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Holocene (the last 12,000 years) temperature variation, including the
transition out of the last Ice Age to a warmer climate, is reconstructed at mul-
tiple locations in southern Finland, Sweden and Estonia based on pollen fossil
data from lake sediment cores. A novel Bayesian statistical approach is pro-
posed that allows the reconstructed temperature histories to interact through
shared environmental response parameters and spatial dependence. The prior
distribution for past temperatures is partially based on numerical climate sim-
ulation. The features in the reconstructions are consistent with the quantita-
tive climate reconstructions based on more commonly used reconstruction
techniques. The results suggest that the novel spatio-temporal approach can
provide quantitative reconstructions that are smoother, less uncertain and gen-
erally more realistic than the site-specific individual reconstructions.

1. Introduction. Instrumental temperature records rarely cover more than the
past 100–200 years. On the other hand, temperature proxy data, such as fos-
sil pollen, tree rings or ice cores, provide a continuous and long record of cli-
matic changes where instrumental data do not exist [Jansen et al. (2007), Masson-
Delmotte et al. (2013)]. The present article proposes Bayesian statistical method-
ology for pollen-based paleotemperature reconstruction at multiple locations that
takes into account spatial and temporal dependencies between the sites and along
the cores. The method is then applied to reconstruct Holocene, that is, post Ice Age
mean annual temperature variation at four locations in southern Finland, Sweden
and Estonia based on fossil pollen data extracted from lake sediment cores.

The standard approach to temperature reconstruction from multiple proxy
records is the so-called Composite Plus Scaling (CPS) method that uses the modern
instrumental record and a suitable regression technique to combine into an average
representation the temperature histories originally constructed only on the basis of
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the individual records [e.g., Jones et al. (2009) and the references therein; see also
NRC (2006)]. We propose a novel method that effectively combines the data from
all the original individual proxy records, in our case the pollen taxon abundances,
and reconstructs their temperature histories in a joint estimation process that al-
lows the histories to interact through shared environmental response parameters
and spatial dependence. Our approach therefore represents a deeper integration of
the information in the proxy records than the standard methodology.

The usefulness of pollen and other organisms as temperature proxies is based on
the fact that different organisms tend to have different optimal temperatures, that
is, temperatures in which they fare particularly well. Therefore, the relative abun-
dances of different pollen types in a sediment core layer reflect the temperature at
the time when the sediment layer was formed. Pollen data is widely used in quanti-
tative climate reconstructions because pollen is abundant and widely dispersed and
because the importance of climate for the distribution and abundance of plants is
well studied and documented [Dahl (1998), Woodward (1987)]. For recent reviews
on climate reconstruction methodology, see Birks et al. (2010), Jones et al. (2009),
Juggins and Birks (2012) and, for pollen-based methods viewed from a Bayesian
perspective, see Ohlwein and Wahl (2012).

The Bayesian BARCAST model discussed in Tingley and Huybers (2010a) and
Tingley and Huybers (2010b) aims to reconstruct a spatially and temporally com-
plete climate process from incomplete proxy and instrumental time series. The
space–time covariance is assumed separable and exponential in space. The prior
model describes the evolution of the true surface temperatures as a multivariate
autoregressive process with spatially correlated innovations. The authors test their
model by reconstructing North American surface temperatures using an instrumen-
tal surface temperature data set, after corrupting a number of time series to mimic
proxy observations. The results are also compared with those obtained using the
regularized expectation–maximization algorithm (RegEM) and it is concluded that
a Bayesian algorithm produces more skillful reconstructions as measured by the
coefficient of efficiency and the length of the uncertainty intervals.

Li, Nychka and Ammann (2010) use Bayesian hierarchical modeling to recon-
struct past Northern Hemisphere mean temperatures. Their model combines infor-
mation from proxies with different temporal resolution and forcings which act as
external drivers of large-scale temperature evolution. However, no real proxy data
are used and, instead, the proxy records are simulated on the basis of numerical cli-
mate model outputs. Further, the model does not include a spatial component. The
results of the paper emphasize the importance of information that reflects climate
on a variety of frequencies.

Brynjarsdóttir and Berliner (2011) reconstruct ground surface temperature his-
tories with uncertainty estimates for the past 400 years from nine borehole tem-
perature records using Bayesian hierarchical modeling. Temperature histories and
heat flow parameters for boreholes in the same region share the same mean and
variance. To find out whether the sharing of information across groups of data
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has any influence, they also fit single-site models to each of the nine boreholes
and conclude that combining the boreholes in two subregions allows the ground
surface temperature history parameters to borrow strength across boreholes.

Tingley et al. (2012) present an overview of the challenges in inferring with
uncertainties a climate process through space and time. The authors propose a
unifying Bayesian modeling and notational framework for the paleoclimate re-
construction problem. As one advantage of hierarchical modeling they view the
possibility of constructing and testing each component independently of the others
before they are incorporated into the hierarchy.

The method proposed in this article is directly related to the work of Toivonen
et al. (2001), Vasko, Toivonen and Korhola (2000) and Korhola et al. (2002), who
were the first to use detailed Bayesian modeling for paleoclimate reconstruction
from assemblage data. Toivonen et al. (2001) introduced a Bayesian response
model called Bum based on a unimodal model for an organism’s response to tem-
perature. Vasko, Toivonen and Korhola (2000) then further developed the Bum
model and introduced a Bayesian hierarchical multinomial regression model that
takes into account dependency between species. This model was called Bummer
and it was further analyzed and modified in Erästö and Holmström (2006) and
Salonen et al. (2012).

The starting point of our approach is the Bummer model that we extend in sev-
eral important ways. As opposed to Bummer, our model handles multiple proxy
records and also takes into account their spatial correlations. The cores can have
different chronologies and the reconstruction is performed on a common chronol-
ogy obtained as their union. Finally, instead of the simple i.i.d. normal model used
in Bummer, the temporal part of the temperature field prior is defined by a multi-
variate Gaussian smoothing prior with the smoothing parameter hyperprior elicited
using numerical climate model simulation. The shortcomings of the simple i.i.d.
model Bummer model were demonstrated in Erästö and Holmström (2006).

Haslett et al. (2006) also used hierarchical Bayesian modeling to reconstruct
the prehistoric climate at Glendalough in Ireland from fossil pollen data. A single
core is used for reconstruction and, as in Erästö and Holmström (2006), a tempo-
rally smoothing temperature prior is used to reflect the fact that climate change can
be assumed to exhibit a degree of smoothness. The use of European-wide pollen-
vegetation-climate relationships led at some time intervals to multimodality in the
posterior distribution of the reconstructed environmental variables. To avoid the
multimodality typical to continental training sets with multiple strong climatic gra-
dients, we limited the training set to Scandinavian and Baltic State environments
where a simple south–north temperature gradient is dominant.

Finally, Ohlwein and Wahl (2012) interpret the model of Haslett et al. (2006)
as a Bayesian version of the so-called Modern Analog Technique (MAT) and their
general framework has similarities with tour approach, too. The authors also dis-
cuss the special challenges in pollen-based environmental reconstructions as well
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as the appropriateness of the unimodal response model. Some of the model ele-
ments used in Paciorek and McLachlan (2009) are also similar to our proposal.

The rest of the paper is structured as follows. The model and its various compo-
nents are described in Section 2. The data used in the example reconstructions and
the results obtained are presented in Section 3, and Section 4 summarizes our main
conclusions. An online supplement [Holmström et al. (2015a)] includes an anal-
ysis of the Gaussian taxon response model used, reference reconstructions from
Greenland ice cores and Scandinavian records, additional reconstructions based
on our pollen data, the core chronologies, and charts of the sediment core pollen
abundances for the most important taxa used in temperature reconstructions. All
data used in this work are available in the online supplement Holmström et al.
(2015b) and the Matlab code used in reconstructions is in the online supplement
Holmström et al. (2015c).

2. The model.

2.1. The Bayesian method. Bayesian inference is based on Bayes’ theorem,
which in its simplest form can be written as

p(�|data) = p(�)p(data|�)

p(data)
∝ p(�)p(data|�).(1)

Here “data” consists of the available observations and in our case includes train-
ing lake and sediment core pollen abundances as well as modern temperatures at
the training lakes. The model parameters as well as the past unknown tempera-
tures are included in �. The density p(data|�) is the likelihood of the data, the
prior distribution p(�) describes our prior beliefs about the model parameters,
and p(�|data) is the posterior distribution of �. Using the posterior distribution,
the investigator can in principle answer any question about the probabilities of the
unknown quantities of interest. Additional levels of hierarchy can be added to the
model by assuming that the prior of � depends on another parameter ψ which in
turn has its own prior p(ψ), etc. For more information on Bayesian modeling, see,
for example, Banerjee, Carlin and Gelfand (2004) and Gelman et al. (2004).

2.2. Notation. In the following, the symbols for “modern” (training) and sed-
iment fossil quantities have the superscript m and f , respectively. We assume n

training lakes with known modern temperatures and C cores with l pollen taxa
counted from the training lakes and lc taxa counted from core c = 1, . . . ,C. All
core taxa are present also in the training lakes. For core c, the number of depths
sampled is nc, indexed according to increasing sediment age. The term “site” refers
either to a training lake or to a depth in a core. Therefore, there are n+n1 +· · ·+nC

sites altogether.
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Training lakes.

xm = [xm
1 , . . . , xm

n ]T modern training temperatures (30-year annual means);
ym
i = [ym

i1, . . . , y
m
il ]T scaled modern pollen taxon abundances (ym

i· ≡∑l
j=1 ym

ij =
100) at the training lake i, i = 1, . . . , n;

Ym = [ym
1 , . . . ,ym

n ] l × n matrix of modern taxon abundances.

Cores.

xf
c = [xf

c1, . . . , x
f
cnc ]T unknown past temperatures for core c, c = 1, . . . ,C;

Xf = {xf
1 , . . . ,xf

C} set of all past temperatures;

yf
ci = [yf

ci1, . . . , y
f
cilc

]T scaled pollen taxon abundances (yf
ci· ≡ ∑lc

j=1 y
f
cij =

100) for core c at site (depth) i, i = 1, . . . , nc, c =
1, . . . ,C;

Yf
c = [yf

c1, . . . ,yf
cnc ] lc × nc matrix of taxon abundances for core c, c =

1, . . . ,C;
Yf = {Yf

1 , . . . ,Yf
C} set of all core taxon abundances.

Reconstruction times: Chronologies. The past temperature x
f
ci for core c at

depth i corresponds to a time tci determined using radiocarbon or other dating
technique. The sequence tc1 > · · · > tcnc is referred to as the chronology of core c.
We will reconstruct the past temperature on a time grid defined by the union of all
such chronologies,

t = {t1, . . . , tN } =
C⋃

c=1

nc⋃
i=1

{tci},

where t1 > · · · > tN . Note that one may have N < n1 + · · · + nc, because different
core chronologies may include identical dates. The same grid is used for each core,
which means that for a given core, pollen abundance data will not be available for
all time points. However, intra- and inter-core temperature correlations will help
estimate the corresponding past temperatures in a reasonable manner. We use the

notation x̃f
c = [x̃f

c1, . . . , x̃
f
cN ]T for the past temperatures at core c on this union

chronology and X̃f = [(̃xf
1 )T , . . . , (̃xf

C)T ]T for the NC dimensional vector that

contains the past temperatures on the union chronology grid for all cores. Thus, xf
c

is a subset of x̃f
c and Xf is a subset of X̃f .

2.3. A Bayesian multinomial Gaussian response model for multiple cores.
Our starting point is the Bummer model introduced in Vasko, Toivonen and Ko-
rhola (2000). We will first generalize it to multiple cores and then propose a further
extension that takes into account spatial and temporal correlations among the cores
(Sections 2.4 and 2.5).
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Our aim is to find the posterior density p(X̃f |Yf ,xm,Ym) of past temperatures
X̃f given data Yf ,xm and Ym. If θ contains the parameters of the model, taking
� = {Xf , θ} and conditioning the probabilities on xm, we get from (1) that

p
(
X̃f |Yf ,xm,Ym)= ∫

p
(
X̃f , θ |Yf ,xm,Ym)dθ

(2)
∝
∫

p
(
X̃f , θ |xm)p(Yf ,Ym|xm,Xf , θ

)
dθ .

In practice, posterior inference on past temperatures is performed by generating a
sample from p(X̃f , θ |Yf ,xm,Ym) and keeping the part corresponding to X̃f .

Sites are assumed to be conditionally independent given the temperatures and
model parameters and, therefore, the likelihood term can be expanded as

p
(
Yf ,Ym|xm,Xf , θ

)
= p

(
Yf |Xf , θ

)
p
(
Ym|xm, θ

)= C∏
c=1

p
(
Yf

c |xf
c , θ

)
p
(
Ym|xm, θ

)
(3)

=
C∏

c=1

nc∏
i=1

p
(
yf
ci |xf

ci, θ
) n∏
i=1

p
(
ym
i |xm

i , θ
)
,

where in the second equality the conditional independence of the cores was as-
sumed. This is one of the assumptions made in the original Bummer model and
may well be an oversimplification. We decided to adopt it in order to limit the
complexity of the model.

Each site is assumed to have its own set of taxon occurrence probabilities that
reflects the probability of observing the various taxa at that site. Let pm

1 , . . . ,pm
n ∈

R
l be the taxon probabilities at the modern sites and let pf

c1, . . . ,pf
cnc ∈ R

lc be the
corresponding probabilities for core c. Denote

Pm = [
pm

1 , . . . ,pm
n

]
, Pf =

C⋃
c=1

{
pf

c1, . . . ,pf
cnc

}
.

Following Vasko, Toivonen and Korhola (2000), we use a Gaussian function to
model how pollen abundance responds to temperature. The unimodal shape of the
response is intended to reflect the fact that each pollen taxon host plant is assumed
to have an optimum temperature at which it fares particularly well and that the
favorability of the temperature declines symmetrically around this optimum [cf.
Korhola et al. (2002)]. For taxon j at modern site i the response is characterized
by

λm
ij = αj exp

[
−
(

βj − xm
i

γj

)2]
, i = 1, . . . , n, j = 1, . . . , l,(4)
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where αj is a scaling factor, βj models the optimum temperature for taxon j , and
γj is a tolerance parameter. These parameters are assumed to be the same for both
training data and the cores. Therefore, the response for core c is described by

λ
f
cij = αk(c,j) exp

[
−
(

βk(c,j) − x
f
ci

γk(c,j)

)2]
,(5)

where i = 1, . . . , nc, j = 1, . . . , lc and the indices k(c,1), . . . , k(c, lc) correspond
to the taxa counted from core c. Let α = [α1, . . . , αl]T , β = [β1, . . . , βl]T , γ =
[γ1, . . . , γl]T and define α

f
c = [αk(c,1), . . . , αk(c,lc)]T , and similarly for βf

c and γ
f
c .

Thus, αf
c , βf

c and γ
f
c are the subvectors of α, β and γ that correspond to those taxa

that appear in core c. All modern Gaussian response model parameters are now
denoted by ϑm = [α,β,γ ] and the corresponding parameters for core c by ϑ

f
c =

[αf
c ,βf

c ,γ
f
c ]. The parameter vector θ above is then defined as θ = {Pm,Pf ,ϑm}.

Other environmental factors besides the temperature can affect pollen taxon
abundances and this is modeled by treating the taxon probabilities as random vari-
ables that follow a Dirichlet distribution,

pm
i |xm

i ,ϑm ∼ Dirichlet
(
λm

i

)
, i = 1, . . . , n,

(6)
pf

ci |xf
ci,ϑ

f
c ∼ Dirichlet

(
λ

f
ci

)
, i = 1, . . . , nc, c = 1, . . . ,C,

where λm
i = [λm

i1, λ
m
i2, . . . , λ

m
il ] and λ

f
ci = [λf

ci1, λ
f
ci2, . . . , λ

f
cilc

]. Considering the

full conditional distributions of the probability vectors pm
i and pf

ci , the components

of λm
i and λ

f
ci can be interpreted as “pseudo counts” that are added to the actual

observed taxon relative abundances (cf. Appendix B). The observed scaled taxon
abundances are assumed to follow multinomial distributions with the probabilities
pm

i ,pf
ci ,

ym
i |xm

i , θ ∼ Mult
(
ym
i· ,pm

i

)
, i = 1, . . . , n,

(7)
yf
ci |xf

ci, θ ∼ Mult
(
y

f
ci·,pf

ci

)
, i = 1, . . . , nc, c = 1, . . . ,C.

We note that because of the Dirichlet distribution used, the average taxon prob-
abilities (6) are determined by the relative size of the responses λm

ij (or λ
f
cij ). As

a result, the temperature dependent taxon probabilities in the model can assume
much more general shapes than just a simple Gaussian. This also means that the
interpretation of the parameters αj , βj and γj is not straightforward. This is dis-
cussed in more detail in Holmström et al. (2015a).

The prior term in (2) can be factored as

p
(
X̃f , θ |xm)= p

(
Pm|xm,ϑm)p(Pf |Xf ,ϑm)p(X̃f ,ϑm|xm),(8)
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and further, by (6),

p
(
Pm|xm,ϑm)= n∏

i=1

p
(
pm

i |xm
i ,ϑm)= n∏

i=1

Dirichlet
(
pm

i |λm
i

)
,(9)

p
(
Pf |Xf ,ϑm)= C∏

c=1

nc∏
i=1

p
(
pf

ci |xf
ci,ϑ

f
c

)= C∏
c=1

nc∏
i=1

Dirichlet
(
pf

ci |λf
ci

)
.(10)

Here conditional independence of the probabilities, given the temperatures, was
assumed. Assuming that the taxon-specific parameters are mutually independent
a priori, the third factor on the right-hand side of (8) can be written as

p
(
X̃f ,ϑm|xm)= p

(
X̃f ) l∏

j=1

p(αj )

l∏
j=1

p(βj )

l∏
j=1

p(γj ).(11)

The above model reduces to the original Bummer if only a single core is con-
sidered (C = 1) and the priors in (11) are specified appropriately. In particular,
Bummer uses an i.i.d. Gaussian prior for X̃f that does not model temporal corre-
lation between past temperatures. In the next section, a spatio-temporal prior for
X̃f is described.

2.4. A spatio-temporal model for past temperatures. We now define the prior
distributions on the right-hand side of (11). The priors of the scaling factor αj

and the tolerance parameter γj are specified analogously to Vasko, Toivonen and
Korhola (2000) and Korhola et al. (2002),

αj ∼ Unif(0.1,60), γj ∼ Gamma(9,1/3), j = 1, . . . , l.

For the prior of the optimum taxon temperature βj of taxon j , our approach
is different from the original Bummer specification which used a Gaussian prior
centered on the modern temperature of the single core lake used in tempera-
ture reconstruction. With several cores involved and all of them located at one
end of a large training set temperature gradient (cf. Section 3.1), it makes more
sense to work in the spirit of empirical Bayes analysis and define reasonable
priors with the help of information gleaned from the training data. Thus, fol-
lowing the weighted-averaging partial least squares (WA-PLS) modeling idea
of ter Braak and Juggins (1993), we first estimate the optimal temperature by
β̂j = (

∑n
i=1 ym

ij )−1∑n
i=1 ym

ij xm
i , where xm

i and ym
ij are the modern temperature and

the abundance of taxon j for training lake i, respectively. The β̂j ’s thus estimated
vary between −2.7◦C and 6.2◦C. A vague prior for βj is then defined as

βj ∼ N
(
β̂j , (1.5

√
3)2), j = 1, . . . , l.

For more discussion on the choice of this particular prior, see Salonen et al. (2012).
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It remains to describe the prior distribution of the vector X̃f that consists of
the unknown past temperatures x̃f

c = [x̃f
c1, . . . , x̃

f
cN ]T for all cores, defined on the

union chronology time grid t1 > · · · > tN . The prior is a multivariate Gaussian
with a separable covariance matrix obtained as the Kronecker product of spatial
and temporal covariances,


 = CS ⊗ CT ∈ R
CN×CN .(12)

To estimate the C ×C spatial covariance matrix CS , two different approaches were
tried. In the first, non-Bayesian approach, we applied Estimated Generalized Least
Squares to fit a continuously indexed isotropic covariance function CS(s, s′) to the
training temperature residuals obtained after subtracting a linear trend and then de-
fined CS = [CS(sc, sc′)], where sc, sc′ are the core locations [e.g., Cressie (1993)].
In the Bayesian approach, an isotropic spatial covariance of temperatures was in-
cluded in the hierarchical model as an additional parameter with its own prior
distribution (Section 2.5). The two methods lead to rather similar reconstructions
and in the following we will report only results obtained with the latter approach.

While the training data can be expected to inform us of the correlations between
temperatures at different locations, we do not have any such direct knowledge of
the past temperatures that could be used to specify the temporal covariance CT . We
therefore believe that one should not use a temporal prior that makes too restrictive
assumptions about the actual past temperature values and instead use a prior that
basically only describes their internal variability or “roughness” [cf. Erästö and
Holmström (2006)].

The matrix 
 in (12) is a block matrix with blocks CS(sc, sc′)CT so that the
temporal covariance for each core is CS(sc, sc)CT and, because of stationarity,
CS(sc, sc) actually does not depend on c. To define CT , we assume that it defines
the dependence structure of a process

x̃
f
c(i+1) = x̃

f
ci + 1√

κ
(ti+1 − ti)εi,(13)

where the εi’s are independent standard Gaussian variables and κ > 0. Thus, if
x̃f
c = [x̃f

c1, (̃x
f
c∗)T ]T , so that x̃f

c∗ = [x̃f
c2, . . . , x̃

f
cN ]T , we have for a fixed x̃

f
1 that

p
(̃
xf
c∗|x̃f

c1, κ
)∝ κ(N−1)/2 exp

[
−κ

2

N∑
i=2

( x̃
f
ci − x̃

f
c(i−1)

ti − ti−1

)2
]
.(14)

Assuming that x̃
f
c1 ∼ N(μc,1), where μc is the modern temperature at core lake c,

we have after some matrix algebra (cf. Appendix A) that

p
(̃
xf
c |κ)= p

(̃
xf
c∗|x̃f

c1, κ
)
p
(
x̃

f
c1

)
(15)

∝ κ(N−1)/2 exp
[−1

2

(̃
xf
c − μc

)T
�−1(̃xf

c − μc

)]
,
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FIG. 1. Four realizations of past temperatures generated from their prior distribution when the
modern temperature is set at μc = 0.

where

μc = [μc, . . . ,μc]T , � =
(BT

21B−1
22 B21κ + 1 κBT

21

κB21 κB22

)−1

and where the matrices B21 and B22 are defined in Appendix A. Thus, for core c,
x̃f
c |κ ∼ N(μc,�) and CT = CT (κ) = � in (12).

We see from (13) or (14) that κ is a smoothing parameter that controls the
roughness of past temperature variation. A prior distribution will be specified for κ

in Section 2.6. By definition,

X̃f |
 ∼ N(μ,
),(16)

with

μ = [μ1, . . . ,μC]T
and μc = [μc, . . . ,μc]T ∈ R

N . To get an idea of the nature of this prior, Figure 1
shows sample paths from the marginal distribution of N(0,
) that correspond to
a single core when κ = 306, a point estimate suggested for spatio-temporal re-
construction by the method of Section 2.6. As one can see, going back in time,
the variance for past temperatures grows rapidly, making the prior very vague. We
also note that the prior favors rather slowly varying temperature time series, lim-
iting physically unreasonable fluctuations. This is considered reasonable because
the Holocene climate has been relatively stationary.

2.5. The spatial covariance model. Let xm(s), s ∈ D, denote the field of mod-
ern temperatures in the region D where the training lakes are located. We assume
that

xm(s) = μ(s) + δ(s),
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where μ(s) is a trend and δ(s) is zero-mean and isotropic. The covariance function
of xm(s) is then

CS

(
s, s′)= Cov

(
xm(s), xm(s′))= Cov

(
δ(s), δ

(
s′)).

In general, the trend can be modeled as μ(s) = ξ(s)ω, where ξ(s) = [ξ1(s), . . . ,
ξq(s)] are fixed covariate functions and ω = [ω1, . . . ,ωq]T are unknown param-
eters. We found that a linear trend is a plausible assumption and therefore took
ξ(s) = [1, ξ2(s), ξ3(s)], ω = [ω1,ω2,ω3]T , where ξ2(s) and ξ3(s) are the latitude
and longitude of the location s, respectively. Further, of the various parametric
models considered, an exponential covariance appeared to reflect spatial depen-
dence in the data best and we therefore assume that

CS

(
s, s′)= C(r, ν) =

{
ν1 exp(−r/ν2), if r > 0,

ν3 + ν1, otherwise,
(17)

where r is the great circle distance between s and s′ (in kilometers), and ν =
[ν1, ν2, ν3] with ν1, ν2, ν3 ≥ 0.

By the construction described in Section 2.4, the first diagonal element of the
temporal covariance matrix CT is equal to 1. It follows that, in the prior model (16)
based on the separable covariance (12), the marginal covariance of the modern
temperatures [x̃f

11, . . . , x̃
f
C1]T at the core lakes is equal to CS . We therefore take

CS = CS(ν) = [CS(sc, sc′)], where sc and sc′ are the core locations and CS(sc, sc′)
is computed from (17).

Denote then by s1, . . . , sn the locations of the training lakes where the modern
mean temperature is known and let

xm =
⎡⎢⎣ xm(s1)

...

xm(sn)

⎤⎥⎦ , ξ =
⎡⎢⎣ ξ(s1)

...

ξ(sn)

⎤⎥⎦ , δ =
⎡⎢⎣ δ(s1)

...

δ(sn)

⎤⎥⎦ .

Including the spatio-temporal model in the hierarchy, the formula (11) is replaced
by

p
(
X̃f ,ϑm, ν,ω, κ|xm)

= p
(
X̃f |ϑm, ν,ω, κ,xm)p(ν,ω|ϑm,κ,xm)p(ϑm,κ|xm)(18)

= p
(
X̃f |ν, κ

)
p
(
ν,ω|xm)p(ϑm)p(κ),

where p(ϑm) can be further factored as in (11). The first factor on the right-hand
side is defined by (16) and the second factor can be further developed as

p
(
ν,ω|xm)∝ p(ν,ω)p

(
xm|ν,ω

)
.

We assume that, given the parameters ν and ω, the modern temperatures xm (or
the residuals δ) follow a multivariate normal distribution,

xm|ν,ω ∼ N
(
ξω,Cm

S (ν)
)
,
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where Cm
S (ν) = [CS(si , sj )], si and sj are training lake locations and CS(si , sj ) is

computed from (17). The prior distributions for parameters ν and ω are assumed
to be independent,

p(ν,ω) =
3∏

i=1

p(νi)

3∏
i=1

p(ωi).

Considering the notation of Section 2.3, when spatial and temporal dependence is
included in the model, the vector θ of all model parameters is expanded to θ =
{Pm,Pf ,ϑm, ν,ω, κ}.

The linear trend in the model is

μ(s) = ξω = ω1 + ω2ξ2(s) + ω3ξ3(s),(19)

where priors for the parameters ωi can be elicited by considering known mean
annual temperatures in the part of northern Europe where the training lakes are lo-
cated. Inari in northern Finland (68◦39′N, 27◦32′E) and Tartu in Estonia (58◦18′N,
26◦44′E) are located approximately on the same longitude and the difference
in their annual mean temperatures (years 1981–2010) is about −7◦C, or about
−0.7◦C per a degree of latitude. We therefore assume that ω2 ∼ N(−1,0.52). It is
natural to assume that the temperature changes much less in the east-west direction
and, therefore, we take ω3 ∼ N(0,0.52). Then, setting ω2 = −0.7, ω3 = 0, and us-
ing the fact that the mean annual temperature in Helsinki (60◦10′N, 24◦56′E) is
μ(s) = 5.9 ◦C, one gets from (19) that ω1 = 47.1◦C, which suggests that a reason-
able prior is ω1 ∼ N(47,32).

Following Tingley and Huybers (2010a), the prior of ν1 (partial sill) is an
Inverse-gamma distribution, ν1 ∼ Inverse-gamma(0.5,0.2), where the parame-
ters were selected so that the prior is rather vague with mode near a point
estimate of ν1 (cf. Section 2.4). For the range parameter ν2 we took ν2 ∼
Inverse-gaussian(200,500). This conforms to the rule of thumb suggested in
Journel and Huijbregts (1978), page 194, since the prior density essentially van-
ishes when ν2 exceeds 800, half the maximum distance over the field of our data.
The nugget parameter ν3 is assumed to be small, ν3 ∼ Gamma(0.01,10).

2.6. Prior of the temporal smoothing parameter. We still need to specify the
temporal smoothing parameter κ that encodes our prior beliefs about the variability
of past temperatures X̃f . Denoting by ρ = CS(sc, sc) the diagonal element of the
spatial covariance CS in (12), the marginal prior density of past temperatures at
core c is given by

p
(̃
xf
c |ν, κ

)= κ(N−1)/2 exp

[
−(x̃

f
c1 − μc)

2

2ρ
− κ

2ρ

N∑
i=2

( x̃
f
ci − x̃

f
c(i−1)

ti − ti−1

)2
]

(20)
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[cf. (14) and (15)]. If x̃f
c were known, using a point estimate ρ̂ for ρ (cf. Sec-

tion 3.2), the “best” κ in the sense of maximizing (20) would be

κ̂ = ρ̂

[
1

N − 1

N∑
i=2

( x̃
f
ci − x̃

f
c(i−1)

ti − ti−1

)2
]−1

.(21)

In principle, one could try to employ here an existing long instrumental tempera-
ture record but, given that the longest records cover only the last couple of hundred
years, this is not a viable option. Instead of a real instrumental record, we there-
fore used an 1150 year long time series of simulated annual mean temperatures
from AD 850 to 1999 for the area where the cores are located, extracted from the
NCAR Climate System Model simulation described in Ammann et al. (2007). As
the reconstructed temperatures should be thought of as 30-year annual means (be-
cause the training temperatures are such) at the union chronology time points ti ,
and the start of the chronology is commonly taken to be AD 1950, we restricted
the simulated time series to the interval [AD 850, AD 1950], computed its 30-year
moving average from AD 1950 backward, and then sampled the resulting time se-
ries at the times ti . The original simulation, the moving average and the subseries
corresponding to the union chronology are shown in Figure 2.

However, besides reconstructions for the union chronology times ti , we will also
be interested in reconstructions for individual core chronologies (Section 3). The
problem is that, for some cores, only a small number of dates between AD 850
and AD 1950 correspond to actual sediment slices (cf. the online supplement),

FIG. 2. Blue curve: NCAR Climate System Model simulation of mean annual temperature anomaly
for the area where the cores are located. Red curve: 30-year moving average of the simulated
anomaly. Black curve: the 30-year mean evaluated at the union chronology time points.
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TABLE 1
Parameters of the prior distribution Gamma(a, b) of the temperature
smoothing parameter κ for independent, spatially independent and

spatio-temporal reconstructions, as well as the corresponding
estimate κ̂ from (21) and the posterior mean of κ

Reconstruction a,b κ̂ E(κ|data)

Arapisto 22, 215 4650 7284
Flarken 412, 49 20,309 20,861
Raigastvere 536, 43 23,148 23,313
Rõuge 19, 230 4343 10,336
Union (spatially independent) 4, 240 1041 9439
Union (spatio-temporal) 1.1, 274 306 4374

making estimation of temperature time series roughness dubious. We therefore
extrapolated the roughness information in the simulated time series to the whole
Holocene as follows. From the moving average zi , i = 880, . . . ,1999, we com-
puted for each time difference k the mean value of (zi − zi−k)

2 and imputed this
value for (x̃

f
ci − x̃

f
c(i−1))

2 in (21), when the interval [tci , tc(i−1)] is not contained
in the range [AD 880, AD 1950] and tci − tc(i−1) = k. The prior for κ was then
defined as Gamma(a, b), with a and b selected so that the prior mean (ab) is ap-
proximately equal to the estimate κ̂ in (21) and the prior variance (ab2) is rather
large (cf. Table 1).

To get an idea how well this procedure might capture the true characteristics
of past temperature variation, we show in Figure 3 the centered 30-year annual

FIG. 3. 30-year moving averages of the computer simulated time series and instrumental temper-
ature records from Uppsala and Stockholm. All three records have been centered by subtracting the
mean.
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means of a part of the simulated series and two instrumental records, one from
Stockholm and one from Uppsala, two Swedish cities located close to each other
and on approximately the same latitudes as the core lakes used for reconstruction
[Moberg and Bergström (1997)]. It appears that the simulated time series could be
a little too rough to mimic actual temperature variation, at least in the Stockholm–
Uppsala area during the last couple of hundred years. As indicated in Table 1, the
posterior mean of κ actually tended to be larger than the estimate κ̂ which appears
to support this observation.

3. Example reconstructions.

3.1. The data. Our modern pollen-temperature training set includes n = 173
lakes with known 30-year modern annual mean temperatures (μc) and surface sed-
iments analyzed for relative abundances of a total of l = 104 pollen taxa. For more
details on the training set, see Seppä et al. (2009) and Antonsson et al. (2006).
Instead of using absolute numbers of pollen grains in sediment samples, we scaled
all counts to the interval [0,100]. Although this results in the loss of some informa-
tion in the data, the changing environment is in fact thought to be reflected in the
relative abundances of various pollen taxa and not in their absolute numbers. Fur-
ther, the absolute total counts at different sites varied greatly (from 169 to 3654)
and the Bummer model that underlies our reconstruction methods appears to work
best when the total counts do not differ too much across sediment samples. A sim-
ilar scaling of counts to a fixed interval was also suggested by Haslett et al. (2006)
when, as is often the case, only the relative abundances pollen taxa are known.

Past temperature reconstructions were made from four sediment cores obtained
from lakes Arapisto, Flarken, Raigastvere and Rõuge. The chronologies of Lakes
Arapisto, Flarken and Raigastvere are based on radiocarbon dating. Conventional
bulk radiocarbon datings were obtained from Flarken (13 datings) and Raigastvere
(10 datings) because these cores were sampled before the use of AMS technique,
while the Arapisto core was dated with 7 AMS datings. All datings were calibrated
and the age–depth curves for all sites were constructed using the median values
of the probability distributions of the calibrated ages. All three sites have gener-
ally stable sedimentation rates, which increases the reliability of the chronologies
[Sarmaja-Korjonen and Seppä (2007), Seppä, Hammarlund and Antonsson (2005),
Seppä and Poska (2004)]. Lake Rõuge is partly annually laminated but the varve
chronology is floating. The chronology and age–depth model for the lake were de-
rived by correlating the paleomagnetic secular variation (PSV) curve with the clear
anchor points of the PSV curve of the Finnish varved lake Nautajärvi [Seppä et al.
(2009)]. The obtained chronology is supported by AMS dates. Figure 4 shows the
locations of the training lakes and cores on a map of northern Europe and Table 2
provides additional information on the core lakes. The four core chronologies con-
sist of a total of 586 time points, but, as some of these are shared by more than one
core, the total number of dates in the union chronology is only 572 (cf. Table 3).
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FIG. 4. Locations of the training lakes and cores. The training lakes are marked with dots whose
colors indicate the associated annual mean temperature (in ◦C). The core lakes are as follows:
1 = Arapisto, 2 = Flarken, 3 = Raigastvere, 4 = Rõuge.

The full chronologies are listed in Holmström et al. (2015a). For more details,
see Sarmaja-Korjonen and Seppä (2007) (Arapisto), Seppä, Hammarlund and An-
tonsson (2005) (Flarken), Seppä and Poska (2004) (Raigastvere) and Seppä et al.
(2009) (Rõuge).

3.2. The different reconstruction models used. In addition to the spatio-
temporal reconstruction described in Section 2, we also considered two additional
approaches. First, reconstructions were made for each core separately. The model
for each core is exactly the same as in the multi-core case (C = 1 in Section 2),
but with the union chronology replaced by the actual chronology of the core and
the spatial part CS of 
 in (12) omitted. We refer to these reconstructions as “in-
dependent.” The second variation was to perform multi-core reconstruction on the
union chronology but to replace CS by an identity matrix. This ignores distance-

TABLE 2
The four core lakes used for the pollen-based temperature

reconstruction. The modern temperature is μc

Lake Latitude Longitude μc (◦C) Country

Arapisto 60◦35′N 24◦05′E 4.5 Finland
Flarken 58◦33′N 13◦40′E 5.9 Sweden
Raigastvere 58◦35′N 26◦39′E 5.0 Estonia
Rõuge 57◦44′N 26◦45′E 5.5 Estonia
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TABLE 3
Details about core chronologies and the union chronology. For each chronology, shown are its
length as well as its youngest and oldest samples. For the four core lakes, in Section 2.2 these

quantities are denoted by nc , tc1 and tcnc , respectively. Time is expressed as years before present,
with 0 corresponding to AD 1950

Core Chronology length Youngest sample Oldest sample

Arapisto 98 0 10,852
Flarken 114 118 12,084
Raigastvere 115 0 11,594
Rõuge 259 0 11,821
Union 572 0 12,084

based spatial correlation between the cores but leaves intact interaction through
the shared environmental response parameters α, β and γ . We refer to this case
as “spatially independent,” which refers to a lack of an explicit spatial dependence
component in the model.

The prior, the estimate κ̂ from (21) and the posterior mean for the smoothing
parameter κ in each case is given in Table 1. In (20), for the independent and
spatially independent models, ρ = 1, and for the spatio-temporal model, we took
ρ̂ = 0.2937, the value obtained from a point estimate of the spatial covariance (cf.
Section 2.4). We note that in some cases the posterior mean of κ lies far in the right
tail of the prior distribution. We therefore recomputed the reconstruction in these
cases with vague κ priors centered at the posterior means of Table 1. Now the new
posterior means were quite close to the prior means and the reconstructions them-
selves changed little. We therefore believe that the priors of Table 1 are reasonable
and result in reliable temperature reconstructions.

The posterior means for the parameters of the spatial covariance were

E(ν|data) = [0.2108,147.9279,0.0698]T ,

E(ω|data) = [47.4144,−0.7014,−0.0472]T .

The posterior mean covariance matrix is

E(CS |data) =

⎡⎢⎢⎣
0.281 0.003 0.035 0.020
0.003 0.281 0.001 0.001
0.035 0.001 0.281 0.111
0.020 0.001 0.111 0.281

⎤⎥⎥⎦ ,

where the lakes appear in the order Arapisto, Flarken, Raigastvere and Rõuge.
Thus, the elements in the first row from left to right show the variance for Arapisto,
the covariance between Arapisto and Flarken, the covariance between Arapisto and
Raigastvere, and the covariance between Arapisto and Rõuge, and so on.

For each time point ti , the posterior mean temperature and its 95% highest pos-
terior density interval were computed. As such point-wise credible intervals may
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underestimate the uncertainty in the paleotemperature time series regarded as a
whole curve, we also calculated a 95% simultaneous credible band employing the
method of “Simultaneous Credible Intervals” suggested in Erästö and Holmström
(2005). Using the generated posterior sample, the method first finds a  > 0 such
that

P

(
max

i=1,...,N

∣∣∣∣ x̃f
ci −E(x̃

f
ci |data)

Std(x̃
f
ci |data)

∣∣∣∣≤ |data
)

= 0.95

and then defines the simultaneous credible band as

E
(
x̃

f
ci |data

)± Std
(
x̃

f
ci |data

)
, i = 1, . . . ,N.

The point-wise and simultaneous credible intervals are probability intervals based
on the posterior probability which itself is determined by the data and the model
assumptions. The reconstruction accuracy of a simplified version of our single-
lake model (essentially the Bummer model) was checked using training set cross-
validation in Toivonen et al. (2001), Vasko, Toivonen and Korhola (2000) and
Salonen et al. (2012), where it was found that, in terms of root mean square er-
ror of prediction, it performed competitively against standard methods, such as
WA-PLS. The structure of the spatio-temporal prior prevents such validation for
the more complex model considered here.

3.3. The Gaussian response model. The plausibility of the Gaussian response
model of Section 2.3 is discussed extensively in the online supplement [Holmström
et al. (2015a)] and we summarize here the main conclusions. First, based on com-
parisons with the training data, the model appears to describe the observed relative
taxon abundances reasonably well. The overall character of predicted abundances
as a function of temperature also seem plausible with nearby lakes and the multi-
core reconstructions producing similar response curves. For most taxa the opti-
mal temperature ranges suggested by the estimated response curves do not seem
unreasonable. The similarity of the response curves of the two multi-core recon-
structions (spatially independent and spatio-temporal models) is consistent with
the similarity of their temperature reconstructions (see below). In the case of the
more southern lakes (Flarken, Raigastvere and Rõuge), the estimated peak relative
abundances of warmer temperature taxa exceeds the abundance seen in the train-
ing and core data, while for the northernmost lake (Arapisto), these abundances
are considerably lower. This is not unexpected, considering the modest share of
most of these warmer temperature taxa in the Arapisto core.

The posterior values of the optimal temperature parameter βj for the warmer
temperature taxa substantially exceed their prior values. This may be explained by
the fact that the prior is centered on the optimal value estimated from the train-
ing set and the training lake temperatures are likely to be considerably lower than
many of the past temperatures at the core lakes. The posterior mean of βj only
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roughly corresponds to the temperature at which the modeled abundance proba-
bility of taxon j peaks, although this correspondence seems to be more robust for
the multi-core reconstructions. Therefore, one should not interpret the parameter
βj as representing a precise optimal taxon temperature. Also, the posterior values
of the tolerance parameter γj tend to be very large, making the Gaussian response
function [(4) and (5)] flat, undermining βj ’s role as a clearly defined optimum
temperature.

3.4. Interpretation of reconstructed temperature histories. The past tempera-
ture reconstructions for different models are shown in Figures 5–7. For compari-
son, we also include in all figures reconstructions made with the WA-PLS method
[ter Braak and Juggins (1993)], one of the most popular calibration methods used
in pollen-based reconstructions. The source for these reconstructions was Seppä
et al. (2009).

Figure 5 displays the independent reconstructions for each lake. Figure 6 shows
the spatially independent reconstructions and Figure 7 shows the reconstructions
made with the full spatio-temporal model. In all figures, the thick curve is the pos-
terior mean, the thin curve is the WA-PLS reconstruction and a dot at AD 1950
marks the current mean annual instrumental temperature. Lighter and darker gray
show the point-wise and simultaneous 95% credible bands, respectively. In Fig-
ures 6 and 7, for each lake, the black line marks the oldest date in its own chronol-
ogy.

Our first observation is that for each lake the general features of the reconstruc-
tions based on the spatially independent and spatio-temporal models are quite sim-
ilar and both differ to some extent from the reconstructions made independently
from single cores. Allowing the cores to interact, either through shared parame-
ters or spatial correlation, also makes reconstructions for all lakes more similar.
Further, the full spatio-temporal reconstructions generally have least posterior un-
certainty, as exhibited by the smaller credibility intervals. From roughly 7700 years
before present onward, the uncertainties are largest in the Arapisto record, which
also has the lowest sediment sample resolution for this period (cf. the online sup-
plement). The large uncertainties to the left of the black lines in Figures 6 and 7 are
due to lack of pollen data for the lake in question, which causes the reconstructed
temperatures to be supported only by the priors.

The distinct feature in the results obtained with independent reconstructions
from single cores is the abrupt rise of temperature during the early Holocene.
These single core reconstructions also show generally higher temperature values
during the mid-Holocene (roughly 8000–4000 years ago) than in the WA-PLS-
based reconstructions (Figure 5). In the spatially independent reconstructions, the
temperature values during the mid-Holocene are more consistent with those gener-
ated with the WA-PLS technique (Figure 6). The reconstructions based on the full
spatio-temporal model (Figure 7) show trends which are most compatible with the
WA-PLS-based trends, with most gradual temperature rise in the early Holocene.
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FIG. 5. Temperature reconstructions made independently from each core. The thick curve is the
posterior mean and the thin curve is the WA-PLS reconstruction. Light and dark gray show the
point-wise and simultaneous 95% credible bands, respectively. Horizontal axis: time in years before
present. Vertical axis: mean annual temperature in centigrades. The dot at AD 1950 marks the current
mean annual instrumental temperature.
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FIG. 6. Temperature reconstructions based on the spatially independent model with no explicit
spatial interaction. The thick curve is the posterior mean and the thin curve is the WA-PLS recon-
struction. Light and dark gray show the point-wise and simultaneous 95% credible bands, respec-
tively. For each lake, the black line marks the oldest date in its own chronology. Horizontal axis: time
in years before present. Vertical axis: mean annual temperature in centigrades. The dot at AD 1950
marks the current mean annual instrumental temperature.
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FIG. 7. Temperature reconstructions based on the full spatio-temporal model. The thick curve is
the posterior mean and the thin curve is the WA-PLS reconstruction. Light and dark gray show the
point-wise and simultaneous 95% credible bands, respectively. For each lake, the black line marks the
oldest date in its own chronology. Horizontal axis: time in years before present. Vertical axis: mean
annual temperature in centigrades. The dot at AD 1950 marks the current mean annual instrumental
temperature.
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The Holocene thermal maximum, the warmest period of the Holocene, strongly ex-
pressed in northern Europe in paleoclimatic data and model simulations [Renssen
et al. (2009, 2012)], is observable in the spatially independent and full spatio-
temporal model reconstructions at about 8000–5000 years ago, with temperature
value of 8–9◦C at the Rõuge, Raigastvere and Flarken, and about 6◦C at the north-
ernmost site Arapisto in Finland. These patterns are generally concordant with the
WA-PLS results. Moreover, the results show that the high sample resolution helps
decrease the uncertainty in the reconstructions. This is reflected particularly in the
Arapisto and Rõuge records, where a higher number of pollen samples were an-
alyzed between 8500–8000 years ago to detect possible indications of an abrupt
cold event widely observed in northern Europe [Alley and Agústsdóttir (2005),
Wiersma and Renssen (2006)]. This event is reflected in Rõuge and Arapisto data
by a ∼1◦C temperature dip, while the influence of high sample resolution is appar-
ent by markedly smaller statistical uncertainties at 8000–8500 years ago (Figure 7).
The cold event 8200 years ago is present also in the WA-PLS based reconstruc-
tions from Flarken, but it shows less clearly in the posterior means, presumably
due to low temporal sample resolution of this record. The Little Ice Age (about
AD 1550 to 1850) and the subsequent warming show best in the spatio-temporal
reconstructions.

Two features in these reconstructions require further analysis. The first is the
rate and magnitude of early Holocene warming that appears quite different for the
independent reconstructions (Figure 5) and the joint, multi-core reconstructions
(Figures 6 and 7). The second question concerns timing of the onset of warming.

An online supplement [Holmström et al. (2015a)] includes published recon-
structions from Greenland ice cores that often are used as a reference when
Holocene climate is reconstructed for Northern Europe and the North Atlantic
region (Figures S.5 and S.6). The reconstruction in Figure S.6 suggests that the
early rise in temperature has been 6–10◦C (depending on the amount of smooth-
ing applied) and our reconstructions are within that range. However, according
to the ice core records, the rate at which the temperature rises in the individual,
single-core reconstructions is too high. This view is also supported by the Scan-
dinavian reference reconstructions (Figures S.7, S.8 and S.9 in the supplement) as
well as the WA-PLS reconstructions displayed in Figures 5, 6 and 7. The global
and hemispheric reconstructions in Marcott et al. (2013) and Shakun et al. (2012)
also support this conclusion, although they may be less relevant than the more lo-
cal Greenland and Scandinavian records. Looking at the pollen abundances in the
four cores (Figure S.10), we notice that Alnus (alder), Corylus (hazel), Ulmus (elm)
and Tilia (linden) are among the taxa whose growing abundance coincides with the
onset of warming. These are all taxa with optimal temperatures that are likely to
be higher than the past temperatures at the four core lakes (see also Figure S.2 in
the online supplement). This can explain the timing of the temperature rise recon-
structed for these lakes, but it does not clarify why the single-core Bayesian model
seems to overestimate the rate of temperature change. If desired, this could be
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remedied by increasing considerably the value of the temporal smoothing param-
eter κ in (13), but such an ad hoc choice might be difficult to justify. Alternatively,
one might use a time-dependent smoothing parameter that would smooth the on-
set of warming differently from the rest of the Holocene. Similarly to our present
approach, such a choice could perhaps be based on numerical climate simulations.
Such considerations are left for future research.

Compared with the single-core reconstructions, the rate of warming in the
spatially independent and spatiotemporal joint reconstructions is in much better
agreement with the Greenland and Scandinavian reference records as well as the
WA-PLS reconstructions. It appears that the potential difficulty the single-core
Bayesian model has in handling such a rapid rise can be alleviated by borrowing
strength from other cores. Thus, sharing the abundance model parameters between
the cores, and therefore effectively increasing the number of data available for their
estimation, already makes a significant difference. Spatial smoothing then further
tempers the reconstructed temperature rise.

One might, however, suspect that the apparent difference in the timing of the
onset of warming in the four independent reconstructions alone when combined
with correlations between the reconstructions explains the more gradual warm-
ing in the joint reconstructions. Indeed, while Arapisto, Flarken and Raigastvere
temperatures start to rise almost simultaneously, the onset of warming for Rõuge
appears to take place later (Figure 5). This is all the more problematic since Lake
Rõuge is the southernmost of the four core lakes, and therefore would be expected
to warm first. Such a discrepancy could be explained by the rather wide confi-
dence intervals around 10,000 BP, but another possibility is the relative paucity
of chronology dates for Lake Rõuge between 10,200 BP and 9400 BP (cf. the
online supplement). We therefore made reconstructions also with Rõuge data be-
fore 9400 BP left out. The results are shown in Figures S.10, S.11 and S.12 in
the online supplement. While the temperature rise in the joint reconstructions is
now somewhat sharper than in Figures 6 and 7, it is still much more gradual than
in the single-core reconstructions of Figure 5. We conclude that the main factor
in decreasing the rate of early Holocene warming in the joint reconstructions is
sharing of the taxon-specific response parameters. This, of course, does not ex-
clude the possibility of additional smoothing in the joint reconstructions because
of chronology misalignments caused by dating errors. The error in the radiocarbon
dates varies between the four lakes and depends on the age of the sediment sam-
ple, being generally larger for the oldest samples. Thus, errors of 100–200 years
are likely for the oldest samples of lakes Arapisto, Flarken and Raigastvere, but
for Lake Rõuge they can be even larger. Even with the earliest Rõuge data left out,
some smoothing may therefore result at the time of early Holocene warming be-
cause the reconstructions may not be correctly aligned. The best solution would be
to let the dating errors influence the reconstructions and their posterior uncertainty
by incorporating them in the hierarchical model. A simple additive error model
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was proposed in Erästö et al. (2012), but a more satisfactory approach would in-
clude a sophisticated Bayesian chronology model such as the Bchron of Haslett
and Parnell (2008) as a model component. We will consider this in future work.

3.5. Computational details. In all cases, a Metropolis-within-Gibbs sampler
[e.g., Robert and Casella (2004)] was run for 30,000 iterations, the first 15,000
were used for burn-in and from the last 15,000, every 5th sample was kept for
inference. Thus, each posterior analysis was based on a sample of size 3000. The
relevant conditional posterior distributions are given in Appendix B.

In both spatially independent and spatio-temporal reconstructions, some
chronology time points are not associated with corresponding pollen abundance
data. Our strategy was to first update, one by one, the temperatures which do have
associated pollen data and after that those without pollen data, conditioning them
on those with pollen data. Adaptive simulation was used both for temperatures and
the environmental response parameters [Gelman et al. (2004)]. The adaptive phase
consisted of 10,000 iterations and the subsequent fixed phase of 20,000 iterations
that used the proposal variances from the last adaptive step.

The initial values for the components of the temperature vector x̃
f
c were simu-

lated from N(μc,1.52), where μc is the modern temperature at core c (see Table 2).
The initial values of κ , the trend parameters ωi and the range parameter ν2 were
generated from their priors. For partial sill ν1, the mode of the prior was used and
the nugget ν3 was initialized at its prior mean.

The abundances among the taxa analyzed vary considerably, with many taxa
appearing in the sediment samples only rarely and only some appearing in sub-
stantial abundance. We therefore thought it best to use taxon-specific initialization
for the scaling factor αj . The iteration for αj was started at αj,max/2, where αj,max
is the largest observed abundance of taxon j . Such initialization accelerated con-
vergence substantially. The initial values for βj and γj were generated from their
prior distributions N(β̂j , (1.5

√
(3))2) and Gamma(9,1/3), respectively.

The algorithms were implemented in Matlab and run on a PC with an Intel Core
i7 3770 CPU. Table 4 summarizes approximate computation times in different
cases.

4. Conclusions. We propose a novel Bayesian approach for the reconstruc-
tion of past temperature variation during the Holocene, using fossil pollen data
from multiple sediment cores. A spatio-temporal model was described that takes
into account both temporal correlations within the cores and spatial correlations
between them. Temporal correlations were modeled with a smoothing prior where
the smoothing parameter hyperprior was elicited using numerical climate simula-
tion. The temporal smoothing prior is very vague and favors rather slowly varying
temperature time series, which is consistent with the relatively stationary climate
conditions during the Holocene. An isotropic covariance was used to model the
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TABLE 4
CPU times for temperature reconstructions. For each lake,

the CPU time is for reconstruction made independently using
its own core chronology. The last two reconstructions are

joint reconstructions using all four cores

Reconstruction CPU time (hours)

Arapisto 3
Flarken 3
Raigastvere 3
Rõuge 3
Union (spatially independent) 26
Union (spatio-temporal) 28

spatial dependence of the temperatures across the sites from which the sediment
samples were obtained.

Taking into account spatial dependencies between reconstructions reduced un-
certainty and made their overall shapes more similar. Given that the four cores
considered are from a geographically restricted area and that the temperature his-
tory at the four sites therefore must have been similar, it can be argued that the
spatio-temporal reconstructions are an improvement over the reconstructions made
independently from each core or those without explicit spatial dependencies. The
spatio-temporal reconstructions are also smoother, less uncertain and generally
more realistic. In addition, they are more consistent with the results obtained with
WA-PLS, a popular method for pollen-based reconstructions.

The proposed model is directly applicable to reconstructions from other bio-
logical proxies records, such as diatoms and chironomids. Other climate variables
besides temperature could also be considered. It would also be interesting to con-
sider a larger set of proxy records from a more extensive geographic area. In some
situations a nonstationary spatial covariance might have to be used to model differ-
ent types of correlations within and between distinctly different types of regions.
Finally, the chronologies were assumed error-free, which of course is a simplifica-
tion. Therefore, future work will need to also address the uncertainty related to the
various sources of errors involved in constructing the chronologies.

APPENDIX A: TEMPORAL COVARIANCE STRUCTURE

Computation of the covariance matrix � in (15) is needed for efficient imple-
mentation of the sampling procedures used in estimation. Following, for example,
Kaipio and Somersalo (2005), the quadratic form in the exponent of (14) is first
written as

N∑
i=2

( x̃
f
ci − x̃

f
c(i−1)

tci − tc(i−1)

)2

= ∥∥Lx̃f
c

∥∥2
,
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where L = [Lij ] ∈ R
(N−1)×N ,

Lij =
⎧⎪⎨⎪⎩

−(tc(i+1) − tci)
−1, when j = i,

(tc(i+1) − tci)
−1, when j = i + 1,

0, otherwise.

Let

LT L =
[

B11 B12
B21 B22

]
,

where B11 ∈ R, B12 ∈ R
N−1, B21 ∈ R

(N−1)×1 and B22 ∈ R
(N−1)×(N−1). Then

p
(̃
xf
c∗|x̃f

c1, κ
)∝ κ(N−1)/2 exp

[
−κ

2

(̃
xf
c∗ + B−1

22 B21x̃
f
c1

)T B22
(̃
xf
c∗ + B−1

22 B21x̃
f
c1

)]
,

where B−1
22 B21x̃

f
c1 = [x̃f

c1, . . . , x̃
f
c1] ∈ R

N−1. The formula (15) then follows readily

when x̃
f
c1 ∼ N(μc,1).

APPENDIX B: THE CONDITIONAL POSTERIORS

From (3)–(10) and Section 2.4,

p
(
X̃f , θ |Yf ,xm,Ym)

∝
C∏

c=1

nc∏
i=1

p
(
yf
ci |xf

ci, θ
) n∏
i=1

p
(
ym
i |xm

i , θ
) n∏
i=1

p
(
pm

i |xm
i ,ϑm)

×
C∏

c=1

nc∏
i=1

p
(
pf

ci |xf
ci,ϑ

f
c

)
p
(
X̃f |ν, κ,

)
p(κ)p

(
xm|ν,ω

) 3∏
i=1

p(ωi)

3∏
i=1

p(νi)

×
l∏

j=1

p(αj )

l∏
j=1

p
(
βj |xm) l∏

j=1

p(γj )

=
C∏

c=1

nc∏
i=1

Mult
(
yf
ci |yf

ci·,pf
ci

) n∏
i=1

Mult
(
ym
i |ym

i· ,pm
i

)

×
n∏

i=1

Dirichlet
(
pm

i |λm
i

) C∏
c=1

nc∏
i=1

Dirichlet
(
pf

ci |λf
ci

)
× N

(
X̃f |μ,


)× Gamma(κ|a, b) × N
(
xm|ξω,Cm

S (ν)
)× N(ω|μω0

,
ω0)

× Inv-gamma(ν1|0.5,0.2) × Inv-gaussian(ν2|200,500)

× Gamma(ν3|0.01,10)

×
l∏

j=1

Unif(αj |0.1,50)

l∏
j=1

N
(
βj |β̂j , (1.5

√
3)2) l∏

j=1

Gamma(γj |9,1/3),

where 
 = CS(ν) ⊗ CT (κ), μω0
= [47,−1,0], and 
ω0 = diag(32,0.52,0.52).
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Therefore, the full conditional posterior distributions of the unknown parame-
ters are

p
(
X̃f |·) ∝ C∏

c=1

nc∏
i=1

Dirichlet
(
pf

ci |λf
ci

)
exp

[
−1

2

(
X̃f − μ

)T

−1(X̃f − μ

)]
,

p(κ|·) ∝ κ(C(N−1)+2(a−1))/2

× exp
[
−κ

b
− 1

2

(
X̃f − μ

)T (CS(ν) ⊗ CT (κ)
)−1(X̃f − μ

)]
,

p
(
pm

i |·)= Dirichlet
(
pm

i |ym
i + λm

i

)
,

p
(
pf

ci |·
)= Dirichlet

(
pf

ci |yf
ci + λ

f
ci

)
,

p(αj |·) ∝
n∏

i=1

Dirichlet
(
pm

i |λm
i

) C∏
c=1

nc∏
i=1

Dirichlet
(
pf

ci |λf
ci

)× Unif(αj |0.1,50),

p(βj |·) ∝
n∏

i=1

Dirichlet
(
pm

i |λm
i

) C∏
c=1

nc∏
i=1

Dirichlet
(
pf

ci |λf
ci

)× N
(
βj |β̂j , (1.5

√
3)2),

p(γj |·) ∝
n∏

i=1

Dirichlet
(
pm

i |λm
i

) C∏
c=1

nc∏
i=1

Dirichlet
(
pf

ci |λf
ci

)× Gamma(γj |9,1/3),

p(ω|·) = N
(
ω|
ω

(
ξT Cm

S (ν)−1xm + 
−1
ω0

μω0

)
,
ω

)
,

where


ω = (
ξT Cm

S (ν)−1ξ + 
−1
ω0

)−1
,

p(νi |·) ∝ 1√
det(CS(ν))N det(Cm

S (ν))

× exp
[
−1

2

(
X̃f − μ

)T (CS(ν) ⊗ CT (κ)
)−1(X̃f − μ

)
− 1

2

(
xm − ξω

)T Cm
S (ν)−1(xm − ξω

)]
p(νi).

Here |· denotes conditioning on the rest of the parameters and the data. Note in
the above formulas that λ

f
ci depends on the past temperatures x̃

f
ci and both λm

i and

λ
f
ci depend on the temperature response parameters αj , βj , γj (cf. Sections 2.3

and 2.4). In MCMC simulation, the probabilities pm
i and pf

ci as well as the spatial
trend parameter ω can be updated using Gibbs sampling while all other parameters
are updated using the Metropolis–Hastings algorithm.
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SUPPLEMENTARY MATERIAL

Supplement A: Additional analyses, reconstructions and description of the
data (DOI: 10.1214/15-AOAS832SUPPA; .pdf). The document (a pdf-file) in-
cludes an analysis of the Gaussian response model and its parameters, reference
records from Greenland ice cores and Scandinavian lake sediments, additional re-
constructions, a list of the core chronologies for the four lakes used for temperature
reconstruction, and charts of relative abundances of the ten most common pollen
taxa in the samples.

Supplement B: The data (DOI: 10.1214/15-AOAS832SUPPB; .zip). The data
used in the article (an Excel file).

Supplement C: The Matlab code (DOI: 10.1214/15-AOAS832SUPPC; .zip).
The Matlab code used in reconstructions.
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