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We consider the problem of jointly estimating a collection of graphical
models for discrete data, corresponding to several categories that share some
common structure. An example for such a setting is voting records of legisla-
tors on different issues, such as defense, energy, and healthcare. We develop a
Markov graphical model to characterize the heterogeneous dependence struc-
tures arising from such data. The model is fitted via a joint estimation method
that preserves the underlying common graph structure, but also allows for
differences between the networks. The method employs a group penalty that
targets the common zero interaction effects across all the networks. We apply
the method to describe the internal networks of the U.S. Senate on several
important issues. Our analysis reveals individual structure for each issue, dis-
tinct from the underlying well-known bipartisan structure common to all cat-
egories which we are able to extract separately. We also establish consistency
of the proposed method both for parameter estimation and model selection,
and evaluate its numerical performance on a number of simulated examples.

1. Introduction. The analysis of roll call data of legislative bodies has at-
tracted a lot of attention both in the political science and statistical literature. For
political scientists, such data allow to study broad issues such as party cohesion as
well as more specific ones such as coalition formation; see, for example, the books
by Enelow and Hinich (1984), Matthews and Stimson (1975), Morton (1999),
Poole and Rosenthal (1997). A popular tool in political science is the ideal point
model [Clinton, Jackman and Rivers (2004)] that posits a one-dimensional latent
political space along which legislators and bills they vote for are aligned. A leg-
islator’s position corresponds to an ideal point, where bills coinciding with that
position maximize his/her utility. These ideal points reveal legislators’ preferences
and it is of interest to infer them from roll call data. An extension of this model that
incorporates information about the text of the bills being voted upon is discussed
in Gerrish (2011), while the impact of absenteeism is examined in Han (2007).
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FIG. 1. Multidimensional scaling projection of roll call data of the U.S. Senate for the period
2005–2006 (Republicans shown in red and Democrats in blue).

A statistical challenge is how to best model and present the roll call data in
a way that makes interesting patterns apparent and facilitates subsequent analy-
ses. A number of techniques have been employed including principal components
analysis (PCA) [de Leeuw (2006)], multidimensional scaling (MDS) [Diaconis,
Goel and Holmes (2008)], Bayesian spatial voting models [Clinton, Jackman and
Rivers (2004)], and graphical models for binary data [Banerjee, El Ghaoui and
d’Aspremont (2008)].

Dimension reduction techniques such as PCA and MDS aim at constructing a
“map,” with the members of the legislative body positioned relative to their peers
according to their voting pattern. A typical example of such a map of the U.S.
Senate members in the 109th Congress (2005–2006) using multidimensional scal-
ing for selected votes is shown in Figure 1; for a detailed description of the data
see Section 4. A clear separation between members of the two parties is seen (Re-
publicans to the left of the map and Democrats to the right), together with some
members exhibiting a voting pattern deviating from their party, for example, Nel-
son (Democrat of Nebraska), and Collins and Snow (Republicans of Maine), while
the independent Jeffords (shown in purple) votes like a Democrat. More interest-
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ingly, the voting patterns within both parties form distinct subclusters. While the
nature of this division is impossible to infer from an MDS or a PCA representa-
tion such as the one shown in Figure 1, our subsequent analysis will show that this
difference is driven by votes on defense/security and healthcare issues.

This finding suggests that treating all votes as homogeneous, that is, assuming
that they represent the same underlying relationship between senators, may mask
more subtle patterns which depend on the issues being voted upon. Therefore,
treating votes as heterogeneous is more accurate and can provide further insight
into the voting behavior of different groups of senators on different issues. In this
paper, we focus on voting records on three types of bills: defense and national se-
curity, environment and energy, and healthcare issues. Voting on the latter category
is typically more partisan than voting on defense and national security and, thus,
we expect to see different connections in different categories.

The voting records of the U.S. Senate from the 109th Congress cover-
ing the period 2005–2006 were obtained directly from the Senate’s website
(www.senate.gov). We chose the 109th Congress because its voting patterns have
been previously analyzed in the literature [see, e.g., Banerjee, El Ghaoui and
d’Aspremont (2008)], but as we have discovered, the version of the data previ-
ously analyzed was contaminated with voting records from the 1990s (when the
set of senators would have been different). Thus, we collected the data ourselves,
on all the 645 votes that the Senate deliberated and voted on during that period,
which include bills, resolutions, motions, debates and roll call votes. To study
the potential heterogeneity in the voting patterns, we focused on the three largest
meaningful (i.e., excluding purely procedural votes) categories of votes extracted
from bills, resolutions and motions: (1) defense and security issues; (2) environ-
ment and energy issues; (3) health and medical care issues. The categories were
extracted by a combination of text analysis of bill names and manual labeling.
A complete analysis of this data set will be presented in Section 4.

Our goal in this paper is to develop a statistical model for studying dependence
patterns in such situations: there is some overall structure present (party affili-
ation, which affects everything) and there are also distinct categories with their
own individual structures. Since we are dealing with voting data, we use Markov
network models to capture the dependence structure of binary or categorical ran-
dom variables. Similar to Gaussian graphical models, nodes in a Markov network
correspond to (categorical) variables, while edges represent dependence between
nodes conditional on all other variables. Graphical models are an exploratory data
analysis tool used in a number of application areas to explore the dependence
structure between variables, including bioinformatics [Airoldi (2007)], natural lan-
guage processing [Jung et al. (1996)] and image analysis [Li (2001)]. In the case
of Gaussian graphical models, which assumes the variables are jointly normally
distributed, the structure of the underlying graph can be fully determined from
the corresponding inverse covariance (precision) matrix, the off-diagonal elements
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of which are proportional to partial correlations between the variables. A num-
ber of methods have been recently proposed in the literature to fit sparse Gaus-
sian graphical models [see, e.g., Banerjee, El Ghaoui and d’Aspremont (2008),
Meinshausen and Bühlmann (2006), Peng, Zhou and Zhu (2009), Rothman et al.
(2008), Yuan and Lin (2007), Ravikumar et al. (2011) and references therein].
Sparse Markov networks for binary data (Ising models) have been studied by Guo
et al. (2009), Höfling and Tibshirani (2009), Ravikumar, Wainwright and Lafferty
(2010), Anandkumar et al. (2012), Xue, Zou and Cai (2012). These methods do
not allow for different categories within the data.

To allow for heterogeneity, we develop a framework for fitting different Markov
models for each category that are nevertheless linked, sharing nodes and some
common edges across all categories, while other edges are uniquely associated
with a particular category. This will allow us to borrow strength across categories
instead of fitting them completely separately. For the Gaussian case, this type
of joint graphical model was first studied by Guo et al. (2011), who proposed a
joint likelihood based estimation method that borrowed strength across categories.
Several other papers have proposed alternative algorithms for the Gaussian case
[Danaher, Wang and Witten (2011), Hara and Washio (2013), Yang et al. (2012)].
We note that a context-specific graphical model was proposed for count data in the
form of contingency tables by Højsgaard (2004), but contingency tables are not
suitable for high-dimensional data and the context-specific model is not sparse.

The advantage of using a Markov graphical model in this context is that it quan-
tifies the degree of conditional dependence between the senators based on their
voting record, and hence the obtained network, and is directly interpretable. Tech-
niques like multidimensional scaling and principal components analysis represent
relative similarities between senators’ voting records on the map and, hence, the
distance between any two senators can be interpreted as a quantitative measure of
similarity between their voting records. However, unlike in a Markov network,
these distances are not interpretable in the context of a generative probability
model.

The remainder of the paper is organized as follows. Section 2 introduces the
Markov network and addresses algorithmic issues, and Section 3 briefly illustrates
the performance of the joint estimation method on simulated data. A detailed anal-
ysis of the U.S. Senate’s voting record from the 109th Congress is presented in
Section 4. Some concluding remarks are drawn in Section 5, and the Appendix
presents results on the asymptotic properties of the method. The electronic sup-
plementary material contains a detailed investigation of missing data imputation
methods for the Senate vote data.

2. Model and estimation algorithm. In this section we present the Markov
model for heterogeneous data, focusing on the special case of binary variables (also
known as the Ising model). The extension to general categorical variables is briefly
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discussed in Section 5. We start by discussing estimation of separate models for
each category and then develop a method for joint estimation.

The main technical challenge when estimating the likelihood of Markov graph-
ical models is its computational intractability due to the normalizing constant. To
overcome this difficulty, different methods employing computationally tractable
approximations to the likelihood have been proposed in the literature; these include
methods based on surrogate likelihood [Banerjee, El Ghaoui and d’Aspremont
(2008), Kolar and Xing (2008)] and pseudo-likelihood [Guo et al. (2010), Höfling
and Tibshirani (2009), Ravikumar, Wainwright and Lafferty (2010)]. Höfling
and Tibshirani (2009) also proposed an iterative algorithm that successively ap-
proximates the original likelihood through a series of pseudo-likelihoods, while
Ravikumar, Wainwright and Lafferty (2010) and Guo et al. (2010) established
asymptotic consistency of their respective methods.

2.1. Problem setup and separate estimation. We start from setting up notation
and reviewing previous work on estimating a single Ising model, which can be
used to estimate the graph for each category separately. Suppose that data have
been collected on p binary variables in K categories, with nk observations in the
kth category, k = 1, . . . ,K . Let x(k)

i = (x
(k)
i,1 , . . . , x

(k)
i,p) denote a p-dimensional row

vector containing the data for the ith observation in the kth category and assume
that it is drawn independently from an exponential family with the probability mass
function

fk(X1, . . . ,Xp) = 1

Z(�(k))
exp

( p∑
j=1

θ
(k)
j,j Xj + ∑

1≤j<j ′≤p

θ
(k)
j,j ′XjXj ′

)
.(2.1)

The partition function Z(�(k)) = ∑
Xj∈{0,1},j exp(θ

(k)
j,j Xj +∑

j<j ′ θ(k)
j,j ′XjXj ′) en-

sures that the probabilities in (2.1) add up to one. The parameters θ
(k)
j,j , 1 ≤ j ≤ p

correspond to the main effect for variable Xj in the kth category, and θ
(k)
j,j ′ is the

interaction effect between variables Xj and Xj ′ , 1 ≤ j < j ′ ≤ p. The underlying
network associated with the kth category is determined by the symmetric matrix
�(k) = (θ

(k)
j,j ′)p×p . Specifically, if θ

(k)
j,j ′ = 0, then Xj and Xj ′ are conditionally in-

dependent in the kth category given all the remaining variables and, hence, their
corresponding nodes are not connected. For each category, (2.1) is referred to as
the Markov network in the machine learning literature and as the log-linear model
in the statistics literature, where θ

(k)
j,j ′ is also interpreted as the conditional log odds

ratio between Xj and Xj ′ given the other variables. Although general Markov net-
works allow higher order interactions (3-way, 4-way, etc.), Ravikumar, Wainwright
and Lafferty (2010) pointed out that in principle one can consider only the pairwise
interaction effects without loss of generality, since higher order interactions can be
converted to pairwise ones by introducing additional variables [Wainwright and
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Jordan (2008)]. For the rest of this paper, we only consider models with pairwise
interactions of the original binary variables.

The simplest way to deal with heterogenous data is to estimate K separate
Markov models, one for each category. If one further assumes sparsity for the kth
category, the structure of the underlying graph can be estimated by regularizing
the log-likelihood using an �1 penalty:

max
�(k)

1

nk

nk∑
i=1

{ p∑
j=1

θ
(k)
j,j x

(k)
i,j + ∑

j<j ′
θ

(k)
j,j ′x

(k)
i,j x

(k)
i,j ′

}
(2.2)

− log Z
(
�(k)) − λ

∑
j<j ′

∣∣θ(k)
j,j ′

∣∣.
The �1 penalty shrinks some of the interaction effects θ

(k)
j,j ′ to zero and λ controls

the degree of sparsity. However, estimating (2.2) directly is computationally infea-
sible due to the nature of the partition function. A standard approach in such a sit-
uation is to replace the likelihood with a pseudo-likelihood [Besag (1986)], which
has been shown to work well in a range of situations. Here, we use a pseudo-
likelihood estimation method for Ising models [Guo et al. (2010), Höfling and
Tibshirani (2009)], based on

max
�(k)

1

nk

nk∑
i=1

p∑
j=1

[
x

(k)
i,j

(
θ

(k)
j,j + ∑

j ′ �=j

θ
(k)
j,j ′x

(k)
i,j ′

)

− log
{

1 + exp
(
θ

(k)
j,j + ∑

j ′ �=j

θ
(k)
j,j ′x

(k)
i,j ′

)}]
(2.3)

− λ
∑
j<j ′

∣∣θ(k)
j,j ′

∣∣,
where �(k) is restricted to be symmetric. Criterion (2.3) can be efficiently maxi-
mized using the modified coordinate descent algorithm of Höfling and Tibshirani
(2009).

2.2. Joint estimation of heterogeneous networks. The separate estimation
methods reviewed in the previous section do not take advantage of the shared
nodes among the categories and potential common structure. Our goal here is to
explicitly include this into the estimation procedure. We start by reparameterizing
each θ

(k)
j,j ′ as

θ
(k)
j,j ′ = φj,j ′γ (k)

j,j ′, 1 ≤ j �= j ′ ≤ p;1 ≤ k ≤ K.(2.4)

To avoid sign ambiguities between φj,j ′ and γ
(k)
j,j ′ , we restrict φj,j ′ ≥ 0, 1 ≤ j <

j ′ ≤ p. To preserve the symmetry of �(k), we also require φj,j ′ = φj ′,j and
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γ
(k)
j,j ′ = γ

(k)
j ′,j , for all 1 ≤ j < j ′ ≤ p and 1 ≤ k ≤ K . Moreover, for identifiabil-

ity reasons, we restrict the diagonal elements φj,j = 1 and γ
(k)
j,j = θ

(k)
j,j . Note that

φj,j ′ is a common factor across all K categories that controls the occurrence of
common links shared across categories, while γ

(k)
j,j ′ is an individual factor specific

to the kth category. The proposed joint estimation method maximizes the following
penalized criterion:

max
{�(k),�(k)}Kk=1

K∑
k=1

1

nk

nk∑
i=1

p∑
j=1

[
x

(k)
i,j

(
θ

(k)
j,j + ∑

j ′ �=j

θ
(k)
j,j ′x

(k)
i,j ′

)

− log
{

1 + exp
(
θ

(k)
j,j + ∑

j ′ �=j

θ
(k)
j,j ′x

(k)
i,j ′

)}]
(2.5)

− η1
∑
j<j ′

φj,j ′ − η2
∑
j<j ′

K∑
k=1

∣∣γ (k)
j,j ′

∣∣,
where �(k) = (φj,j ′)p×p and �(k) = (γ

(k)
j,j ′)p×p . The tuning parameter η1 controls

sparsity of the common structure across the K networks. Specifically, if φj,j ′ is

shrunk to zero, all θ
(1)
j,j ′, . . . , θ

(K)
j,j ′ are also zero and, hence, there is no link between

nodes j and j ′ in any of the K graphs. Similarly, η2 is a tuning parameter control-
ling sparsity of links in individual categories. Due to the nature of the �1 penalty,
some of γ

(k)
j,j ′ ’s will be shrunk to zero, resulting in a collection of graphs with in-

dividual differences. Note that this two-level penalty was originally proposed by
Zhou and Zhu (2007) for group variable selection in linear regression.

The criterion (2.5) achieves the stated goal of estimating common structure and
hence borrows strength across the K data categories, but requires the selection of
two tuning parameters. However, there is an equivalent criterion presented next
that only involves a single tuning parameter, thus simplifying the estimation task

max
{�(k)}Kk=1

K∑
k=1

1

nk

nk∑
i=1

p∑
j=1

[
x

(k)
i,j

(
θ

(k)
j,j + ∑

j ′ �=j

θ
(k)
j,j ′x

(k)
i,j ′

)

− log
{

1 + exp
(
θ

(k)
j,j + ∑

j ′ �=j

θ
(k)
j,j ′x

(k)
i,j ′

)}]
(2.6)

− λ
∑

1≤j<j ′≤p

√√√√ K∑
k=1

∣∣θ(k)
j,j ′

∣∣,
where λ = 2

√
η1η2. The optimization problems given by (2.5) and (2.6) are equiv-

alent in the sense that for each pair of (η1, η2) there is a λ that gives the same
solution and vice versa. Their equivalence can be formalized as follows (here A ·B
denotes the Schur–Hadamard element-wise product of two matrices):
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PROPOSITION 1. Let {�̂(k)}Kk=1 be a local maximizer of (2.6). Then there ex-

ists a local maximizer of (2.5), (�̂, {	̂(k)}Kk=1), such that �̂
(k) = �̂ · �̂

(k), for all

1 ≤ k ≤ K . On the other hand, if (�̂, {�̂(k)}Kk=1) is a local maximizer of (2.5), then

there also exists a local maximizer of (2.6), {�̂(k)}Kk=1, such that �̂
(k) = �̂ · �̂(k),

for all 1 ≤ k ≤ K .

The proof of this proposition is similar to the proofs of Lemma 1 and Theorem 1
in Zhou and Zhu (2007) and is omitted here. Note that even though choosing a
single tuning parameter λ corresponds to a particular path in the (η1, η2) space,
this restriction affects only the individual estimates φj,j ′ and γj,j ′ , but not their
product θj,j ′ .

2.3. Algorithm and model selection. Criterion (2.6) leads to an efficient esti-
mation algorithm based on the local linear approximation. Specifically,
letting (θ

(k)
j,j ′)[t] denote the estimates from the t th iteration, we approximate√∑K

k=1 |θ(k)
j,j ′ | ≈ ∑K

k=1 |θ(k)
j,j ′ |/

√∑K
k=1 |(θ(k)

j,j ′)[t]|, when θ
(k)
j,j ′ ≈ (θ

(k)
j,j ′)[t]. Thus, at

the (t + 1)th iteration, problem (2.6) is decomposed into K individual optimiza-
tion problems:

max
�(k)

1

nk

nk∑
i=1

p∑
j=1

[
x

(k)
i,j

(
θ

(k)
j,j + ∑

j ′ �=j

θ
(k)
j,j ′x

(k)
i,j ′

)

− log
{

1 + exp
(
θ

(k)
j,j + ∑

j ′ �=j

θ
(k)
j,j ′x

(k)
i,j ′

)}]
(2.7)

− λ
∑

1≤j<j ′≤p

(
K∑

k=1

∣∣(θ(k)
j,j ′

)[t]∣∣)−1/2∣∣θ(k)
j,j ′

∣∣.
Note that criterion (2.7) is a variant of criterion (2.3) with a weighted �1 penalty
and hence can be solved by the algorithm of Höfling and Tibshirani (2009). For nu-

merical stability, we threshold
√∑K

k=1 |(θ(k)
j,j ′)[t]| at 10−10. The algorithm is sum-

marized as follows:

Step 1. Initialize θ̂
(k)
j,j ′ ’s (1 ≤ j, j ′ ≤ p;1 ≤ k ≤ K) using the estimates from the

separate estimation method;
Step 2. For each 1 ≤ k ≤ K , update θ̂

(k)
j,j ′ ’s by solving (2.7) using the pseudo-

likelihood algorithm Guo et al. (2010), Höfling and Tibshirani (2009).
Step 3. Repeat step 2 until convergence.

The tuning parameter λ in (2.6) controls the sparsity of the resulting estimator
and can be selected using cross-validation. Specifically, for each 1 ≤ k ≤ K , we
randomly split the data in the kth category into D subsets of similar sizes and
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denote the index set of the observations in the dth subset as T (k)
d , 1 ≤ d ≤ D. Then

λ is selected by maximizing

1

D

D∑
d=1

K∑
k=1

1

|T (k)
d |

∑
i∈T (k)

d

p∑
j=1

x
(k)
i,j

{(
θ̂

(k)
j,j

)[−d]
(λ) + ∑

j ′ �=j

(
θ̂

(k)
j,j ′

)[−d]
(λ)x

(k)
i,j ′

}
(2.8)

− log
[
1 + exp

{(
θ̂

(k)
j,j

)[−d]
(λ) + ∑

j ′ �=j

(
θ̂

(k)
j,j ′

)[−d]
(λ)x

(k)
i,j ′

}]
,

where |T (k)
d | is the cardinality of T (k)

d and (θ̂
(k)
j,j ′)[−d](λ) is the joint estimate of

θ
(k)
j,j ′ based on all observations except those in T (1)

d ∪ · · · ∪ T (K)
d , as well as the

tuning parameter λ.

3. Simulation study. Before turning our attention to examining the U.S. Sen-
ate voting patterns, we evaluate the performance of the joint estimation method on
three synthetic examples, each with p = 100 variables and K = 3 categories. The
network structure in each example is composed of two parts: the common struc-
ture across all categories and the individual structure specific to a category. The
common structures in these examples are a chain graph, a nearest neighbor graph
and a scale-free graph. These graphs are generated as follows:

Example 1: Chain graph. A chain graph is generated by connecting nodes 1
to p in increasing order, as shown in Figure 2(A1).

Example 2: Nearest neighbor graph. The data generating mechanism of the
nearest neighbor graph is adapted from Li and Gui (2006). Specifically, we gen-
erate p points randomly on a unit square, calculate all p(p − 1)/2 pairwise dis-
tances, and find three nearest neighbors of each point in terms of these distances.
The nearest neighbor network is obtained by linking any two points that are nearest
neighbors of each other. Figure 2(B1) illustrates a nearest-neighbor graph.

Example 3: Scale-free graph. A scale-free graph has a power-law degree dis-
tribution and can be simulated by the Barabasi–Albert algorithm [Barabási and
Albert (1999)]. A realization of a scale-free network is depicted in Figure 2(C1).

In each example, the network for the kth category (k = 1, . . . ,K) is created
by randomly adding links to the common structure. The individual links in dif-
ferent categories are disjoint and have the same degree of sparsity, measured by
ρ, the ratio of the number of individual links to the number of common links.
In particular, ρ = 0 corresponds to identical networks for all three categories. In
the simulation study, we consider ρ = 0, 1/4 and 1, gradually increasing the pro-
portion of individual links (Figure 2). Given the graphs, the symmetric parameter
matrix �(k) is generated as follows. Each θ

(k)
j,j ′ = θ

(k)
j ′,j corresponding to an edge

between nodes j and j ′ is uniformly drawn from [−1,−0.5] ∪ [0.5,1], whereas
all other elements are set to zero. Then we generate the data using Gibbs sam-
pling. Specifically, suppose the ith iteration sample has been drawn and is de-
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FIG. 2. The networks used in three simulated examples. The black lines represent the common
structure, whereas the red, blue and green lines represent the individual links in the three categories.
ρ is the ratio of the number of individual links to the number of common links.

noted as (x
(k)
1 )[t], . . . , (x(k)

p )[t]; then, in the (t + 1)th iteration, we draw (x
(k)
j )[t+1],

1 ≤ j ≤ p, from the Bernoulli distribution:

(
x

(k)
j

)[t+1] ∼ Bernoulli
( exp(θ

(k)
j,j + ∑

j ′ �=j θ
(k)
j,j ′(x

(k)
j ′ )[t])

1 + exp(θ
(k)
j,j + ∑

j ′ �=j θ
(k)
j,j ′(x

(k)
j ′ )[t])

)
.(3.1)
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To ensure that the simulated observations are close to i.i.d. samples from the target
distribution, the first 1,000,000 rounds are discarded (burn-in) and the data are col-
lected every 100 iterations from the sampler. In the simulation study, we consider
a balanced scenario and an unbalanced scenario. The former consists of nk = 300
observations in each category, whereas the latter has three unbalanced categories
with sample sizes n1 = 200, n2 = 300 and n3 = 400.

We compared the structure estimation results of the joint estimation method and
the separate estimation method using ROC curves, which dynamically characterize
the sensitivity (proportion of correctly identified links) and the specificity (propor-
tion of correctly excluded links) by varying the tuning parameter λ. Figure 3 shows
the ROC curves averaged over 10 replications from the three examples in the bal-
anced scenario, where the joint estimation method dominates separate estimation
when the proportion of individual links is low. As ρ increases, the structures be-
come more different, and the joint and separate methods move closer together.
This is expected, since the joint estimation method is designed to take advantage
of common structure. The results in the unbalanced scenario exhibit a similar pat-
tern (Figure 4).

4. Analysis of the U.S. Senate voting records. We applied the proposed
joint estimation method to the voting records of the U.S. Senate from the 109th
Congress covering the period 2005–2006. The p = 100 variables correspond to
the senators. The Senate held 645 votes in that period, from which we extracted
n = 222 votes in the three largest categories, namely, defense and security (141),
environment and energy (34), and healthcare (47). The votes are recorded as “yes”
(encoded as “1”) and “no” (encoded as “0”). The assumption of our model is that
bills within a category are an i.i.d. sample from the same underlying Ising model.
In reality, the voting process may be more complex, with possible temporal factors
and further dependencies among bills, possibly reflecting backroom deals. Nev-
erthless, this is an improvement on previous analyses of such data, which treated
all bills in all categories as i.i.d. [Banerjee, El Ghaoui and d’Aspremont (2008)],
and is a reasonable trade-off for an exploratory data analysis tool.

There were missing observations, as not all senators vote on all bills. The num-
ber of bills containing at least one missing vote was 98 out of 141 for defense and
security, missing a total of 2.26% of all votes; 24 out of 34 for environment and
energy, missing a total of 3.23% of votes; and 20 out of 47 for healthcare, missing
2.38% of all votes. While the number of bills that are missing at least one Senator’s
vote is relatively high, the overall proportion of missing observations is quite low
and, thus, we do not expect it to create a major problem in the analysis. Never-
theless, we have investigated multiple strategies for imputing the missing data in
the electronic supplement; specifically, we considered replacing the missing vote
by the party’s majority, by the majority vote of the five most similar Senators and,
to test robustness to the imputation method, also by the opposite party’s majority
and at random. We found that the main conclusions of the analysis are not very
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FIG. 3. Results for the balanced scenario (n1 = n2 = n3 = 300) and dimension p = 100. Black
solid curve: joint estimation; red dashed curve: separate estimation. The ROC curves are averaged
over 10 replications. ρ is the ratio between the number of individual links and the number of common
links.

sensitive to missing data imputation methods. In the subsequent analysis, we re-
place a missing vote for a Senator by his/her party’s majority vote on the bill; for
the Independent Senator Jeffords, we take the Democratic majority vote. After the
imputation, the bills with a “yes/no” proportion greater than 90% or less than 10%
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FIG. 4. Results for the unbalanced scenario (n1 = 200, n2 = 300, n3 = 400) and dimension
p = 100. Black solid curve: joint estimation; red dashed curve: separate estimation.The ROC curves
are averaged over 10 replications. ρ is the ratio between the number of individual links and the
number of common links.

were excluded from the analysis, as these typically correspond to procedural votes.
This left 97, 29 and 40 bills in the three categories, respectively. Given that two
of the sample sizes are fairly small (29 and 40), we added an �2 penalty with a
small tuning parameter λ2 = 0.01. This approach, known as the elastic net, has
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been shown to help avoid extremely sparse networks in such situations [Zou and
Hastie (2005)].

The main tuning parameter for our method was selected through cross-
validation. Following Li and Gui (2006), we used a bootstrap procedure for fi-
nal edge selection, estimating the network for 100 bootstrap samples of the same
size, and only retained edges that appeared more that α percent of the time. This
procedure is similar to stability selection [Meinshausen and Bühlmann (2010)].

The network representation, depicting both the common and the individual
structures with a cutoff value for inclusion α = 0.4 and a value of λ = 0.05, is
depicted in Figure 5. Note that unlike techniques such as principal components
analysis and multidimensional scaling that directly embed the senators in a two-
dimensional map, the proposed method estimates the edges and constructs the ad-
jacency matrix of the graph of Senators; subsequently, we employed a graph draw-
ing program to visualize this graph. The common network structure estimated by
the joint estimation method is shown in the top left panel of Figure 5. For the
individual categories, we only plot the edges associated with the category that is
not part of the common network, to enhance the readability of the graphs. As ex-
pected, members of the two political parties are clearly separated. For both tuning
parameter values, there are strong positive associations between senators of the
same party and selected strong negative associations between senators of opposite
parties. Obviously, at the higher tuning parameter value the common dependence
structure becomes sparser. Of particular interest is the finding that at both tuning
values there are many more associations between Democratic senators than Repub-
lican ones and this pattern holds for both the common and individual structures.
One possible explanation may be that during that period the Democrats were in
the minority and thus voting more frequently as a block. Further, the Independent
Senator Jeffords is associated with the Democrats, while the moderate Republi-
cans Collins, Snowe, Chafee and Specter (who switched to the Democratic party
in early 2009) are not strongly associated with their Republican colleagues, thus
confirming results of previous analyses by Clinton, Jackman and Rivers (2004)
and de Leeuw (2006) (albeit based on data from the 105th Congress). The conser-
vative Democrat Nelson (Nebraska) is also not closely associated with his party, as
well as the very conservative Republican de Mint (South Carolina). Also, the anal-
ysis suggests that Senator Lieberman had a solid Democratic voting record before
becoming an Independent in 2008.

Other interesting patterns emerging from the analysis are that the more mod-
erate members of the two parties are located closer to the center of their respec-
tive “clouds” (e.g., Warner, Frist, Voinovich and Smith on the Republican side,
and Levin, Reid, Mikulski and Rockefeller on the Democratic side), the cluster of
economic conservatives on the Republican side (McConnell, Domenici, Crapo, In-
hofe), the close ties of the liberal Democrats Kennedy, Boxer and Nelson (Florida),
the close voting records of senators from the same state (Schumer and Clinton from
New York, Murkowski and Stevens from Alaska, Snowe and Collins from Maine,
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FIG. 5. The estimated graphical models for the three categories in the Senate voting data with an
inclusion cutoff value of 0.4 and tuning parameter value of 0.5. Edges common to all three categories
are shown under the heading “common structure”; all other edges are shown on category-specific
graphs. The nodes represent the 100 senators, with red, blue and purple node colors corresponding
to Republican, Democrat or Independent (Senator Jeffords), respectively. A solid line corresponds to
a positive interaction effect and a dashed line to a negative interaction effect. The width of a link is
proportional to the magnitude of the corresponding overall interaction effect.

Cantwell and Murray from Washington). There is also a strong dependence be-
tween Durbin, Corzine, Lincoln, Harkin and Dodd on the Democratic side.

Examining the individual networks for the three categories shown in Figure 5,
we note that additional positive associations among Democrats emerge, primarily
for defense and healthcare categories, thus indicating a stronger ideological cohe-
sion on these issues. Further, a number of stable negative associations emerge in
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the environment and healthcare categories, indicating a stronger ideological divide
between senators.

On defense, some additional strong ties emerge between more liberal leaning
Democrats (Stabenow, Biden, Leahy, Kerry, Boxer), while a strong cluster on
environmental issues arises between Republican senators from energy producing
states (Murkowski and Stevens from Alaska, Thune from South Dakota, Hutchi-
son from Texas, but also Bond from Missouri, Chambliss from Georgia, Craig
from Idaho and Roberts from Kansas with their unwavering support for offshore
drilling). On health and medical issues, a number of additional strong positive as-
sociations emerge among Democratic senators, possibly reflecting the fact that the
109th Congress dealt with issues ranging from veterans affairs, to medical mal-
practice to food safety and especially on health savings accounts legislation to
reduce medical insurance costs.

Different imputation strategies for missing data were also examined and the
analysis results are given in Figures 1–3 in the Supplement for the same values of
the cutoff α and tuning parameter λ. It can be seen that similar patterns emerge, al-
though alternative methods of imputation may lead to the emergence of a few more
associations. Nevertheless, the main findings seem to be robust to the examined
choices of the imputation mechanism, although at very high levels of absenteeism
this may not hold [Han (2007)].

For comparison purposes, separate multidimensional scaling analyses are
shown in Figure 6 for all the votes together and for the three categories sepa-
rately. MDS (or PCA or factor analysis) is one of the commonly taken approaches
in social sciences when graphical modeling is not considered. Figure 6 suggests
that the overall vote clustering in the two parties is driven to a large extent by the
corresponding clustering in the defense and health categories. On the other hand,
voting on environmental issues creates a clear separation between the two parties,
although the moderate Republicans Chafee, Collins and Snowe are shown to have
a voting record similar to the Democrats, while the Democrats Nelson (Nebraska)
and Landrieu are closer to the Republicans. At a high level, MDS-based findings
are similar to ours, which is a satisfactory result, but they do not provide explicit
clusters or edges, nor do they provide a way to quantify the amount of dependence
between individual pairs (visualized via edge thickness in Figure 5).

Another relevant comparison is to fitting a separate graphical model to each of
the three categories, as could have been done with any of the previously devel-
oped methods for fitting the Ising model. The results are shown in Figure 7, in
the same format as in Figure 5, with edges common to all three categories shown
under “common structure,” and all other edges under their own category. We fol-
lowed the same tuning procedure as we did for joint estimation, bootstrapping the
data 100 times for stability selection and selecting the value of the tuning param-
eter on a validation data set. Even with the cutoff set at 1 (we included only the
edges appearing in all the bootstrap replications), the graphs are dense and dif-
ficult to interpret. Similar to MDS, they capture party cohesion through strong
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FIG. 6. Multidimensional scaling analysis for all the votes together, and the three individual cate-
gories. The nodes represent the 100 senators, with red, blue and purple node colors corresponding
to Republican, Democrat or Independent (Senator Jeffords), respectively.

positive associations between members of the same party for all three categories
and some negative associations between members of opposite parties. However,
different voting patterns between categories are not clear, although the results sug-
gest a more cohesive voting record for both parties for the defense category. Note
that since this is exploratory data analysis, it is hard to verify which set of results
is “better.” Nevertheless, those obtained from the joint estimation method are more
nuanced and interpretable and therefore provide better insights into voting strate-
gies of members of Congress.
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FIG. 7. The estimated graphical models for the three categories in the Senate voting data fitted via
separate estimation. Edges common to all three categories are shown under the heading “common
structure”; all other edges are shown on category-specific graphs. The cutoff value is 1 (only edges
appearing in all bootstrap replications are included). The nodes represent the 100 senators, with
red, blue and purple node colors corresponding to Republican, Democrat or Independent (Senator
Jeffords), respectively. A solid line corresponds to a positive interaction effect and a dashed line to a
negative interaction effect. The width of a link is proportional to the magnitude of the corresponding
overall interaction effect.

5. Concluding remarks. We have proposed a joint estimation method for the
analysis of heterogenous Markov networks motivated by the need to jointly esti-
mate heterogeneous networks, such as those of the Senate voting patterns. The
method improves estimation of the networks’ common structure by borrowing
strength across categories, and allows for individual differences. Asymptotic prop-
erties of the method have been established. In particular, we show that the conver-
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gence rate is similar to the rate for Gaussian graphical models in a similar context
[Guo et al. (2010)]. The proposed method can be extended to deal with general cat-
egorical data with more than two levels using the strategy described in Ravikumar,
Wainwright and Lafferty (2010) and Guo et al. (2010). The most interesting fea-
ture emerging from the analysis of the Senate voting records is the existence of
more stable associations for the Democrats, both in terms of the common structure
and in the healthcare and defense categories.

There are other techniques suitable for analyzing roll call data. Dimension re-
duction techniques create maps, where the relative positioning of the senators al-
lows one to infer similarity in their voting patterns. They provide a useful visual
tool to capture broad patterns and relationships. On the other hand, a Markov net-
work model aims directly at estimating the associations between the senators and
thus provides an alternative view of the voting patterns, which together with the
thresholding technique employed gives a measure of the stability of such asso-
ciations. Further, the joint estimation method allows one to separately study the
overall voting patterns and those driven by specific issues. In our view, both sets
of techniques are useful, with dimension reduction providing a global perspective
and the Markov model revealing more nuanced patterns.

APPENDIX: ASYMPTOTIC PROPERTIES

In this section we study the asymptotic properties of the proposed joint esti-
mation method. Since the structure of the underlying network only depends on
the interaction effects, we focus on a variant of the model without main effects.
Specifically, we solve

max
{�(k)}Kk=1

K∑
k=1

1

nk

nk∑
i=1

p∑
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[
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(k)
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j ′ �=j

θ
(k)
j,j ′x

(k)
i,j ′

)

− log
{
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( ∑
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θ
(k)
j,j ′x

(k)
i,j ′

)}]
(A.1)

− λ
∑
j<j ′

√√√√ K∑
k=1

∣∣θ(k)
j,j ′

∣∣.
We will show that the estimator in criterion (A.1) is consistent in terms of both
parameter estimation and model selection, when p and n go to infinity and the
tuning parameter λ goes to zero at some appropriate rate. We note that our re-
sults are pointwise rather than uniform in �, as is standard in the literature. Some
interesting implications of nonuniform bounds for sparse estimators in linear re-
gression have recently been discussed by Leeb and Pötscher (2008), Pötscher and
Leeb (2009), although their conclusions do not apply to graphical models.
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Before stating the main results, we introduce necessary notation and regular-
ity conditions. For each k = 1, . . . ,K , denote θ (k) = (θ

(k)
1,2, . . . , θ

(k)
j,j ′, . . . , θ

(k)
p−1,p)

as a p(p − 1)/2-dimensional vector, recording all upper triangular elements in

�(k). Let θ
(k)

be the true value of θ (k). Let Q
(k)

be the population Fisher in-
formation matrix of the model in criterion (A.1) (see the Appendix for a pre-
cise definition) and let X (k)

(i) be a matrix with p rows and p(p − 1)/2 columns,
whose (j, j ′)th column is composed of zeros except for the j th (j ′th) compo-

nent being xi,j ′ (xi,j ). In addition, we define U
(k) = E[X (k)

(i)

T
X (k)

(i) ]. To index

the zero and nonzero elements, let Sk = {(j, j ′) : θ(k)
j,j ′ �= 0,1 ≤ j < j ′ ≤ p} and

Sc
k = {(j, j ′) : θ(k)

j,j ′ = 0,1 ≤ j < j ′ ≤ p}, and let S∩ = ⋂K
k=1 Sk , S∪ = ⋃K

k=1 Sk .
The cardinalities of Sk and S∪ are denoted by qk and q , respectively. For any ma-
trix W and subsets of row and column indices U and V , let WU,V be the matrix
consisting of rows U and columns V in W. Finally, let �min(·) and �max(·) denote
the smallest and largest eigenvalue of a matrix, respectively.

The asymptotic properties of the joint estimation method rely on the following
regularity conditions:

(A) Nonzero elements bounds: There exist positive constants γmin and γmax such
that:
(i) min1≤k≤K min(j,j ′)∈Sk

|θ(k)
j,j ′ | ≥ γmin;

(ii) max1≤k≤K max(j,j ′)∈Sk\S∩ |θ(k)
j,j ′ | ≤ γmax.

(B) Dependency: There exist positive constants τmin and τmax such that for any
k = 1, . . . ,K ,

�min
(
Q

(k)

Sk,Sk

) ≥ τmin and �max
(
U

(k)

Sk,Sk

) ≤ τmax.(A.2)

(C) Incoherence: There exists a constant τ ∈ (1 − √
γmin/4γmax,1) such that for

any k = 1, . . . ,K , ∥∥Q
(k)

Sc
k ,Sk

(
Q

(k)

Sk,Sk

)−1∥∥∞ ≤ 1 − τ.(A.3)

Condition (A) enforces a lower bound on the magnitudes of all nonzero elements,
as well as an upper bound on the magnitudes of those nonzero elements associated
with individual links. Conditions (B) and (C) bound the amount of dependence and
the influence that the nonneighbors can have on a given node, respectively. Con-
ditions similar to (B) and (C) were also assumed by Meinshausen and Bühlmann
(2006), Ravikumar, Wainwright and Lafferty (2010), Peng, Zhou and Zhu (2009)
and Guo et al. (2010). Our conditions are most closely related to those of Guo et al.
(2010), but here they are extended to the heterogenous data setting.

THEOREM 1 (Parameter estimation). Suppose all regularity conditions hold.
If the tuning parameter λ = Cλ

√
(logp)/n for some constant Cλ > (8 −
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4τ)
√

γmin/(1 − τ) and if min{n/q3, n1/q
3
1 , . . . , nK/q3

K} > (4/C) logp for some
constant C = min{τ 2

minτ
2/288(1 − τ)2, τ 2

minτ
2/72, τminτ/48}, then there exists a

local maximizer of the criterion (A.1), {̂θ (k)}Kk=1, such that, with probability tend-
ing to 1,

K∑
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∥∥θ̂ (k) − θ
(k)∥∥

2 ≤ M

√
q logp

n
,(A.4)

for some constant M > (2KCλ/τmin
√

γmin)(3 − 2τ)/(2 − τ).

THEOREM 2 (Structure selection). Under conditions of Theorem 1, with prob-

ability tending to 1, the maximizer {̂θ (k)}Kk=1 from Theorem 1 satisfies

θ̂
(k)
j,j ′ �= 0 for all

(
j, j ′) ∈ Sk, k = 1, . . . ,K;

θ̂
(k)
j,j ′ = 0 for all

(
j, j ′) ∈ Sc

k, k = 1, . . . ,K.

Theorems 1 and 2 establish the consistency in terms of parameter estimation
and structure selection, respectively.

The main idea of the proofs is closely related to Guo et al. (2010), and some
strategies for dealing with the joint estimation are borrowed from Guo et al. (2011).
We introduce notation first. For the kth category, we define the log-likelihood as

l
(
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,

whose first derivative and second derivative are denoted by ∇l(θ (k)) and ∇2l(θ (k)),
respectively. Note that ∇l(θ (k)) is a p(p − 1)/2-dimensional vector and ∇2l(θ (k))

is a p(p −1)/2×p(p −1)/2 matrix. Then, the population Fisher information ma-

trix of the model in (A.1) at θ can be defined as Q
(k) = −E[∇2l(θ

(k)
)], and its sam-

ple counterpart is Q̂(k) = −∇2l(θ
(k)

). We also write Û(k) = 1/n
∑n

i=1 X
(k)
(i)

TX (k)
(i)

for the sample counterpart of U
(k)

. Let θ (k) = (θ
(k)
1,2, . . . , θ

(k)
j,j ′, . . . , θ

(k)
p−1,p) be

the same as θ (k) except that all elements in Sc
k are set to zero and write δ(k) =

θ (k) − θ
(k)

and δ(k) = θ (k) − θ
(k)

. Finally, let W be a subset of the index set
{1,2, . . . , p(p − 1)/2}. For a p(p − 1)/2-dimensional vector β , we define βW
as the vector consisting of the elements of β associated with W .

Next, we introduce a variant of criterion (A.1) by restricting all true zeros in
{θ (k)}Kk=1 to be estimated as zero. Specifically, the restricted criterion is formulated
as follows:

max
{θ (k)}Kk=1

K∑
k=1

l
(
θ (k)) − λ

∑
1≤j<j ′≤p

√√√√ K∑
k=1

∣∣θ(k)
j,j ′

∣∣,(A.5)
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and its maximizer is denoted by {̂θ (k)}Kk=1. In addition, we consider the sample
versions of regularity conditions (B) and (C):

(B′) Sample dependency: There exist positive constants τmin and τmax such that
for any k = 1, . . . ,K ,

�min
(
Q̂(k)

Sk,Sk

) ≥ τmin and �max
(
Û(k)

Sk,Sk

) ≤ τmax.(A.6)

(C′) Sample incoherence: There exists a constant τ ∈ (1 − √
γmin/4γmax,1)

such that for any k = 1, . . . ,K ,∥∥Q̂(k)

Sc
k ,Sk

(
Q̂(k)

Sk,Sk

)−1∥∥∞ ≤ 1 − τ.(A.7)

For convenience of the readers, the proof of our main result is divided into two
parts: Part I presents the main idea of the proof by listing the important propo-
sitions and the proofs of Theorems 1 and 2, whereas part II contains additional
technical details and proofs of propositions in part I.

Part I: Propositions and proof of Theorems 1 and 2. The proof consists of
the following steps. Proposition 2 shows that, under sample regularity conditions
(B′) and (C′), the conclusions of Theorems 1 and 2 hold for the local maximizer
of the restricted problem (A.5). Next, Proposition 3 proves that the population reg-
ularity conditions (B) and (C) give rise to their sample counterparts (B′) and (C′)
with probability tending to one, hence, the conclusions of Proposition 2 also hold
with the population regularity conditions. Last, we show that the local maximizer
of (A.5) is also a local maximizer of the original model (A.1). This is established
via Proposition 4, which sets out the Karush–Kuhn–Tucker (KKT) conditions for
the local maximizer of criterion (A.1), and Proposition 5, which shows that, with
probability tending to one, the local maximizer of (A.5) satisfies these KKT con-
ditions.

PROPOSITION 2. Suppose condition (A) and the sample conditions (B′) and
(C′) hold. If the tuning parameter λ = Cλ

√
(logp)/n for some constant Cλ >

(8 − 4τ)
√

γmin/(1 − τ) and q
√

(logp)/n = o(1), then with probability tending to

one, there exists a local maximizer of the restricted criterion, {̂θ (k)}Kk=1, satisfying:

(i)
∑K

k=1 ‖θ̂ (k) − θ
(k)‖2 ≤ M

√
q(logp)/n for some constant M > (2KCλ/

τmin
√

γmin)[(3 − 2τ)/(2 − τ)];
(ii) For each k = 1, . . . ,K , θ̂

(k)
j,j ′ �= 0 for all (j, j ′) ∈ Sk and θ̂

(k)
j,j ′ = 0 for all

(j, j ′) ∈ Sc
k .

PROPOSITION 3. Suppose the regularity conditions (B) and (C) hold, then for
any ε > 0, the following inequalities hold with probability tending to one for all
k = 1, . . . ,K :
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(i) P{�min(Q̂
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) ≤ τmin − ε} ≤ 2 exp{−(ε2/2)(nk/q
2
k ) + 2 logqk};
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3
k + 4 logp), for

some constant C = min{τ 2
minτ

2/288(1 − τ)2, τ 2
minτ

2/72, τminτ/48}.

PROPOSITION 4. {̂θ}Kk=1 is a local maximizer of problem (A.1) if and only if
the following conditions hold for all k = 1, . . . ,K :
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PROPOSITION 5. Under all conditions of Proposition 2, with probability tend-
ing to one, we have, for each k = 1, . . . ,K ,
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PROOF OF THEOREMS 1 AND 2. The condition min{n/q3, n1/q
3
1 , . . . ,

nK/q3
K} > (4/C) logp implies that, for each k = 1, . . . ,K , we have −Cnk/q

3
k +

4 logp < 0 and −(ε2/2)(nk/q
2
k )+2 logqk < 0 when qk is large enough. This con-

dition also implies q
√

(logp)/n = o(1). In addition, by Proposition 3, the sample
conditions (B′) and (C′) hold with probability tending to one when regularity con-
ditions (B) and (C) hold. Therefore, by Proposition 2, with probability tending

to one, the solution of the restricted problem {̂θ (k)}Kk=1 satisfies both parameter
estimation consistency and structure selection consistency. On the other hand, by

Proposition 5, with probability tending to one, {̂θ (k)}Kk=1 also satisfies the KKT
conditions in Proposition 4, thus, it is a local maximizer of criterion (A.1). This
proves Theorems 1 and 2. �

Part II: Proofs of propositions. Before proving the propositions, we state
a few lemmas which will be used in the proofs. These lemmas are variants of
Lemmas 1, 2 and 5 in Guo et al. (2010), adapted to the settings of the heterogenous
model and, thus, the proofs are omitted here. Likewise, the proof of Proposition 3
is very similar to the proof of Propositions 3 and 4 in Guo et al. (2010) and is
omitted.
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LEMMA 1. For each k = 1, . . . ,K , with probability tending to 1, we have

‖∇l(θ
(k)

)‖∞ ≤ C∇
√

(logp)/n for some constant C∇ > 4.

LEMMA 2. If the sample dependency condition (B′) holds and q
√

(logp)/n =
o(1), then for any αk ∈ [0,1], k = 1, . . . ,K , the following inequality holds with
probability tending to 1:
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Sk,Sk
δ
(k)
Sk

≥ 1

2
τmin

K∑
k=1

∥∥δ(k)
∥∥2

2.(A.10)

LEMMA 3. Suppose the sample dependency condition (B) holds. For any αk ∈
[0,1], k = 1, . . . ,K , the following inequality holds with probability tending to one:∥∥[∇2l

(
θ

(k) + αkδ
(k)) − ∇2l

(
θ

(k))]
δ(k)

∥∥∞ ≤ τmax
∥∥δ(k)

∥∥2
2.(A.11)

PROOF OF PROPOSITION 2. The main idea of the proof was first introduced
in this context in Rothman et al. (2008) and has since been used by many authors.
Define

G
({

δ(k)}K
k=1

)
= −

K∑
k=1

[
l
(
θ

(k) + δ(k)) − l
(
θ

(k))]
(A.12)

+ λ
∑

1≤j<j ′≤p

{(
K∑

k=1

∣∣θ(k)
j,j ′ + δ

(k)
j,j ′

∣∣)1/2

−
(

K∑
k=1

∣∣θ(k)
j,j ′

∣∣)1/2}
.

It can be seen from (A.5) that {̂δ(k)}Kk=1 minimizes G({δ(k)}Kk=1) and G({0}Kk=1) =
0. Thus, we must have G({̂δ(k)}Kk=1) ≤ 0. If we take a closed set A which con-
tains {0}Kk=1 and show that G is strictly positive everywhere on the boundary
∂A, then it implies that G has a local minimum inside A, since G is continu-
ous and G({0}Kk=1) = 0. Specifically, we define A = {{δ(k)}Kk=1 :

∑K
k=1 ‖δ(k)‖2 ≤

Man}, with boundary ∂A = {{δ(k)}Kk=1 :
∑K

k=1 ‖δ(k)‖2 = Man}, for some con-
stant M > (2KCλ/τmin

√
γmin)[(3 − 2τ)/(2 − τ)] and an = √

q(logp)/n. For any
{δ(k)}Kk=1 ∈ ∂A, the Taylor series expansion gives G({δ(k)}Kk=1) = I1 + I2 + I3,
where

I1 = −
K∑

k=1

[∇l
(
θ

(k))]T
Sk

δ
(k)
Sk

,

I2 = −
K∑

k=1

δ
(k)
Sk

T[∇2l
(
θ

(k) + αkδ
(k))]

Sk,Sk
δ
(k)
Sk

for some αk ∈ [0,1],(A.13)
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I3 = λ
∑

(j,j ′)∈S∪

{(
K∑

k=1

∣∣θ(k)
j,j ′ + δ

(k)
j,j ′

∣∣)1/2

−
(

K∑
k=1

∣∣θ(k)
j,j ′

∣∣)1/2}
.

Since Cλ > (8 − 4τ)
√

γmin/(1 − τ), we have [(1 − τ)/(2 − τ)]Cλ/
√

γmin > 4. By
Lemma 1,

|I1| ≤
K∑

k=1

∥∥[∇l
(
θ

(k))]
Sk

∥∥∞
∥∥δ(k)

Sk

∥∥
1

(A.14)
≤ [

(1 − τ)CλMγ
−1/2
min /(2 − τ)

]
(q logp)/n.

In addition, by condition q
√

(logp)/n = o(1), Lemma 2 holds and, thus,

I2 ≥ (τmin/2)

K∑
k=1

∥∥δ(k)
∥∥2

2 ≥ [
τmin/(2K)

]
M2q(logp)/n.(A.15)

Finally, by the triangular inequality and regularity condition (A),

|I3| ≤ λ
∑

(j,j ′)∈S∪

K∑
k=1

||θ(k)
j,j ′ + δ

(k)
j,j ′ | − |θ(k)

j,j ′ ||
(
∑K

k=1 |θ(k)
j,j ′ + δ

(k)
j,j ′ |)1/2 + (

∑K
k=1 |θ(k)

j,j ′ |)1/2

≤ (
λγ

−1/2
min

) K∑
k=1

∑
(j,j ′)∈S∪

∣∣δ(k)
j,j ′

∣∣ ≤ (
λq1/2γ

−1/2
min

) K∑
k=1

∥∥δ(k)
∥∥

2(A.16)

≤ (
MCλγ

−1/2
min

){
q(logp)/n

}
.

Then we have

G
({

δ(k)}K
k=1

) ≥ M2 q logp

n

(
τmin

2K
− (1 − τ)Cλ

(2 − τ)Mγ
1/2
min

− Cλ

Mγ
1/2
min

)
> 0.(A.17)

The last inequality uses the condition M > (2KCλ/τmin
√

γmin)[(3 − 2τ)/(2 −
τ)]. Therefore, with probability tending to 1, we have

∑K
k=1 ‖θ̂ (k) − θ

(k)‖2 ≤
M

√
q(logp)/n, and consequently claim (i) in Proposition 2 holds.

On the other hand, by the definition of θ̂
(k)

, we have θ̂
(k)
j,j ′ = 0 for all (j, j ′) ∈

Sc
k . By regularity condition (A) and Proposition 2(i), for any (j, j ′) ∈ Sk , k =

1, . . . ,K , we have |̂θ(k)
j,j ′ | ≥ |θ(k)

j,j ′ | − |̂θ(k)
j,j ′ − θ

(k)
j,j ′ | ≥ γmin/2 > 0, when n is large

enough. �

PROOF OF PROPOSITION 5. By Proposition 2, with probability tending to

one, we have θ̂ j,j ′ �= 0 for all (j, j ′) ∈ Sk . Since {̂θ (k)}Kk=1 is a local maximizer

of the restricted problem (A.5), with probability tending to one, ∇j,j ′ l(̂θ
(k)

) =
λ sgn(̂θ

(k)
j,j ′)/(

∑K
k=1 |̂θ(k)

j,j ′ |)1/2, for all (j, j ′) ∈ Sk .
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To show the second claim, we apply the mean value theorem and write

∇l(̂θ
(k)

) = ∇l(θ
(k)

) + r(k) − Q̂(k)̂δ
(k)

, where r(k) = {∇2l(θ
(k) + αk δ̂

(k)
) −

∇2l(θ
(k)

)}̂δ(k)
. After some simplifications, we have[∇l

(̂
θ

(k))]
Sc

k
= [∇l

(
θ

(k))]
Sc

k
+ r(k)

Sc
k

(A.18)
− [

Q̂(k)

Sc
k ,Sk

(
Q̂(k)

Sk,Sk

)−1]{[∇l
(
θ

(k))]
Sk

+ r(k)
Sk

− [∇l
(̂
θ

(k))]
Sk

}
and, thus,∥∥[∇l

(̂
θ

(k))]
Sc

k

∥∥∞

≤ ∥∥[∇l
(
θ

(k))]
Sc

k

∥∥∞ + ∥∥r(k)

Sc
k

∥∥∞

+ ∥∥Q̂(k)

Sc
k ,Sk

(
Q̂(k)

Sk,Sk

)−1∥∥∞

× {∥∥[∇l
(
θ

(k))]
Sk

∥∥∞ + ∥∥r(k)
Sk

∥∥∞ + ∥∥[∇l
(̂
θ

(k))]
Sk

∥∥∞
}

(A.19)
≤ (2 − τ)

∥∥∇l
(
θ

(k))∥∥∞ + (2 − τ)
∥∥r(k)

∥∥∞ + (1 − τ)
∥∥[∇l

(̂
θ

(k))]
Sk

∥∥∞

≤ [
(1 − τ)Cλ/

√
γmin

]√
(logp)/n + (2 − τ)τmaxM

2q(logp)/n

+ (1 − τ)λ
/

min
(j,j ′)∈Sk

[
K∑

k=1

∣∣̂θj,j ′
∣∣]1/2

≤ [
2(1 − τ)/

√
γmin

]
λ + op(λ).

On the other hand, λ/[∑K
k=1 |̂θ(k)

j,j ′ |]1/2 = +∞ when (j, j ′) ∈ Sc∪. Otherwise, if
(j, j ′) ∈ S∪ \ Sk , then

λ
/(

K∑
k=1

∣∣̂θj,j ′
∣∣)1/2

≥ λ
/{

K∑
k=1

∣∣̂θj,j ′ − θj,j ′
∣∣ + ∣∣θj,j ′

∣∣}1/2

≥ λ/
√

γmax ≥ (2 − 2τ)λ/
√

γmin.

Thus, for any (j, j ′) ∈ Sc
k (k = 1, . . . ,K), we have∣∣∇j,j ′ l

(̂
θ

(k))∣∣ ≤ max
1≤k≤K

max
(j,j ′)∈Sc

k

∣∣∇j,j ′ l
(̂
θ

(k))∣∣
(A.20)

< min
1≤k≤K

min
(j,j ′)∈Sc

k

λ
/√√√√ K∑

k=1

∣∣̂θ(k)
j,j ′

∣∣ ≤ λ
/√√√√ K∑

k=1

∣∣̂θ(k)
j,j ′

∣∣.
�
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