event change with the averaging time interval by defining, say, a rainfall event
over a 30-minute period as a period with at least two bucket tips. However, such

TABLE 1
The percentage of rainfall occurrences for different averaging time windows from 10-minute to

91-day, where 30-day and 91-day represent the monthly and seasonal cases, respectively

Time 10-min 15-min 30-min 1-hr 3-hr 6-hr 1-day 1-week 30-day 91-day

Occurrence 1.77 2.55 4.91 6.47 10.42 14.77 32.72 88.57 99.76 100
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a definition would lead to the problematic possibility of saying that it rained dur-
ing a 15-minute interval but not over a 30-minute interval containing the shorter
interval. Therefore, in this paper, we create a high-frequency equally spaced time
series for each gauge by considering 15-minute averages of precipitation and as-
suming no rain when there are no bucket tips in the interval. Figure 1 also gives the
percentage of 15-minute rainfall occurrences for each gauge site during the period
of study, which shows that the long-term rainfall occurrence is relatively constant
across the network, although there is a hint of less frequent rainfall occurrences
in the southern part of the region and at stations G04 and G05 on the Delmarva
Peninsula.

3. Model comparisons.

3.1. Truncated t random fields. Røislien and Omre (2006) defined a t-
distributed random field (tRF) model as an extension of Gaussian random fields
(GRF) that allows for heavy-tailed marginal distributions. On a domain D ⊂ R

d ,
for x,x′ ∈ D, the tRF is specified by its mean function μ(x), positive definite scale
function κ(x,x′), and the degrees of freedom ν. When the data are observed from
a stationary and isotropic tRF, Y , on a domain D, we denote by κ(h) the scale
function between any two observations whose locations are apart by a distance h.
Then, the random vector Y = (Y1, . . . , Yp)T follows a multivariate t distribution,
with the density of the form

f (y) = �((ν + p)/2)

�(ν/2)(νπ)p/2 |�|−1/2
[
1 + 1

ν
(y − μ)T�−1(y − μ)

]−(ν+p)/2

,(1)

where �(·) is the gamma function, μ ∈ R
p is the mean vector, ν ∈ R+ is the de-

grees of freedom, and � ∈ R
p × R

p is the scale matrix with �ij = κ(hij ) and
hij = ‖xi − xj‖. Similar to the Student-t distribution, the tRF tends toward a GRF
as ν → ∞. The multivariate t random vector can be represented by a multivariate
normal vector with random scaling Y = μ+Z/U , where Z and Y are random vec-
tors of length n, and U is a univariate random variable, providing common random
scaling for each element in Z, with νU2 ∼ χ2(ν) and Z ∼ Nn(0,�).

Given U = u, the random vector Y has a multivariate normal distribution with
the covariance matrix �/u. As U is random, the variability across realizations of
Y is larger than the cross-realization variability of Z. This scaling effect declines
as ν increases, and the tRF tends toward a GRF.

For the present application, it is not the heavy-tailed marginals of the tRF that
are important, rather it is how the tRF allows for a richer range of spatial depen-
dencies than the GRF when one considers where the random field exceeds some
cutoff. Let O(x) be the indicator of occurrence at location x:

O(x) =
{

1, Y (x) > c;

0, Y (x) ≤ c,
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where Y(·) is a zero-mean stationary and isotropic t random field on a domain
D ⊂ R

d and c is a cutoff indicating the probability of positive rainfall. For x ∈ D,
define the dry event, D(x) = {Y(x) ≤ c}, and the rain event, R(x) = {Y(x) > c}.
Let pD = P(D(x)), pR = P(R(x)) = 1 − pD , pD|D = P(D(x)|D(x′)), and
pR|R = P(R(x)|R(x′)). Under the stationary and isotropic assumptions, it is
straightforward to compute the mean, E{ID(x)} = pD , and the correlations

corr{ID(x), ID(x′)} = pD|D − pD

1 − pD

, corr{IR(x), IR(x′)} = pR|R − (1 − pD)

pD

,

where I (·) is the indicator function. The three probabilities represent the thresh-
old model properties in terms of the features of precipitation occurrence: pD is
the marginal probability of the dry event for a given location; pD|D and pR|R are
conditional probabilities, describing the spatial dependence in precipitation occur-
rences.

3.2. Conditional probability plot. Visualization methods can often highlight
important features of the data and are useful for model comparisons and diagnos-
tics. For precipitation occurrences, we propose the conditional probability plot to
visualize the degree of spatial dependence.

For illustration purposes, we choose the first n = 4000 observations of 15-
minute rain rates at the 12 locations from the rain gauge data set described in Sec-
tion 2. For site i, i = 1, . . . ,12, we compute the proportion of time that site i has
zero rain rates, given all its j nearest neighbors have no rain, denoted by ϕD(i, j),
for j = 1, . . . ,11. Then, for example, ϕD(i,1) means the site i only conditions
on one nearest neighbor, or ϕD(i,1) = P(site i dry|the nearest neighbor dry). The
conditional rain probability ϕR(i, j) can be computed in a similar way. To sim-
plify the notation, we define the marginal dry probability of site i to be pD(i) =
ϕD(i,0) = 1 − ϕR(i,0).

In Figure 2, the top panels show the values of ϕD(i, j) and ϕR(i, j) for 15-
minute rain rates with i = 1, . . . ,12 and j = 0, . . . ,11. The bottom panels are
for the cases of hourly rain rate measurements. Comparing the two time scales,
we can see that ϕD(i, j) is distinctly smaller at the hourly scale than for the 15-
minute scale. In contrast, for j > 0, ϕR(i, j) looks qualitatively similar at the two
time scales, although comparisons are more difficult than for dry times due to the
smaller sample sizes.

3.3. Comparing spatial dependence. One way to compare and understand
model properties is through multiple simulations. In this section, we consider a
purely spatial stationary threshold t random field Y(x) with degrees of freedom ν,
where ν = ∞ denotes the stationary threshold Gaussian random field. We aim to
visualize the spatial dependence implied by different models using the conditional
probability plot proposed in Section 3.2. We conduct two simulation studies by
generating independent spatial realizations from tRF models with different ν, and
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FIG. 2. Top panels: values of ϕD(i, j) (left) and ϕR(i, j) (right) for 15-minute rain rates with
i = 1, . . . ,12 and j = 0, . . . ,11. Bottom panels: values of ϕD(i, j) (left) and ϕR(i, j) (right) for
hourly rain rates. In each figure, the solid black line connects 12 medians at j = 0, . . . ,11, and
probabilities from the same gauge are connected by light gray lines. The total number of sites (1–12)
for which the empirical conditional probability is 1 is shown for a given value of j .

compare the resulting conditional dry and rain probabilities. Since the 15-min rain
rates are necessarily correlated in time, we do not discuss the model fitting to the
real data here, but provide the detailed spatio-temporal analysis in Section 4.

First, we generate n = 10,000 independent spatial fields at the 12 rain gauge lo-
cations from a zero-mean stationary and isotropic tRF with ν = 3,5,7,∞, where
the scale function has a Matérn covariance function. In this simulation study, the
Matérn covariance functions with different smoothness parameters generate simi-
lar results in terms of showing the difference between tRF and GRF models. Here,
we only present the results from a special case of the Matérn covariance function,
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FIG. 3. The conditional probability plots of simulated dry (left) and rain (right) events at 12 rain
gauge sites from the threshold t random field models with degrees of freedom ν = 3,5,7,∞. The
marginal dry probability (j = 0) is set to be 97.5%. The conditional probability is calculated for
each rain gauge conditional on its j nearest neighbors over 10,000 replications. Dashed lines in
each figure are connected medians at j = 1, . . . ,11 as in Figure 2 for each ν.

the Whittle covariance function of the form

κ(h) = 2φα2
0M1(h/α0),(2)

where φ is the scale parameter, α0 is the range parameter, and M1 = hK1(h)

with K1 denoting the modified Bessel function of order 1. We set φ = 1 and α =
α0/dmax = 0.5, where dmax is the maximum distance between the rain gauges.
The cutoff c is chosen to be the 97.5% marginal quantile for each ν = 3,5,7,∞,
so that pD is the same for all ν. Then, the empirical values for the conditional
probability of precipitation for each rain gauge, conditional on precipitation at its
j nearest neighbors, j = 1, . . . ,11, are calculated and plotted in Figure 3. This
figure shows that the values of ϕD and ϕR are smaller for larger values of ν, the
smallest for the threshold GRF. Similar simulation studies show that the difference
between tRF and GRF is even more obvious when the cutoff is higher. In this
simulation study, the spatial correlation has the same range for different ν. One
may ask whether the GRF with a larger range parameter will be similar to the tRF.
Indeed, when computing ϕR(i, j) for large j , we notice that for data generated
from the threshold GRF, there are much fewer available conditioning sets where
all the j nearest neighbors have rain, due to the low probability of exceeding a high
threshold simultaneously at many sites under the GRF. Therefore, in the second
simulation study, we allow the GRF to have a different range parameter when
compared to a tRF.

Let ψν(j) denote the simultaneous rain probability at exactly j sites, j =
0, . . . ,12. For data generated from the tRF with ν = 3 in the first simulation study,
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FIG. 4. Left panel: the simultaneous rain probabilities at exactly j sites, where j = 0, . . . ,12,
α = 0.5 for the tRF, and α = 1.055 for the GRF. Middle panel: the conditional rain probabilities
for j = 1, . . . ,11, where the marginal rain probability (j = 0) is fixed at 0.025. Right panel: the
conditional dry probabilities for j = 1, . . . ,11, where the marginal dry probability (j = 0) is fixed
at 0.975.

we compute the empirical estimates, ψ̂3(0) and ψ̂3(12), respectively. For the cor-
responding GRF, we numerically evaluate ψ∞(0) and ψ∞(12) by the multivari-
ate normal distribution function, and then choose α such that ψ∞(0) and ψ∞(12)

match ψ̂3(0) and ψ̂3(12). Finally, we repeat the first simulation study with α = 0.5
for ν = 3, and with the selected α = 1.055 for the GRF. The conditional dry and
rain probabilities and the simultaneous rain probabilities for ν = 3,∞ are shown
in Figure 4. It is interesting that all the values of ψ(j), j = 0, . . . ,12, are simi-
lar for ν = 3 and ν = ∞, while the rain probabilities of the GRF are larger than
those of the tRF when conditioning on only nearest neighbors. In other words, if
exactly j sites rain, it is more likely that these sites are very close to each other
in the GRF model, but for the tRF model, the j sites may contain some relatively
distant ones. In fact, for the real data application, Figures 7 and 8 suggest that the
tRF model does better than the GRF model for fitting the observed conditional
probabilities because it is able to obtain lower values for these conditional proba-
bilities.

3.4. Spatio-temporal model. Another important aspect of precipitation occur-
rences is the dry or wet spell, which is defined as the consecutive time period of
no rain or rain. Dry spells are more important and easy to define, while a rain spell
can be viewed as a sequence of consecutive time periods each with at least one
bucket tip. To produce these statistics correctly, temporal dependence is also im-
portant, and space-time models are then needed. Let Z be a zero-mean stationary
spatio-temporal Gaussian process and K(x, t) be the autocovariance function. For
data taken regularly in time at a modest number of sites, Stein (2005) proposed the
following spectral-in-time representation for K :

K(x, t) =
∫
R

S(ω)C
(|x|γ (ω)

)
eiuTxθ(ω)+iωt dω,(3)
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where S is an integrable function, C is an isotropic covariance function, γ is an
even positive function, θ is an odd function, and u is a unit vector. All the functions
have natural interpretations: S is the temporal spectral density, γ along with C

determines the coherence at frequency ω between time series at different locations,
and θ and u are the phase relationships. Stein (2009) added a spatial nugget to this
covariance model for atmospheric pressure data.

We use the following parameterization for even positive functions on (−π,π ]
suggested by Stein (2005) in the covariance function (3):

log
{
γ (ω)

} =
L∑

k=0

ak cos(kω),(4)

log
{
S(ω)

} = −β log
(

sin
∣∣∣∣1

2
ω

∣∣∣∣
)

+
L∑

k=0

ck cos(kω),(5)

and choose C to be a Matérn covariance function with the smoothness parameter η,
the spatial range parameter α, and the scale parameter φ. The phase parameter θ is
set to be 0 for simplicity. Then α measures the spatial dependence at different tem-
poral frequencies, and β is a long-range dependence parameter in time. Because
of the difficulty in fitting this model, we fix L, the ak’s, ck’s, and C to values that
allow good visual fits to the observed conditional probabilities, and then vary α

and β to show their effects on the process’s behavior.
Even though we introduce spatio-temporal dependence in the process, the Gaus-

sian random field Z(x, t) is inadequate to characterize the dependence in 15-
minute precipitation occurrences under the threshold model. Motivated by the
purely spatial t random field, we propose a more flexible space-time t random
field model for the latent spatio-temporal process:

Y(x, t) = Z(x, t)

U(t)
,(6)

where Z(x, t) is a zero-mean stationary Gaussian process, and νU2(t) is a station-
ary process with a margin of Gamma distribution which can be constructed in the
following way. Let

U2(t) = 1

ν

ν∑
j=1

X2
j (t),(7)

where Xj(t)’s are i.i.d. zero-mean stationary Gaussian processes, for j = 1, . . . , ν.
Then, for any given time t = t∗, νU2(t∗) is χ2

ν distributed and it follows that
Y(x, t∗) is a spatial tRF. One example of the simulated U(t) process is shown in
Figure 5, where ν = 3,7,50, and the covariance function of Xj(t) has the form
of the one-dimensional Whittle correlation function given by (2) with the range
parameter αu = α0/dmax = 0.5.
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FIG. 5. Simulated U(t) processes with ν = 3,7,50 and the covariance function of Xj (t) has the
form of the one-dimensional Whittle correlation function with the range parameter αu = 0.5.

In model (6), the Gaussian process Z(x, t) is scaled by the process U(t) ran-
domly over time, leading to a non-Gaussian process Y(x, t) that increases the
probability of simultaneously exceeding a specified high quantile at many loca-
tions. The temporal dependence in the process U(t) is important in producing a
continuous non-Gaussian process Y(x, t), because an independent U(t) produces
a discontinuous process that will not be adequate in general, and taking U(t) un-
changing in t just rescales Z(x, t) and is effectively no different than just changing
the cutoff. Finally, the precipitation occurrence is defined as

O(x, t) =
{

1, Y (x, t) > c;

0, Y (x, t) ≤ c,
(8)

where c is a cutoff chosen to make the probability of positive rainfall equal a
specified value.

4. Application to rain gauge data. The precipitation occurrence process is
typically nonstationary. It is location-dependent and exhibits seasonality. Figure 6
shows the conditional dry and rain probabilities for different seasons from sum-
mer 2004 to spring 2007, where the four seasons are summer (June–August), fall
(September–November), winter (December–February), and spring (March–May).
Lines in each panel are the connected medians of the 12 sites for the same season
from each of the three years. The conditional probability plots summarize differ-
ent patterns of precipitation occurrences. Since 2004 and 2006 were reported to
be weak El Niño years, we use 2005 as the baseline for comparisons. We can
see that the most visible interannual variability occurred in summer. The smaller
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FIG. 6. Conditional dry and rain probabilities for the four seasons from summer 2004 to spring
2007. Lines in each panel are the connected medians of the 12 sites for the same season from each
of the three years.
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values of the conditional dry probability in summer 2004 indicate more frequent
rainfall occurrences, whereas the larger values of the conditional rain probability
in summer 2006 suggest stronger spatial dependence of precipitation occurrences.
The stronger spatial dependence also appears in summer 2004, although it is less
obvious. We can also see that such patterns become weaker from summer to fall in
2006. For winter and spring, both 2004 and 2006 experience less frequent rainfall
with sightly lower conditional rain probabilities. Different patterns of precipita-
tion occurrences will lead to different conditional probability curves. For exam-
ple, a process with a small number of rainfall events of broad spatial extent could
have the same marginal rainfall probability as a process with a greater number of
localized storms, but have higher conditional rainfall probabilities given rain at
neighboring sites. Larger storms could be the reason summers 2004 and 2006 have
higher conditional rain probabilities, since the El Niño effect increases wind shear
and prevents tropical disturbances from developing into hurricanes over the At-
lantic Ocean. More detailed studies on the relationship between vertical shear and
the El Niño effect can be found in Aiyyer and Thorncroft (2006). When the wind
shear is weak, the storms grow vertically, and the latent heat from condensation is
released into the air directly above the storm, developing local storms. When there
is stronger wind shear, the storms become more slanted and the latent heat release
is dispersed over a much larger area. Although the study region is not typically af-
fected by the El Niño effect in terms of total precipitation, the conditional dry and
rain probabilities provide some evidence of the different patterns of precipitation
occurrence during El Niño years.

We then fit a threshold spatio-temporal tRF model to the 15-minute occurrences
for the three summers, the season for which the largest differences between years
are observed. We let the cutoff c in (8) depend on location and time of year, and
model precipitation occurrence by logistic regression on a series of harmonics to
include seasonality. Specifically, within each season of a given year, we assume
Y(x, t) is stationary in space-time, and the precipitation occurrence O(x, t) is fitted
using logistic regression accounting for the location-dependency and the hour-of-
day seasonality:

logit
[
P

{
O(x, t) = 1

}] = α(x) +
H∑

j=1

{
β1j cos

(
2πj

h(t)

T

)
+ β2j sin

(
2πj

h(t)

T

)}
,

where h(t) ∈ {1,2, . . . , T } with T = 24 denoting the hour of time t within each
day, and α’s and β’s are coefficients. Model fitting is conducted by the glm func-
tion in R [R Core Team (2013)], and the value of H is chosen by AIC [Akaike
(1973)]. Then, the estimated values of the cutoff function ĉ(x, t) are chosen to be
the marginal quantiles corresponding to the probabilities 1 − Ô(x, t).

Next, we need to make inference on the stationary spatio-temporal process
Y(x, t) given the estimated cutoff function ĉ(x, t). Since model (6) has a hierarchi-
cal representation as the familiar Student-t distribution, Bayesian methods might
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be appropriate for inference on the unknown parameters. The EM algorithm is an-
other natural choice, as we only observe a truncated version of Y(x, t). However,
these likelihood-based methods are difficult to implement in practice in this setting
and might not be effective due to the model complexity. We propose an empirical
approach to calibrate our stochastic model in the hope that the model can produce
statistical characteristics of the observed data. Our estimates are obtained through
the following minimization:

min
θ

[
1

M

M∑
k=1

{
1

m1

12∑
i=1

11∑
j=1

wD
j �2

D(i, j) + 1

m2

12∑
i=1

11∑
j=1

wR
j �2

R(i, j)

}]
,(9)

where �D(i, j) = ϕsim
D (i, j) − ϕobs

D (i, j), �R(i, j) = ϕsim
R (i, j) − ϕobs

R (i, j),
ϕD(i, j) and ϕR(i, j) are the conditional probabilities of the dry and rain events
defined in Section 3.2, ϕsim

D and ϕsim
R are calculated from the simulated data, ϕobs

D

and ϕobs
R are from the observed data, and M is the total number of simulations.

Since the conditioning set in the simulations might be empty, the conditional prob-
ability will not be available. For the dry events, let wD

j be the weights proportional

to the number of available �2
D(i, j) for each j , and m1 be the total number of sites,

for which at least one ϕD(i, j) is available among j = 1, . . . ,11. Notation for the
rain events is defined in the same way.

We generate time series with length corresponding to the number of observa-
tions within each season of a given year, or 8736 = 91 × 24 × 4 for a season with
91 days, at the 12 rain gauge locations from model (6) using estimated values for
all parameters. First, we generate u(t) from the scale process U(t) through ν inde-
pendent zero-mean stationary Gaussian processes in (7), with a Whittle covariance
function, 2α2

uM1(h/αu). Then, we generate a stationary space-time Gaussian pro-
cess Z(x, t) according to (3)–(5), with L = 2 and fixed values of ak’s and ck’s,
and divide it by u(t). In the covariance function K(x, t), we focus on estimating
the temporal dependence parameter β and the spatial range parameter α, by fixing
η = 1 and φ = 1 in the Matérn covariance function C, which reduces to a Whittle
function of the form 2α2M1(h/α). Finally, the estimated cutoff function ĉ(x, t) is
used to generate the dry and rain events, O(x, t), defined in (8).

The simulation procedure requires generating data from stationary multivariate
Gaussian processes in (6) at 12 locations and about 8736 time points. The resulting
spatio-temporal covariance matrix is of size 104,832×104,832. The Cholesky de-
composition of such a big matrix is difficult. Fortunately, for multivariate regular
spaced time series, the covariance matrix has a Toeplitz structure. We apply the cir-
culant embedding techniques in order to use the Fast Fourier Transform (FFT) for
fast and exact simulations of stationary multivariate Gaussian time series [Wood
and Chan (1994), Helgason, Pipiras and Abry (2011)].

We then estimate the set of parameters (α,β,αu, ν) by minimizing the crite-
rion (9), where ϕsim

D and ϕsim
R are calculated by data generated from the threshold
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TABLE 2
The estimates of (α,β,αu, ν) in the threshold tRF model for

summer 2004, summer 2005, and summer 2006

Year α̂ β̂ α̂u ν̂

2004 0.485 0.486 0.199 4
2005 0.495 0.558 0.232 5
2006 0.500 0.652 0.175 3

t random field Y(x, t) in model (6). As shown in Table 2, the consistently small
values of ν̂ for all three years suggest the threshold tRF model fits the data better
than the GRF model. Compared to summer 2005, both summers 2004 and 2006
have smaller estimated values of ν, similar values of α̂, and weaker temporal de-
pendence estimates β̂ , although the estimated scaling process for summer 2006 is
smoother.

For comparisons, we also estimate parameters (α,β) in the same way, but ϕsim
D

and ϕsim
R are computed by data generated from the threshold Gaussian random

field Z(x, t) in the numerator of model (6). Take the data from summer 2006 as an
example. The estimates are (α̂, β̂) = (0.811,0.123) for the threshold GRF model.
The values for the minimized criterion function (9) for the tRF is 0.0077, and for
the GRF is 0.0079. Since minimizing the differences in the weighted conditional
probabilities in (9) is essentially fitting the model using simultaneous rain and dry
probabilities, the small values of the criterion function for the tRF and GRF indi-
cate that both models fit the data well in terms of simultaneous rain and dry proba-
bilities. Next, we validate the fitted tRF and GRF models by comparing the condi-
tional probabilities of the simulated data with those of the observed data set used
to estimate the model. For each case, we simulate 1000 seasons of precipitation
occurrences at the 12 rain gauge locations from Y(x, t) and Z(x, t) in model (6)
given estimated parameters, and summarize the conditional probabilities of the dry
and rain events. Specifically, let ϕ̃D(j) and ϕ̃R(j), j = 1, . . . ,11, be the connected
medians of the conditional probabilities shown as solid black lines in Figure 2.
From the simulated data, we compute 1000 such median functions and use the
functional boxplot [Sun and Genton (2011, 2012)] to visualize the distribution of
the conditional probability curves for both the generated 15-minute simulations
and the aggregated hourly data, and then compare with the conditional probability
curves computed from the observations. For the dry events, the functional boxplots
of ϕ̃D(j), j = 2, . . . ,11, obtained from 15-minute tRF and GRF model simula-
tions are shown in the top panels of Figure 7, and results for the aggregated hourly
data are shown in the bottom panels. Figure 8 shows the functional boxplots for
the rain events. From the functional boxplots in Figures 7 and 8, we can see that,
similar to the simulation study shown in Figure 4, the GRF model overestimates
the conditional probabilities given rain at a moderate number of nearest neighbors,
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FIG. 7. Top panels: the functional boxplots of ϕ̃D(j), j = 2, . . . ,11, obtained from 15-minute tRF
and GRF model simulations. Bottom panels: the functional boxplots of ϕ̃D(j), j = 2, . . . ,11, for
aggregated hourly data from tRF and GRF model simulations. In the functional boxplot, the black
line is the functional median, the middle box indicates the 50% central region, and the whiskers
represent the maximum envelope of the data. The green dashed line denotes ϕ̃D(j) computed from
the observations.

while the tRF model can reproduce features of the observations in terms of the
conditional probabilities better.

In the functional boxplot, the unit of information is the entire conditional proba-
bility function. With 1000 simulations, it provides an ordering of such conditional
probability functions from the center outward by computing the band depth val-
ues [López-Pintado and Romo (2009)]. The functional median (the black line)
has the largest depth value, representing the most central position in the sample.
Then, the 50% central region (the middle box) contains the data with the first 50%
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FIG. 8. Top panels: the functional boxplots of ϕ̃R(j), j = 1, . . . ,11, for aggregated hourly
data from tRF and GRF model simulations. Bottom panels: the functional boxplots of ϕ̃R(j),
j = 1, . . . ,11, for aggregated hourly data from the tRF and GRF model simulations.

largest depth values, and the whiskers represent the maximum envelope of the data.
The functional boxplot summarizes the distribution of the conditional probability
curves obtained from simulations. Figure 7 shows that the conditional probabili-
ties calculated from the tRF model simulations have larger variability than those
obtained from the GRF model simulations. Consequently, the 50% central regions
in the functional boxplots for the tRF models capture the reality (the green dashed
lines) better for the 15-minute simulations and hourly aggregation of the dry and
rain events. It indicates that the tRF model more accurately generates the observed
conditional dry and rain probabilities. For both the tRF and GRF models, when
conditioning on a larger number of neighbors, the variability of the conditional
probability becomes larger. However, for all the cases, the GRF model tends to
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FIG. 9. Three examples of the simulated spatial fields for 15-minute rain occurrences on a 40 by
40 grid.

produce higher conditional probabilities compared to the observations for small
numbers of neighbors in order to achieve similar results to the observations for
larger numbers of neighbors. For the tRF model, the conditional dry probabilities
for 15-minute simulations are a little off, but the difference in actual probabil-
ity values is small. We have also done model diagnostics for 3-hour aggregation,
for which the results (not shown) are similar to the hourly data. Overall, the tRF
models produce the observed properties well. From the fitted tRF model, three ex-
amples of the simulated 15-minute rain occurrences on a 40 by 40 grid are shown
in Figure 9.

5. Discussion. Motivated by the features of high-frequency precipitation data
from a network of rain gauges, we proposed a threshold space-time t random field
(tRF) model for 15-minute precipitation occurrences. This model has a hierarchical
representation, that is, it is constructed through a space-time Gaussian random field
(GRF) with random scaling varying along time. The time-varying random scaling
increases the variability across realizations from the GRF. In a threshold model for
precipitation, the increased variability is particularly useful for small time scales,
due to the lack of flexibility of the GRF model for high cutoff values.

We also compared the threshold GRF model to the threshold tRF models with
different degrees of freedom by simulations, and showed that the tRF models more
realistically captured dependence in 15-minute precipitation occurrences. We then
defined several important statistics for precipitation occurrences, and proposed
useful graphical tools, the conditional probability plot and the binary plot, to help
with data visualization and model diagnostics. The functional boxplot was used
to compare model simulations to the observations. The functional boxplot pro-
vides a way to order functional data and display important summary statistics; it is
particularly useful to summarize functional quantities obtained from independent
simulations, and the fast algorithm developed by Sun, Genton and Nychka (2012)
makes it more feasible in practice. For statistical inference and model diagnostics,
feature-based approaches are used for parameter estimation and model validation.
Although the inference is not based on full likelihoods, it provides a convenient
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way to reproduce features of interest, which is suitable for applications of weather
generators. For example, in the application to the rain gauge data, we only focused
on the spatial dependence using the conditional probabilities as the key summary
statistics, and have shown that this method effectively reproduced the spatial pat-
tern observed in the 15-minute rainfall occurrences. If the temporal dependence is
of interest as well, temporal summary statistics, dry and rain spells, for instance,
need to be added in the criterion for model fitting.

In this paper we have only discussed the statistical properties of precipitation
occurrence. A more complete analysis of these data would entail using the posi-
tive rainfall amounts as well. In principle, it would then be desirable to investigate
Bayesian inference methods under the hierarchical representation of the model, but
the computational difficulties would be formidable. Note that it is always possible
to transform the tRF (or GRF) marginally to match any given marginal distribution
for precipitation amounts. Indeed, if the transformation is allowed to vary in space,
one can then have a different distribution at every location. The more critical issue,
which we have not explored, is how well a truncated and transformed tRF captures
the joint distribution of precipitation amounts at multiple sites given positive pre-
cipitation at all of the sites or at some specified subset of the sites. Investigation of
this kind of dependence should, in our view, precede efforts to fitting these models
to the complete precipitation process (occurrences and amounts).

Our model was developed for precipitation on short time scales and fairly small
regions. For longer scales, such as daily precipitation, model (6) can be modified
by adding a temporal term V (t) to increase the long-term variability:

Y(x, t) = Z(x, t)

U(t)
+ V (t).

Here, we only aggregated to hourly and 3-hour time scales to test the ability of
the 15-minute model to aggregate realistically. In order to obtain good fits on even
longer time scales, it might be helpful to introduce long-range dependence in U(t)

in model (6). To handle larger regions, it will likely be inadequate to treat U and/or
V as not depending on x, although, to be useful, the spatial ranges for space-time
versions of U or V should be much larger than the spatial range of Z(x, t).
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