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JOINT MODELING OF LONGITUDINAL DRUG USING PATTERN
AND TIME TO FIRST RELAPSE IN COCAINE DEPENDENCE

TREATMENT DATA

BY JUN YE1, YEHUA LI2 AND YONGTAO GUAN3

University of Akron, Iowa State University and University of Miami

An important endpoint variable in a cocaine rehabilitation study is the
time to first relapse of a patient after the treatment. We propose a joint mod-
eling approach based on functional data analysis to study the relationship be-
tween the baseline longitudinal cocaine-use pattern and the interval censored
time to first relapse. For the baseline cocaine-use pattern, we consider both
self-reported cocaine-use amount trajectories and dichotomized use trajecto-
ries. Variations within the generalized longitudinal trajectories are modeled
through a latent Gaussian process, which is characterized by a few leading
functional principal components. The association between the baseline lon-
gitudinal trajectories and the time to first relapse is built upon the latent prin-
cipal component scores. The mean and the eigenfunctions of the latent Gaus-
sian process as well as the hazard function of time to first relapse are modeled
nonparametrically using penalized splines, and the parameters in the joint
model are estimated by a Monte Carlo EM algorithm based on Metropolis–
Hastings steps. An Akaike information criterion (AIC) based on effective de-
grees of freedom is proposed to choose the tuning parameters, and a modified
empirical information is proposed to estimate the variance–covariance matrix
of the estimators.

1. Introduction. In cocaine dependence research, it has been shown that
one’s baseline cocaine-use pattern is related to the risk of posttreatment cocaine re-
lapse [Fox et al. (2006)], along with many other factors such as cocaine withdrawal
severity, stress and negative mood [Kampman et al. (2001), Sinha (2001, 2007)].
The timeline follow-back (TLFB) [Sobell and Sobell (1993)] Substance Use Cal-
endar is often used to retrospectively construct trajectories of daily cocaine use in
a baseline period before treatment. The TLFB uses a calendar prompt and many
other memory aids (e.g., the use of key dates such as holidays, birthdays, news-
worthy events and other personal events as anchor points) to enhance the accuracy
of self-report substance-use estimates. Fals-Stewart et al. (2000) showed that the
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TLFB could provide reliable daily cocaine-use data that had high retest reliability,
high correlation with other cocaine-use measures and high agreement with collat-
eral informants’ reports of patients’ cocaine use as well as results obtained from
urine assays.

Based on the self-reported daily cocaine-use trajectories, certain summary
statistics can be derived and are often used as predictors in a subsequent analysis
to explain cocaine relapse outcomes. Commonly used summary statistics include
baseline cocaine-use frequency and average daily use amount, and commonly used
relapse outcome measures are time to relapse (i.e., time to first cocaine use), fre-
quency of use and quantity of use per occasion during the follow-up period [Carroll
et al. (1993), Sinha et al. (2006)]. Among the different relapse outcome measures,
time to first relapse (which we also refer as “relapse time” for ease of exposition) is
of particular clinical importance because it signals the transition of a cocaine-use
pattern from abstinence to relapse. Sinha et al. (2006) examined time to cocaine
relapse using Cox proportional hazards regression models. They concluded that
the amount of cocaine used per occasion during the 90 days prior to inpatient ad-
mission was significantly associated with relapse time. Guan, Li and Sinha (2011)
argued that because the baseline cocaine-use trajectories were random, summary
statistics derived from them were only estimates of one’s long-term cocaine-use
behavior and could be subject to large measurement error. In a regression setting,
the use of error-prone variables as predictors may cause severe bias to the regres-
sion coefficients [Carroll et al. (2006)]. To mitigate the bias, Guan, Li and Sinha
(2011) proposed a method-of-moments-based calibration method for linear regres-
sion models and a subsampling extrapolation method that is applicable to both lin-
ear and nonlinear regression models. However, their methods require a restrictive
assumption that the baseline cocaine-use trajectories are stationary processes, and
their subsampling extrapolation method is an approximation method which cannot
completely eliminate the estimation bias in survival analysis.

We propose a new modeling framework to link one’s baseline cocaine-use
pattern to relapse time without assuming stationarity for the baseline cocaine-
use trajectories. We treat the baseline cocaine-use trajectories as functional data
[Ramsay and Silverman (2005)] and perform functional principal component anal-
ysis (FPCA) to these trajectories. The resulting FPCA scores are then used as pre-
dictors to model relapse time. We develop a joint modeling approach to conduct
FPCA and functional regression analysis simultaneously. We consider two types of
baseline cocaine-use trajectories: the first is the actual self-reported daily cocaine-
use amount as provided by the TLFB, whereas the second is a dichotomized ver-
sion of the first in the form of any cocaine use versus no use. The actual daily
cocaine-use amount can be difficult to estimate depending on the length of the re-
calling period and also due to the lack of a common scale to assess the amount
used for the different methods of consumption (e.g., intranasal use versus injec-
tion). The dichotomized cocaine-use trajectories, although maybe less informative,
are subject to smaller errors and hence are more reliable.
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There is a large volume of recent work on FPCA. See Hall, Müller and Wang
(2006), Li and Hsing (2010), Yao, Müller and Wang (2005a) for kernel-based
FPCA approaches, and James, Hastie and Sugar (2000), Zhou, Huang and Car-
roll (2008, 2010) for spline-based FPCA methods. All these papers are concerned
with the Gaussian type of functional data and cannot be used for generalized longi-
tudinal trajectories. Hall, Müller and Yao (2008) proposed to model non-Gaussian
longitudinal data by generalized linear mixed models, where the FPCA can be per-
formed with respect to some latent random processes. Once the FPCA scores are
obtained, a common approach is to use them as predictors in a second-stage re-
gression analysis [e.g., Crainiceanu, Staicu and Di (2009), Yao, Müller and Wang
(2005b)]. As pointed out in Li, Wang and Carroll (2010), a potential problem with
such an approach is that the estimation errors in FPCA are not properly taken into
account in the second stage regression analysis, hence, the estimated coefficients
can be biased and variations in the estimators may be underestimated. By perform-
ing FPCA and functional regression analysis simultaneously, we can avoid these
complications.

Our work is also related to joint modeling of longitudinal data and survival time
[e.g., Ratcliffe, Guo and Ten Have (2004), Wulfsohn and Tsiatis (1997), Yan and
Fine (2005), Yao (2007, 2008), Su and Wang (2012)]. However, the vast majority
of the existing literature focuses on the instantaneous effect of longitudinal data on
survival time. In other words, the hazard rate of the event time is only related to
the value of the longitudinal process at the moment of event. In our problem, the
longitudinal trajectories were collected prior to the relapse period and we want to
use the entire baseline-use trajectory as a functional predictor in the survival analy-
sis. Survival analysis with functional predictors is not well studied in the literature
compared with other functional regression models, and an extra complication in
our data is that the relapse time is interval censored (see Section 2.1 for details).
As noted in Cai and Betensky (2003), Sun (2006), one prominent difficulty in mod-
eling interval censored survival data is that, unlike right censored data, we cannot
separate estimating the baseline hazard function from estimating the hazard re-
gression coefficients using approaches such as the partial likelihood. Therefore,
we propose to model the log baseline hazard function as a spline function. Some
recent literature on spline models of the log baseline hazard function for interval
censored data includes Cai and Betensky (2003), Kooperberg and Clarkson (1997),
Rosenberg (1995) and Zhang, Hua and Huang (2010).

2. Data structure and joint model.

2.1. Description of the motivating data. Our data came from a recently com-
pleted clinical trial for cocaine dependence treatment. In the study, seventy-nine
cocaine-dependent subjects were admitted to the Clinical Neuroscience Research
Unit (CNRU) of the Connecticut Mental Health Center to receive an inpatient re-
lapse prevention treatment for cocaine dependence lasting for two to four weeks.
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The CNRU is a locked inpatient treatment and research facility that provides no
access to alcohol or drugs and only limited access to visitors. Upon treatment en-
try, all subjects were interviewed by means of the Structured Clinical Interview for
DSM-IV [First et al. (1995)]. Variables collected during the interview include age,
gender, race, number of cocaine-use years and number of anxiety disorders present
at interview, among others. The TLFB Substance Use Calendar was used to retro-
spectively construct daily cocaine-use history in the 90 days prior to admission.

After completing the inpatient treatment, all participants were invited back for
follow-up interviews to assess cocaine-use outcomes. Four interviews were con-
ducted at days 14, 30, 90 and 180 after the treatment. During each interview, daily
cocaine-use records were collected using the TLFB procedure for the period prior
to the interview date. A urine toxicology screen was also conducted to verify the
accuracy of a reported relapse or abstinence. A positive urine sample test would
suggest that the subject had used cocaine at least once in the reporting period be-
fore the positive urine test, but the test could not tell the exact cocaine-use date(s).
If the self-reported relapse time had no conflict with the urine tests, we consider it
as an observed event time. However, some subjects had reported no prior cocaine
use before the first positive urine sample test, their relapse times were interval cen-
sored between their first positive urine test and the previous negative test (if there
was any). There were also subjects who reported no cocaine use nor yielded any
positive urine samples for the entire study period. For these subjects, their relapse
time data were right censored at the last interview date. In our data, about 50.6% of
the subjects had observed relapse time; 31.6% were interval censored and 17.8%
were right censored.

In what follows, let N denote the number of study subjects. For the ith sub-
ject, let Yi = {Yi(tij ), j = 1, . . . , ni} be the baseline cocaine-use trajectory, Ti be
a posttreatment relapse time that may be right or interval censored, and Zi be an
m-dimensional covariate vector, where tij is the j th observation time for the ith
subject within the baseline time interval T , ni is the total number of such obser-
vation time, and Zi includes baseline information on age, gender (= 1 for female
and 0 for male), race (= 1 for African American and 0 for the rest), number of
cocaine-use years (Cocyrs) and number of anxiety disorders present at the base-
line interview (Curanxs). As mentioned in the Introduction, we consider two cases
that Yi(t) is either the self-reported use amount on day t or the dichotomized ver-
sion.

2.2. Modeling the baseline longitudinal trajectories.

2.2.1. Generalized functional mixed model. We assume that the longitudinal
observations Yij = Yi(tij ) are variables from the canonical exponential family
[McCullagh and Nelder (1989)] with a probability density or mass function

f (Yij |θij , φ) = exp
[

1

a(φ)

{
Yij θij − b(θij )

} + c(Yij , φ)

]
,(2.1)
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where θij is the canonical parameter and φ is a dispersion parameter. Denote μij as
the mean of Yij . Then μij is the first derivative of b(·) at θij , that is, μij = b(1)(θij ).
The inverse function of b(1)(·), denoted as g(·), is called the canonical link func-
tion. We consider two different types of trajectories: Gaussian trajectories where
Y

[1]
i (t) = log(0.5 + reported cocaine use on day t), and dichotomized trajectories

where Y
[2]
i (t) = 1 if the ith subject used cocaine on day t , and = 0 otherwise.

For Gaussian longitudinal outcomes, θij = μij and f (Yij |θij , φ) is the density of
Normal(θij , φ); in the case of dichotomized outcomes, f (Yij |θij , φ) is the binary
probability mass function with θij = logit{P(Yij = 1)} and φ = 1. We assume that
Yi(t) is driven by a latent Gaussian process Xi(t) such that θij = Xi(tij ) and that
Xi(t) yields a standard Karhunen–Loève expansion

Xi(t) = μ(t) + ψ(t)T ξi for t ∈ T ,(2.2)

where μ(t) = E{Xi(t)} is the mean function, ψ = (ψ1, . . . ,ψp)T is a vec-
tor of orthonormal functions also known as the eigenfunctions in FPCA, ξi =
(ξi1, . . . , ξip)T ∼ Normal(0,Dξ ) are the principal component scores, Dξ =
diag(d1, . . . , dp) and d1 ≥ d2 ≥ · · · ≥ dp > 0 are the eigenvalues. In theory, the
Karhunen–Loève expansion contains an infinite number of terms, and truncating
the expansion to a finite order is a finite sample approximation to the reality. The
number of principal components p becomes a model parameter and will be chosen
by a data-driven method.

2.2.2. Reduced-rank model based on penalized B-splines. We approximate
the unknown functions μ(t) and ψ(t) by B-splines [James, Hastie and Sugar
(2000), Zhou, Huang and Carroll (2008)]. The B-spline representation achieves
two goals simultaneously: smoothing and dimension reduction. Smoothing is
needed because the self-reported cocaine-use amount trajectories contain a sub-
stantial amount of measurement error. With our spline representation, each func-
tion is parameterized by a small amount of spline coefficients and the estimates are
further regularized by a roughness penalty.

Let B(t) = {B1(t), . . . ,Bq(t)}T be a q-dimensional B-spline basis defined on
equally spaced knots in T , θμ be a q × 1 vector and �ψ = (θψ1, . . . , θψp) be a
q × p matrix of spline coefficients, then the unknown functions are represented as
μ(t) = B(t)T θμ and ψT (t) = B(t)T �ψ . The general recommendation for choos-
ing q in the penalized spline literature is to choose a relatively large number q � p,
and let the smoothness of the estimated functions be regularized by the roughness
penalty [Ruppert, Wand and Carroll (2003)]. The original B-spline basis func-
tions are not orthonormal, therefore, we employ the procedure prescribed by Zhou,
Huang and Carroll (2008) to orthogonalize them so that

∫
B(t)B(t)T dt = Iq ,

where Iq is a q × q identity matrix. Under this construction, the orthonormal con-
straints on ψ(t) translate into constraints on the coefficients, that is, �T

ψ�ψ = Ip .
Then the reduced-rank model for the latent process takes the form

Xi(t) = B(t)T θμ + B(t)T �ψξi subject to �T
ψ�ψ = Ip.(2.3)
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For the Gaussian trajectories, that is, the log-transformed cocaine-use amount,
Yi = Biθμ + Bi�ψξi + εi , where Bi = {B(ti1)

T , . . . ,B(tini
)T }T is the design

matrix by interpolating the basis functions on the observation time points and
εi ∼ Normal(0, σ 2

ε Ini
). The conditional log-likelihood function for the baseline-

use trajectories is

	
[1]
Long

(
�

[1]
L

) =
N∑

i=1

	
[1]
Long,i ,

(2.4)

where 	
[1]
Long,i = −ni

2
log

(
σ 2

ε

) − 1

2σ 2
ε

‖Yi − Biθμ − Bi�ψξi‖2,

and �
[1]
L = (θT

μ , θT
ψ1, . . . , θ

T
ψp, σ 2

ε )T .

For the dichotomized trajectories, log{πij /(1 − πij )} = BT (tij )θμ +
BT (tij )�ψξi , where πij = P(Yij = 1|ξi). The conditional log-likelihood func-
tion is

	
[2]
Long

(
�

[2]
L

) =
N∑

i=1

	
[2]
Long,i ,

(2.5)

where 	
[2]
Long,i =

ni∑
j=1

{
yij logπij + (1 − yij ) log(1 − πij )

}
,

and �
[2]
L = (θT

μ , θT
ψ1, . . . , θ

T
ψp)T . To regularize the nonparametric estimators, we

impose penalties on the L2 norms of their second derivatives [Eilers and Marx
(1996), Ruppert, Wand and Carroll (2003)]. Define JB = ∫

B′′(t)B′′(t)T dt , then∫ {
μ′′(t)

}2
dt = θT

μJBθμ,

∫ {
ψ ′′

k (t)
}2

dt = θT
ψlJBθψl.

The penalized log-likelihood for the baseline longitudinal data is

	Long(�L) − 1

2

(
hμθT

μJBθμ + hψ

p∑
l=1

θT
ψlJBθψl

)
,(2.6)

where 	Long is either 	
[1]
Long or 	

[2]
Long for Gaussian and dichotomized trajectories,

respectively, and hμ and hψ are tuning parameters.

2.3. Modeling the relapse time. We assume that the relapse time Ti depends
on the baseline cocaine-use history Yi(t) only through the latent process Xi(t).
Moreover, the conditional hazard of Ti given {Xi(t), t ∈ T } and the covariate vec-
tor Zi follows the Cox proportional hazards model. Our way of including the
functional covariate Xi into survival analysis is closely related to the functional
linear model; see Crainiceanu, Staicu and Di (2009), Li, Wang and Carroll (2010),
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Ramsay and Silverman (2005), Yao, Müller and Wang (2005b) and many others.
More specifically, the conditional hazard function of Ti is

λi(t |Xi,Zi) = λ0(t) exp
{∫

T
Xi(s)B(s) ds + ZT

i η

}
,

where λ0(t) is an unknown baseline hazard function, η is a coefficient vector and
B(s) is an unknown coefficient function. When X has the Karhunen–Loève ex-
pansion in (2.2), the coefficient function can be written as a linear combination
of the eigenfunctions B(s) = ∑p

j=1 βjψj (s) and the integral in the model can be

simplified as
∫
T Xi(s)B(s) ds = ∑p

j=1 ξijβj , which motivates the model

λi(t |ξi,Zi) = λ0(t) exp
(
ξT
i β + ZT

i η
)
.(2.7)

One important feature of the cocaine dependence treatment data is that the re-
lapse time is partially interval censored. That is, the data are a mixture of non-
censored, right censored and interval censored data. For the subjects with interval
censoring, we only know that the relapse time occurred within an interval [T l

i , T r
i ],

where T l
i ≤ T r

i . We adopt the idea of Cai and Betensky (2003) and model the log
baseline hazard as a linear spline function

log
{
λ0(t)

} = a0 + a1t +
K∑

k=1

bk(t − κk)+,(2.8)

where x+ ≡ max(x,0) and κk’s are the knots. The spline basis used in (2.8) is also
known as the truncated power basis [Ruppert, Wand and Carroll (2003)]. There are
two immediate benefits for this model. First, λ0(·) is guaranteed to be nonnegative,
so that we do not have to consider any constraints on the parameters when max-
imizing the likelihood. Second, since logλ0(·) is modeled as a piecewise linear
polynomial, the cumulative hazard function �0(t) = ∫ t

0 λ0(u) du can be written
out in an explicit form. For higher order spline functions, such explicit expressions
are not available.

To write out the likelihood for the relapse time, we use the following notation.
For the ith subject we observe (T l

i , T r
i , δi), where [T l

i , T r
i ] gives the censoring in-

terval and δi is the indicator for right censoring. When δi = 0 and T l
i = T r

i , the
event time Ti is right censored at T r

i ; when δi = 1 and T l
i < T r

i , Ti is interval cen-
sored within [T l

i , T r
i ]; when δi = 1 and T l

i = T r
i , Ti is observed at T r

i . In addition,
δ0i = I (δi = 1, T l

i = T r
i ) is the indicator for noncensored relapse time. Denoting

Xi = (ξT
i ,ZT

i )T , the conditional log-likelihood function for the relapse time is
[Cai and Betensky (2003)]

	Relap(�S) =
N∑

i=1

	Relap,i where

	Relap,i = δ0i

{
logλ0

(
T r

i

) + (
X

T
i θ

)} − (1 − δi) exp
(
X

T
i θ

)
�0

(
T r

i

)
(2.9)

+ δi(1 − δ0i ) log
[
exp

{
�0

(
T r

i

) − �0
(
T l

i

)}
exp

(
X

T
i θ

)]
,
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and �S = (aT ,bT , θT )T is the collection of parameters.
With the log baseline hazard function expressed as a linear spline function, the

log-likelihood function in (2.9) can be evaluated explicitly. To regularize the es-
timators, one commonly used approach is to model the polynomial coefficients
a = (a0,a1)

T as fixed effects and the spline coefficients b = (b1,b2, . . . ,bK)T

as random effects with b ∼ Normal(0, σ 2
bIK). This mixed model setup leads to a

penalized log-likelihood

	Relap(�S) − 1

2σ 2
b

bT b.(2.10)

Ruppert, Wand and Carroll (2003) recommended to use a relatively large num-
ber of basis functions in a penalized spline estimator, so that the smoothness of
logλ0(·) is mainly controlled by σ 2

b. Following Cai and Betensky (2003), we
set K = min(
N/4�,30), where 
x� is the floor of x, and choose the knots to
be equally spaced with respect to the quantiles defined on the unique values of
{T l

i , T r
i , (T l

i + T r
i )/2, i = 1, . . . ,N}. The variance parameter σ 2

b is treated as a
tuning parameter in our nonparametric estimation. When analyzing the survival
data alone, Cai and Betensky (2003) proposed to select σ 2

b by maximizing the
marginal likelihood using a Laplace approximation [Breslow and Clayton (1993)].
Choosing σ 2

b in our joint model is more challenging and will be addressed in Sec-
tion 3.2.

2.4. The joint model. The principal component scores ξi of the longitudinal
data are also latent frailties in the survival model for the relapse time. By imposing
a normality assumption, the log-likelihood for ξ is

	Frail(�F ) =
N∑

i=1

	Frail,i , 	Frail,i = −1
2 log |Dξ | − 1

2ξT
i D−1

ξ ξi,(2.11)

where �F = (d1, . . . , dp)T are the diagonal elements of Dξ .
The complete data log-likelihood for the joint model is given by combining the

parts in (2.6), (2.9) and (2.11) as

	C(�) =
N∑

i=1

	C,i, 	C,i = 	Long,i + 	Relap,i + 	Frail,i ,(2.12)

where � = (�T
L,�T

S ,�T
F )T , and the penalized version of (2.12) is

	P

(
�; ξ,Y,T l, T r , δ,Z

)
(2.13)

= 	C(�) − 1

2σ 2
b

bT b − 1

2

{
hμθT

μJBθμ + hψ

p∑
l=1

θT
ψlJBθψl

}
.

Here ξ , Y , T l , T r , δ and Z are the vectors or matrices pooling the corresponding
variables from all subjects.



JOINT MODELING IN COCAINE DEPENDENCE TREATMENT DATA 1629

3. Methods.

3.1. Model fitting by the MCEM algorithm. We fit the joint model by an EM
algorithm treating the latent variables ξi as missing values. In our algorithm, we
fix the tuning parameters hμ, hψ and σ 2

b and focus on estimating the model pa-
rameters �. Selection of the tuning parameters is deferred to Section 3.2.

The loss function of the EM algorithm is

Q(�;�curr) = E
{
	P

(
�; ξ,Y,T l, T r , δ,Z

)|Y,T l, T r , δ,Z,�curr
}
,(3.1)

where 	P is the penalized complete data log-likelihood in (2.13) and �curr is the
current value of �. The algorithm updates the parameters by iteratively maxi-
mizing (3.1) over �. Given the complexity of the joint model, the conditional
expectation in (3.1) does not have a closed form, we therefore approximate
Q(�;�curr) by Markov Chain Monte Carlo (MCMC). Let {ξ (1), . . . , ξ (R)} be
MCMC samples from the conditional distribution (ξi |Yi, T

l
i , T r

i , δi,Zi,�curr), and
then Q(�;�curr) can be approximated by Q̂(�;�curr) = 1

R

∑R
k=1 	P (�; ξ (k), Y,

T l, T r , δ,Z). This algorithm is a variant of the Monte Carlo EM (MCEM) algo-
rithm of McCulloch (1997), and the details are provided in Sections A.1 and A.2
of supplementary material [Ye, Li and Guan (2015)]. To ensure convergence of the
MCMC, we also monitor the Monte Carlo error in the E-step using the batch means
method of Jones et al. (2006). Specifically, we divide the Monte Carlo sequence
{ξ (k), k = 1, . . . ,R} in to R1/3 batches so that we have replicates of Q̂(�; �̂(s)) to
evaluate the Monte Carlo error.

3.2. Model selection by Akaike information criterion. The most pressing
model selection issue in our joint model is to select the number of principal com-
ponents p since it determines the structure of the baseline trajectories and their
association with the relapse time. Another important issue is to select the tuning
parameters. As mentioned before, as long as we include enough of a number of
spline bases and place the knots reasonably, the performance of the estimated func-
tions is mainly controlled by the penalty parameters hμ,hψ and σ 2

b. We propose
to select p, hμ,hψ and σ 2

b simultaneously by minimizing an Akaike information
criterion (AIC), which is the negative log-likelihood plus a penalty on the model
complexity.

In our setting, the log-likelihood on observed data requires integrating out the
latent variables ξ from the complete data likelihood (2.12), which is intractable.
A commonly used approach is to replace the log-likelihood with its conditional
expectation given the observed data [Ibrahim, Zhu and Tang (2008)]. Hence, the
AIC is of the form

AIC
(
p,hμ,hψ,σ 2

b
) = −2E

{
	C

(
�̂; ξ,Y,T l, T r , δ,Z

)|Y,T l, T r , δ,Z, �̂
} + 2M,
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where the conditional expectation is approximated by a Monte Carlo average using
the Monte Carlo samples in the last MCEM iteration and M is the effective degrees
of freedom in the model.

For the longitudinal data, both the mean function μ(t) and the eigenfunctions
ψ(t) are estimated by penalized splines. Following Wei and Zhou (2010), the ef-
fective degrees of freedom for a P-spline estimator with a penalty parameter h

is

df(h) = trace

{(
N∑

i=1

BT
i Bi + hJB

)−1 N∑
i=1

BT
i Bi

}
,

where h can be either hμ or hψ . Since our model consists of one mean function
and p eigenvalues and eigenfunctions, the effective degrees of freedom for the
longitudinal data is df(hμ) + p × {df(hψ) + 1}.

Similarly, the effective degrees of freedom for the estimated log baseline hazard
function can be approximated by [Ruppert, Wand and Carroll (2003)]

df
(
σ 2
b
) = trace

{(
N∑

i=1

T T
i Ti + 1

σ 2
b

)−1 N∑
i=1

T T
i Ti

}
,

where Ti is the design matrix from the truncated power basis used in (2.8). For
interval censored subjects, we approximate the event time by the midpoint T m

i

of the interval [T l
i , T r

i ] and the design matrix for the ith subject is Ti = {(T m
i −

κ1)+, . . . , (T m
i − κK)+}.

By taking into account the degrees of freedom in all model components, the
AIC for the joint model becomes

AIC
(
p,hμ,hψ,σ 2

b
)

= −2E
{
	C

(
�̂; ξ,Y,T l, T r , δ,Z

)|Y,T l, T r , δ,Z, �̂
}

(3.2)

+ 2
[
df(hμ) + p × {

df(hψ) + 1
} + df

(
σ 2
b
) + m + p

]
.

Searching for the minimum of AIC in a four-dimensional space is extremely time
consuming. One possible simplification is to assume that the baseline mean and
eigenfunctions have about the same roughness and set hμ = hψ ≡ h. Then for
each value of p, we search for the optimal value of h and σ 2

b over five grid points
in each dimension. We adopt this search scheme in all of our numerical studies and
it proves to be computationally feasible.

3.3. Variance estimation. To make inference on parameters in the joint model,
we need to estimate the variance–covariance matrix of the estimator �̂. Let O =
(Y, T l, T r , δ,Z) be the observed data. Louis (1982) showed that the covariance
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matrix of �̂ can be approximated by the inverse of the observed information matrix

I� = −E
{

∂2

∂�∂�T
	P (�; ξ,O)

∣∣∣O}
− E

{
∂

∂�
	P (�; ξ,O)

∂

∂�T
	P (�; ξ,O)

∣∣∣O}
(3.3)

+ E
{

∂

∂�
	P (�; ξ,O)

∣∣∣O}
E

{
∂

∂�T
	P (�; ξ,O)

∣∣∣O}
,

where 	P is the penalized log-likelihood based on complete data (2.13). We can
estimate this information matrix by evaluating the partial derivatives at the final
estimator �̂ and replacing the conditional expectations by Monte Carlo averages
using the Monte Carlo samples generated in the final EM iteration.

One important distinction between our model and the generalized linear mixed
models or other joint models is that the eigenfunctions are not identifiable without
the orthonormal constraints in (2.3). Because of the constraints, the real number of
free parameters in �ψ is lower than the nominal dimension. As a result, the infor-
mation matrix defined above might be singular. One solution is to reparameterize
�ψ so as to remove the constraints. Details are given in supplementary material
[Ye, Li and Guan (2015)].

A referee pointed out the methods by Meilijson (1989) and Meng and Rubin
(1991) can also be used to estimate the asymptotic variance of �̂. These methods
are not only based on observed information, but also evaluate the derivatives nu-
merically by running additional Markov chains. It is worth pointing out that these
methods are designed for the cases where there is no constraint on the parameter �.
Extending these methods to our problem calls for future research.

4. Simulation study. We illustrate the performance of the proposed methods
by a simulation study. To mimic the real data, we consider two simulation settings
where the baseline longitudinal trajectories are Gaussian and binary, respectively.
In both settings, we simulate N = 100 independent subjects, with ni = 20 baseline
longitudinal observations equally spaced on the time interval T = [0,20].

Gaussian baseline trajectories are generated as Yi(t) = Xi(t) + εi(t), where
Xi(t) is the ith realization of a Gaussian process with the Karhunen–Loève ex-
pansion (2.2). We let the mean function be μ(t) = t/60 + sin(3πt/20), the eigen-
values be d1 = 9, d2 = 2.25 and dk = 0 for k ≥ 3, and the eigenfunctions be
ψ1(t) = −cos(πt/10)/

√
10, ψ2(t) = sin(πt/10)/

√
10. The principal component

scores are simulated as ξi = (ξi1, ξi2)
T ∼ Normal(0,Dξ ) with Dξ = diag(9,2.25).

The error ε(t) is a Gaussian white noise process with variance σ 2
ε = 0.49. In the

case of the binary baseline, Yij are generated from a Bernoulli distribution with the
probability g−1{Xi(tij )}, where the latent process X is simulated the same way as
for the Gaussian baseline trajectories and g(π) = log( π

1−π
) for 0 < π < 1.
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Under both simulation settings, we simulate the failure time Ti from the Cox
proportional hazards model (2.7), which includes the effects of the principal com-
ponent scores and a covariate Zi . We let Zi be a binary random variable with a
success probability of 0.5, the regression coefficients be θ = (βT , η)T = (1,1,1)T ,
and the baseline hazard function be λ0(t) = t/20 for t ≥ 0. We assume that the fail-
ure time is interval censored at random and set the censoring time to be 4, 10 and
20. Let the censoring indicator δi be a binary variable independent of ξi and Zi

with P(δi = 1) = 0.5. When δi = 1, the event time Ti is censored in the inter-
val between the two closest censoring time; if Ti is less than 4, it is censored in
[T l

i = 0, T r
i = 4]; if Ti is over 20, it is automatically right censored at 20. Overall,

the data structure is similar to the cocaine dependence treatment data described
in Section 2: about 12% of the failure times are right censored, 43% are interval
censored, and the remaining 45% are observed.

For both baseline settings, we repeat the simulation 100 times and apply the
proposed method to fit the joint model. For the results reported below, we use
q = 8 cubic B-splines to model the mean and eigenfunctions of the latent longitu-
dinal process and K = 12 spline basis functions to model the log baseline hazard
function. Our experience and those of many others [e.g., Cai and Betensky (2003),
Ruppert, Wand and Carroll (2003), Zhou, Huang and Carroll (2008)] suggest that
the performance of penalized spline estimators is mainly controlled by the penalty
parameters and is not sensitive to the choice of spline basis.

To choose the number of principal components p and the penalty parameters
hμ, hψ and σ 2

b, we conduct a grid search using the proposed AIC (3.2). For all the
simulations, the AIC selects the correct number p = 2 of principal components
about 77% of the time and selects p = 3 for the remaining 23% of the time. Since
AIC has a well-known tendency to select an over-fitted model and over-fitting
is in general considered less problematic than under-fitting, this performance is
quite satisfactory. For the estimation results below, we use the penalty parameters
selected by AIC when p is fixed at 2.

We summarize in Figures 1 and 2 the nonparametric estimators when the base-
line longitudinal trajectories are Gaussian and binary, respectively. Each figure
contains four panels that summarize ψ̂1(t), ψ̂2(t), μ̂(t) and the log baseline haz-
ard function. We show in each panel the true curve, the median, and the 5th and
95th pointwise percentiles of the estimators. As we can see, the spline estimators
perform very well in both simulation settings, and the median and the pointwise
percentiles of the estimated curves are very close to the truth. Between the two
types of baseline longitudinal data, binary trajectories are less informative, and
hence the estimated curves are more variable. For instance, the integrated mean
squared error for the two eigenfunctions are 0.0072 and 0.0150 in the Gaussian
case and are 0.0462 and 0.1206 in the binary case. The true log hazard function is
log(t/20), which is −∞ at t = 0; this explains the bigger bias of our spline esti-
mator near 0. The bias in the nonparametric part has little effect on estimation of
the parametric components such as θ .
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FIG. 1. Summary of the nonparametric estimators in the simulation study when the baseline lon-
gitudinal trajectories are Gaussian. The four panels correspond to ψ̂1(t), ψ̂2(t), μ̂(t) and the log
baseline hazard function, respectively. In each panel, the dotted curve is the true function, the solid
curve is the median of the estimator, the dash-dot and dashed curves are the 5% and 95% pointwise
percentiles. (a) 1st eigenfunction. (b) 2nd eigenfunction. (c) Baseline mean function. (d) Log baseline
hazard function.

We summarize the estimation results of the parametric components for both set-
tings in Table 1, where we show the means and Monte Carlo standard deviations
of the estimators. As we can see, the estimators for the parametric components are
approximately unbiased and the standard deviations are reasonably small. We also
present the means of the estimated standard errors using the modified empirical
information in Section 3.3, and find that the standard errors slightly underestimate
the true standard deviations. This underestimation of standard error is quite com-
mon in semiparametric models under small sample sizes, since the standard error
is based on an estimate of the asymptotic variance, which only captures the leading
term in the asymptotic distribution of the point estimator [Lin and Carroll (2001)].

To demonstrate the advantage of the joint modeling approach, we also provide
a comparison between our method and a two-stage functional survival analysis
approach, where we perform FPCA to the longitudinal trajectory first and then use
the estimated principal component scores as predictors in the second-stage survival
analysis. For Gaussian longitudinal trajectories, the FPC scores are estimated by
the principal analysis by the conditional expectation (PACE) method [Yao, Müller
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FIG. 2. Summary of the nonparametric estimators in the simulation study when the baseline longi-
tudinal trajectories are binary. The four panels correspond to ψ̂1(t), ψ̂2(t), μ̂(t) and the log baseline
hazard function, respectively. In each panel, the dotted curve is the true function, the solid curve is
the median of the estimator, the dash-dot and dashed curves are the 5% and 95% pointwise per-
centiles. (a) 1st eigenfunction. (b) 2nd eigenfunction. (c) Baseline mean function. (d) Log baseline
hazard function.

and Wang (2005a)]; for the dichotomized trajectories, the FPC scores are estimated
by the method of Hall, Müller and Yao (2008) which is implemented in a PACE-
GRM package in Matlab. The estimation results of the two-stage estimator are
also provided in Table 1. We can see that the two-stage estimators for β and η

are severely biased. This bias is the result of the attenuation effect caused by the
estimation errors in the FPC scores.

5. Cocaine dependence treatment data. We apply our proposed joint mod-
eling approach to analyze the cocaine dependence treatment data described in
Section 2. For the baseline cocaine-use trajectories, we consider both the (log-
transformed) cocaine-use amount trajectories and the dichotomized trajectories.
Relapse time is determined from the self-reported posttreatment cocaine-use tra-
jectories as well as the urine sample tests. As we discussed in Section 2, the re-
lapse time is partially interval/right censored. We use the five covariates described
in Section 2 in the Cox model, that is, age, gender, race, Cocyrs and Curanxs. To
capture potential weekly periodic patterns of the baseline trajectories, we aligned



JOINT MODELING IN COCAINE DEPENDENCE TREATMENT DATA 1635

TABLE 1
Estimation results of the parametric components under both simulation settings, with either

Gaussian or binary baseline trajectories. Presented in the table are the true value of the
parameters, mean and Monte-Carlo standard deviations (Stdev) of the estimated parameters, and

the mean of the estimated standard error using the Louis formula (Stder). The joint modeling
method (joint) is the proposed method, and the two-stage method is by plugging estimated FPCA

scores into a second stage survival analysis

Method Parameter β1 β2 η d1 d2 σ 2
ε

Gaussian baseline trajectory
Two-stage True 1.0000 1.0000 1.0000 9.0000 2.2500 0.4900

Mean 0.8154 0.8092 0.7972 8.9248 2.0224 0.4443
Stdev 0.0911 0.1513 0.3302 1.1193 0.3183 0.0147

Joint Mean 0.9824 1.0130 0.9782 9.1184 2.0861 0.4839
Stdev 0.1253 0.1926 0.3885 1.1558 0.3349 0.0157
Stder 0.1184 0.1593 0.3469 1.3661 0.3633 0.0154

Binary baseline trajectory
Two-stage True 1.0000 1.0000 1.0000 9.0000 2.2500

Mean 0.8187 0.6681 0.4642 6.4365 2.1158
Stdev 0.1759 0.4840 0.2658 1.1685 0.5384

Joint Mean 0.9798 0.9890 0.9997 9.3307 2.2823
Stdev 0.1380 0.1727 0.3724 1.9894 0.8342
Stder 0.1192 0.1553 0.3412 2.0035 0.6059

the baseline trajectories by weekdays such that all trajectories start from the first
Sunday of the baseline period and last for 80 days.

We use 30 cubic B-spline basis functions to model the mean and eigenfunctions
of the baseline trajectories so that there are about two knots within each weak
and the basis functions are flexible enough to capture possible weekly patterns in
the data. The smoothness of these nonparametric estimators are governed by the
data-driven tuning parameters. We use 12 linear spline basis functions to model
the baseline hazard function, similar to the choice in Guan, Li and Sinha (2011).
We choose the number of principal components and the penalty parameters hμ,hψ

and σ 2
b by the proposed AIC. The AIC selects three principal components for both

types of baseline trajectories. The estimated eigenvalues are 16.1960, 2.2097 and
0.8673 for the cocaine-use amount trajectories and 61.3838, 0.8986 and 0.1695 for
the dichotomized trajectories.

We show the estimated mean and eigenfunctions for the cocaine-use amount tra-
jectories in Figure 3 and for the dichotomized trajectories in Figure 4. The curves
estimated from the two types of trajectories exhibit rather similar patterns, and
they all show clear weekly periodic structures—the baseline trajectories contain
11 weeks of data and these curves have 11 peaks and troughs matching the week-
days rather closely. If we look beyond the local periodic structures and focus on
the overall trend of these curves over the entire baseline period, we can see that
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FIG. 3. The mean function and the first three eigenfunctions for the cocaine-use amount trajecto-
ries. (a) Mean function. (b) 1st eigenfunction. (c) 2nd eigenfunction. (d) 3rd eigenfunction.

the mean functions are reasonably flat except near the beginning and the end of
the baseline period. The overall trend in the first eigenfunction is a negative con-
stant function. Increasing the loading on the first principal component leads to less
cocaine use (or lower use probability for dichotomized trajectories), and hence
the score on the first principal component represents the overall use amount (or
probability) of a patient. The second principal component represents an overall
decreasing trend in use amount (or probability) over the recall period. The third
principal component is a higher order nonlinear trend in the trajectories.

To confirm that the weekly structures in these curves are real, we also provide
pointwise standard error bands in the plots. Since our simulation study shows that
the standard error based on the Louis formula underestimates the true standard
deviation under a small sample size, we estimate the standard error using a boot-
strap procedure instead. In our bootstrap procedure, we resample the subjects with
replacement, fit the joint model to the bootstrap samples using the same tuning pa-
rameters as for the real data, and estimate the standard deviations of the estimators
using their bootstrap replicates pointwisely. The confidence bands in Figures 3 and
4 are based on 100 bootstrap replicates. These confidence bands confirm that the
weekly structures in the eigenfunctions are real. Note that the confidence bands in
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FIG. 4. The mean function and the first three eigenfunctions for the latent process of the di-
chotomized trajectories. (a) Mean function. (b) 1st eigenfunction. (c) 2nd eigenfunction. (d) 3rd
eigenfunction.

Figure 4 are wider than those in Figure 3 because the dichotomized trajectories are
less informative.

The estimated regression coefficients for the Cox model and the correspond-
ing standard errors and p-values are reported in Table 2. The standard errors are
obtained by bootstrap with 100 replicates. For both types of baseline trajectories,
the second principal component has a significant positive effect on the hazard rate
of relapse time. This suggests that patients with a decline in recent cocaine-use
amount or probability relapsed faster. Subjects who experienced such a decline
might have established a longer period of abstinence before entering treatment
than those who did not. As a result, it would not be surprising for the onset of
their cocaine withdrawal symptoms to start sooner; this could have in turn caused
a faster relapse. Among the covariates, Cocyrs is significant, suggesting subjects
who had used cocaine for fewer years tended to relapse later.

For comparison purposes, we also report in Table 2 the estimation result of the
two-stage procedure described in Section 4. In this procedure, FPCA and survival
analysis are done in successive steps, and the estimation errors in the estimated
principal component scores are not properly taken into account in the survival
analysis. It is not surprising that the estimation coefficients for the principal com-
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TABLE 2
Cocaine data analysis under the joint model using either the cocaine-use amount trajectories

(Amnt.) or the dichotomized use trajectories (Dich.). The table shows the estimated coefficients for
the variable ξ and five covariates. Cocyrs and Curanxs denote the number of cocaine-use years and
the number of current anxiety symptoms at baseline interview, respectively. “Stder” is the estimated
standard error, which is calculated under bootstrap in the joint model. The p-value with ∗ indicates

significance at α = 0.05 level

Amnt. ξ1 ξ2 ξ3 Gender Race Age Cocyrs Curanxs

Two-stage estimator
Est 0.0418 0.1616 −0.2251 −0.3818 −0.4081 −0.0467 0.1182 0.2664
Stder 0.0316 0.0995 0.1590 0.2986 0.3305 0.0276 0.0347 0.2584
p-value 0.1870 0.1046 0.1570 0.2011 0.2169 0.0908 0.0007∗ 0.3024

Joint model
Est 0.0420 0.1802 −0.2021 −0.3255 −0.3343 −0.0449 0.1098 0.2348
Stder 0.0352 0.0867 0.2394 0.3462 0.2591 0.0342 0.0407 0.2109
p-value 0.2327 0.0377∗ 0.3985 0.3471 0.1969 0.1895 0.0070∗ 0.2655

Dich. ξ1 ξ2 ξ3 Gender Race Age Cocyrs Curanxs

Two-stage estimator
Est 0.0008 0.0131 −0.1331 −0.3538 −0.2664 −0.0437 0.1031 0.3582
Stder 0.0137 0.0762 0.1158 0.2743 0.2919 0.0223 0.0306 0.2802
p-value 0.9552 0.8636 0.2501 0.8030 0.3613 0.0500 0.0007∗ 0.2011

Joint model
Est 0.0064 0.1840 −0.2344 −0.3536 −0.1567 −0.0408 0.0947 0.2431
Stder 0.0135 0.0936 0.2261 0.3128 0.2343 0.0315 0.0393 0.2544
p-value 0.6339 0.0493∗ 0.3000 0.2583 0.5035 0.1951 0.0160∗ 0.3392

ponent scores by the two-stage procedure are attenuated and none of them are
significant.

Following a referee’s suggestion, we have also performed PCA to the use
amount trajectories without B-spline representation and roughness penalty regular-
ization and use the PC scores in the survival analysis. The estimated Cox regression
coefficients for the first three principal components are (0.0380,0.0218,−0.0169)

with standard errors (0.0562,0.1283,0.1738). In other words, none of these PC
scores is found to be significantly related to the first relapse time. This is because
the cocaine-use amount trajectories contain a large amount of error (due to self-
reporting and converting different consumption methods to equivalent grams), and
without regularization and joint modeling the estimation errors in the PC scores
greatly attenuate the Cox regression coefficients and reduce statistical power. Such
a direct PCA approach is not applicable to the dichotomized trajectories.

In our joint modeling analysis, we also closely monitor the convergence of the
Markov Chain. We estimate the Monte Carlo error in the final EM iteration using
the method described in Section 3.1, which is 8.3408 × 10−4 for the cocaine-use
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amount trajectories and 7.8830 × 10−4 for the dichotomized trajectories.
In a previous work, Sinha et al. (2006) analyzed a similar data set and concluded

that the baseline average cocaine-use amount had a significant negative effect on
the hazard function of relapse; this implies that those who used less during the
baseline period tended to relapse sooner, which is counterintuitive. In Guan, Li
and Sinha (2011), the authors argued that the counterintuitive results could be due
to measurement error in the average use amount. After having accounted for the
measurement error, they found that the baseline average cocaine-use amount was
no longer significant. Since the first principal component in our joint model is
closely related to the baseline average cocaine-use amount, our result further con-
firms the analysis of Guan, Li and Sinha (2011). However, we have also found
that the subject-specific decreasing trend in the cocaine-use trajectories (i.e., the
second principal component) is related to faster relapse, while such a finding was
not made by either Sinha et al. (2006) or Guan, Li and Sinha (2011).

6. Summary. In studying the relationship between baseline cocaine-use pat-
terns and posttreatment time to first cocaine relapse, most existing literature only
makes use of some basic summary statistics derived from the cocaine-use trajecto-
ries, such as the average use amount and frequency of use. These summary statis-
tics are subject to measurement error and cannot fully describe the dynamic struc-
ture of the baseline trajectories.

We propose an innovative joint modeling approach based on functional data
analysis to jointly model the baseline generalized longitudinal trajectories and the
interval censored failure time. Specifically, we model the latent process that drives
the longitudinal responses as functional data, approximate the mean and eigen-
functions of the latent process by flexible spline basis functions, and propose a
data-driven method to determine the number of principal components and hence
the covariance structure of the longitudinal data. We propose and implement a
Monte Carlo EM algorithm to fit the model and modified empirical information
to estimate the standard error of the regression coefficients. Our analysis of the
cocaine dependence treatment data shows that the relapse time is related to a de-
creasing trend in the cocaine-use behaviors rather than the average use amount.

Our proposed model can also be used to predict the first relapse time of the
new subject. For a future subject, suppose that we only observe his/her baseline
cocaine-use amount trajectory {Y ∗(t), t ∈ T }, then we can predict his/her first re-
lapse time T ∗ using an empirical Bayes method. Using the proposed joint model,
we can write out the conditional distribution [T ∗, ξ∗|Y ∗(t), t ∈ T ], where ξ∗ is
the vector of latent principal component scores for the new subject. We can use
the model parameters estimated from the training data set, and run an MCMC to
draw samples from this conditional distribution. We use the MCMC samples to es-
timate the posterior distribution of T ∗, which provides both a point predictor and
prediction intervals.

As all Monte Carlo based methods, our methods are computationally intense.
For the cocaine dependence treatment data, it takes about 25 EM iterations for
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the algorithm to converge and the running time is about 1.5 hours using the self-
reported use amount trajectories and about 2.5 hours using the dichotomized use
trajectories. It takes a lot longer to perform model selection and bootstrap, since
we have to fit the model many times. However, we argue that the computation time
is a worthy price to pay in exchange for unbiased estimates and correct statistical
inference. One of our future research directions is to accelerate the EM algorithm
using graphics processing units (GPU) and parallel computing.
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SUPPLEMENTARY MATERIAL

Supplement A (DOI: 10.1214/15-AOAS852SUPP; .pdf). The online supple-
mentary material for this paper contains the technical details of the MCEM algo-
rithm to fit the model, estimation of the covariance matrix of the estimator, addi-
tional simulation results and sensitivity analysis in the real data analysis.
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