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DISTRIBUTED MULTINOMIAL REGRESSION

BY MATT TADDY

University of Chicago

This article introduces a model-based approach to distributed comput-
ing for multinomial logistic (softmax) regression. We treat counts for each
response category as independent Poisson regressions via plug-in estimates
for fixed effects shared across categories. The work is driven by the high-
dimensional-response multinomial models that are used in analysis of a large
number of random counts. Our motivating applications are in text analysis,
where documents are tokenized and the token counts are modeled as arising
from a multinomial dependent upon document attributes. We estimate such
models for a publicly available data set of reviews from Yelp, with text re-
gressed onto a large set of explanatory variables (user, business, and rating
information). The fitted models serve as a basis for exploring the connection
between words and variables of interest, for reducing dimension into super-
vised factor scores, and for prediction. We argue that the approach herein
provides an attractive option for social scientists and other text analysts who
wish to bring familiar regression tools to bear on text data.

1. Introduction. This article is motivated by data sets that include counts in
a massive number of categories, such as text corpora (counts for words), browser
logs (counts on websites), and website tracking (counts of clicks). The unit upon
which counts are observed—for example, a “document” for text or a “user” in web
analysis—is annotated with attributes, additional information about each docu-
ment (author, date, etc.) or user (age, purchases, etc.). Much of contemporary Big
Data analysis involves some exploration, inference, and prediction of, or control-
ling for, the relationship between these attributes and the associated very high-
dimensional counts.

Say ci is a vector of counts in d categories, summing to mi = ∑
j cij , accom-

panied by a p-dimensional attribute vector vi on observation unit i of n total. For
example, in the archetypal text mining application, ci are counts for words in doc-
ument i annotated with metadata vi . We connect attributes and counts through a
big multinomial logistic regression model,

p(ci |vi ,mi) = MN(ci;qi ,mi)
(1)

where qij = eηij

�i

, ηij = αj + v′
iϕj and �i =

d∑
k=1

eηik .
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The multinomial denoted MN here has, for unit i, category j , probability qij ,
and size mi . This model can be computationally expensive to estimate for a large
number of response categories (i.e., big ci dimension d). Even a single likeli-
hood evaluation is costly, due to the sum required for each normalizing inten-
sity �i = ∑d

k=1 eηik . The methodological innovation of the current article is to
replace �i with initial estimates, then condition upon these plug-ins when esti-
mating (1) through d individual Poisson regressions for counts in each category j .
This model-based factorization allows one to partition computation across many
independent machines, so with enough processors the system of (1) is fit in the
time required for a single Poisson regression.

We refer to this framework as distributed multinomial regression, or DMR. Our
work here extends ideas from Taddy (2013a), which introduced the strategy of
multinomial inverse regression (MNIR). That article argues for estimation of mod-
els like (1) as the first step in an inverse regression routine for predicting elements
of new vi . However, Taddy (2013a) relies upon a fitting algorithm that collapses
response counts across equal vi , and hence scales only for a small number of at-
tributes (i.e., when p is just one or two). That article is also focused exclusively
on applications in attribute prediction. The purpose of the current article is thus
twofold: to supply techniques for estimation when both c and v are high dimen-
sional, and to motivate how these models can be useful in many aspects of analysis
and inference.

Much of the paper is devoted to an example analysis of reviews on Yelp—an
Internet platform for feedback on various establishments, including restaurants,
barbers, schools, and much else. This data set has a rich feature set associated with
a wide variety of reviews. The data are also publicly available, after (free) regis-
tration on the data mining contest website kaggle.com. Moreover, our technology
is provided in the distrom package for R and Yelp analysis code is cataloged at
github.com/mataddy/yelp. Public access is essential here: our goal is to provide a
complete template for analysis of high-dimensional count data.

The estimation strategy is detailed in Section 2, including model factorization,
plug-ins for �i , and regularization path estimation within each parallel regression.
Methods are illustrated in the short classification example of Section 3, which
shows utility for DMR not only in big d but also as a speedup for small d multino-
mial regressions. Finally, Section 4 runs through our full Yelp application, detailing
model estimation and a variety of analyses. These analyses each correspond to a
different inferential goal.

Exploration: What words are associated with funny or useful content? Here,
we interpret the fitted regression model at the level of word loadings. We empha-
size that these loadings represent partial effects—connections between text and
attributes that arise after controlling for collinearity between attributes—and we
describe how the interpretations change when controlling for more or less con-
founding information.

http://kaggle.com
http://github.com/mataddy/yelp
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Dimension reduction: Which reviews have the most funny or useful content?
Once the model has been fit, it acts as a map between text and attributes. We de-
scribe how to use this map to obtain sufficient reductions: low-dimensional scores
that summarize text content directly relevant to a given attribute. We show that the
sufficient reduction for, say, funny votes, is a seemingly better judge of humor than
the original yelp voters (because reviews can generate funny votes for correlated
but unfunny reasons).

Prediction: What will be the usefulness or hilarity of a new review? We con-
sider performance of the above sufficient reductions as input to prediction algo-
rithms, and find that they can match or outperform comparable techniques that use
the full text as input.

Treatment effects: Does user tenure lead to higher ratings? Finally, we show
how to use the sufficient reductions as synthetic controls in regressions that wish
to remove from a targeted treatment effect the influence of any correlated text
content. That is, the sufficient reductions act like a text-based propensity; in our
application, we use them to see if older users are more positive in their ratings even
if we control for the change in their review content.

Section 5 closes with a discussion and some practical advice for applications
in text mining. We argue that, for many social science and business applications,
the methods herein make regression of text onto observed attributes an attractive
alternative to techniques such as topic modeling which require estimation and in-
terpretation of a latent space.

2. Methods: Estimation in distribution. We adopt terminology from text
analysis for the remainder and refer to each unit i as a “document” and each cate-
gory j as a “word.”1 Suppose that every document–word count cij has been drawn
independently Po(eηij )—Poisson with intensity (i.e., mean) eηij . The joint doc-
ument likelihood for ci then factorizes as the product of a multinomial distribu-
tion for individual counts conditional on total count mi and a Poisson distribution
on mi :

p(ci ) = ∏
j

Po
(
cij ; eηij

) = MN(ci;qi ,mi)Po(mi;�i).(2)

This well-known result has long been used by statisticians to justify ignoring
whether sampling was conditional on margin totals in analysis of contingency ta-
bles. Birch (1963) showed that the maximum likelihood estimate (MLE) of qi is
unchanged under a variety of sampling models for 3-way tables under the con-
straint that �i = mi . This is satisfied at the MLE for a saturated model. Palmgren

1Even in text mining this is a simplification; each j could be a combination of words or any other
language token.
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(1981) extends the theory to log-linear regression with ηij = αj +μi +ϕ′
j vi , show-

ing that the Fisher information on coefficients is the same regardless of whether or
not you have conditioned on mi so long as μi in the Poisson model is estimated at
its conditional MLE,

μ�
i = log

(
mi∑
j eηij

)
.(3)

Most commonly, (2) is invoked when applying multinomial logistic regression:
totals mi are then ancillary and the μi drop out of the likelihood. Our DMR frame-
work takes the opposite view: if we are willing to fix estimates μ̂i potentially not
at their MLE (we will argue for μ̂i = logmi ), then the factorized Poisson likeli-
hood can be analyzed independently across response categories.2 As highlighted
in the Introduction, this yields distributed computing algorithms for estimation on
previously impossible scales. Indeed, we have observed in text and web analysis a
recent migration from multinomial models—say, for latent factorization—to Pois-
son model schemes; see Gopalan, Hofman and Blei (2013) as an example. From
the perspective of this article, such strategies are Big Data approximations to their
multinomial precursors.

2.1. Estimating baseline intensity. The negative log likelihood implied by (1)
is proportional to

n∑
i=1

[
mi log

(
d∑

j=1

eηij

)
− c′

iηi

]
.(4)

It is easy to verify that adding observation fixed effects μi to each ηij in (4) leaves
the likelihood unchanged. In contrast, the corresponding Poisson model, uncondi-
tional on mi , has negative log likelihood proportional to

d∑
j=1

n∑
i=1

[
eμi+ηij − cij (μi + ηij )

]
(5)

with gradient on each μi of g(μi) = eμi
∑

j eηij − mi , and is clearly sensitive
to these observation “baseline intensities.” As mentioned above, the solution for
the parameters of ηij is unchanged between (4) and (5) if each μi is set to its
conditional MLE in (3).

Unfortunately, if our goal is to separate inference for ϕj across different j , the
MLE formula of (3) will create a computational bottleneck: each category-j Pois-
son regression requires updates to μ� = [μ�

1 · · ·μ�
n]′ during estimation. Distributed

2In an older version of this idea, Hodges and Le Cam (1960) introduce a Poisson approximation
to the binomial distribution, for which McDonald (1980) provides error bounds and extension to
multinomials.
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computation precludes such communication, and we instead use the simple plug-in
estimator

μ̂i = logmi.(6)

This choice is justified as optimal in a few simple models, and we rely upon em-
pirical evidence to claim it performs well in more complex settings.3

The gradient of the Poisson likelihood in (5) on μi at our plug-in is g(μ̂i) =
mi(

∑
i e

ηij − 1). Define the plug-in MLEs η̂i = [η̂i1 · · · η̂id ]′ as those which mini-
mize the Poisson objective in (5) under μi = μ̂i . Then in the three simple settings
below, g(μ̂i) = 0 for ηi = η̂i . This implies that μ̂i is the optimal joint MLE esti-
mate for μi , and thus that {η̂i , μ̂i} minimize the Poisson objective in (5) while {η̂i}
minimizes the logistic multinomial objective in (4):

• In a saturated model, with each ηij free, η̂ij = log(cij ) − μ̂i = log(cij /mi) and
g(μ̂i) = 0.

• With intercept-only ηij = αj , the Poisson MLE is α̂j = log
∑

i cij − log
∑

i e
μ̂i=

log(
∑

i cij /M) where M = ∑
i mi , and g(μ̂i) = mi(

∑
j

∑
i cij /M − 1) = 0.

• Consider a single vi ∈ {0,1} such that ηij = αj + viϕj . Write Cvj = ∑
i:vi=v cij

and Mv = ∑
i:vi=v mi = ∑

j Cvj . Then the Poisson MLE are α̂j = log(C0j /M0)

and ϕ̂j = log(C1j /M1) − log(C0j /M0), so that g(μ̂i) = mi(
∑

j Cvij /Mvi
−

1) = 0.

Of course, these examples do not form a general result: the situation is more
complicated with correlated covariates or under regularization. But they illus-
trate analytically why we might expect the performance we have seen empirically:
estimates based upon μ̂i = logmi do not suffer in out-of-sample validation. The
resulting benefit is huge, as using a plug-in allows estimation of the Poisson regres-
sion equations to proceed in complete isolation from each other. See the Appendix
for an example MapReduce [Dean and Ghemawat (2008)] implementation.

2.2. Parallel Poisson regressions. Given baseline intensities fixed as μ̂i =
logmi , each of our d separate Poisson regressions has negative log likelihood pro-
portional to

l(αj ,ϕj ) =
n∑

i=1

[
mie

αj+v′
iϕj − cij

(
αj + v′

iϕj

)]
.(7)

You are free to use your favorite estimation technique for each parallel regres-
sion. This section outlines our specific approach: “gamma lasso” L1 regularized
deviance minimization.

3Note that, when compared to (3), the plug-in replaces
∑

j e
αj +v′

iϕj with 1. Adding a constant to
each αj leaves probabilities unchanged, so this can be made to hold without affecting fit.
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In high-dimensional regression, it can be useful to regularize estimation through
a penalty on coefficient size. This helps to avoid over-fit and stabilize estimation.
A very common form of regularization imposes L1 coefficient costs [i.e., the lasso
of Tibshirani (1996)], which, due to a nondifferentiable cost spike at the origin,
yields variable selection: some coefficient estimates will be set to exactly zero.
Our results here use weighted L1 regularization

α̂j , ϕ̂j = arg min
αj ,ϕj

{
l(αj ,ϕj ) + nλ

p∑
k=1

ωjk|ϕjk|
}

where λ,ωjk ≥ 0.(8)

Penalty size λ acts as a squelch that determines what you measure as signal
and what you discard as noise. In practice, since optimal λ is unknown, one
solves a regularization path of candidate models minimizing (8) along the grid
λ1 > λ2 > · · · > λT . Inference is completed through selection along this path, with
optimal λt chosen to minimize cross-validation (CV) or information criteria (IC;
e.g., Akaike’s AIC) estimated out-of-sample (OOS) deviance (i.e., to minimize the
average error for a given training algorithm when used to predict new data). Cru-
cially, selection is applied independently for each category j regression, so that
only a single set of coefficients need be communicated back to a head node.

Analysis in this article applies the gamma lasso algorithm of Taddy (2014),
wherein weights ωj diminish as a function of |ϕ̂j |.4 In particular, along the grid
of λt squelch values,

ωt
jk = (

1 + γ
∣∣ϕ̂t−1

jk

∣∣)−1 for γ ≥ 0.(9)

This includes the standard lasso at γ = 0. For γ > 0 it provides diminishing bias
regularization, such that strong signals are less shrunk toward zero than weak sig-
nals. This yields sparser ϕ̂, which reduces storage and communication needs, and
can lead to lower false discovery rates. In practice, a good default is γ = 0 (i.e.,
the lasso), but if that provides solutions that are implausibly (or inconveniently)
dense, one can experiment with increasing γ .5

For selection along the path, we minimize a corrected AIC [Hurvich and Tsai
(1989)]:

AICc: − 2l(α̂j , ϕ̂j ) + 2df j

n

n − df j − 1
,(10)

where df j is the estimated degrees of freedom used to fit {α̂j , ϕ̂j }. This corrects
the AIC’s tendency to over-fit, and Taddy (2014) finds that AICc performs well

4The iteratively reweighted least squares algorithm in Section 6 of Taddy (2014) applies directly
to Poisson family regressions by setting each iteration’s “observation weights” eηij and “weighted
response” ηij + cij /eηij − 1.

5All of our results use the gamlr implementation in R. The glass-shard example of Section 3 sets
γ = 0 for direct comparison to a lasso penalized alternative, while the Yelp fits of Section 4 all use
γ = 1 for more sparsity.
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with the gamma lasso. In Section 3, where computation costs are very low, we also
consider CV selection rules: both CV1se, which chooses the largest λt with mean
OOS deviance no more than one standard error away from minimum, and CVmin,
which chooses λt at lowest mean OOS deviance.

See Taddy (2014) for much more detail on these techniques. That article reviews
diminishing bias regularization by emphasizing its close relationship to weighted
L1 penalization.

3. Example: Glass shards and a parallel softmax. Our motivating big-d
applications have the characteristic that mi is random, and usually pretty big. For
example, text mining mi is the total word count in document i, and web analysis
mi would be the total count of sites visited by a browser. A Poisson model for
mi is not farfetched. However, we also find that DMR also does well in the more
common softmax classification setting, where mi = 1 always. It thus provides an
everyday speedup for classification tasks: even with small-d response categories,
you’ll be able to fit the model almost d times faster in distribution.6 Thus, before
moving to our Yelp case study, we look at the surprisingly strong performance of
DMR in a simple classification problem.

This example considers the small forensic glass data set from Venables and Rip-
ley (2002), available in the MASS library for R under the name fgl.7 The data are
214 observations on shards of glass. The response of interest is of 6 glass types:
window float glass (WinF), window nonfloat glass (WinNF), vehicle window glass
(Veh), containers (Con), tableware (Tabl), and vehicle headlamps (Head). Co-
variates for each shard are their refractive index and %-by-weight composition
among 8 oxides. Figure 1 shows Poisson regression regularization paths for each
glass type, with AICc selection marked by a vertical dashed line.

The response here is a single category, such that mi = 1 and μ̂i = 0 for all i.
This violates the assumption of Poisson generation: mi = 1 is not random. For ex-
ample, Figure 2 shows the conditional MLE μ�

i = log(mi/
∑

j eα̂j+v′
i ϕ̂j ) at AICc

selected coefficients. The result is distributed around, but not equal to, the assumed
plug-in of μ̂i = 0 for all i. However, dmr still works: Figure 3 shows the distri-
bution for OOS error in a 20-fold OOS experiment, either using AICc or CV se-
lection on each individual Poisson regression, against CV selected models from
a lasso path for full multinomial logistic (softmax) regression as implemented in
the glmnet package for R [Friedman, Hastie and Tibshirani (2010)]. There are
subtle differences (e.g., AICc DMR selection has lower mean deviance with higher
variance), but the full multinomial fits (glmnet) do not have any clear advantage
over the nearly d-times faster approximation (distrom).

6In shared-memory parallelization we observe speedups close to linear in d , depending upon ma-
chine architecture.

7For the code used in this example, type help(dmr) in R after loading the distrom library.
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FIG. 1. Forensic glass. Regularization paths for each glass-type, with AICc selections marked.

4. Yelp case study. These data were supplied by the review site Yelp for a data
mining contest on kaggle.com. The data are available at www.kaggle.com/c/yelp-
recruiting/data, and code for processing and estimation is at github.com/TaddyLab/
yelp. We consider business, user, and review data sets in the yelp_training_data
collection. The reviews, for all sorts of businesses, were recorded on January 19,
2013 for a sample of locations near to Phoenix, AZ. The goal of the competition
was to predict the combined number of “funny,” “useful,” or “cool” (f/u/c) votes
that a given review receives from other users. Such information can be used by
yelp to promote f/u/c reviews before waiting for the users to grade them as such.

After detailing the data and model in Section 4.1, we describe a series of statis-
tical analyses.

Section 4.2: Investigate model fit under a range of regularization schemes,
looking at how word loadings change with the relative weight of penalty on vari-
ables of interest vs controls.

FIG. 2. Forensic glass. The conditional MLEs μ�
i implied at our DMR coefficient estimates.

http://kaggle.com
http://www.kaggle.com/c/yelp-recruiting/data
http://github.com/TaddyLab/yelp
http://github.com/TaddyLab/yelp
http://www.kaggle.com/c/yelp-recruiting/data
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FIG. 3. Forensic glass. OOS deviance samples in a 20-fold OOS experiment. The net models are
from glment lasso multinomial logistic regression, and the dmr models are our distributed multi-
nomial regression approximation. The applied penalty selection rule is indicated after each model.

Section 4.3: Use the ideas of “sufficient reduction” to project text through the
model onto topics relevant to f/u/c votes or star ratings, and interpret the resulting
factor spaces.

Section 4.4: Use the sufficient reductions in prediction of the number of f/u/c
votes (i.e., the original kaggle task), and compare OOS performance against that
of a word-count regression.

Section 4.5: Use the sufficient reductions in treatment effect estimation—for
the effect of user experience on rating—while controlling for heterogeneity in re-
view content.

By viewing text data as a big multinomial regression, we are able to address all
of the above (and resolve the effects of many collinear attributes on review text)
through a single model fit.

4.1. Data and model specification. The data are n = 215,879 reviews on
11,535 businesses by 43,873 users.8 Review text is split on whitespace and tok-
enized into words (including combinations of punctuation: potential emoticons).
After stripping some common suffixes (e.g., “s,” “ing,” “ly”) and removing a
very small set of stopwords (e.g., “the,” “and,” “or”), we count frequencies for
d = 13,938 words occurring in more than 20 (<0.01%) of the reviews (total word
count is M = 17,581,214). Metadata includes review, business, and user attributes:

• stars: review star rating (out of 5), from which we subtract the business aver-
age rating.

• Review counts for funny, useful, or cool votes. We divide these by the
square root of review age, which yields metrics roughly uncorrelated with the
posting date.

• usr.count: a user’s total number of reviews at time of posting the given re-
view.

8We have removed reviews with unknown user.
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• usr.stars: a user’s average star rating across all of their reviews.
• A user’s average usr.funny, usr.useful, or usr.cool votes per review.
• Business average star rating biz.stars and review count biz.count.
• Business location among 61 possible cities surrounding (and including) Phoenix.
• Business classification according to Yelp’s nonexclusive (and partially user gen-

erated) taxonomy. We track membership for 333 categories containing more
than 5 businesses.

This yields 405 variables for each review. We also specify random effects9 for each
of the 11,535 businesses, leading to total attribute dimension p = 11,940. Data
components are the n × d document–term matrix C, the n-vector of row-totals m,
and the n × p attribute matrix V.

We split each row of the attribute matrix into two elements: ai , the 11 numeric
review attributes from stars through biz.count, and bi , a length-11,929 vec-
tor of dummy indicators for business identity, location, and Yelp classification.
This is done to differentiate the variables we deem of primary interest (ai) from
those which we include as controls (bi); write V = [A B] as the resulting par-
tition. Columns of A are normalized to have mean zero and variance one. The
multinomial regression of (1) is adapted by similarly splitting each ϕj = [ϕa

j ,ϕ
b
j ]

and rewriting category intensities ηij = αj + a′
iϕ

a
j + b′

iϕ
b
j .

4.2. Multinomial model fit and interpretation. Following the recipe of Sec-
tion 2.2, each word’s Poisson regression is estimated

α̂j , ϕ̂j = arg min
αj ,ϕj

{
l(αj ,ϕj ) + nλ

[∑
k

ωa
jk

∣∣ϕa
jk

∣∣ + 1

τ

∑
k

ωb
jk

∣∣ϕb
jk

∣∣]}
,(11)

where l(αj ,ϕj ) = ∑n
i=1[mie

αj+a′
iϕ

a
j +b′

iϕ
b
j − cij (αj + a′

iϕ
a
j + b′

iϕ
b
j )]. The relative

penalty weight τ > 0 controls differential regularization between the target vari-
ables and the controls. At larger τ values, there is less penalty on ϕb

j and the effect
of bi on cij has less opportunity to pollute our estimate for ϕa

j . That is, ϕ̂a
j be-

comes more purely a partial effect. At the extreme of τ = ∞, any collinearity with
bi is to be completely removed from the estimated ϕ̂a

j .
As outlined in the Appendix, counts for the 14k words are partitioned into 256

files. Each file is then read by one of 64 workstations, which itself uses 16 cores
in parallel to run through the Poisson regressions. Each individual regression is a
full gamma lasso path solution over grids of 100 λt squelch values, with weights
ωat

jk,ω
bt
jk updated as in (9) under γ = 1, and AICc selected coefficients are then

written to file. The entire problem (including the sufficient reduction projection of
our next section) takes around 1/2 hour.

9We call these random, rather than fixed, effects because they are estimated under a penalty which
shrinks them toward an overall mean. They will be estimated and we do not marginalize over them.
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FIG. 4. Yelp. Poisson regression regularization paths for counts of the tokens :-), :-/, and :-(
under relative penalty weight τ = 2. Coefficient values have been multiplied by the corresponding
covariate standard deviation. The legend highlights select covariates, regression degrees of freedom
are on the top axis, and our AICc selected estimates are marked with vertical dashed lines.

Regularization paths for a few of the Poisson regressions, estimated under τ = 2
relative penalty weight, are shown in Figure 4. Coefficient values are scaled to
the effect of 1sd change in the corresponding attribute. We see, for example, that
at our AICc selection the effect of a 1sd increase in review stars multiplies the
expected count (or odds, in the multinomial model) for the happy face :-) by
around exp 0.38 ≈ 1.46, the “hmmm” face :-/ by exp−0.15 ≈ 0.86, and the sad
face :-( by exp−0.35 ≈ 0.7. Notice that :-/ and :-( both occur more often in
low-star (negative) reviews, but that :-/ is associated with useful content, while
:-( is uncool.

The relative penalty divisor τ allows us to specify the amount of word count
variation that is allocated the control variables in B. Such differential penalization
is a powerful tool in Big Data analysis, as it allows one to isolate partial effects in
messy overdetermined systems. Unfortunately, unlike for λ, we have no objective
criterion with which to choose τ . Since it weights the penalty on variables whose
effect we would like to remove from our targeted coefficients, one could argue that
τ = ∞ is the optimal choice. In practice, however, this can lead to inference for
the coefficients of interest that is dependent upon only a small subset of documents
(since variation in the others is saturated by the controls). We advise using what-
ever prior knowledge is available to evaluate the appropriateness of results under
a range of τ .

For example, Table 1 investigates fit under increasing τ . The numbers of
nonzero ϕ̂a

jk (i.e., deemed useful for OOS prediction by AICc) are decreasing with
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TABLE 1
Top 10 words by loading on review characteristics, as a function of relative penalty weight τ . The

top row for each attribute corresponds to terms ordered by marginal correlations

τ ϕ̂ �= 0 Top ten words by loading

Marginal Great love amaz favorite deliciou best awesome alway perfect excellent
+Stars 2 8440 Unmatch salute :-)) prik laurie pheonix trove banoffee exquisite sublime

20 3077 Heaven perfection gem divine amaz die superb phenomenal fantastic
deliciousnes

200 508 Gem heaven awesome wonderful amaz fantastic favorite love notch fabulou

Marginal Not worst ask horrib minut rude said told would didn
−Stars 2 8440 Rude livid disrespect disgrace inexcusab grossest incompet audacity unmelt

acknowledge
20 3077 Rude incompet unaccept unprofession inedib worst apolog disrespect insult

acknowledge
200 508 Worst horrib awful rude inedib terrib worse tasteles disgust waste

Marginal You that know like your yelp . . . what don who
Funny 2 6508 Dimsum rue reggae acne meathead roid bong crotch peni fart

20 1785 Bitch shit god dude boob idiot fuck hell drunk laugh
200 120 Bitch dear god hell face shit hipst dude man kidd

Marginal That yelp you thi know biz-photo like all http ://
Useful 2 5230 Fiancee rife dimsum maitre jpg poultry harissa bureau redirect breakdown

20 884 biz-photo meow harissa www bookmark :-/ http :// (?), tip
200 33 www http :// com factor already final immediate ask hope

Marginal Yelp you that biz-photo http :// www know like your
Cool 2 4031 Boulder lewi rogue lagunita wanton celebratory hanker politic mozzerella

onsite
20 577 Userid htm cen rand poem sultry arlin brimm cubic inspiration

200 11 Biz-photo select yelp along certain fil chose house

τ for all attributes. This is because B accounts for more variation in C at higher τ ,
and there is little residual variation left for A. Here, τ = 2 yields top words only
indirectly associated with our attributes (e.g., prik is positive because Thai food
gets high ratings), while full τ = ∞ control leads to near perfect fit and infinite
likelihoods conditional on B alone. To our eye, τ = 20 manages a good balance:
there remain many significant ϕ̂a

jk �= 0, but the model has avoided loading words
that are not directly associated with the given attributes. This fit is used in the
remainder of our study.

4.3. Sufficient reduction. The previous section’s coefficient estimates, resolv-
ing a complex system of relationships between words and attributes, provide a rich
basis for storytelling and exploratory analysis. For many, this is either the end goal
or a jumping-off point (e.g., to experiments testing hypotheses generated in explo-
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ration). But in our practice, a primary reason for fitting big multinomial models is
as a tool for dimension reduction, mapping from the original d-dimensional text
down to univariate indices that contain all information relevant to a given attribute.

Cook (2007) outlines use of regression models with high-dimensional response
as a map to project from that response onto interesting covariates. Taddy (2013a)
extends the idea in our context of big multinomials, motivated by applications in
text analysis. Both of these articles are focused on inverse regression (IR), a tech-
nique wherein the fitted model map is applied for prediction of unobserved covari-
ates (e.g., the votes associated with new review text, as in Section 4.4). However,
the IR algorithms are prefaced on a more basic concept of sufficient reduction (SR),
which is useful beyond its application in IR prediction.

Consider observation ci from a d-dimensional exponential family linear model,
with natural parameter ηi = [ηi1 · · ·ηd ]′, ηij = αj + viϕj , such that

p(ci ) = h(ci ) exp
[
c′
iηi + A(ηi )

]
,(12)

where h is a function of only data (not ηi ) while A is a function of only parameters
(not ci ). Both the full multinomial logistic regression model (conditional upon
mi ) or our independent Poisson’s model (conditional upon μ̂i) can be written as
in (12). Then with � = [ϕ1 · · ·ϕd ] the p × d matrix of regression coefficients, we
get

p(ci ) = h(ci )e
c′
iα exp

[
c′
i�

′vi + A
(
�′vi

)] = h̃(ci )g(�ci ,vi),(13)

so that the likelihood factorizes into a function of ci only and another function
of vi that depends upon ci only through the projection �ci . This implies that,
conditional upon the regression parameters, �ci is a sufficient statistic for vi . That
is, vi ⊥⊥ ci |�ci .

We call zi = �ci an SR projection. In practice, we work with estimated SR pro-
jections zi = �̂ci and hope that �̂ has been estimated well enough for zi to be a
useful summary [see Taddy (2013b) for discussion]. In that case, �̂ provides a lin-
ear map from text into the p-dimensional attribute space. This works just like the
rotation matrix from common principal components analysis except that, instead
of mapping into latent factors, � projects into observed attributes. The resulting
zi are model-based sufficient statistics, useful in the same roles as a traditional
sufficient statistic (like x̄). For example, to predict vik from ci we can work with
univariate zik instead of the d-dimensional original text. In general, SR projec-
tions are a simple way to organize information in Big Data systems. When new
text ci arrives, one need just feed it through � to obtain zi indices which can be
summarized, plotted, and analyzed as desired.

It is important to emphasize that, since estimated loadings ϕ̂ik are partial effects
(influence of other attributes has been controlled for), zik will also correspond to
partial rather than marginal association. As another way to see this, note that the
factorization in (13) is easily manipulated to show sufficiency for each individ-
ual zik conditional on vi,−k , our vector of attributes omitting the kth. Thus, SR
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Correlation matrices
Attributes (v) Text projections (z)

f u c � f u c �

f 1 0.7 0.8 0 f 1 −0.1 −0.7 −0.4
u 0.7 1 0.9 0 u −0.1 1 0.1 −0.2
c 0.8 0.9 1 0 c −0.7 0.1 1 0.5
� 0 0 0 1 � −0.4 −0.2 0.5 1

FIG. 5. Correlation for the original review attributes in v (left) and for z (right) SR text projection.
Here f denotes either the observed (vfunny) or sufficient reduction for (zfunny) the number of
funny votes per square root review age, similarly with u for useful votes and c for cool votes, and
� denotes the observed and SR for the number of review stars.

reduces dimension into a space of information directly relevant to an attribute of
interest, where influence of text variation due to other attributes has been removed
or minimized. Consider the correlation matrices in Figure 5. The original vote at-
tributes are highly positively correlated, while the text projections are either nearly
independent (e.g., useful against either funny or cool) or strongly negatively
correlated (funny and cool). This suggests that there are underlying factors that
encourage votes in any category; only after controlling for these confounding fac-
tors do we see the true association between f/u/c content. Similarly, all vote at-
tributes are uncorrelated with star rating, but for the text projections we see both
negative (funny, useful) and positive (cool) association.

The three 50–100 word reviews in Figure 6 provide further illustration. A sin-
gle review (bottom) of a historical site scores highest in funny and useful
attributes (and also in cool). The review is neither dry nor useless, but we imag-
ine its high vote count has been influenced by other factors, for example, the page
is heavily viewed or people who read reviews of national parks are more likely to
vote. In contrast, the two reviews identified through SR projections as having the
most funny or useful content appear to us as more directly related to these con-
cepts. The funny review, for a pizza restaurant, is a fictional comedic story. The
useful review contains a high proportion of business photos (biz-photo), which the
multinomial model has identified as directly useful. The machine-learned text pro-
jections are able to detect humor and helpfulness distinct from the other factors
that lead to increased user votes.

4.4. Inverse regression for prediction. Multinomial-based SR projections
were originally motivated by Taddy (2013a) for their use in multinomial inverse
regression [MNIR; see also Taddy (2013c)]. Say viy , some element of the attribute
vector vi , is viewed as a “response” to be predicted for future realizations. For
example, in the original kaggle Yelp contest the goal was to predict vi,funny,
vi,useful, or vi,cool—the vote attributes. In such applications, an MNIR routine
would use the SR projection into viy , ziy = ∑

j ϕ̂jycij , to build a forward regres-
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Funniest 50–100 word review, by SR projection zfunny.

Dear La Piazza al Forno: We need to talk. I do not quite know how to say this
so I’m just going to come out with it. I’ve been seeing someone else. How long?
About a year now. Am I in love? Yes. Was it you? It was. The day you decided to
remove hoagies from your lunch menu, about a year ago, I’m sorry, but it really
was you. . . and not me. Hey. . . wait. . . put down that pizza peel. . . try to stay
calm. . . please? [Olive oil container whizzing past head] Please! Stop throwing
shit at me. . . everyone breaks up on social media these days. . . or have not you
heard? Wow, what a Bitch!

Most useful 50–100 word review, by SR projection zuseful.

We found Sprouts shortly after moving to town. There’s a nice selection of Gro-
ceries & Vitamins. It’s like a cheaper, smaller version of Whole Foods. [biz-photo]
[biz-photo] We shop here at least once a week. I like their selection of Peppers. . . .
I like my spicy food! [biz-photo][biz-photo][biz-photo] Their freshly made Pizza
is not too bad either. [biz-photo] Overall, it’s a nice shopping experience for all
of us. Return Factor—100%.

Funniest and most useful 50–100 word review, as voted by Yelp users
(votes normalized by square root of review age).

I use to come down to Coolidge quite a bit and one of the cool things I use to
do was come over here and visit the ruins. A great piece of Arizona history! Do
you remember the Five C’s? Well, this is cotton country. The Park Rangers will
tell you they do not really know how old the ruins are, but most guess at around
600 years plus. But thanks to a forward thinking US Government, the ruins are
now protected by a 70 foot high shelter. Trust me, it comes in handy in July and
August, the two months I seem to visit here most. LOL. I would also recommend a
visit to the bookstore. It stocks a variety of First Nation history, as well as info on
the area. http://www.nps.gov/cagr/index.htm. While you are in Coolidge, I would
recommend the Gallopin’ Goose for drinks or bar food, and Tag’s for dinner. Both
are great!

FIG. 6. Illustration of the information contained in sufficient projections z. The top two reviews
are those, among all where m ∈ (50,100), with highest SR projection scores into the funny and
useful attribute spaces. For comparison, we also show the single 50–100 word review with highest
values for both vfunny and vuseful (recall that these are vote totals per square root review age).
Note that, since variance of z increases with m, high scoring reviews tend to be longer. One can also,
as in Taddy (2013a), divide the SR projections by document length and work with normalized z/m.
On this scale, the funniest review is “Holy Mother of God” and the most useful review is “Ask for
Nick!”

http://www.nps.gov/cagr/index.htm
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TABLE 2
Yelp. Out-of-sample R2 in prediction for vote attributes (normalized by root review age) in

5-fold CV. The top row shows a standard lasso regression from the vote attribute onto text and all
nonvote attributes, while the bottom row holds results for MNIR followed by lasso regression from

the vote attribute onto review length (mi ), nonvote attributes, and the corresponding
univariate SR projection

Forward regression Average out-of-sample R2

Input variables Dimension funny useful cool

Standard lasso Nonvote attributes, C 25,876 0.308 0.291 0.339
MNIR + lasso Nonvote attributes, z, m 11,940 0.316 0.296 0.341

sion that predicts viy from ziy , vi,−y (attributes omitting y), and mi .10 This p + 1
dimensional regression replaces the d + p − 1 dimensional one that would have
been necessary to predict viy from vi,−y and ci , the original text counts.

Estimating an inverse regression in order to get at another forward regression
may seem a strange use of resources. But there are a variety of reasons to con-
sider MNIR. Computationally, through either the techniques of this article or the
collapsing of Taddy (2013a), the multinomial regression estimation can occur in
distribution on many independent machines. This is useful when the full count
matrix C is too big to fit in memory. Another reason to use MNIR is for statisti-
cal efficiency when d is big relative to n. Assuming a multinomial distribution for
ci |vi introduces information into the estimation problem (a less generous term is
“bias”). In particular, it implies that each of the M = ∑

i mi counts are indepen-
dent observations, such that the sample size for learning � becomes M rather than
n. That is, estimation variance decreases with the number of words rather than the
number of documents [see Taddy (2013b)].

As an illustration, Table 2 shows results for prediction of individual f/u/c vote at-
tributes, both through MNIR with lasso forward regression and for a standard lasso
onto the full text counts. That is, MNIR fits E[viy] = β0 + [vi,−f/u/c,mi, ziy]′β
while the comparator fits E[viy] = β0 + [vi,−f/u/c, ci]′β , where vi,−f/u/c denotes
all nonvote attributes. For MNIR each �̂ (hence, ziy) is also estimated using only
the training sample, and in both cases prediction rules were selected via AICc min-
imization along the L1 regularization path. We see that MNIR forward regression,
replacing 13,938 covariates from ci with just the two numbers zyi and mi , does
not suffer against the full lasso comparator (indeed, it is very slightly better in each
case). Such performance is typical of what we have observed in application.11 This

10The SR result that applies here is viy ⊥⊥ ci |ziy,vi,−y,mi . Since sufficiency for ziy from the
multinomial factorization is conditional upon mi , these document totals need to be conditioned upon
in forward regression.

11In Taddy (2013a), the MNIR routines more significantly outperform lasso comparators in OOS
prediction. However, the data sets used in that paper are both very small, with M 	 n. Thus, our
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is not evidence that the text counts do not matter: each full lasso estimates at least
4000 terms having nonzero coefficients. Rather, the multinomial model is a good
enough fit that the factorization results of (13) apply and all relevant information
is contained in the SR projection.12

Note that the MNIR forward regression ignores projection from text onto any
other nonvote attributes. This is because those attributes are conditioned upon in
forward regression. Indeed, Taddy (2013a, 2013b) argue that, in prediction for
a single variable, you only need fit the multinomial dependence between counts
and that single variable. This yields SR projection based on marginal association,
which can work as well as that based on partial association for simple predictions.
The benefit of fitting models for high-dimensional vi is that we are then able to
interpret the resulting partial effects and SR projections, as in Sections 4.2–4.3. It
is also useful in more structured prediction settings, as in the next section.

4.5. Confounder adjustment in treatment effect estimation. In our final appli-
cation, we illustrate use of SR projections as convenient low-dimensional controls
in treatment effect estimation. The task here has a particular attribute, say t , whose
effect on another, say y, you want to estimate. You want to know what will happen
to y if t changes independently from the other attributes. Unfortunately, every-
thing is collinear in the data and both y and t could be correlated to other unob-
served confounders. Your best option is to estimate the treatment effect—that of
t on y—while controlling for observable potential confounders. In text analysis,
this includes controlling for the text content itself.

Consider estimating the effect of a user’s experience—the number of reviews
that they have written—on their expected rating. That is, are experienced users
more critical, perhaps because they have become more discerning? Or do they
tend to give more positive reviews, perhaps because community norms encourage
a high average rating? It is hard to imagine getting firm evidence in either direction
without running a randomized trial—we will always be worried about the effect of
an omitted confounder. However, we can try our best and condition on available
information. In particular, we can condition on content to ask the question: even
given the same review message, would an experienced user give more or less stars
than a newbie?

The response attribute, viy , is star rating. The treatment, vit , is the log number
of reviews by the author (including the current review, so never less than one).
Results for estimation of the effect of vit on viy , conditioning on different control

statistical efficiency argument—that for MNIR estimation variance decreases with M instead of n—
is working heavily in favor of MNIR. Here, even though M > n, vocabulary size d is smaller than n

and linear regression is already plenty efficient.
12We have also found success applying nonlinear learning (e.g., trees) in forward regression after

SR projection. Methods that are too expensive or unstable on the full text work nicely on the reduced
dimension subspace.
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TABLE 3
Estimated effect “γ ” of user experience (log number of reviews) on number of stars rated. Each

corresponds to different levels of confounder adjustment. The effects are all AICc selected estimates
along a γ = 10 (very near to L0) gamma lasso regularization path, where all of the other

regression coefficients were unpenalized. Thus, they are significant, in the sense that the AICc deems
vit useful for predicting viy even after all variation explained by confounders has been removed

Marginal Conditional on attributes only Adding and interacting text SR

Effect estimate 0.003 0.015 0.020

variables, are detailed in Table 3. A naïve estimate for the effect of experience
on rating, estimated through the marginal regression E[viy] = β0 + vitγ , is a γ̂ =
0.003 increase in number of stars per extra unit log review count. Use vi,−yt to
denote all other attributes. Then an improved estimate of the treatment effect is
obtained by fitting E[viy] = β0 + vitγ + v′

i,−ytβ , which yields the much larger
γ̂ = 0.015.

Finally, we would like to control for ci , the review content summarized as word
counts. It would also be nice to control for content interacting with attributes since,
for example, positive content for a restaurant might imply a different star rating
boost than it does for a bowling alley. Unfortunately, interacting 13,938 dimen-
sional ci with the 333 business categories yields almost 4.7 million regression
coefficients. This is more controls than we have observations. However, the SR
projections offer a low-dimensional alternative. Write ziy and zit for the SR pro-
jections onto response and treatment, respectively. Then sufficiency factorization
implies

viy, vit ⊥⊥ ci |ziy, zit ,mi,vi,−yt .(14)

That is, the joint distribution of treatment and control is independent of the text
given SR projection into each. This suggests we can control for review content,
and its interaction with business classification, simply by adding to our condition-
ing set [ziy, zit ,mi] and its interaction with business classification. The resulting
regression, with around 13k control coefficients instead of 4.7 million, yields the
still larger treatment effect estimate γ̂ = 0.02.

5. Discussion. Distributed estimation for multinomial regression allows such
models to be applied on a new scale, one that is limited only by the number of ma-
chines you are able to procure. This is an important advance not only for our moti-
vating text analysis applications, but also for any other setting of high-dimensional
multinomial modeling. This includes any softmax classification model.

One message of this paper has been that Poisson factorization enables fast es-
timation of multinomial distributions. It has been pointed out to us that, in un-
structured data analysis, a Poisson seems little more arbitrary than a multinomial
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model. Equation (2) clarifies this issue: the only additional assumption one makes
by working with independent Poissons is that the aggregate total, mi , is Poisson.
We have attempted to mitigate the influence of this assumption, but that is unnec-
essary if you consider the Poisson a fine model in and of itself.

Finally, we wish to emphasize the relative simplicity of this approach. Although
this article describes models for complex language systems, and it may not seem
to the reader that we are providing anything “simple,” almost all of this material is
just Poisson regression. We have used the ideas of Taddy (2014) and the gamma
lasso to fit these regressions, but any generalized linear model estimator could have
been applied. As implemented in this article, there are only two tuning parameters
in the entire system: the gamma lasso weight γ , which can be safely fixed at zero
(for lasso regression) as a solid default; and the relative confounder-penalty divi-
sor τ . Specification of τ is a clearly subjective choice,13 but such subjectivity is
inevitable in any structural inference that does not involve a random or pseudo-
random experiment.

Too often, social scientists faced with text data will jump to latent space mod-
els (e.g., topic models) as the first step in their analysis. Unless the phenomena
that they’d like to measure is a dominant source of variation in word choice, these
latent topics will be mostly irrelevant. The same scientist faced with more famil-
iar response variables—such as money spent—would likely have used regression
modeling with a mix of observable covariates and fixed or random effects, instead
of trying to model any sort of latent space. Thus, without wanting to claim that
topic and related models are not useful (they are very useful), we hope that this
article will give social scientists the option of using the same type of regression
tools for text analysis that they use successfully in their nontext research.

APPENDIX: MAPREDUCE DETAILS

MapReduce (MR) is a recipe for analysis of massive data sets, designed to work
when the data itself is distributed: stored in many files on a network of distinct
machines. The most common platform for MR is Hadoop paired with a distributed
file-system (DFS) optimized for such operations (e.g., Hadoop DFS).

A MapReduce routine has three main steps: map, partition, and reduce. The
partition is handled by Hadoop, such that we need worry only about map and
reduce. The map operation parses unstructured data into a special format. For us, in
a text mining example, the mapper program will take a document as input, parse the
text into tokens (e.g., words), and output lines of processed token counts: “token
document|count.” The pre-tab item (our token) is called a “key.” Hadoop’s
sort facility uses these keys to send the output of your mappers to machines for
the next step, reducers, ensuring that all instances of the same key (e.g., the same
word) are grouped together at a single reducer. The reducer then executes some

13Except for when you have enough data to identify the model with τ = ∞.
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Algorithm 1 MapReduce DMR

Map: For each document, tokenize and count sums for each token. Save the
total counts mi along with attribute information vi . Output token docu-
ment|count.

Combine totals mi and attributes vi into a single table, say VM. This info can be
generated during map or extracted in earlier steps. Cache VM so it is available to
your reducers.

Reduce: For each token key “j ,” obtain a regularization path for Poisson regres-
sion of counts cij on attributes vi with μ̂i = logmi . Apply AICc to select a segment
of coefficients from this path, say ϕ̂j , and output nonzero elements in sparse triplet
format: word|attribute|phi.

Each reducer writes coefficients ϕ̂j of interest to file, and maintains a running
total for SR projection, zi+= c′

iϕ̂j , output as say Z.r for the r th reducer. When
all machines are done we aggregate Z.r to get the complete projections.

operation that is independent-by-key, and the output is written to file (usually one
file per reducer).

DMR fits nicely in the MR framework. Our map step tokenizes your unstruc-
tured data and organizes the output by token keys. Reduce then takes all obser-
vations on a single token and runs a Poisson log regression, applying the gamma
lasso with IC selection to obtain coefficient estimates. This recipe is detailed in
Algorithm 1.

We have written this as a single MR algorithm, but other variations may work
better for your computing architecture. Our most common implementation uses
Hadoop to execute the map on a large number of document files, but replaces the
regression reduce step with a simple write, to solid state storage “midway” at the
University of Chicago’s Research Computing Center, of token counts tabulated by
observation. For example, given 64 reducer machines on AWS, the result is 64 text
tables on midway, with lines “word|doc|count,” each containing all nonzero
counts for a subset of the vocabulary of tokens. These files are small enough to fit
in working memory14 and can be analyzed on distinct compute nodes, each em-
ploying another layer of parallelization in looping through Poisson regression for
each token. This scheme is able to take advantage of Hadoop for fast tokenization
of distributed data, and of high performance computing architecture (much faster
than, say, a virtual AWS instance) for each regression. It is a model that should
work well for the many statisticians who have access to computing grids designed
for high throughput tasks more traditionally associated with physics or chemistry.

14If not, use more reducers or split the files.
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