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A TWO-STATE MIXED HIDDEN MARKOV MODEL FOR RISKY
TEENAGE DRIVING BEHAVIOR

BY JOHN C. JACKSON∗, PAUL S. ALBERT†,1 AND ZHIWEI ZHANG†,1

United States Military Academy∗ and Eunice Kennedy Shriver National Institute
of Child Health and Human Development†

This paper proposes a joint model for longitudinal binary and count out-
comes. We apply the model to a unique longitudinal study of teen driving
where risky driving behavior and the occurrence of crashes or near crashes
are measured prospectively over the first 18 months of licensure. Of scien-
tific interest is relating the two processes and predicting crash and near crash
outcomes. We propose a two-state mixed hidden Markov model whereby the
hidden state characterizes the mean for the joint longitudinal crash/near crash
outcomes and elevated g-force events which are a proxy for risky driving.
Heterogeneity is introduced in both the conditional model for the count out-
comes and the hidden process using a shared random effect. An estimation
procedure is presented using the forward–backward algorithm along with
adaptive Gaussian quadrature to perform numerical integration. The estima-
tion procedure readily yields hidden state probabilities as well as providing
for a broad class of predictors.

1. Introduction. The Naturalistic Teenage Driving Study (NTDS), sponsored
by the National Institute of Child Health and Human Development (NICHD), was
conducted to evaluate the effects of experience on teen driving performance under
various driving conditions. It is the first naturalistic study of teenage driving and
has given numerous insights to the risky driving behavior of newly licensed teens
that includes evidence that risky driving does not decline with experience as dis-
cussed by Simons-Morton et al. (2011). During the study 42 newly licensed drivers
were followed over the first 18 months after obtaining a license. The participants
were paid for their participation, and there were no dropouts. Driving took place
primarily in southern Virginia among small cities and rural areas. For each trip,
various kinematic measures were captured. A lateral accelerometer recorded driver
steering control by measuring g-forces the automobile experiences. These record-
ings provide two kinematic measures: lateral acceleration and lateral deceleration.
A longitudinal accelerometer captured driving behavior along a straight path and
records accelerations or decelerations. Another measure for steering control is the
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TABLE 1
Kinematic measures and correlation with CNCs, naturalistic teenage driving study, ∗correlation

computed between the CNC and elevated g-force event rates

Category Gravitation force Frequency % Total events Correlation with CNCs∗

Rapid starts > 0.35 8747 39.6 0.28
Hard stops ≤ −0.45 4228 19.1 0.76
Hard left turns ≤ −0.05 4563 20.6 0.53
Hard right turns ≥ 0.05 3185 14.4 0.62
Yaw 6◦ in 3 seconds 1367 6.2 0.46

Total 22,090 100 0.60

vehicle’s yaw rate, which is the angular deviation of the vehicle’s longitudinal axis
from the direction of the automobile’s path. Each of these kinematic measures was
recorded as count data as they crossed specified thresholds that represent normal
driving behavior. Crash and near crash outcomes were recorded in two ways. First,
the driver of each vehicle had the ability to self report these events. Second, video
cameras provided front and rear views from the car during each trip. Trained tech-
nicians analyzed each trip the driver took using the video and determination of
crash/near crash events made. Table 1 shows the aggregate data for the driving
study. More information on the study can be found at http://www.vtti.vt.edu. Our
interests are the prediction of crash and near crash events from longitudinal risky
driving behavior. Crash or near crash outcomes are our binary outcome of inter-
est, while excessive g-force events are our proxy for risky driving. It is likely that
crash/near crash outcomes are best described by some unobserved or latent quality
like inherent driving ability. Previously, Jackson et al. (2013) analyzed the driving
data using a latent construct where the previously observed kinematic measures
describe the hidden state and the hidden state describes the CNC outcome. Our ap-
proach here characterizes the joint distribution of crash/near crash and kinematic
outcomes using a mixed hidden Markov model where both outcomes contribute to
the calculation of the hidden state probabilities.

There is a previous literature on mixed hidden Markov models. Discrete-time
mixed Markov latent class models are introduced by Langeheine and van de
Pol (1994). A general framework for implementing random effects in the hidden
Markov model is discussed by Altman (2007). In this work, the author presented a
general framework for a mixed hidden Markov model with a single outcome. The
mixed hidden Markov model presented by Altman unifies existing hidden Markov
models for multiple processes, which provides several advantages. The modeling
of multiple processes simultaneously permits the estimation of population-level
effects as well as allowing great flexibility in modeling the correlation structure
because they relax the assumption that observations are independent given the hid-
den states. There are a variety of methods available for estimation of parameters in

http://www.vtti.vt.edu
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mixed hidden Markov models. Altman (2007) performed estimation by evaluating
the likelihood as a product of matrices and performing numerical integration via
Gaussian quadrature. A quasi-Newton method is used for maximum likelihood es-
timation. Bartolucci and Pennoni (2007) extend the latent class model for the anal-
ysis of capture-recapture data, which takes into account the effect of past capture
outcomes on future capture events. Their model allows for heterogeneity among
subjects using multiple classes in the latent state. Scott (2002) introduces Bayesian
methods for hidden Markov models which was used as a framework to analyze al-
coholism treatment trial data [Shirley et al. (2010)]. Bartolucci, Lupparelli and
Montanari (2009) use a fixed effects model to evaluate the performance of nursing
homes using a hidden Markov model with time-varying covariates in the hidden
process. Maruotti (2011) discusses mixed hidden Markov models and their estima-
tion using the expectation–maximization algorithm and leveraging the forward and
backward probabilities given by the forward–backward algorithm and partitioning
the complete-data-log-likelihood into sub-problems. Maruotti and Rocci (2012)
proposed a mixed non-homogeneous hidden Markov model for a categorical data.

We present a model that extends the work of Altman (2007) in several ways.
First, we allow the hidden state to jointly model longitudinal binary and count data,
which in the context of the driving study represent crash/near crash events and
kinematic events, respectively. We also introduce an alternative method to eval-
uate the likelihood by first using the forward–backward algorithm [Baum et al.
(1970)] followed by performing integration using adaptive Gaussian quadrature.
Implementation of the forward–backward algorithm allows for easy recovery of
the posterior hidden state probabilities, while the use of adaptive Gaussian quadra-
ture alleviates bias of parameter estimates in the hidden process [Altman (2007)].
Understanding the nature of the hidden state at different time points was of particu-
lar interest to us in our application to teenage driving, and our estimation procedure
yields an efficient way to evaluate the posterior probability of state occupancy.

In this paper we first introduce a joint model for crash/near crash outcomes
and kinematic events which allows the mean of each these to change according
to a two-state Markov chain. We introduce heterogeneity in the hidden process as
well as the conditional model for the kinematic events via a shared random effect.
We then discuss an estimation procedure whereby the likelihood is maximized di-
rectly and estimation of the hidden states is readily available by incorporating the
forward–backward algorithm [Baum et al. (1970)] in evaluating individual likeli-
hoods. We apply our model to the NTDS data and show that these driving kine-
matic data and CNC events are closely tied via the latent state. We use our model
results to form a predictor for future CNC events based on previously observed
kinematic data.

2. Methods. Here we present the joint model for longitudinal binary and
count outcomes using two hidden states as well as the estimation procedure for
model parameters.
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2.1. The model. Let bi = (bi1, bi2, . . . , bini
) be an unobserved binary random

vector whose elements follow a two-state Markov chain (state “0” represents a
good driving state and state “1” represents a poor driving state) with unknown
transition probabilities p01,p10 and initial probability distribution r0. We model
the crash/near crash outcome Yij , where i represents an individual and j the month
since licensure, using the logistic regression model shown in (1):

Yij ∼ Bernoulli(πij ),
(1)

logit(πij ) = log(mij ) + α0 + α1bij + α2ui,

where the log(mij ) is an offset to account for the miles driven during a particular
month. Treatment of the CNC outcome as binary is not problematic since more
than 98% of the monthly observations had one or fewer CNCs observed. Although
the log link is ideal for count data, it is a reasonable correction for the miles driven
for the logit link when the risk of a crash is low. An alternative parameterization
would be to include the miles driven as a covariate in the model. The parameter
α1 assesses the odds-ratio of a crash or near crash event when in the poor versus
good driving state; this odds ratio is simply eα1 , while α2 reflects unaccounted for
covariates beyond the hidden state. The Xij are the sum of the observed elevated
g-force count data and this model incorporates heterogeneity among subjects in-
troducing the random effect in the mean structure shown in (2):

Xij ∼ Poisson(μij ),
(2)

log(μij ) = log(mij ) + β0 + β1bij + β2tj + β3ui,

where ui is the random effect with Gaussian distribution and tj reflects the month
of observation since licensure for a particular individual (note that these observa-
tions are equally spaced and tj was not statistically significant when included in
the CNC process, hence its omission in this part of the model). Here the parameter
β3 in (2), along with the variance of the random effect distribution, accounts for
any variation not explained by the other terms included in the model and induces a
correlation between outcomes. Next, we assume that {bij |ui}ni

j=1 is a Markov chain
and that bij |ui is independent of bit |ui for j �= t . The transition probabilities for
the Markov chain must lie between 0 and 1, and the sum of transitioning from one
state to either state must be 1. Hence, the transition probabilities are modeled as

p01(ui) : logit
(
Pr(bij = 1|bi,j−1 = 0|ui)

) = γ01 + δ1yi,j−1 + ui,
(3)

p10(ui) : logit
(
Pr(bij = 0|bi,j−1 = 1|ui)

) = γ10 + δ2yi,j−1 + δ∗ui,

where the parameter δ∗ in (3) characterizes the degree of correlation between tran-
sition probabilities among individuals. Two different types of correlations are de-
scribed by δ. If δ∗ < 0, then this implies individuals have a tendency to remain
in either state. If δ∗ > 0, then this implies some individuals exhibit a tendency
to transition more between states than others. This approach to describe the tran-
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sitions in similar to that presented by Albert and Follmann (2007). Introducing
random effects in this manner is of great benefit computationally, however, there is
a downside risk in that this implementation assumes the processes are highly cor-
related. This is especially important for the hidden process where if the correlation
between transition probabilities is not very strong, biased estimates will result. We
present these findings in our simulation section.

2.2. Estimation. Letting � represent all parameters included in the model dis-
cussed above, the likelihood for the joint model is

L(�;y,x)

=
∫

u

∑
b

f
(
y|(b,u),�

)
g
(
x|(b|u),�

)
h(u;�)du

(4)

=
∫

u

∑
b

{
N∏

i=1

ni∏
j=2

f
(
yij |(bij |u),�

)
g
(
xij |(bij |u),�

)}

×
{

N∏
i=1

ri0

ni∏
j=3

pbi,j−1,bij |u
}
h(u;�)du,

where the summation associated with b represents all possible state sequences for
an individual and the initial state probabilities are given by {ri0} and may include
a subject-specific random effect. In (4) we assume the crash/near crash and kine-
matic event data are conditionally independent. We also assume the {ui} are in-
dependent and identically distributed and the observations for any driver are inde-
pendent given the random effect ui and the sequence of hidden states. Given these
assumptions, the likelihood given in (4) simplifies to a product of one-dimensional
integrals shown in (5):

L(�;y,x)

=
N∏

i=1

∫
ui

{∑
bi

ri0f
(
yi2|(bi2|ui),�

)
g
(
xi2|(bi2|ui),�

)
(5)

×
ni∏

j=3

pbi,j−1,bij |ui
f

(
yij |(bij |ui),�

)

× g
(
xij |(bij |ui),�

)}
h(ui;�)dui.

The different roles the random effects perform in this joint model are of partic-
ular interest. The purpose of the inclusion of the random effect in the conditional
model for the kinematic data {(xi |(bi |ui))} provides a relaxation of the assump-
tion that the observations for an individual are conditionally independent given the
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hidden states {bi} as well as accounting for overdispersion for the kinematic event
data. The inclusion of the random effect in the transition probabilities allows the
transition probabilities to vary across individuals, inducing a correlation between
transition probabilities that induces a relationship between the kinematic events
and CNC processes. Further, the random effect provides a departure from the as-
sumption that the transition process follows a Markov chain. One could formulate
a reduced model that includes a random effect only in the hidden process, in the
hidden process and one or both observed processes, or only in observed processes.

Several possibilities exist for maximizing the likelihood given by (5). Two com-
mon approaches are the Monte Carlo expectation maximization algorithm intro-
duced by Wei and Tanner (1990) and the simulated maximum likelihood methods
discussed by McCulloch (1997). In Section 2.3, we propose a different method for
parameter estimation that does not rely on Monte Carlo methods which are diffi-
cult to implement and monitor for convergence. Our method utilizes the forward–
backward algorithm to evaluate the individual likelihoods conditional on the ran-
dom effect. As we will show, incorporation of this algorithm provides a simpler
means of computing the posterior probability of the hidden state at any time point
than MCEM. Further, this method provides a straightforward approach for likeli-
hood and variance evaluation. This approach has the added benefit of producing
the estimated variance–covariance matrix for parameter estimates as determined
by the inverse of the observed information matrix.

2.3. Maximizing the likelihood using an implementation of the forward–
backward algorithm. In maximizing the likelihood given by (5), our approach
first evaluates the portion of the likelihood described by the observed data given
the random effect and hidden states shown here:{∑

bi

ri0f
(
yi2|(bi2|ui),�

)
g
(
xi2|(bi2|ui),�

)
(6)

×
ni∏

j=3

pbi,j−1,bij |ui
f

(
yij |(bij |ui),�

)
g
(
xij |(bij |ui),�

)}
,

using the forward–backward algorithm and subsequent numerical integration over
the random effect via adaptive Gaussian quadrature. We then use a quasi-Newton
method to maximize this result. The alteration of the forward–backward algorithm
to accommodate joint outcomes is described as follows. Here, let the vectors Yj

ik =
(Yik, . . . , Yij )

′ with realized values (yik, . . . , yij )
′ and Xj

ik = (Xik, . . . ,Xij )
′ with

realized values (xik, . . . , xij )
′. Decompose the joint probability for an individual

as follows:

Pr(bij = m,Yi = yi ,Xi = xi |ui)

= Pr
(
Y

j
i2 = y

j
i2,X

j
i2 = x

j
i2, bij = m|ui

)
(7)
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× Pr
(
Yn

i,j+1 = yn
i,j+1|Y j

i2 = y
j
i2, (bij = m|ui)

)
× Pr

(
Xn

i,j+1 = xn
i,j+1|Xj

i2 = x
j
i2, (bij = m|ui)

)
= Pr

(
Y

j
i2 = y

j
i2,X

j
i2 = x

j
i2, bij = m|ui

)
Pr

(
Yn

i,j+1 = yn
i,j+1|(bij = m|ui)

)
× Pr

(
Xn

i,j+1 = xn
i,j+1|(bij = m|ui)

)
= aim(j)zim(j) for m = 0,1,

where aim(j) and zim(j) are referred to as the forward and backward quantities,
respectively, and are

aim(j) = Pr
(
Y

j
i2 = y

j
i2,X

j
i2 = x

j
i2, bij = m|ui

)
for j = 2, . . . , ni,

aim(1) = Pr
(
(bi1 = m|ui)

)
Pr

(
Yi2 = yi2|(bi2 = m|ui)

)
× Pr

(
Xi2 = xi2|(bi2 = m|ui)

)
,

zim(j) = Pr
(
Y

ni

i,j+1 = y
ni

i,j+1,X
ni

i,j+1 = x
ni

i,j+1, bij = m|ui

)
for j = 1, . . . , (ni − 1),

zim(ni) = 1 for all i.

The aim(j) and zim(j) are computed recursively in j by using the following:

aim(j) =
1∑

l=0

Pr
(
Y

j
i2 = y

j
i2,X

j
i2 = x

j
i2, bi,j−1 = l, bij = m,ui

)

=
1∑

l=0

Pr
(
Y

j−1
i2 = y

j−1
i2 ,X

j−1
i2 = x

j−1
i2 , bi,j−1 = l|ui

)
plm|ui

× Pr
(
Yij = yij ,Xij = xij |(bij = m|ui)

)

=
1∑

l=0

ail(j − 1)plm|ui
Pr

(
Yij = yij ,Xij = xij |(bij = m|ui)

)

=
1∑

l=0

ail(j − 1)plm|ui
Pr

(
Yij = yij |(bij = m|ui)

)

× Pr
(
Xij = xij |(bij = m|ui)

)
and

zim(j) =
1∑

l=0

Pr
(
Y

ni

i,j+1 = y
ni

i,j+1,X
ni

i,j+1 = x
ni

i,j+1, bij+1 = l, (bij = m|ui)
)

=
1∑

l=0

Pr
(
Y

ni

i,j+1 = y
ni

i1 ,X
ni

i,j+1 = x
ni

i,j+1|(bij+1 = l|ui)
)
pml|ui



856 J. C. JACKSON, P. S. ALBERT AND Z. ZHANG

× Pr(Yi,j+1 = yi,j+1,Xi,j+1 = xi,j+1|bi,j+1 = l|ui)

=
1∑

l=0

zil(j + 1)pml|ui
Pr

(
Yi,j+1 = yi,j+1,Xi,j+1 = xi,j+1|(bi,j+1 = l|ui)

)

=
1∑

l=0

zil(j + 1)pml|ui
Pr

(
Yi,j+1 = yi,j+1|(bi,j+1 = l|ui)

)

× Pr
(
Xi,j+1 = xi,j+1|(bi,j+1 = l|ui)

)
.

For any individual, the likelihood conditional on the random effect may be ex-
pressed as a function of the forward probabilities, so for a two-state Markov chain
the conditional likelihood for an individual is

Li|ui
= Pr(Yi = yi ,Xi = xi |ui)

=
1∑

l=0

Pr(Yi = yi ,Xi = xi , bni
= l|ui)(8)

=
1∑

l=0

ail(ni |�,ui),

where ai0(ni |�,ui) and ai1(ni |�,ui) are the forward probabilities for subject i

associated with states 0 and 1, respectively, evaluated at the last observation of the
subject’s observation sequence ni . The marginal likelihood for an individual can
now be found by integrating with respect to the random effect

Li =
∫
ui

{
ai0(ni |�,ui) + ai1(ni |�,ui)

}
h(ui) dui(9)

and the complete likelihood can be expressed as a product of individual likeli-
hoods.

2.4. Numerical integration. Adaptive Gaussian quadrature can be used to in-
tegrate (9). This technique is essential to obtaining accurate parameter estimates,
as the integrand is sharply “peaked” at different values depending on the observed
measurements of the individual. Applying the results described in Liu and Pierce
(1994) to the joint hidden Markov model, numerical integration of (9) is achieved
by considering the distribution of the random effects to be N(0, θ2). The proce-
dure for obtaining maximum likelihood estimates for model parameters are shown
in Table 2.

2.5. Estimation of posterior hidden state probabilities. The forward–
backward implementation in evaluating the likelihood is not only efficient (the
number of operations to compute the likelihood conditional on the random effect
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TABLE 2
Procedure for obtaining maximum likelihood estimates for the joint mixed hidden Markov model

(1) Select initial parameter estimates p0.
(2) Compute the set of adaptive quadrature points for each individual qi given the current pa-

rameter estimates pm.
(3) Maximize the likelihood obtained using the forward–backward algorithm and adaptive

quadrature via qi ∈ Q using the quasi-Newton method.
(4) Update parameter estimates p(m+1).
(5) Repeats steps (2)–(4) until parameters converge.

is of linear order as the observation sequence increases), but it also provides a
mechanism for recovering information about the hidden states. By leveraging the
forward and backward probabilities, we can compute the hidden posterior state
probabilities {b̂ij }:

E(bij |yi, xi) = Eui |yi ,xi

{
E(bij |yi, xi, ui)

}
=

∫
ui

{
Pr

(
bij = 1|(yi, xi, ui)

)}
hui |(yi ,xi ) dui(10)

=
∫
ui

{
Pr(bij = 1, (yi ,xi ), ui)

Pr(yi ,xi )

}
dui,

since

Pr
(
bij = 1, (yi ,xi ), ui

) = Pr
(
bij = 1, (yi ,xi )|ui

)
h(ui)

= ai1(j)zi1(j)h(ui),

equation (10) can be expressed as∫
ui

{
Pr(bij = 1, (yi ,xi), ui)

Pr(yi ,xi)

}
dui

(11)

=
∫
ui

{
ai1(j)zi1(j)h(ui)

{∫ui
(ai0(j) + ai1(j))h(ui) dui}

}
dui.

Evaluation of (11) is accomplished via adaptive Gaussian quadrature as outlined
in the earlier section and the quantities of interest in (11) are readily available after
running the forward–backward algorithm.

Using a shared random effect is also attractive in that it is computationally more
efficient than incorporating separate random effects for the count outcome and
transition probabilities. Generally speaking, once the number of random effects
exceeds three or four (depending on the type of quadrature being used and the
number of nodes included for each integration), direct maximization is no longer
a computationally efficient method and Monte Carlo expectation maximization
(MCEM) is an appealing alternative approach. In accounting for heterogeneity
with a single random effect, we eliminate the need for MCEM.
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TABLE 3
Parameter estimates for mixed hidden Markov model 1000 simulations (60 individuals, 20

observations) using Q = 5 and Q = 11 quadrature points

Q = 5 Q = 11

Parameter θ θ̂ θ̂sd σ
θ̂

θ̂ θ̂sd σ
θ̂

α0 −1.0 −1.01 0.12 0.12 −1.01 0.11 0.11
α1 2.0 2.03 0.18 0.19 2.03 0.18 0.17
α2 1.5 1.52 0.41 0.42 1.51 0.42 0.44
β0 −1.0 −1.01 0.10 0.10 −1.00 0.09 0.06
β1 2.0 2.01 0.12 0.09 2.02 0.11 0.09
β2 0.25 0.255 0.06 0.07 0.251 0.06 0.04
γ01 −0.62 −0.61 0.19 0.18 −0.62 0.19 0.17
γ10 0.4 0.42 0.34 0.32 0.42 0.30 0.30
λ 0.0 −0.03 0.16 0.15 −0.03 0.16 0.16
δ∗ 2.00 2.15 0.45 0.41 2.02 0.43 0.42
δ1 1.00 1.08 0.22 0.21 1.02 0.20 0.21
δ2 3.00 2.97 0.41 0.43 2.97 0.44 0.42
πi1 −0.8 −0.82 0.06 0.05 −0.81 0.05 0.05

3. Simulation of the mixed model. We performed a simulation to investigate
the performance of parameter estimation using the proposed approach. Under the
shared random effect parameterization, we use the model in (12) for the simulation

logit(πij ) = α0 + α1bij + α2ui,

log(μij ) = β0 + β1bij + β2ui,

logit
{
Pr(bij = 1|bij−1 = 0)

} = γ01 + δ1yi,j−1 + ui,(12)

logit
{
Pr(bij = 1|bij−1 = 0)

} = γ10 + δ2yi,j−1 + δ∗ui,

logit(bi1 = 1) = π1,

where ui � N(0, eλ).
The simulations were conducted with 20 observations on 60 subjects. Using a

1.86-GHz Intel Core 2 Duo processor, the fitting of the shared model took less
than 3 minutes on average. The simulation results (1000 simulations) are shown
in Table 3. Parameter estimates obtained using adaptive Gaussian quadrature with
five and eleven points, respectively, are presented along with true parameter value

(θ) and mean (θ̂), the sample standard deviation for the parameter estimates θ̂sd,
and the average asymptotic standard errors σ

θ̂
. In performing the estimation using

five quadrature points, parameter estimation was quite accurate with the exception
of the coefficient of the random effect δ∗ in the 0–1 transition with an average
estimated value of 2.15 compared to the actual value of 2.0. Other parameters
display very little bias. The bias for δ∗ virtually disappears when performing the
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integration via adaptive Gaussian quadrature using ten points where the average
estimated value was δ∗ = 2.02. These results were unchanged when evaluating
for possible effects due to the total number of subjects or observations (varying n

and I ). Additionally, the average asymptotic standard errors agree quite closely to
the sample standard deviations for all model parameters. Similar results hold for
the case where random effects are only included in the hidden process. We used
different starting values to examine the sensitivity of estimation to initial values,
and our proposed algorithm was insensitive to the selection of these values. Sim-
ulation results provide support that the complexity of the model does not inhibit
parameter estimation, rendering discovery of heterogeneity in the observed and
hidden processes as a nice byproduct for the model.

While performance of the estimation procedure for the mixed hidden Markov
model in (12) was quite good, this model formulation assumes near perfect cor-
relation between the random effects. To examine the robustness of the estimation
procedure to this assumption, we evaluated model performance in the case where
there are correlated random effects in the hidden process. For this case, data was
simulated for the transition probabilities using (13):

logit
{
Pr(bij = 1|bij−1 = 0)

} = γ01 + u1,
(13)

logit
{
Pr(bij = 1|bij−1 = 0)

} = γ10 + u2,

where (u1, u2) follow a bivariate normal distribution BVN(0,�). Our model was
then fit to the simulated data using the parameterization in (14):

logit
{
Pr(bij = 1|bij−1 = 0)

} = γ01 + ui,
(14)

logit
{
Pr(bij = 1|bij−1 = 0)

} = γ10 + δui.

The results for this simulation are shown in Table 4. For moderate departures from
perfect correlation, biased estimates result in the hidden process. Thus, we rec-
ommend first considering correlated random effects in the hidden process before
use of the shared random effects model. In the case of our application, the tran-
sition process exhibited very high correlation, so we proceed in the analysis with
our estimation procedure. Details for estimation using bivariate adaptive Gaussian
quadrature are shown in the supplementary material [Jackson, Albert and Zhang
(2015)].

TABLE 4
Parameter estimates for the hidden process when the true underlying random effects distribution is

correlated. 1000 simulations (60 individuals, 20 observations)

Parameter True value ρ = 1 ρ = 0.95 ρ = 0.9 ρ = 0.8 ρ = 0.7 ρ = 0.6

γ10 −0.62 −0.620 −0.628 −0.640 −0.67 −0.69 −0.72
γ01 0.4 0.401 −0.399 0.398 0.32 0.28 0.26
δ 2.0 2.00 2.11 2.28 2.44 2.61 2.68
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TABLE 5
Parameter estimates for the mixed hidden Markov model as applied

to the NTDS data

Parameters Estimate Std Err

α0 −7.48 0.14
α1 1.49 0.25
α2 0.03 0.02
β0 −5.97 0.13
β1 1.31 0.06
β2 0.007 0.004
β3 1.10 0.04
λ −0.18 0.33
δ∗ 1.25 0.32
γ10 −2.13 0.35
γ01 −3.47 0.28
δ1 1.75 0.24
δ2 −2.17 0.53
π1 −0.83 0.28

4. Results. The two-state mixed hidden Markov model presented in the pre-
vious sections was applied to the NTDS data. Table 5 displays the parameter
estimates and associated standard errors. The initial probability distribution for
the hidden states was common to all individuals in the study and modeled using
logit(r1) = π1 and the random effects distribution was N(0, eλ). Several mod-
els were compared based on the relative goodness-of-fit measure, AIC. Model
excursions included evaluating the suitability of a three-state hidden Markov
model without random effects (AIC = 3563.06) (model shown in the supplemen-
tary material [Jackson, Albert and Zhang (2015)]), the two-state model without
random effects (AIC = 3548.97), and the two-state model with random effects
(AIC = 3492.73).

The fixed effects model provided initial parameter estimates for most model pa-
rameters while multiple starting values for λ were used in conjunction with a grid
search over parameters β3 and δ∗ to determine these initial values. The number
of quadrature points implemented at each iteration was increased until the likeli-
hood showed no substantial change. As illustrated in the simulation study, there
were eleven points used in the adaptive quadrature routine. Standard error esti-
mates were obtained using a numerical approximation to the Hessian using the
{NLM} package in R. The coefficients of the hidden states α1 and β1 are both
significantly greater than zero, indicating that drivers operating in a poor driving
state (bij = 1) are more likely to have a crash/near crash event and, correspond-
ingly, a highly number of kinematic events. While the variance component of the
random effect is somewhat small, the dispersion parameter β3 is highly significant,
indicating the data are overdispersed. Interestingly, heterogeneity is not exhibited
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in the CNC outcome as the coefficient for the random effect α2 is insignificant,
providing support to the notion that the hidden state is capturing unobserved quan-
tities in a meaningful way. There is evidence of heterogeneity across individuals
in their propensity to change between states as indicated by λ and δ∗. In the case
of the NTDS data, δ∗ > 0 indicates a positive correlation between the transition
probabilities, meaning that some individuals are prone to changing more often be-
tween states than others. Coefficients in the hidden process, δ1 and δ2, illustrate
that transition between states depends on previous CNC outcomes. A prior crash
was associated with an increased probability of transitioning from the good driv-
ing state to the poor one (δ1 = 1.75) and a decreased probability of transitioning
from the poor to the good driving state (δ2 = 2.17). Since the shared random ef-
fect, which assumes a perfect correlation between the random components, may
not be robust to a more flexible random effects structure, we also fit the model
using correlated random effects in the hidden process (see simulation results). For
a variety of starting values, the correlation coefficient estimates were near 1 (0.998
or greater), giving us confidence in using the shared random effect approach.

An interpretation of parameter estimates given in Table 5 is subject-specific and
depends on a driver’s exposure for a given month. If we consider a subject driving
the average mileage for all subjects (358.1 miles), parameter estimates indicate that
the risk of a crash/near crash outcome increases from 0.16 to 0.47 when in the poor
driving state, bij = 1. Correspondingly, this “average” subject would also expect to
experience 2.43 more kinematic events on average when in the poor driving state.
For the typical teenager, the likelihood of moving out of the poor driving state
decreases from 10.6% to 1.3% when experiencing a CNC event in the previous
month. Similarly, the likelihood of moving out of the good driving state increases
from 3.01% to 15.2% when experiencing a CNC event in the previous month.

A receiver operating characteristic (ROC) curve was constructed to determine
the predictive capability of our model by plotting the true positive rate versus the
false positive rate for different cutoff values. The ROC curve based on the “one-
step ahead” predictions [observed outcome given all previous kinematic observa-
tions Pr(Yij = 1|yi1, . . . , yi,j−1, xi1, . . . , xi,j−1)] is shown in Figure 1. An attrac-
tive feature of our model is that it allows for the development of a predictor based
on prior kinematic events. We constructed this ROC curve using a cross-validation
approach whereby one driver was removed from the data set, model parameters
were then determined using the remaining data and these results were then used to
predict the removed driver’s crash/near crash outcomes. The predictive accuracy
of this model was moderately high with an area under the curve of 0.74. Although
the goodness of fit was best for the two-state mixed hidden Markov model, area
under the curve for the other models was nearly identical.

A sample of three drivers and their corresponding hidden state probability
Eui |yi ,xi

{E(bij |yi ,xi , ui)} along with their crash/near crash outcomes and total
number of kinematic events is shown in Figure 2. It is evident how the total kine-
matic measures influence the predicted value of the hidden state and work particu-
larly well for cases where driving is “consistent” over relatively short time periods
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FIG. 1. ROC curve for the mixed hidden Markov model based one “one-step ahead” predictions
(area under the curve = 0.74).

(i.e., low variation in kinematic measures for a given time period). In cases where
the driving kinematics exhibit a great deal of variability, the model does not per-
form as well in predicting crash/near crash outcomes as indicated by the rightmost
panel in Figure 2. As a comparison, we show the results of global decoding of
the most likely hidden state sequence using the Viterbi algorithm in Figure 3 for
the same three drivers. Hidden state classification is similar whether using global
or local decoding for the left two panels in Figure 3, which is indicative of most
drivers in the study, while there are differences in the case of the rightmost panel
likely due to the greater variability in these data.

5. Discussion. In this paper we presented a mixed hidden Markov model for
joint longitudinal binary and count outcomes introducing a shared random effect
in the conditional model for the count outcomes and the model for the hidden pro-
cess. An estimation procedure incorporating the forward–backward algorithm with
adaptive Gaussian quadrature for numerical integration is used for parameter esti-

FIG. 2. Predicted value of the hidden state given the observed data for three drivers. The (◦) indi-
cates the probability of being in state 1 (poor driving), (+) indicates a crash/near crash event and
the dotted line indicates the composite kinematic measure.
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FIG. 3. Comparison of local and global decoding of the hidden states and CNC outcomes. The (◦)
indicates the probability of being in state 1 (poor driving), (+) indicates a CNC event and the (
)
indicates the hidden state occupation using the Viterbi algorithm.

mation. A welcome by-product of the forward–backward algorithm is the hidden
state probabilities for an individual during any time period. The shared random
effect eliminates the need for more costly numerical methods in approximating
the likelihood, such as higher dimensional Gaussian quadrature or through Monte
Carlo EM.

The model was applied to the NTDS data and proved to be a good predictor of
crash and near crash outcomes. Our estimation procedure also provides a means of
quantifying teenage driving risk. Using the hidden state probabilities which repre-
sent the probability of being in a poor driving state given the observed crash/near
crash and kinematic outcomes, we can analyze the data in a richer way than stan-
dard summary statistics. Additionally, our approach allows for a broader class of
predictors whereby the investigator may make predictions based on observations
that go as far into the past as warranted.

There are limitations to our approach. The shared random effect proposes a
rather strong modeling assumption in order to take advantage of an appealing re-
duction in computational complexity. Using more general correlated random ef-
fects approaches is an alternative, but others have found that identification of the
correlation parameter is difficult [Smith and Moffatt (1999) and Alfò, Maruotti
and Trovato (2011)]. Formal testing for heterogeneity in these models is also a
challenging problem [Altman (2008)].

There is also a potential issue of having treated the miles driven during a par-
ticular month (mij ) as exogenous. For some crashes, it is possible that previous
CNC outcomes (yi,j−1) may affect the miles driven in the following month and
our model does not capture this dynamic. As with any study, greater clarity in
the information obtained for each trip might yield more valuable insights. Metrics
such as the type of road, road conditions and trip purpose, while potentially useful,
were not available for this analysis.

There are extensions to the model that may be useful. The model can address
more than two outcomes. We summarize the kinematic events at a given time as
the sum across multiple types. This approach could be extended to incorporate
multiple correlated processes corresponding to each kinematic type. Depending on
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the situation, the additional flexibility and potential benefits of such an extension
may be worth the increased computational cost.
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SUPPLEMENTARY MATERIAL

Adaptive quadrature for the three-state mixed hidden Markov model (DOI:
10.1214/14-AOAS765SUPP; .pdf). We provide details on the adaptive quadrature
routine for the MHMM with bivariate normal random effects in the hidden process,
as well as expressions for the three-state hidden Markov model.
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