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Human neurodevelopment is a highly regulated biological process. In
this article, we study the dynamic changes of neurodevelopment through the
analysis of human brain microarray data, sampled from 16 brain regions in
15 time periods of neurodevelopment. We develop a two-step inferential pro-
cedure to identify expressed and unexpressed genes and to detect differen-
tially expressed genes between adjacent time periods. Markov Random Field
(MRF) models are used to efficiently utilize the information embedded in
brain region similarity and temporal dependency in our approach. We de-
velop and implement a Monte Carlo expectation–maximization (MCEM) al-
gorithm to estimate the model parameters. Simulation studies suggest that our
approach achieves lower misclassification error and potential gain in power
compared with models not incorporating spatial similarity and temporal de-
pendency.

1. Introduction. Human neurodevelopment is a dynamic and highly regu-
lated biological process. Abnormalities in neurodevelopment may lead to psy-
chiatric and neurological disorders, such as Autism Spectrum Disorders (ASD)
[Geschwind and Levitt (2007), Sestan et al. (2012), Walsh, Morrow and Ruben-
stein (2008)]. The statistical methodology developed in this paper was motivated
by our interest in studying human brain development using a microarray gene ex-
pression data set, which was collected from 1340 tissue samples of 57 developing
and adult post-mortem brains (including 39 with both hemispheres) [Johnson et al.
(2009), Kang et al. (2011)]. These 57 post-mortem brains spanned from embryonic
development to late adulthood. A 15-period system, demonstrated in Table 1, was
defined to represent distinct stages of brain development [Johnson et al. (2009),
Kang et al. (2011)]. Except for periods 1 and 2, tissue samples from 16 brain
regions were collected from both hemispheres in each brain, including the cere-
bellar cortex (CBC), mediodorsal nucleus of the thalamus (MD), striatum (STR),
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TABLE 1
The 15-period system in Kang et al. (2011). M, postnatal months;

PCW, post-conceptional weeks; Y, postnatal years

Period Description Age

1 Embryonic 4 PCW ≤ Age < 8 PCW
2 Early fetal 8 PCW ≤ Age < 10 PCW
3 Early fetal 10 PCW ≤ Age < 13 PCW
4 Early mid-fetal 13 PCW ≤ Age < 16 PCW
5 Early mid-fetal 16 PCW ≤ Age < 19 PCW
6 Late mid-fetal 19 PCW ≤ Age < 24 PCW
7 Late fetal 24 PCW ≤ Age < 38 PCW
8 Neonatal and early infancy 0 M (birth) ≤ Age < 6 M
9 Late infancy 6 M ≤ Age < 12 M

10 Early childhood 1 Y ≤ Age < 6 Y
11 Middle and late childhood 6 Y ≤ Age < 12 Y
12 Adolescence 12 Y ≤ Age < 20 Y
13 Young adulthood 20 Y ≤ Age < 40 Y
14 Middle adulthood 40 Y ≤ Age < 60 Y
15 Late adulthood Age ≥ 60 Y

amygdala (AMY), hippocampus (HIP) and 11 areas of the neocortex, including the
orbital prefrontal cortex (OFC), dorsolateral prefrontal cortex (DFC), ventrolat-
eral prefrontal cortex (VFC), medial prefrontal cortex (MFC), primary motor cor-
tex (M1C), primary somatosensory cortex (S1C), posterior inferior parietal cortex
(IPC), primary auditory cortex (A1C), posterior superior temporal cortex (STC),
inferior temporal cortex (ITC) and the primary visual cortex (V1C) [Johnson et al.
(2009), Kang et al. (2011)]. Details on the brain regions are described in the sup-
plementary material Section 1 [Lin et al. (2015)].

The goal of our analysis is to characterize human neurodevelopment through
the dynamics of gene expression, such as the identification of expressed and un-
expressed genes, and differentially expressed (DE) genes over time in each brain
region. The unique challenge presented for statistical analysis of this data set is the
appropriate modeling and analysis of the spatial–temporal structure. For gene ex-
pression data with only temporal structure (e.g., time course gene expression data),
various methods have been proposed to model the temporal dependency to better
identify DE genes. However, as far as we know, none of the existing methods uti-
lizes the information embedded in the spatial similarity between brain regions, as
indicated by the high correlation in gene expression levels between brain regions
in the same period [supplementary material Section 2, Lin et al. (2015) and Kang
et al. (2011)]. For time course gene expression data, the existing methods can be
classified into two broad categories: (1) methods that identify DE genes between
multiple biological conditions [Hong and Li (2006), Storey et al. (2005), Tai and
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Speed (2006), Yuan and Kendziorski (2006)]; and (2) methods that identify DE
genes over time in one biological condition [Liu and Yang (2009), Storey et al.
(2005), Tai and Speed (2006), Wu et al. (2007)]. Statistical models that have been
proposed to incorporate the temporal structure include Hidden Markov Models
[Wu et al. (2007), Yuan and Kendziorski (2006)], functional models using basis
function expansions [Hong and Li (2006), Storey et al. (2005), Wu et al. (2007)],
function principal component analysis [Liu and Yang (2009)] and multivariate em-
pirical Bayes models [Tai and Speed (2006)].

To efficiently capitalize on brain region similarity and temporal dependency,
we propose a two-step Markov Random Field (MRF)-based approach to answer
the following two biological questions: 1. Which genes are expressed/unexpressed
in each period and in each brain region? 2. Which genes are differentially ex-
pressed over time in each brain region? We note that MRF models have been used
to model dependency in genomics data, such as neighboring genes defined by bi-
ological pathways [Chen, Cho and Zhao (2011), Li, Wei and Li (2010), Wei and
Li (2007, 2008)] and marker dependencies defined by linkage disequilibrium [Li,
Wei and Maris (2010)]. Across all the brain regions and time periods, the his-
togram of the observed gene expression levels has a bimodal distribution, where
the two components likely represent expressed and unexpressed genes [supple-
mentary material Section 4, Lin et al. (2015) and Kang et al. (2011)]. In this paper,
we first use a Gaussian mixture model-based approach to identify the unexpressed
and expressed genes. The model fit and the robustness of the Gaussian mixture
model are discussed in the supplementary material Section 4 [Lin et al. (2015)].
We note that an “unexpressed” gene does not necessarily suggest that there is no
mRNA molecules of that gene in the cell, but rather the gene’s expression level
is very low and the observed variation in the expression values may be mostly
due to noise in the microarray experiment. In the second step, our methodology
utilizes the local false discovery rate (f.d.r.) framework [Efron (2004)] to identify
DE genes between adjacent time periods. We propose an efficient Monte Carlo
expectation–maximization (MCEM) algorithm [Wei and Tanner (1990)] to esti-
mate the model parameters and a Gibbs sampler to estimate the posterior proba-
bilities.

The key feature of our approach is to simultaneously consider spatial similarity
and temporal dependency of gene expression levels to better extract biologically
meaningful results from the data. We introduce the MRF model in Section 2 and
present the Monte Carlo expectation–maximization (MCEM) algorithm for statis-
tical inference in Section 3. We also present the posterior probability estimation
and the FDR controlling procedure in Section 3. In Section 4 we apply our method
to analyze the human brain microarray data reported in Kang et al. (2011). Results
from simulation studies are summarized in Section 5. We conclude the paper with
a brief discussion in Section 6.
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2. Statistical models and methods.

2.1. Biological question 1: Identify expressed and unexpressed genes.

2.1.1. Gaussian mixture model for microarray data. In our human brain mi-
croarray data, expression levels were measured for G = 17,568 genes on the
Affymetrix GeneChip Human Exon 1.0 ST Array platform. For quality control,
RMA background correction, quantile normalization, mean probe set summariza-
tion and log2-transformation were performed [Kang et al. (2011)]. Details for
the quality control procedures are described in the supplementary material Sec-
tion 3 [Lin et al. (2015)]. The number of brains that were collected varies across
time periods and for some brains, tissue samples are missing for certain brain
regions. So the number of samples varies among brain regions and time peri-
ods. We treated samples from the same brain region and time period as biolog-
ical replicates. Periods 1 and 2 correspond to embryonic and early fetal devel-
opment, when most of the 16 brain regions sampled in future periods have not
differentiated (i.e., most of the 16 brain regions are missing data in periods 1
and 2). Therefore, samples in periods 1 and 2 are excluded in our analysis. In
total, we consider B = 16 brain regions sampled in T = 13 periods of brain de-
velopment. Let nbt denote the number of replicates for brain region b in period
t , Nb = (nb1, . . . , nbt , . . . , nbT )′ is the column vector for the number of replicates
for brain region b, and N = (N1, . . . ,Nb, . . . ,NB) is the matrix summarizing the
number of replicates across brain regions and periods. The entries in N range from
1 to 16 and the median is 5. Let ybgtk denote the observed gene expression value
for gene g in the kth replicate of samples in brain region b and period t , and let
ybgt = (ybgt1, . . . , ybgtnbt

) denote the expression values for all the replicates. We
assume that ybgtk , for k = 1, . . . , nbt , follows the same normal distribution with
mean μbgt and standard deviation σ 2

0 :

ybgtk ∼ N
(
μbgt , σ

2
0
)
.

Let xbgt be the binary latent state representing whether gene g is expressed in brain
region b and period t , that is, xbgt = 1 if the gene is expressed and 0 otherwise.
Conditioning on xbgt , we assume that μbgt follows a Gaussian distribution:

μbgt |xbgt = 0 ∼ N
(
μ1b, σ

2
1b

)
,

μbgt |xbgt = 1 ∼ N
(
μ2b, σ

2
2b

)
.

Marginally, μbgt follows a Gaussian mixture distribution. We assume that the mean
and the variance for the mixture components are brain region specific. Denote by
μ1,μ2,σ 1,σ 2 the vectors of parameters for all brain regions. It is easy to see that
the distribution of ybgtk conditioning on xbgt has the following form:

ybgtk|xbgt = 0 ∼N
(
μ1b, σ

2
1b + σ 2

0
)
,

ybgtk|xbgt = 1 ∼N
(
μ2b, σ

2
2b + σ 2

0
)
.
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Given the latent state array X, conditional independence is assumed:

f (Y|X) =
B∏

b=1

G∏
g=1

T∏
t=1

f (ybgt |xbgt ),

where

f (ybgt |xbgt ) =
nbt∏
k=1

f (ybgtk|xbgt ).

2.1.2. A MRF model for p(X). One key component in the above model and
the inferential objective is the latent state array X, which is unknown to us. Now
we discuss how to specify the prior on X, denoted by p(X), through a MRF model
that takes into account both temporal dependency and spatial similarity. For each
gene g, we construct an undirected graph Gg = {Vg,Eg}, where Vg = {xbgt :b =
1, . . . ,B, t = 1, . . . , T } is the set of nodes and Eg is the set of edges. Eg can be
divided into two subsets, Eg1 and Eg2, where Eg1 = {(xbgt , xb′gt ′) :b �= b′ and t =
t ′} and Eg2 = {(xbgt , xb′gt ′) :b = b′ and |t − t ′| = 1}. Eg1 contains the edges cap-
turing spatial similarity between brain regions and Eg2 contains the edges cap-
turing temporal dependency between adjacent periods. For the joint distribution
of p(X), we construct a pairwise interaction MRF model [Besag (1986)] with the
following form:

p(X|�) ∝
G∏

g=1

exp
{
γ0

∑
Vg

I0(xbgt ) + γ1
∑
Vg

I1(xbgt )

+ β1
∑
Eg1

[
I0(xbgt )I0(xb′gt ′) + I1(xbgt )I1(xb′gt ′)

]
(1)

+ β2
∑
Eg2

[
I0(xbgt )I0(xb′gt ′) + I1(xbgt )I1(xb′gt ′)

]}
,

where I0(·) and I1(·) are the indicator functions. Letting γ = γ1 − γ0, the condi-
tional probability can be derived (see Appendix for the details of derivation):

p(xbgt |X/xbgt ;�) = exp{xbgtF (xbgt ,�)}
1 + exp{F(xbgt ,�)} ,(2)

where

F(xbgt ,�) = γ + β1
∑
b′ �=b

(2xb′gt − 1)

+ β2
{
It �=1[2xbg(t−1) − 1] + It �=T [2xbg(t+1) − 1]},

where “/” means other than; � = (γ,β1, β2) and γ,β1, β2 ∈ R; β1 is the parameter
capturing the spatial similarity and β2 is the parameter capturing the temporal
dependency.
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2.2. Biological question 2: Identify DE genes over time.

2.2.1. A latent state model for DE. For DE analysis, we first transform the ob-
served data into an array where the entries are then used in the follow-up analysis.
This is accomplished by performing t-tests between adjacent periods and trans-
forming the t-statistics into z-scores. Let ybg(t−1) and ybgt denote the vectors of
expression values for gene g in region b and in periods t − 1 and t , respectively.
The two-sample t-statistic is obtained by

tbg(t−1) = ȳbgt − ȳbg(t−1)

s
,

where s is an estimate of the standard error for ȳbgt − ȳbg(t−1). The test statistic
tbg(t−1) is then transformed into zbg(t−1):

zbg(t−1) = �−1(
Fnbt+nb(t−1)−2(tbg(t−1))

)
,

where nb(t−1) and nbt are the numbers of replicates in ybg(t−1) and ybgt ; �

and Fnbt+nb(t−1)−2 are the c.d.f.s for standard normal and t distribution with
nbt + nb(t−1) − 2 degrees of freedom. As a result, the gene expression data are
represented by a B × G × (T − 1) z-score array Z. The entry zbgt represents the
evidence of DE between periods t and t + 1 for gene g in brain region b. Some
entries in the array are not assigned values because of the presence of unexpressed
genes. The variations in the expression values of unexpressed genes may be mostly
caused by noise in the microarray experiments and we do not want to include that
noise in identifying DE genes; the transitions from unexpressed to expressed and
vice versa are already captured in biological question 1. Therefore, no t-test is
performed if the gene is unexpressed in at least one of the adjacent periods. Let
sbgt denote the binary latent state representing whether gene g is differentially
expressed in brain region b between periods t and t + 1, which is the objective
of our inference. Let S be the latent state array of dimensions B × G × (T − 1).
Conditioning on sbgt , we assume that zbgt follows a mixture distribution:

f (zbgt |sbgt ) = (1 − sbgt )f0(zbgt ) + sbgtf1(zbgt ),

where f0(z) is the null density and f1(z) is the nonnull density. We assume that the
null density follows a standard normal N (0,1) distribution. We adopt the nonpara-
metric empirical Bayesian framework for DE [Efron (2004)] by fitting the nonnull
density with a natural spline using the R package locfdr. Given S, conditional in-
dependence is assumed:

f (Z|S) =
B∏

b=1

G∏
g=1

T −1∏
t=1

f (zbgt |sbgt ).
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2.2.2. A MRF model for p(S). Next, we present a MRF model for the prior
distribution p(S), taking into account both temporal dependency and spatial sim-
ilarity. We separate the 16 brain regions into two groups: 11 neocortex regions,
represented by Bc, and 5 nonneocortex regions, represented by Bn. The joint prob-
ability is similar to (1), except that different spatial parameters are assumed for the
two groups. The conditional probability can be calculated and has the following
form:

p(sbgt |S/sbgt ;�DE) = exp{sbgtFDE(sbgt ,�DE)}
1 + exp{FDE(sbgt ,�DE)} ,(3)

if b ∈ Bc,

FDE(sbgt ,�DE) = γDE + βcc
∑

b′∈Bc/b

(2sb′gt − 1) + βcn
∑

b′∈Bn

(2sb′gt − 1)

+ βt

{
It �=1[2sbg(t−1) − 1] + It �=T [2sbg(t+1) − 1]},

else if b ∈ Bn,

FDE(sbgt ,�DE) = γDE + βnn
∑

b′∈Bn/b

(2sb′gt − 1) + βnc
∑

b′∈Bc

(2sb′gt − 1)

+ βt

{
It �=1[2sbg(t−1) − 1] + It �=T [2sbg(t+1) − 1]},

where �DE = (βcc, βnn, βcn, βnc), βcc is the between neocortex coefficient, βnn is
the between nonneocortex coefficient, βcn is the neocortex to nonneocortex coef-
ficient, and βnc is the nonneocortex to neocortex coefficient. For symmetry, we
assume that βcn = βnc. In the MRF model in Section 2.1.2, we did not separate the
brain regions into two groups because the latent states for all brain regions were
quite similar, which will be shown in Section 4.

3. Parameter and posterior probability estimation.

3.1. Parameter estimation for biological question 1: Identify expressed and un-
expressed genes. In the model, the MRF parameters � = (γ,β1, β2) and the
Gaussian mixture model parameters � = (μ1,σ 1,μ2,σ 2) need to be estimated.
Given the latent state X, both � and � can be estimated by the maximum like-
lihood estimates (MLE). However, the latent state is unobserved and needs to be
estimated as well. Although the expectation–maximization (EM) algorithm is gen-
erally implemented for missing data estimation, it is not applicable to our model as
the expectation term is not tractable. Therefore, we propose the following Monte
Carlo EM Algorithm [Wei and Tanner (1990)] to estimate � and �:

1. Estimate σ0 by the unbiased estimator:

σ̂ 2
0 = 1

G × ∑B
b=1

∑T
t=1(nbt − 1)

G∑
g=1

B∑
b=1

T∑
t=1

nbt∑
k=1

(ybgtk − ȳbgt )
2.
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2. Obtain the initial estimates X̂ and �̂ by the simple Gaussian mixture model,
without considering spatial and temporal dependency.

3. Because there is no explicit MLE for �, an initial estimate �̂ is chosen which
maximizes the following pseudolikelihood function l(X̂;�) [Besag (1974)]:

l(X̂;�) =
B∏

b=1

G∏
g=1

T∏
t=1

p(x̂bgt |X̂/x̂bgt ;�),

where p(x̂bgt |X̂/x̂bgt ;�) is as defined in (2).
4. Let � = (�,�). The expected complete data log-likelihood in the EM al-

gorithm is approximated by the Monte Carlo sum [Wei and Tanner (1990)]:

Qm

(
�|�̂(r)) = 1

m

m∑
l=1

lnf
(
Y,X(r)

l |�)
,(4)

where X(r)
1 , . . . ,X(r)

m are obtained by Gibbs sampling. From X(r)
l to X(r)

(l+1), all

entries in X(r)
l are updated, and they are updated sequentially by

p
(
xbgt |Y,X/xbgt ; �̂(r)) ∝ p

(
xbgt |X/xbgt ; �̂(r))

f
(
ybgt |xbgt ; �̂(r))

.(5)

5. Update � by �̂
(r+1)

, which maximizes (4):

�̂
(r+1) = arg max

�
Qm

(
�|�̂(r))

.

Same as in step 3, we replace the likelihood by the pseudolikelihood function in

Qm(�|�̂(r)
). The terms that contain � and � are separable, therefore, they can

be optimized separately.
6. Repeat steps 4 and 5 until convergence.

3.2. Parameter estimation for biological question 2: Identify DE genes over
time. In the model, only the parameters � in the MRF prior need to be updated
iteratively. The algorithm shares some similarity with that in the previous section:

1. Pool the z-scores in Z and estimate f1 by the locfdr procedure.
2. Obtain an initial estimate Ŝ by the simple mixture model, without consider-

ing spatial and temporal dependency.
3. Obtain an initial estimate �̂DE, which maximizes the pseudolikelihood func-

tion:

l(Ŝ;�DE) =
B∏

b=1

G∏
g=1

T −1∏
t=1

p(ŝbgt |Ŝ/ŝbgt ;�DE),

where p(ŝbgt |Ŝ/ŝbgt ;�DE) is as defined in (3).
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4. Approximate the expected complete data log-likelihood by the Monte Carlo
sum:

Qm

(
�DE|�̂(r)

DE
) = 1

m

m∑
l=1

lnf
(
Z,S(r)

l |�DE
)
,(6)

where S(r)
1 , . . . ,S(r)

m are obtained by Gibbs sampling. From S(r)
l to S(r)

(l+1), all en-

tries in S(r)
l are updated, and they are updated sequentially by

p
(
sbgt |Z,S/sbgt ; �̂(r)

DE
) ∝ p

(
sbgt |S/sbgt ; �̂(r)

DE
)
f (zbgt |sbgt ).(7)

5. Update �DE by �̂
(r+1)

DE , which maximizes (6).
6. Repeat steps 4 and 5 until convergence.

3.3. Posterior probability estimation and FDR controlling procedure. To ac-
quire an estimate of the posterior probability, we implement a separate Gibbs sam-
pler and keep the model parameters fixed at the estimated values by the MCEM
algorithm. The latent states in biological questions 1 and 2 are updated sequentially
according to (5) and (7).

For the inference of expressed/unexpressed genes, we use 0.5 as the cutoff
for the posterior probability. For the inference of DE genes, we adapt the pos-
terior probability-based definition of FDR [Li, Wei and Maris (2010), Newton
et al. (2001)]. The posterior local f.d.r. qbgt = p(sbgt = 0|Z) is estimated by the
Gibbs sampler. Let q(s) be the sorted values of qbgt in ascending order. Find k =
max{t : 1

t

∑t
s=1 q(s) ≤ α} and reject all the null hypotheses H(s), for s = 1, . . . , k.

In the analysis of human brain gene expression data, we chose α = 0.05.

4. Application to the human brain microarray data.

4.1. Identify expressed and unexpressed genes. We first applied the MRF
model to infer whether a gene is expressed or not in a certain brain region and
time period. In the parameter estimation, we first ran 20 iterations of MCEM by
a Gibbs sampler with 500/1500 (1500 iterations in total and 500 as burn-in), then
20 iterations with 1000/6000 and, finally, 20 iterations with 1000/10,000. We
gradually increased the number of iterations in the Gibbs sampler to make the es-
timate of the parameters more stable. The posterior probability was then estimated
by a Gibbs sampler with 10,000 iterations and 1000 as burn-in. A diagnosis for
the number of iterations is presented in the supplementary material Section 5 [Lin
et al. (2015)].

The estimated parameters for the Gaussian mixture model are shown in Table 2.
The estimated parameters for the MRF prior were γ = 0.30, β1 = 0.22 and β2 =
6.44. The large coefficient in β2 indicates strong temporal dependency. Compared
with the total number of genes (17,568), only a small number of genes changed
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TABLE 2
The estimated parameters for the Gaussian mixture model

Region μ1 μ2 σ1 σ2

MFC 4.58 7.82 0.59 1.57
OFC 4.57 7.83 0.59 1.58
VFC 4.56 7.84 0.58 1.59
DFC 4.58 7.83 0.58 1.58
STC 4.62 7.8 0.58 1.56
ITC 4.61 7.81 0.58 1.57
A1C 4.6 7.82 0.58 1.57
IPC 4.61 7.81 0.58 1.57
S1C 4.61 7.82 0.58 1.58
M1C 4.60 7.82 0.58 1.58
V1C 4.63 7.78 0.59 1.55
AMY 4.65 7.76 0.6 1.52
HIP 4.64 7.77 0.61 1.54
STR 4.65 7.78 0.62 1.55
MD 4.62 7.81 0.63 1.59
CBC 4.61 7.76 0.65 1.58

their latent states between adjacent periods (Figure 1). The table for the numbers
are presented in supplementary material Section 8 [Lin et al. (2015)]. For all brain
regions, a general trend can be observed: the number of genes that changed their
latent states first increased, peaked in periods 6 to 7, the number in periods 7 to 8

FIG. 1. The number of genes that changed from expressed to unexpressed and vice versa in adjacent
periods. Each line represents a brain region.
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TABLE 3
Summary of the latent states by pooling
brain regions. “0” represents the total

count of genes that were unexpressed in
all brain regions and “16” represents the
total count of genes that were expressed

in all brain regions

0 89,347
1 2560
2 541
3 218
4 95
5 62
6 31
7 52
8 31
9 26

10 19
11 46
12 42
13 94
14 99
15 297
16 134,824

was also large, then gradually decreased, starting from periods 12 to 13, fewer than
15 genes changed their latent states. Period 8 corresponds to birth to 6 postnatal
months. The observation that the changes in gene expression peaked from periods
6 to 8 suggests that robust changes in gene expression occurred close to birth.

Moreover, we observed that the latent states for the same gene in all brain re-
gions tended to agree with each other. These are summarized in Table 3, where
we considered all genes by time combinations, that is, G × T = 17,568 × 13 =
228,384, and counted the number of genes that were expressed in a given num-
ber of brain regions. Although the MRF prior encourages the agreement of latent
states, the observation is unlikely driven by the model, as we observed a similar
trend when the spatial coefficient β1 was fixed to be 0 (supplementary material
Section 8 [Lin et al. (2015)]).

Genes that changed states over time may be of biological interest for the study of
brain development. We conducted Gene Ontology (GO) enrichment analysis using
DAVID, which takes a list of genes as input and outputs the enriched Gene Ontol-
ogy (GO) terms [Huang et al. (2008), Sherman et al. (2009)]. A GO term represents
the functional annotation of a list of genes and may belong to any of the following
three categories: (a) genes that participate in the same biological process, (b) genes
that have the same molecular function, and (c) genes that are located in the same
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cellular component. Only GO terms in categories (a) and (b) were included in our
analysis, as genes located in the same cellular component do not necessarily share
similar functions. We observed enrichment of GO terms only from periods 6 to 7
(0.05 threshold for Bonferroni-adjusted p-value). From periods 6 to 7, genes that
switched from expressed to unexpressed in all brain regions were enriched for
“DNA binding” (Bonferroni adjusted p-value = 1.6 × 10−9), “regulation of tran-
scription, DNA-dependent” (Bonferroni adjusted p-value = 2.5×10−4) and “zinc
ion binding” (Bonferroni adjusted p-value = 9.5 × 10−5); there were no enriched
GO terms for genes that switched from unexpressed to expressed. The enrich-
ment of transcription regulation and DNA binding proteins (including zinc-finger
proteins coordinated by the binding of zinc ions) is consistent with our previous
observation that robust changes in transcription occurred close to birth. Changes
in transcriptional regulation may also lead to the peak of differentially expressed
genes (see Section 4.2). Details for the GO enrichment analysis are presented in
the supplementary material Section 6 [Lin et al. (2015)].

4.2. Identify DE genes over time. After excluding genes that were unex-
pressed in all brain regions and all periods, 11,370 genes remained. We then ap-
plied the MRF model to identify DE genes between adjacent periods. The settings
for the MCEM algorithm and the Gibbs sampler were the same as that in the pre-
vious section.

The estimated MRF parameters were γDE = −0.10, βcc = 0.32, βnn = 0.53,
βcn = 0.06, and βt = 0.15. The temporal coefficient βt was much smaller com-
pared with that in the previous section (where β2 = 6.44), which suggests lower
temporal dependency. The neocortex to nonneocortex coefficient βcn was much
smaller than the neocortex to neocortex coefficient βcc and the nonneocortex to
nonneocortex coefficient βnn, which indicates the group difference between neo-
cortex and nonneocortex regions.

When no spatial and temporal dependency is assumed, the model reduces to a
simple empirical Bayesian (EB) model. Based on the posterior FDR control proce-
dure described in Section 3, the thresholds in the MRF and EB models were 0.26
and 0.12, respectively. The numbers of genes identified as DE in the two models
were 356,207 (MRF) and 77,330 (EB), with 74,228 (96%) overlap. The higher
threshold led to more genes identified as DE in the MRF model. The numbers of
DE genes identified are presented in Figure 2, where each line represents a brain
region. The table of the exact numbers is presented in the supplementary material
Section 9 [Lin et al. (2015)]. For the number of DE genes, the trend over time was
slightly different from that in the previous section. In addition to the peak close
to birth, there was another peak that spanned from early childhood (period 10) to
adolescence (period 12). The peak was less obvious in the 5 nonneocortex regions
(AMY, HIP, STR, MD and CBC). During these periods, motor skills, social skills,
emotional skills and cognitive skills are rapidly developed. The second peak may
correspond to the development of these essential skills. Genes that were DE in the
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FIG. 2. The number of DE genes identified in each time window of adjacent periods. Each line
represents a brain region.

second peak may be of interest to researchers studying these behaviors. Note that
there was a slight decrease in DE genes in periods 5–6 compared with that in pe-
riods 4–5. The decrease was most obvious in brain region STR. Further biological
studies are needed to understand the trend. We randomly split the data into two
subsets and implemented the algorithm separately for each subset. Compared with
the EB model, the genes identified as DE by the MRF model were more likely to
overlap: 56.2% vs. 12.4% (supplementary material Section 9 [Lin et al. (2015)]).
The information for the direction of changes in gene expression was not utilized
in the model. However, we observed that DE genes in all neocortex regions tended
to have the same direction of changes (Table 4). Therefore, the MRF model is able
to detect consistent changes in gene expression among the brain regions, which
may be missed by other approaches not considering temporal and spatial similar-
ity.

Autism Spectrum Disorders (ASD) are a group of syndromes characterized by
fundamental impairments in social reciprocity and language development accom-
panied by highly restrictive interests and/or repetitive behaviors [American Psychi-
atric Association (2000)]. By exome sequencing, loss of function (LoF) mutations
with large biological effects have been shown to affect ASD risk [Iossifov et al.
(2012), Kong et al. (2012), Neale et al. (2012), O’Roak et al. (2011, 2012), Sanders
et al. (2012)]. A set of nine high-confidence ASD risk genes have been identified
recently: ANK2, CHD8, CUL3, DYRK1A, GRIN2B, KATNAL2, POGZ, SCN2A,
TBR1 [Willsey et al. (2013)]. These nine genes carry LoF mutations in ASD pa-
tients. Details for the genes are described in the supplementary material Section 7



442 Z. LIN ET AL.

TABLE 4
Summary for the direction of changes in gene expression by pooling neocortex regions. Each row

represents a time window. The “0” column represents the counts of genes that were down-regulated
in all neocortex regions and the “11” column represents the counts of genes that were up-regulated

in all neocortex regions

0 1 2 3 4 5 6 7 8 9 10 11

Periods 3–4 163 5 1 0 0 0 0 0 0 0 1 47
Periods 4–5 1039 31 3 3 0 0 1 3 0 4 18 436
Periods 5–6 539 30 3 1 1 0 1 0 0 2 20 417
Periods 6–7 3475 28 3 2 1 1 2 2 0 2 29 1238
Periods 7–8 1014 14 1 0 0 0 0 0 0 1 3 1640
Periods 8–9 387 5 0 0 0 0 0 0 0 0 1 146
Periods 9–10 1034 1 0 0 0 0 0 0 0 1 1 351
Periods 10–11 342 2 0 0 0 0 0 0 0 0 3 1124
Periods 11–12 915 9 0 0 0 0 0 0 0 0 1 485
Periods 12–13 450 0 0 0 0 0 0 0 0 0 1 204
Periods 13–14 263 5 0 0 0 0 0 0 0 0 2 39
Periods 14–15 107 22 0 0 0 0 0 0 0 0 5 149

[Lin et al. (2015)]. Next we analyzed the nine ASD risk genes in the human brain
gene expression data set. Among the nine genes, KATNAL2 and CHD8 were unex-
pressed. The other seven genes were expressed in all brain regions and all periods.
Gene expression study on postmortem autistic brains and structural magnetic res-
onance imaging studies have highlighted the frontal cortex as pathological in ASD
patients [Amaral, Schumann and Nordahl (2008), Voineagu et al. (2011)]. In the
brain gene expression data, five regions were sampled in the frontal cortex: OFC,
DFC, VFC, MFC and M1C. The gene expression curves for TBR1 and CHD8 are
shown in Figure 3. The five frontal cortex regions shared similar dynamics for the
two genes. TBR1 was differentially expressed in periods 4–5 and 6–7, while CHD8
remained unexpressed. We performed a binomial test to see whether the ASD gene
set was enriched for DE genes, compared with the overall distribution (Table 5).
In the binomial test, a gene was counted as DE only if it was DE in all five frontal
cortex regions. We observed an increased fold change of DE genes in the ASD
gene set in periods 4–5, 5–6, 6–7, 9–10 and 10–11. It is interesting to note the gap
that spanned periods 7 to 9, when the ASD genes tended to be equally expressed.
For periods 4–5 and 9–10, the enrichment was significant (<0.05). Period 10 cor-
responds to early childhood (1 ≤ Age ≤ 6), when social, emotional and cognitive
skills are observed [Kang et al. (2011)]. The most obvious signs of autism tend to
emerge between 2 and 3 years of age. In periods 9–10, there were four DE genes:
SCN2A, CUL3, ANK2, GRIN2B. These four genes are of potential interest, as a
malfunction of these genes in ASD patients may directly affect the development
of social and cognitive skills in early childhood.
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FIG. 3. The dynamics of gene expression for TBR1 and CHD8 in frontal cortex regions. In periods
4–5 and 6–7, TBR1 was differentially expressed in all frontal cortex regions, as indicated by the
arrows in the figure.

5. Simulation studies.

5.1. Identify expressed and unexpressed genes. We conducted simulation
studies to evaluate the performance of our proposed MRF model. The expression
values for 100 genes in 16 brain regions and 13 periods were simulated. The num-
ber of replicates was set to be 3. The latent state array was first simulated and we
considered two simulation settings:

Simulation setting 1. The latent state array was simulated by Gibbs sampling.
The sampler started from a random array with equal probability of being expressed
or unexpressed. The latent states were updated sequentially by (2) and the MRF
parameters were set to γ = 0.08, β1 = 0.20 and β2 = 1.5. We conducted three
rounds of Gibbs sampling to obtain the latent state array X.
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TABLE 5
Enrichment analysis of DE genes in the ASD gene set

# of DE # of DE Fold change p-value
(expected) (ASD)

Periods 3–4 0.3 0 0 0.62
Periods 4–5 1.6 4 2.5 0.03
Periods 5–6 1.2 3 2.5 0.06
Periods 6–7 3.7 6 1.6 0.05
Periods 7–8 2.1 0 0 0.96
Periods 8–9 0.4 0 0 0.67
Periods 9–10 1.0 4 3.9 0.006
Periods 10–11 1.1 2 1.8 0.19
Periods 11–12 1.1 1 0.9 0.50
Periods 12–13 0.6 0 0 0.72
Periods 13–14 0.3 0 0 0.64
Periods 14–15 0.2 0 0 0.60

Simulation setting 2. In period 1, all genes had equal probability of being un-
expressed/expressed. The latent states evolved over time by a Hidden Markov
Model with 0.1 transition probability. The latent states for the 16 brain regions
were initially set to be the same. Then we let different proportions (0.1,0.2,0.5)

of the latent states flip randomly.
The gene expression levels were simulated based on the latent states. The mean

gene expression array μ was generated from X by a Gaussian mixture model,
where μ1 = 4.5, σ1 = 0.75, μ2 = (5,5.5,6,6.5,7,7.5,8) and σ2 = 1.5. We varied
μ2 and kept the other parameters unchanged to test the model in different scenar-
ios. Parameters were set to be the same for all brain regions. The gene expression
levels Y were then simulated from a normal distribution, with mean μ and variance
σ 2

0 = 0.25. The MCEM algorithm and the Gibbs sampler were implemented the
same as in the previous sections. A comparison of misclassification rates was made
between the MRF model and the simple Gaussian mixture model with no tempo-
ral and spatial dependency assumed (Table 6). For all simulation settings, the MRF
model achieved significant improvement in misclassification rates compared with
the simple Gaussian mixture model.

5.2. Identify DE genes over time. In the simulation study, data were generated
for 100 genes, 16 brain regions and 12 periods. We considered three simulation
settings:

Simulation setting 1. The latent state array S was updated sequentially by (7)
and the MRF parameters were set to γDE = −0.10, βcc = 0.31, βnn = 0.52,
βcn = 0.06 and βt = 0.14. To keep the ratio of DE genes roughly the same as
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TABLE 6
Comparison of misclassification rates between the simple Gaussian mixture model (GMM) and the
MRF model. The standard deviations in 100 independent runs are shown in the brackets. The results

for simulation settings 1 and 2 are presented, the numbers after the model names represent the
proportions (0.1,0.2,0.5) of purturbation in simulation setting 2

μ2 GMM MRF GMM (0.1) MRF (0.1)

5 0.421 (0.025) 0.093 (0.008) 0.426 (0.012) 0.131 (0.004)
5.5 0.346 (0.017) 0.084 (0.006) 0.375 (0.013) 0.11 (0.004)
6 0.275 (0.011) 0.071 (0.005) 0.31 (0.014) 0.093 (0.002)
6.5 0.203 (0.006) 0.055 (0.004) 0.242 (0.009) 0.083 (0.002)
7 0.144 (0.004) 0.041 (0.003) 0.185 (0.006) 0.072 (0.003)
7.5 0.101 (0.003) 0.029 (0.002) 0.137 (0.004) 0.053 (0.002)
8 0.067 (0.002) 0.020 (0.001) 0.096 (0.004) 0.037 (0.002)

μ2 GMM (0.2) MRF (0.2) GMM (0.5) MRF (0.5)

5 0.423 (0.008) 0.233 (0.005) 0.421 (0.004) 0.344 (0.008)
5.5 0.378 (0.011) 0.208 (0.005) 0.377 (0.005) 0.312 (0.011)
6 0.31 (0.012) 0.18 (0.004) 0.309 (0.004) 0.261 (0.007)
6.5 0.242 (0.009) 0.144 (0.004) 0.243 (0.004) 0.187 (0.004)
7 0.185 (0.004) 0.106 (0.003) 0.185 (0.004) 0.133 (0.003)
7.5 0.137 (0.004) 0.075 (0.002) 0.138 (0.003) 0.093 (0.002)
8 0.096 (0.003) 0.051 (0.002) 0.096 (0.003) 0.060 (0.002)

that in the real data, the sampler started from a random array with 0.4 probability
of being DE. 10% of the genes were then randomly selected to be unexpressed in
all brain regions from periods 1 to t or t to T = 12, where t was randomly picked
from 1, . . . , T . The presence of unexpressed genes reflects the fact that a small
portion of genes switched their states of unexpressed/expressed in the real data.
We conducted three rounds of Gibbs sampling to obtain the latent state array S.
The z-score array Z was then generated from S by a mixture model. For EE, the
z-score was generated from N (0,1); for DE, it was generated from N (−2,1) or
N (2,1), with equal probability.

Simulation setting 2. The latent state array S was simulated by Gibbs sampling
with the same setting as in simulation setting 1. The mean gene expression array μ
was then generated from S. In period 1, all the genes had mean expression values
at 0. From period t to t + 1, μbg(t+1) = μbgt + sbgt δ, where δ ∼ N (0,1). Finally,
the gene expression array Y was generated from μ by Gaussian distribution with
variance σ 2

0 = 0.25 and the number of replicates was set to be 3.

Simulation setting 3. In period 1, all the genes had 0.15 probability of being
DE. From periods t to t + 1, 70% of the DE genes in period t randomly switched
to EE, and the same number of EE genes randomly switched to DE, to keep the
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number of DE genes constant over time. To represent the neocortex and nonneo-
cortex regions, the first 11 brain regions were set to have the same latent states
and the other 5 brain regions were set to be the same. Compared with the first 11
brain regions, 40% of the DE genes randomly switched to EE in the other 5 brain
regions. Then we randomly selected different proportions (0.1,0.2,0.5) of the DE
states to switch to EE; the same number of EE states were randomly selected to
switch to DE. 10% of the genes were randomly selected to be unexpressed in all
brain regions as in simulation setting 1. Finally, the z-score array Z was generated
in the same way as in simulation setting 1.

The settings for the MCEM algorithm and the Gibbs sampler were the same
as those in the previous section. We calculated the sensitivity and specificity by
varying the threshold for the posterior local-f.d.r. We compared the proposed MRF
model with the empirical Bayesian (EB) model, which assumes no temporal and
spatial dependency (Figure 4). As the neocortex group and the nonneocortex group
have different numbers of brain regions (11 vs. 5), the ROC curves were plotted
separately for the two groups. Compared with the EB model, the MRF model per-
formed better in both the neocortex and nonneocortex regions. The improvement
was more significant in the neocortex regions, as there were more brain regions
and the MRF model benefits more from the spatial similarity.

6. Conclusions and discussion. The statistical methods developed in this pa-
per were motivated from the analysis of human brain development microarray data.
These data represent expression profiles in different brain regions at different de-
velopmental stages and they allow us to infer (1) whether a gene is expressed or
not in a specific brain region in a specific period, and (2) whether a gene is dif-
ferentially expressed between two adjacent periods in a specific brain region. To
efficiently utilize the spatial similarity between brain regions and temporal depen-
dency, we have developed a two-step modeling framework that is based on the
Markov Random Field model and local FDR methodology to facilitate statistical
inference. Our simulation studies suggest that this model has a lower misclassifi-
cation rate compared with commonly used Gaussian mixture models without con-
sidering spatial similarity and temporal dependency. Simulation results and real
data analysis also suggest that the proposed model improves the power to identify
DE genes.

The analysis of the human brain microarray data by our proposed model pro-
duces biologically meaningful results. The inferred latent states of “expressed” or
“unexpressed” were similar in all brain regions. The number of genes that switched
their latent states first increased and peaked at birth, then gradually decreased in
adulthood. In periods 6–7, the list of genes that switched from expressed to un-
expressed was enriched for transcriptional regulatory genes. For the purpose of
identifying DE genes between adjacent periods, we observed a similar trend in the
number of DE genes. However, there was an additional peak in periods that cor-
respond to childhood and adolescence. These observations reflect the dynamics of
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(a) Setting 1, neocortex (b) Setting 1, nonneocortex

(c) Setting 2, neocortex (d) Setting 2, nonneocortex

(e) Setting 3, neocortex (f) Setting 3, nonneocortex

FIG. 4. The ROC curves comparing the empirical Bayesian (EB) model and the proposed MRF
model. The curves were averaged over 100 simulations.

the neurodevelopment process. We also observed that genes carrying a high risk for
neurodevelopment disorders, such as ASD, tended to be differentially expressed,
especially during periods when cognitive and social skills were developed.

We have also proposed and implemented an MCEM algorithm to estimate the
model parameters and a separate Gibbs sampler to estimate the posterior probabil-
ity. In previous studies, the iterated conditional mode (ICM) algorithm was imple-
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mented to estimate the MRF parameters [Besag (1986), Li, Wei and Maris (2010),
Wei and Li (2008)]; however, our simulation study suggested that the ICM algo-
rithm may lead to biased parameter estimates (supplementary material Section 10
[Lin et al. (2015)]). One limitation of the MCEM algorithm is the high comput-
ing cost. Under the current setting for the MCEM algorithm, the computing time
for the whole data set took ten days (five days for biological question 1 and five
days for biological question 2) on the Yale Louise high performance cluster (Dell
m620 system, 8 core processor, 48 GB of memory). To accelerate convergence, we
started the model from the estimation which does not consider the spatial and tem-
poral dependency. Another limitation of the MCEM algorithm is that the Monte
Carlo sum is an approximation to the expectation and may lead to instability in
parameter estimation. In the diagnosis of the MCEM algorithm (supplementary
material Section 5 [Lin et al. (2015)]), we demonstrated that our model is robust
to unstable parameter estimation. Levine and Casella (2001) provided a detailed
discussion on the setting of the MCEM algorithm.

APPENDIX

We provide details on the derivation of the conditional probability (2) from the
joint probability (1).

For t �= 1 and t �= T ,

p(xbgt = 1|X/xbgt ;�)

p(xbgt = 0|X/xbgt ;�)

= p(xbgt = 1,X/xbgt ;�)

p(xbgt = 0,X/xbgt ;�)

= exp
{
γ1 − γ0 + β1

∑
b′ �=b

[
I1(xb′gt ) − I0(xb′gt )

]

+ β2
[
I1(xbg(t−1)) − I0(xbg(t−1)) + I1(xbg(t+1)) − I0(xbg(t+1))

]}

= exp
{
γ + β1

∑
b′ �=b

(2xb′gt − 1) + β2[2xbg(t−1) − 1 + 2xbg(t+1) − 1]
}
,

p(xbgt = 1|X/xbgt ;�) + p(xbgt = 0|X/xbgt ;�) = 1, so we have

p(xbgt = 1|X/xbgt ;�) = exp{F(xbgt ,�)}
1 + exp{F(xbgt ,�)} ,

where

F(xbgt ,�) = γ + β1
∑
b′ �=b

(2xb′gt − 1) + β2{2xbg(t−1) − 1 + 2xbg(t+1) − 1}.

For t = 1 and t = T , the conditional probability can be derived similarly.
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