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A TWO-STEP APPROACH TO MODEL PRECIPITATION
EXTREMES IN CALIFORNIA BASED ON MAX-STABLE AND
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In modeling spatial extremes, the dependence structure is classically in-
ferred by assuming that block maxima derive from max-stable processes.
Weather stations provide daily records rather than just block maxima. The
point process approach for univariate extreme value analysis, which uses
more historical data and is preferred by some practitioners, does not adapt
easily to the spatial setting. We propose a two-step approach with a composite
likelihood that utilizes site-wise daily records in addition to block maxima.
The procedure separates the estimation of marginal parameters and depen-
dence parameters into two steps. The first step estimates the marginal pa-
rameters with an independence likelihood from the point process approach
using daily records. Given the marginal parameter estimates, the second step
estimates the dependence parameters with a pairwise likelihood using block
maxima. In a simulation study, the two-step approach was found to be more
efficient than the pairwise likelihood approach using only block maxima. The
method was applied to study the effect of El Niño-Southern Oscillation on
extreme precipitation in California with maximum daily winter precipitation
from 35 sites over 55 years. Using site-specific generalized extreme value
models, the two-step approach led to more sites detected with the El Niño
effect, narrower confidence intervals for return levels and tighter confidence
regions for risk measures of jointly defined events.

1. Introduction. Environmental extreme data are often spatial in nature, as
data are recorded at a network of monitoring stations over time. Extreme weather
and climate events may also exhibit spatial dependence because their occurrences
are influenced by atmospheric circulation of a very large spatial scale. The large-
scale modes of climate variability, such as El Niño-Southern Oscillation (ENSO)
and the Pacific decadal oscillation (PDO), have profound impacts on the precipi-
tation regime over North America, especially during the winter [e.g., Ropelewski
and Halpert (1986, 1996), Gershunov and Barnett (1998)]. As an example, El Niño
usually lasts for at least one season and brings substantially increased extreme
precipitation over a vast region of North America [Shang, Yan and Zhang (2011),

Received December 2013; revised December 2014.
1Supported by contracts with Environment Canada and a grant from the University of Connecticut

Research Foundation.
Key words and phrases. Composite likelihood, estimating function, extreme value analysis, risk

analysis, spatial dependence.

452

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/14-AOAS804
http://www.imstat.org


TWO-STEP APPROACH FOR SPATIAL EXTREMES 453

Zhang et al. (2010)]. Rare events that occur at multiple locations within a very short
time interval can cause more damage, consume more resources and demand more
delicate emergency rescue. For strategic emergency management and loss mitiga-
tion, understanding and predicting extreme events in a spatial context is needed.
Although univariate extreme value modeling has been well developed [e.g., Coles
(2001)], spatial extreme modeling has not gained a sharpened focus until recently
[e.g., Buishand, de Haan and Zhou (2008), Davison and Gholamrezaee (2012),
de Haan and Pereira (2006), Padoan, Ribatet and Sisson (2010)]. Two recent re-
views are Davison, Padoan and Ribatet (2012) and Bacro and Gaetan (2012); the
latter focuses on spatial max-stable processes, while the former covers additionally
latent variable approaches and copula approaches.

A max-stable process extends the multivariate extreme value distribution to an
infinite dimension; every multidimensional marginal distribution of it is a multi-
variate extreme value distribution [de Haan (1984)]. For only a few parametric
models, statistical inference is practically viable: the Smith model [Smith (1990)],
the Schlather model [Schlather (2002)], the Brown–Resnick model [Kabluchko,
Schlather and de Haan (2009)], the geometric Gaussian model [Davison, Padoan
and Ribatet (2012)] and the extremal-t model [Opitz (2013)]. Wadsworth and
Tawn (2012) proposed to superimpose two max-stable processes to obtain a new
model, which can produce more realistic event realizations than, for example, the
Smith model by itself. Inferences for max-stable process models are challeng-
ing because the joint density for multiple sites is only available for bivariate or
trivariate marginal distributions. In fact, the trivariate marginal density has been
derived only recently for the Smith model [Genton, Ma and Sang (2011)] and the
Brown–Resnick model [Huser and Davison (2013)]. The pairwise likelihood ap-
proach based on the bivariate marginal distributions of block maxima has been
used in applications [Davison and Gholamrezaee (2012), Padoan, Ribatet and Sis-
son (2010)].

For univariate extreme value analysis based on generalized extreme value
(GEV) distributions, daily records which contain more information than an-
nual maxima can be exploited. Two well-known threshold approaches are the
peaks over threshold (POT) approach [Balkema and de Haan (1974), Pickands
(1975)] and the point process approach [Leadbetter, Lindgren and Rootzén (1983),
Pickands (1971)]. Ferreira and de Haan (2015) recently showed that, for the prob-
ability weighted moment estimator [Hosking, Wallis and Wood (1985)], the block
maximum method is asymptotically more efficient in mean squared error than the
POT method under certain conditions. Nonetheless, for shorter records, the thresh-
old methods may be more efficient than the block maximum method when the
number of exceedances is larger than the number of blocks on average or when
the shape parameter is positive [e.g., Katz, Parlange and Naveau (2002), Tanaka
and Takara (2002)]. For multivariate extremes, as Falk and Michel (2009) pointed
out, an extension of the univariate threshold approach needs to solve which distri-
butions describe the exceedances and how exceedances are defined in a multivari-
ate setting. These problems are being actively investigated [e.g., Falk and Guillou
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(2008), Falk, Hüsler and Reiss (2010), Ferreira and de Haan (2014), Rootzén and
Tajvidi (2006), Thibaud and Opitz (2013)]. Bivariate threshold-based inferences
have been applied to max-stable process models through the composite likelihood
approach. Bacro and Gaetan (2014) considered two bivariate exceedance distri-
butions, one from the tail approximation for bivariate distribution in Ledford and
Tawn (1996) and the other from the bivariate extension of a generalized Pareto
distribution (GPD) in Rootzén and Tajvidi (2006). No clear winner of the two ap-
proaches was found in a simulation study, and their performance depends on the
spatial dependence level. Similar approaches have been adopted by Wadsworth and
Tawn (2014) for spatial extremes and Huser and Davison (2014) in a space–time
setting.

Without resorting to a spatial version of threshold-based approaches, we pro-
pose a two-step approach that utilizes daily records in addition to block maxima
from each site for max-stable process models. The first step estimates the marginal
parameters using an independence likelihood constructed from the univariate
threshold-based point process approach with daily records. Given the marginal
parameter estimates, the second step estimates the dependence parameters from
a pairwise likelihood with block maxima. The two-step approach has been stud-
ied recently for multivariate models to overcome the computational difficulty in
maximum likelihood estimation [Joe (2005), Zhao and Joe (2005)]. Our two-step
approach is different, however, in that we use different data in the two steps: the
first step uses daily records, while the second step uses block maxima. Compared
to the bivariate threshold-based approaches, the marginal parameter estimator from
the two-step approach is robust to misspecification of the spatial dependence. The
more efficient marginal estimator helps improve the efficiency of the dependence
parameter estimator compared to the composite likelihood estimator based on only
block maxima.

The rest of the article is organized as follows. Our motivating application, an-
nual maximum winter daily precipitation in California, is presented in Section 2.
The spatial max-stable process model defined by all univariate marginal distribu-
tions and a spatial dependence structure, and the dependence measure extremal
coefficient, are introduced in Section 3. In Section 4 we present details of the
two-step approach, the asymptotic properties of the estimator, and describe how
to estimate the limiting variance. A simulation study is reported in Section 5. The
proposed method is applied to the precipitation data from 36 sites in California
over 55 years in Section 6, providing more compact confidence regions for joint
return levels. Section 7 concludes with some discussion.

2. Extreme winter precipitation in California. Recent studies suggest that
the El Niño/Southern Oscillation (ENSO) has significant impact on extreme pre-
cipitation in North America [Zhang et al. (2010)]. Southern Oscillation refers to
the variation in the sea surface temperature of the tropical waters in the eastern
Pacific Ocean. The “warm” events and the “cool” events are referred to as El Niño
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and La Niña, respectively, and their strength is measured by the Southern Oscilla-
tion Index (SOI), the normalized sea level pressure difference between Tahiti and
Darwin. With SOI as a covariate in sitewise GEV modeling, El Niño was found
to be associated with a substantial increase in the likelihood of extreme precipita-
tion over a vast region of southern North America [Zhang et al. (2010)]. Focusing
on the California stations, Shang, Yan and Zhang (2011) reported similar findings
with spatial dependence incorporated through a Smith model, which enabled in-
ference and predictions of joint extremal events at multiple sites within the same
year. Nevertheless, two practical issues were not satisfactorily addressed. First, re-
alizations from the Smith model are of too regular shape. Second, collaborators
who are familiar with threshold-based univariate extreme value analysis wondered
if the full records of daily precipitation can lead to a more efficient analysis than
that based on block maxima alone. These issues motivated our two-step approach
and a revisit of the extreme winter precipitation in California.

Daily precipitation records at all monitoring stations in California were ex-
tracted from the second version of the Global Historical Climatology Net-
work (GHCN), compiled and quality-controlled at the National Climatic Data
Center of the National Oceanic and Atmospheric Administration (available at
http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/). As precipitation in California
occurs predominantly in winter, we restrict our attention to the winter season,
which is defined as the period from December 1st to March 31st in the following
year [Zhang et al. (2010)]. Due to missing data, the block maxima in a given win-
ter at a given site was considered to be valid only if no more than 10% of the daily
records were missing in that winter [Shang, Yan and Zhang (2011)]. For compar-
ison, we used the same time periods and sites as the balanced data in Shang, Yan
and Zhang (2011), covering daily winter precipitation from 1948 to 2002 for 36
sites. The 36 sites in California are shown in Figure 1, superimposed with the el-
evation map of the state. The distance between the two furthest sites is 1188 km.
As in Shang, Yan and Zhang (2011), possible covariates to be included in the GEV
parameters for each site are longitude, latitude, elevation and SOI. The latitude
and longitude are in degrees, and the elevation is in 100 meters. The SOI for each
winter is the average of the four monthly SOI values of the winter months, ranging
from −3.14 to 1.88 with a sample average −0.15 for the data period.

3. Spatial extreme model with max-stable process. A max-stable process
model for spatial extremes consists of two parts: marginal distributions and spatial
dependence structure. The marginal distribution at each site is a GEV distribution,
which may incorporate temporal nonstationarity through temporally varying co-
variates such as the SOI. In particular, let M(s, t) be the maximum at site s in
block t in a spatial domain D ⊂ R

2. The distribution of M(s, t) is

M(s, t) ∼ GEV
(
μ(s, t), σ (s, t), ξ(s, t)

)
,(3.1)

http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
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FIG. 1. Locations of the 36 monitoring stations in California superimposed with the elevation map
(meter). The three sites in solid circles are Napa, Winters and Davis, near the Sacramento area.

where μ(s, t), σ(s, t) and ξ(s, t) are the location, scale and shape parameters,
respectively, of the GEV distribution. Covariate information is incorporated into
the parameters through μ(s, t) = X�

μ (s, t)βμ, σ(s, t) = X�
σ (s, t)βσ , and ξ(s, t) =

X�
ξ (s, t)βξ , where Xμ(s, t), Xσ (s, t) and Xξ(s, t) are the covariate vectors for μ,

σ and ξ , respectively, � denotes transpose, and β = (β�
μ ,β�

σ , β�
ξ )� is the vector

containing all marginal parameters.
The spatial dependence structure ensures that every finite-dimensional marginal

distribution is a multivariate GEV distribution. The multivariate extreme value
property essentially requires that every finite-dimensional marginal copula must
be an extreme value copula [Gudendorf and Segers (2010)]. Without loss of gen-
erality, let Z(s, t) = F−1[Gs,t {(M(s, t)}], where F is the distribution function of
a unit Fréchet variable with inverse function F−1, and Gs,t (·;β) is the distribution
function of GEV(μ(s, t), σ (s, t), ξ(s, t)) with parameter vector β . Consider any p

sites xi ∈ D, i = 1, . . . , p. The copula of {M(x1, t), . . . ,M(xp, t)} is the same as
the copula of {Z(x1, t), . . . ,Z(xp, t)}. This copula is determined by a max-stable
process (MSP) model with dependence parameter θ for process Z(s, t) for any t :

Z(s, t) ∼ MSP(θ).(3.2)

The MSP has a marginal unit Fréchet distribution at each s and marginal extreme
value copulas for any multidimensional marginal distribution.

The parametric form of an MSP is determined from its spectral representation
[de Haan (1984), Schlather (2002)]. Let {Uj }j≥1 be a Poisson process on R+ with
intensity du/u2. Let Wj(x), x ∈ D, j ≥ 1, be independent copies of a nonnegative
stationary process W(x) with E{W(x)} = 1 for all x ∈ D. Then,

Z(x) = sup
j≥1

UjWj(x), x ∈ D,
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is a stationary MSP with unit Fréchet margins. Three practically viable MSP
models are obtained by different choices of W(x) with parameter vector θ [e.g.,
Davison, Padoan and Ribatet (2012)]. The Smith model takes Wj(x) = g(x −Vj ),
where g is the density of a zero mean bivariate normal random vector with vari-
ance matrix �, and V1,V2, . . . are the points of a homogeneous Poisson pro-
cess of unit rate in D. Isotropy is obtained when � = τI2, where I2 is the two-
dimensional identity matrix and τ > 0 is a scalar. The Schlather model takes
Wj(x) = max{0,

√
2πεj (x)}, where ε1, ε2, . . . are independent copies of a station-

ary Gaussian process {ε(x) :x ∈ D} with unit variance and correlation function ρ.
A geometric Gaussian model takes Wj(x) = exp{δεj (x)− δ2/2}, where δ > 0 and
εj (x)’s are independent copies of a stationary Gaussian process with unit variance
and correlation function ρ. Geometric anisotropy can be obtained for the Schlather
model and the geometric Gaussian model through using a geometric anisotropic
correlation function ρ. The spectral representation of another model, the extremal-
t process, was only obtained recently by Opitz (2013). The extremal-t process is
the extreme value limit of t processes, which are scale mixtures of Gaussian pro-
cesses. It is characterized by a degree of freedom ν and a dispersion function ρ

(the correlation function of the Gaussian process). The extremal-t process covers
the Schlather model when ν = 1 and the Brown–Resnick model when ν → ∞.

A useful measure for extremal dependence is the extremal coefficient. For an
MSP Z(s) with unit Fréchet margins, the extremal coefficient at p sites x1, . . . , xp

is the number ζ such that

Pr
{
Z(x1) ≤ z, . . . ,Z(xp) ≤ z

} = exp(−ζ/z), z > 0.

The range of ζ is 1 ≤ ζ ≤ p, with 1 and p corresponding to full dependence
and independence, respectively. The pairwise extremal coefficient as a function
of the pairwise distance can be used in exploratory analysis and model check-
ing. For two sites x1 and x2 with h = x2 − x1, the pairwise extremal coeffi-

cient ζ(h) is 2�{√h��−1h/2}, 1 + √[1 − ρ(h)]/2, 2�{
√

δ2[1 − ρ(h)]/2}, and
2Tν+1{√[1 − ρ(h)][ν + 1]/[1 + ρ(h)]} for the Smith, Schlather, geometric Gaus-
sian and extremal-t model, respectively, where � is the distribution function of
a standard normal variate and Tν is the distribution function of a Student-t vari-
ate with ν degrees of freedom. Unlike the other three models which offer the full
range of dependence level from complete independence to complete dependence,
the Schlather model has ζ(h) ≤ 1+√

1/2 ≈ 1.707, not allowing full independence
of two sites regardless of their distance.

Given observed block maxima from S sites over n years, estimation of model
parameters η = (β�, θ�)� is challenging because the full joint distribution of S

sites is unavailable for S ≥ 3 in general. Inference about max-stable process mod-
els has mostly been based on the composite likelihood approach [e.g., Davison and
Gholamrezaee (2012), Padoan, Ribatet and Sisson (2010)]. In particular, a pairwise
likelihood is constructed from the bivariate marginal distributions of all pairs. The
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three aforementioned MSP models are viable because their bivariate marginal dis-
tributions have closed forms and the corresponding density can be derived and used
to construct pairwise likelihoods. The pairwise likelihood approach is potentially
wasteful of data because it only uses the block maxima.

4. The two-step approach. Suppose that we observe the full record of each
block with block size m at S sites over n blocks (e.g., years or seasons). For ease
of notation, m is assumed to be the same but our approach can also handle the case
where m varies from year to year. Let Ys,t,k be the kth observation within block t

at site s, k = 1, . . . ,m, and let Ys,t = {Ys,t,1, . . . , Ys,t,m}. Let Ms,t = maxk Ys,t,k be
the block maximum. Our first step estimates the marginal parameters β based on
daily records Y = {Ys,t : s = 1, . . . , S; t = 1, . . . , n}. Our second step estimates the
dependence parameters θ based on block maxima M = {Ms,t : s = 1, . . . , S; t =
1, . . . , n}.

Step 1. The first step is based on an independence likelihood constructed from
the point process approach for univariate extreme value analysis. This step utilizes
the daily record in each block but ignores the spatial dependence across sites. Let
us,t be the threshold chosen for site s and block t , s = 1, . . . , S, t = 1, . . . , n.
This choice accommodates nonstationarity across the blocks. The independence
loglikelihood has the form

l1(β;Y) =
n∑

t=1

S∑
s=1

�1t,s(β;Ys,t ),(4.1)

where

�1t,s(β;Ys,t )

= −
[
1 + ξs,t

(
us,t − μs,t

σs,t

)]−1/ξs,t

+ ∑
k:Ys,t,k>us,t

[
− logσs,t −

(
1

ξs,t

+ 1
)

log
{

1 + ξs,t

(
Ys,t,k − μs,t

σs,t

)}]
.

The contribution to the independence loglikelihood from site s,
∑n

t=1 �1t,s , is sim-
ply the loglikelihood of the point process approach in a univariate extreme value
analysis [Smith (1989)]. Since we assume independence from block to block, the
contribution from block t is �1t = ∑S

s=1 �1t,s . The maximizer of (4.1), β̂n, is the
estimator of β .

The independence loglikelihood (4.1) also allows temporal dependence within
the same block, in which case the temporal dependence is ignored similar to the
spatial dependence. Recent studies show that this approach not only uses all thresh-
old excesses for more efficient estimation, but also avoids significant biases that
may come with declustering [Fawcett and Walshaw (2007, 2012)]. The variance
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of β̂n needs to be estimated with sandwich estimators to adjust for the dependence
[Smith (1991)].

Step 2. Given β̂n, the second step uses block maxima to estimate the depen-
dence parameters θ based on a pairwise likelihood. Let fijt (·; θ,β) be the bivariate
marginal density of the (Mi,t ,Mj,t ) from the max-stable process model specified
by (3.1) and (3.2) with site i and j in block t . Define pairwise loglikelihood

l2(θ; β̂n,M) =
n∑

t=1

�2t (θ; β̂n,Ms,t : s = 1, . . . , S),(4.2)

where the contribution from block t is

�2t (θ;β,Ms,t : s = 1, . . . , S) =
S−1∑
i=1

S∑
j=i+1

logfijt

(
(Mi,t ,Mj,t ); θ,β

)
.

Our estimator for θ , θ̂n, is the maximizer of (4.2).
The asymptotic properties of the two-step estimator η̂�

n = (β̂�
n , θ̂�

n ) can be de-
rived with the theory of estimating functions [Godambe (1991)]. Let ψ1t (β) =
∂�1t /∂β . Let ψ2t (β, θ) = ∂�2t /∂θ . Then η̂n is the solution to the estimating
equations

∑n
t=1 ψt(η) = 0, where ψ�

t (η) = (ψ�
1t (β),ψ�

2t (β, θ)). Under mild reg-
ularity conditions, as n → ∞, η̂n is consistent for the true parameter vector
η0, and

√
n(η̂n − η0) → N(0,�), where � = A−1B(A−1)� is the inverse of

the Godambe information matrix, with A = limn→∞ n−1 ∑n
t=1 ∂ψt(η)/∂η� and

B = limn→∞ n−1 ∑n
t=1 ψt(η)ψ�

t (η). With independent replicates at the block
level, � can be easily estimated with the sample versions of A and B as out-
lined in the supplementary material [Shang, Yan and Zhang (2015)]. An alterna-
tive, computing-intensive method is a bootstrap applied to the blocks (years) with
spatial structure preserved. We assess the validity of the sandwich estimator in our
simulation study but use the bootstrap estimator in the real data analysis.

Computationally, the optimization in both steps can be challenging, especially
when the dimension of the parameter vector is large. Optimizing with respect to
all parameters simultaneously often gives poor results at local maxima [Blanchet
and Davison (2011)]. We adapt the profile method suggested for pairwise likeli-
hood maximization by Blanchet and Davison (2011) and apply it to both steps.
The profile method maximizes with respect to one parameter at a time while hold-
ing all other parameters at their current values, and the process goes through all
parameters iteratively until convergence. To be safe, we optimize with respect to
all parameters simultaneously one more time after the convergence of the profile
method.

Model selection for the two-step approach can be done separately for the
marginal GEV models and the MSP model in two steps with the composite likeli-
hood information criterion (CLIC) [Varin (2008), Varin and Vidoni (2005)], which
is an adaptation of the Takeuchi information criterion (TIC) [Takeuchi (1976)].
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Models with lower CLIC are preferred. In step 1, the CLIC selects the best
marginal model without specifying the spatial dependence structure. In step 2, the
CLIC is a conditional version given the marginal model selected from step 1 and
the marginal parameter estimates.

5. Simulation study. To investigate the performance of the two-step approach
using daily records in comparison to the pairwise likelihood approach using block
maxima only, a simulation study was conducted. The study region was confined to
[−20,20]2. The marginal distribution of the block maxima at each site s is a GEV
distribution with location μs , scale σs and shape ξs . Let X1(s) and X2(s) denote
the latitude and longitude of site s. The GEV parameters were⎧⎪⎨

⎪⎩
μs = βμ,0 + βμ,1X1(s) + βμ,2X2(s),

σs = βσ,0 + βσ,1X1(s) + βσ,2X2(s),

ξs = βξ,0,

where βμ,0 = 15, βμ,1 = −0.2, βμ,2 = 0.25, βσ,0 = 4, βσ,1 = −0.04, βσ,2 = 0.08,
and βξ,0 = 0.2. The factors of our simulation study are as follows: the max-stable
model, the spatial dependence level, the number of sites S and the sample size n.
Three one-parameter isotropic max-stable processes were considered: the Smith
model, the Schlather model and the geometric Gaussian model. The Smith model
has a single parameter θ = τ . The Schlather model has an exponential correla-
tion function with range parameter θ = α: ρ(h) = exp(−‖h‖/α). The geometric
Gaussian model also has an exponential correlation function with range parame-
ter θ = α and the parameter δ2 = 8 is assumed known. The choice of the value 8
is a compromise between two facts: (1) the random number generation from this
model in R package SpatialExtremes [Ribatet (2013)] works well only for
δ2 < 10; and (2) the pairwise extremal coefficient from δ2 = 8 has an upper bound
1.96, close to independence. The Brown–Resnick model, which covers the geo-
metric Gaussian model as a special case and offers full range of dependence level,
was not considered here because of lack of fast simulation tools. Three dependence
levels were considered: weak, moderate and strong, abbreviated as W, M and S,
respectively. The parameter τ for the Smith model was chosen to be 20, 200, 2000
for weak, moderate and strong dependence, respectively, as in Padoan, Ribatet and
Sisson (2010). The range parameters for the other three models were chosen such
that their pairwise extremal coefficient as a function of distance matches as closely
as possible with that from the corresponding Smith model. From nonlinear least
squares fits with distance in the range of [0,40], the parameter values of α for the
Schlather model were found to be 5.2, 24.3 and 242.9 for dependence level W,
M and S, respectively, and the corresponding α values for the geometric Gaus-
sian model were found to be 25.2, 135.2 and 1252.0, respectively. We considered
two levels for the number of sites S ∈ {25,50} and three levels for sample size
n ∈ {20,50,100}. The performance of the sandwich variance estimator for n = 20
was not expected to be good, but we kept n = 20 in efficiency comparisons.
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For each scenario, 1000 data sets of daily records were generated. The S sites
were regenerated for each data set from a uniform distribution over the study region
[−20,20]2. To mimic the California data analysis, we set block size m = 122. The
m daily observations at S sites within each season were generated as realizations
from the target MSP model divided by m. The max-stability ensures that the site-
wise maxima of the m observations at the S sites is a realization from the MSP
model. For each data set, we used the profile method for both approaches with
the same starting values—the pairwise likelihood estimate from R package Spa-
tialExtremes [Ribatet (2013)]. The threshold us,t in the two-step approach
was chosen to be the 95th sample percentile at site s in block t .

We first assess the estimator from the two-step approach. The results for n ∈
{50,100} are summarized in tables in the supplementary material [Shang, Yan and
Zhang (2015)]. Consider, for example, the geometric Gaussian model. The biases
are very small relative to the truth for all parameters. The empirical standard error
of the estimates is higher for stronger dependence or smaller sample size, but it
is much less sensitive to the number of sites S, which is consistent with the ob-
servation in Padoan, Ribatet and Sisson (2010). The average standard errors are
generally in close agreement with the empirical standard errors, suggesting good
performance of the sandwich variance estimator for sample size as small as 50.
Consequently, the empirical coverage percentage of the 95% confidence intervals
for most parameters are close to the nominal level. Under-coverage occurred for
α and βξ,0 when the dependence is weak; the lowest case was 84% for S = 50
and n = 100. The coverage for logα is uniformly better than for α. The under-
coverage is unfortunate because sandwich variance estimators tend to underesti-
mate the variance for small to moderate sample sizes. Bias correction [Kauermann
and Carroll (2001), Mancl and DeRouen (2001)] might lead to better coverage rate
of the confidence intervals in this context, but an investigation is beyond our scope
here. The results for the Smith model and the Schlather model were similar or
better—no empirical coverage was below 90%.

We now compare the efficiency of the pairwise likelihood approach using block
maxima only (M1) with the two-step approach (M2). Table 1 reports the relative
efficiency in mean squared error for the estimators from the two approaches for
each parameter, with the M2 estimator as the reference. Method M2 has smaller
MSE for all marginal parameters; the relative efficiency of M1 ranges from 23% to
95%. For example, for the shape parameter βξ,0 in the geometric Gaussian model,
the relative efficiency of M1 was 45% for S = 25 and n = 100, which is the case
where the coverage of the confidence interval was low in the two-step approach.
This is of great interest since the shape parameter ξ governs the tail behavior of
the GEV distribution and plays an important role in predicting return levels. The
difference between the two methods decreases as the dependence level increases
from weak to strong. For the dependence parameters, the relative efficiency of
M1 ranges from 69% to 103%, with the highest relative efficiency occurring in the
weak dependence case under the extremal t process. The efficiency gain in M2 here
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TABLE 1
Relative efficiency (%) in mean squared error of model parameter estimates for the pairwise likelihood approach relative to the two-step approach for

Smith, Schlather and geometric Gaussian models

Smith Schlather Geometric Gaussian

Dep n S τ βμ,0 βμ,1 βμ,2 βσ,0 βσ,1 βσ,2 βξ,0 α βμ,0 βμ,1 βμ,2 βσ,0 βσ,1 βσ,2 βξ,0 α βμ,0 βμ,1 βμ,2 βσ,0 βσ,1 βσ,2 βξ,0

W 20 25 81 67 54 54 72 25 24 30 107 66 64 62 87 36 48 32 87 75 56 57 86 25 30 37
50 81 70 54 59 80 24 30 34 106 64 65 62 92 41 57 34 83 87 57 60 92 29 34 45

50 25 80 70 55 57 77 23 28 33 98 71 60 61 87 34 49 37 85 82 58 60 89 24 32 43
50 78 76 55 62 89 23 32 35 100 66 66 65 87 40 54 40 85 85 55 58 95 25 35 46

100 25 81 73 56 57 80 24 28 34 97 67 61 62 91 34 49 37 85 84 52 60 94 23 34 45
50 74 75 57 60 85 25 30 37 101 77 64 72 97 40 61 36 87 89 55 57 96 28 34 55

M 20 25 84 62 51 55 77 29 37 40 93 58 66 64 81 44 54 36 85 63 49 49 86 28 39 54
50 90 63 51 56 78 30 35 40 96 63 66 66 86 42 55 38 77 67 49 55 80 28 43 53

50 25 86 69 49 57 78 27 35 45 94 59 65 61 80 42 48 44 80 66 52 51 80 29 38 52
50 86 64 53 52 80 33 38 45 92 65 66 64 84 42 53 41 82 72 52 54 89 29 42 58

100 25 87 69 51 57 82 29 39 49 95 62 75 64 81 42 49 40 79 70 50 55 84 31 43 56
50 84 68 50 51 79 30 38 45 93 66 63 69 85 39 58 40 83 70 48 56 89 29 43 60

S 20 25 78 54 58 54 67 47 48 54 79 55 86 67 69 65 67 45 76 55 53 52 66 44 54 78
50 69 49 56 50 62 39 49 56 85 55 85 67 67 67 62 52 84 57 57 51 69 48 54 85

50 25 76 59 55 61 69 48 53 56 82 55 81 63 62 60 62 48 75 57 53 57 64 43 54 85
50 84 52 48 52 63 38 50 61 88 56 77 66 70 66 72 45 78 61 54 60 67 45 53 85

100 25 86 57 56 53 66 40 47 70 85 57 78 67 63 57 62 44 76 57 51 52 66 42 51 84
50 82 63 58 58 68 43 54 68 87 63 85 74 66 59 63 47 74 62 55 58 70 45 54 82
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is explained by the fact that the marginal parameters are estimated more precisely
in the first step.

How does the efficiency gain in M2 affect risk analysis such as estimation of
joint and individual return levels? Let y50 be the joint 50-year return level for two
sites s1 and s2, such that Pr(Y (s1) > y50, Y (s2) > y50) = 1/50. Given the bivariate
marginal distribution, y50 can be found numerically for any given parameter vec-
tor. We considered three sites in the study region, s1 = (10,10), s2 = (10,11), and
s3 = (10,0). The joint 50-year return level was estimated for two pairs, (s1, s2)

and (s1, s3), which represent pairs that are close and distant, respectively. The rel-
ative efficiency of the two methods in estimating the individual 50-year return
level at the three sites and the joint 50-year return level at the two sites is sum-
marized in a table in the supplementary material [Shang, Yan and Zhang (2015)].
The relative efficiency of M1 with M2 as the reference is poor, ranging from 58%
to 91% when the dependence is weak. As the dependence level gets stronger, M1
becomes almost as competitive as M2, which is consistent with the relative ef-
ficiency for the shape parameter estimator. The sample size n and the number
of sites S seems to have little effect on the relative efficiency for all three mod-
els.

Up to this point, both the GEV margin model and the max-stable dependence
model have been correctly specified in the fitting. The only possible misspecifi-
cation for the two-step approach is the distribution of the exceedances over the
threshold, which depends on the block size m and the threshold u. In practice,
however, neither the marginal model nor the dependence model will be correct for
any finite m or u, which may introduce bias in estimation. To understand the limita-
tion of the two-step method, we generated data using t processes, which are in the
max-domain of attraction of the extremal-t process [Opitz (2013)]. Details about
the data generation, the choice of degree of freedom ν and the results for ν ∈ {1,2}
are in the supplementary material [Shang, Yan and Zhang (2015)]. The two-step
method was more efficient than the pairwise likelihood method in all parameter
estimation except in a very few parameters, including βξ,0 when ν = 2. A close
examination revealed that the MSE for the two-step estimator was dominated by
its bias in these cases. The pairwise likelihood approach requires the convergence
of the marginal block maximum to a ν-Fréchet distribution, with ν being the de-
grees of freedom of the t process, and the convergence of the dependence structure
to extremal-t copula. The two-step approach requires additionally that the distri-
bution of those observations exceeding the threshold converges to a generalized
Pareto distribution with appropriately transformed parameters. For ν = 1, the lim-
iting distribution provided good approximation in all aspects, but for ν = 2, the
convergence of the marginal block maxima and exceedances needed m to be much
greater than 122. Consequently, the two-step method was more efficient than the
pairwise likelihood method for ν = 1, but lost its edge for some parameters for
ν = 2.
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6. Data analysis.

6.1. First step—marginal GEV models. Recall that our main interest is to
make inferences about the effect of ENSO on extreme precipitation in Califor-
nia. Let X1(t) be the SOI in year t . We considered site specific GEV models with
SOI in the location parameter:

μ(s, t) = βμ,s,0 + βμ,s,1X1(t),

σ (s, t) = βσ,s,0,(6.1)

ξ(s, t) = βξ,s,0.

This model has 4S parameters, but it does not assume any smooth surface of the
GEV parameters in covariates such as latitude, longitude and elevation, which may
be unrealistic given the complex terrain of California. In fact, in our earlier ex-
ploratory analysis, including all the covariates in smooth GEV parameter surfaces
led to undesired results: the effects of the SOI made little physical sense and the
GEV models did not pass goodness-of-fit tests at many sites.

Model (6.1) was fitted with threshold u(s, t) chosen to be the 98th sample per-
centile of the daily records in block t at site s in the first step of our two-step ap-
proach. The standard errors of the parameter estimates were obtained by the boot-
strap method with 1000 bootstrap samples. To check the adequacy of the marginal
GEV models, a parametric bootstrap based goodness-of-fit test procedure was per-
formed for the annual winter maximum daily precipitation at each site. Out of 36
sites, the p-values of the Kolmogorov–Smirnov test statistics at 35 sites were in-
significant at the 1% level. The choice of 1% level was ad hoc and informal, with
the consideration of multiple tests and possible adjustment to control false discov-
ery rate [e.g., Benjamini and Yekutieli (2001)]. The only site that did not pass the
goodness-of-fit test was removed from the analysis in the sequel.

The pattern of the marginal parameter estimates at 35 sites is presented in Fig-
ure 2. It confirms that there is no obvious smooth surface of these parameters to
be characterized by simple functions of covariates such as latitude, longitude and
elevation. Our interest is the coefficients of SOI in the location parameter. Their es-
timates were negative at all sites, and 22 out of the 35 estimates were significantly
negative at the 5% level. We also investigated the map of the standardized coef-
ficient estimates, estimates divided by their standard errors, in the supplementary
material [Shang, Yan and Zhang (2015)]. The standardized coefficient estimates
are the z-scores under the null hypotheses that the corresponding coefficients are
zero. Again, no obvious smooth spatially varying pattern was present.

6.2. Second step—spatial dependence model. Using the fitted marginal GEV
models from the first step, we transformed the block maxima to the unit Fréchet
scale. An exploratory analysis with the pairwise extremal coefficients of the
transformed data using the Capéraà–Fougères–Genest (CFG) estimator [Capéraà,
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FIG. 2. Marginal parameter estimates at 35 sites. (a) βμ,s,0; (b) βμ,s,1; (c) βσ,s,0; (d) βξ,s,0.

Fougères and Genest (1997), Genest and Segers (2009)] suggested possible
anisotropy and elevation effect in the dependence. We considered both the
Schlather model and the geometric Gaussian model with a climate space trans-
formation to allow anisotropy and elevation effects [Blanchet and Davison (2011),
Cooley, Nychka and Naveau (2007)]. The Smith model was excluded because
event realizations from it are too regular to be realistic for practical usage. Let h

be the trivariate difference vector of longitude, latitude and elevation between two
sites. This vector is transformed into the climate space by V h with

V =
⎛
⎝

cosϕ sinϕ 0
− sinϕ/r cosϕ/r 0

0 0 q

⎞
⎠ , r ∈ (0,1), ϕ ∈ [−π/2, π/2), q ≥ 0,
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where ϕ is a rotation angle measured counterclockwise from the east direction,
r is the ratio of the minor axis to the major axis of the ellipse of the geometric
anisotropy, and q gives a weight to elevation in the squared climate distance. The
distance in the climate space is

√
h�V �V h, which is then used in the correlation

function of the models. For comparison, we also fitted isotropic and geometric
anisotropic models in the two-dimensional space without the climate space, that
is, ϕ = 0, r = 1, and q = 0. Four correlation functions were considered: exponen-
tial, double exponential (also known as Gaussian), Cauchy and Whittle–Matérn
[Banerjee, Carlin and Gelfand (2003), Section 2.1]. For the Cauchy and Whittle–
Matérn correlation, the shape parameter was fixed at 1 since it is difficult to es-
timate. In the geometric Gaussian model, the variation parameter δ2 which con-
trols the upper bound of the extremal coefficient function is not easily identifiable
jointly with the range parameter in the correlation function [Davison, Padoan and
Ribatet (2012)]. We fixed δ2 at 9 as a compromise between reliable simulation
needed for risk analysis and the near-independence in pairwise extremal coeffi-
cient it can provide.

In total, 24 models were fitted and compared with their CLIC value condition-
ing on the marginal GEV models from the first step. Our final model with the low-
est conditional CLIC value (262280.4) is an isotropic geometric Gaussian model
which has an exponential correlation function without elevation effect. The range
parameter is estimated as 4.95, with standard error 0.73. The spatial dependence
decays quickly with distance. The fitted bivariate extremal coefficient for two sites
reaches 1.3 and 1.7 when their distance becomes 19.3 and 149.7 kilometers, re-
spectively. For illustration, with downtown San Francisco as the reference point,
the extremal coefficients are 1.51, 1.57, 1.89 and 1.92, respectively, at San Jose,
Santa Cruz, Santa Barbara and Los Angles. The spatial dependence is quite weak,
giving much room for the two-step approach to improve efficiency compared to
the pairwise likelihood approach as shown in the next subsection.

To check the adequacy of the geometric Gaussian model, we first compared
the madogram-based pairwise extremal coefficients [Cooley, Naveau and Poncet
(2006)] with those predicted from the model. The madogram-based pairwise ex-
tremal coefficients are calculated based on the data in the unit Fréchet scale ob-
tained from step 1, instead of ranks, and, hence, it is possible that some of the
estimates exceed the theoretical upper limit 2. They are plotted against distance
in the supplementary material [Shang, Yan and Zhang (2015)]. The madogram-
based estimators with 100 bins are also shown. The fitted extremal coefficient
curve crosses the scatters in the middle, suggesting no obvious lack of fit for pairs.
To check the fit beyond pairs, we compared the empirical quantiles of the maxima
of subsets of sites with the quantiles implied from the model [Blanchet and Davi-
son (2011), Davison and Gholamrezaee (2012)]. For a subset A of all sites, let
ZA = maxd∈A Zd . We have observations of ZA for n independent years denoted
by zA,1, . . . , zA,n with n = 55. The distribution of these empirical quantiles can
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be approximated from a large number k of simulated realizations from the fitted
model, z∗

A,1,k, . . . , z
∗
A,n,k , k = 1, . . . ,K . The empirical quantiles versus the model-

based quantiles for four subsets of the sites formed geographically based on their
latitudes are plotted in the supplementary material [Shang, Yan and Zhang (2015)].
The pointwise confidence intervals and simultaneous confidence bands were ob-
tained from K = 5000 simulated realizations [Davison and Hinkley (1997), Sec-
tion 4.2.4]. No alarming disagreement between the empirical quantiles and the
model quantiles is observed for any of the subset of sites.

6.3. Risk analysis. For comparison, we also used the pairwise likelihood ap-
proach (M1) based on block maxima only to fit the same model as selected from the
two-step approach (M2) with daily records. Unlike the two-step approach where
the site-specific marginal parameters are estimated separately for each site, the
pairwise likelihood approach needs to estimate all the parameters altogether. Our
profile method updated the marginal parameter estimates one site at a time first
and then updated the dependence parameter; this process was repeated until con-
vergence.

The point estimates from the two approaches are reasonably close. For the
marginal GEV models, the standard errors from M2 are much smaller than those
from M1 for most of the parameter estimates. The box plots of the ratio of the stan-
dard errors of the four parameter estimates across 35 sites are presented in the sup-
plementary material [Shang, Yan and Zhang (2015)]. In particular, the three quan-
tiles of the ratio are 0.51, 0.58 and 0.65 for the SOI coefficient βμ,s,1, and 0.48,
0.53 and 0.61 for the shape parameter βξ,s,0. The reduction in standard errors in
estimating βμ,s,1 leads to increased power in detecting the SOI effect: significance
at 5% was found only at 14 out of 35 sites with M1 (compared to 22 with M2).
The reduction of standard error in estimating βξ,s,0 has important implications on
the accuracy of return level estimation given that the shape parameter controls the
shape of a GEV distribution. As will be shown next, the reduced standard errors in
marginal parameters lead to more efficient inference about marginal risk measures
such as return levels at each individual site. For the dependence model, the range
parameter was estimated as 6.31 with standard error 0.99 from M1, in comparison
to 4.95 with standard error 0.73 from M2. The reduction in the standard error in
the dependence parameter estimate of M2 might be explained by its more efficient
marginal parameter estimates.

In the spatial context, it is of more interest to see how the efficiency gain in both
marginal and dependence parameter estimation affects risk measures of jointly
defined events. We first look at the joint 50-year return level for two sites, as de-
fined in Section 5. Since SOI is a season-specific covariate, we fix the SOI value
at −1, −0.15 (the sample average) and 1 so that the return levels are interpreted
for years with these SOI values separately. For illustration, consider the three sta-
tions near the Sacramento area: Napa (122.25◦W, 38.27◦N), Winters (121.97◦W,
38.52◦N) and Davis (121.78◦W, 38.53◦N); see Figure 1. We generated N = 5000



468 H. SHANG, J. YAN AND X. ZHANG

TABLE 2
Joint 50-year return levels (cm) for three pairs at three different SOI values based on both pairwise

likelihood approach and two-step approach

Pairwise likelihood (M1) Two-step (M2)

Pair 95% CI Width 95% CI Width

SOI = −1
Napa & Winters (10.22, 15.04) 4.82 (10.15, 13.60) 3.46
Napa & Davis (8.62, 12.35) 3.73 (8.52, 10.37) 1.84
Winters & Davis (8.33, 11.42) 3.09 (8.17, 9.84) 1.67

SOI = −0.15
Napa & Winters (9.92, 14.79) 4.87 (9.85, 13.34) 3.49
Napa & Davis (8.18, 11.87) 3.68 (8.30, 10.23) 1.93
Winters & Davis (7.85, 10.83) 2.98 (7.90, 9.59) 1.69

SOI = 1
Napa & Winters (9.34, 14.38) 5.04 (9.45, 13.12) 3.66
Napa & Davis (7.36, 11.14) 3.77 (7.89, 9.92) 2.03
Winters & Davis (7.05, 10.14) 3.09 (7.48, 9.37) 1.89

realizations of the model parameters from the approximate multivariate normal
distribution of the estimator from both M1 and M2. For each realized parameter
vector, the joint 50-year return level was obtained numerically for each pair of the
three sites. Table 2 shows the 95% confidence intervals of the joint 50-year return
levels for the three pairs with the empirical distribution from both M1 and M2 at
the three SOI values. The decreasing trend of the joint return levels as the SOI
value increases is consistent with existing findings [Shang, Yan and Zhang (2011),
Zhang et al. (2010)]. Interestingly, the confidence intervals from M2 are almost
inside those from M1 for all three pairs, with a reduction of 27.3% to 50.7% in
length.

To gain further insights about the efficiency gain in assessing bivariate risk mea-
sures, we investigated the joint sampling distribution of the site-wise maximum
extremal precipitations over every 50 years for all pairs of the three sites. Real-
izations from the distribution can be drawn for the three sites and then used to
assess their joint behavior. The SOI was fixed at the sample average −0.15 for
ease of interpretation. For each of the N = 5000 parameter vectors drawn from
their asymptotic normal distribution, we generated 50 years of data and obtained
the sitewise maxima. On the log scale, Figure 3 shows the empirical contours of
the 5000 draws from the sampling distribution for the three sites with both M1 and
M2. The levels with 50, 75, 90 and 95 percent of coverage are plotted. It is apparent
that the joint sampling distribution is much more compact from M2 than from M1.
Consequently, much tighter approximate confidence regions are obtained with M2
than with M1. Positive dependence between each pair is clearly visible, with es-
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FIG. 3. Contours of the 50-year sample return levels (cm) for three pairs on the log scale. Upper
(a), (b), (c): pairwise likelihood approach using block maxima data (M1); Lower (d), (e), (f): two-step
approach (M2). Left (a), (d): Napa & Winters; Center (b), (e): Napa & Davis; Right (c), (f): Winters &
Davis.

pecially stronger dependence between the last pair (Winters and Davis), which is
explained by their distance.

7. Discussion. In contrast to the pairwise likelihood approach which utilizes
only block maxima, the two-step approach uses more information through daily
records and makes more efficient inferences about the parameters. The consis-
tency in marginal GEV parameter estimation is not affected by possible misspec-
ification of the dependence model. Our simulation study showed appreciable ef-
ficiency gain of the two-step approach in comparison to the pairwise likelihood
approach. The two-step approach is simple to implement with existing software,
intuitive for practitioners, and avoids defining multivariate thresholds [Bacro and
Gaetan (2014), Huser and Davison (2014), Wadsworth and Tawn (2012)] or mul-
tivariate Pareto process modeling [Aulbach and Falk (2012)]. A caveat is that, as
with the POT approach or the point process approach, not only the block maxima
but also the exceedances over the threshold need to have distributions that are well
approximated by the corresponding limiting distribution; not meeting the require-
ment may lead to bias as illustrated in our simulation study.
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In application to maximum daily winter precipitation in California, large scale
climate variation ENSO was found to have significant negative impact on the lo-
cation parameter of the marginal GEV distribution at 22 out of 35 sites with the
two-step approach (compared to 14 with the pairwise likelihood approach). Risk
analysis with the two-step approach gives much tighter confidence intervals and
confidence regions for joint risk measures than the pairwise likelihood approach.

Several methodological aspects merit further investigation. In the first step, we
did not address threshold selection, an important and still active problem even for
univariate extreme value analysis [e.g., Guillou and Hall (2001), Thompson et al.
(2009)]. Recent research has shown a promising approach with quantile regression
for nonstationarity with covariate information [Northrop and Jonathan (2011)]. Al-
ternatively, one may use the r largest order statistic to construct the marginal like-
lihood [e.g., Coles (2001)]. Compared to the bivariate threshold-based approaches,
the two-step approach may potentially be less efficient if the distributional approx-
imation over the bivariate threshold is accurate, but its marginal inference is ro-
bust to dependence structure misspecification. A study on the robustness-efficiency
trade-off would be interesting.

Acknowledgments. We thank the reviewers and the Associate Editor for their
constructive comments.

SUPPLEMENTARY MATERIAL

Additional simulation results and data analysis (DOI: 10.1214/14-
AOAS804SUPP; .pdf). We provide a sandwich variance estimator, additional ta-
bles summarizing the simulation study and additional figures in analyzing the
California precipitation data.
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