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Networks pervade many disciplines of science for analyzing complex
systems with interacting components. In particular, this concept is commonly
used to model interactions between genes and identify closely associated
genes forming functional modules. In this paper, we focus on gene group
interactions and infer these interactions using appropriate partial correlations
between genes, that is, the conditional dependencies between genes after re-
moving the influences of a set of other functionally related genes. We intro-
duce a new method for estimating group interactions using sparse canonical
correlation analysis (SCCA) coupled with repeated random partition and sub-
sampling of the gene expression data set. By considering different subsets of
genes and ways of grouping them, our interaction measure can be viewed
as an aggregated estimate of partial correlations of different orders. Our ap-
proach is unique in evaluating conditional dependencies when the correct de-
pendent sets are unknown or only partially known. As a result, a gene network
can be constructed using the interaction measures as edge weights and gene
functional groups can be inferred as tightly connected communities from the
network. Comparisons with several popular approaches using simulated and
real data show our procedure improves both the statistical significance and
biological interpretability of the results. In addition to achieving consider-
ably lower false positive rates, our procedure shows better performance in
detecting important biological pathways.

1. Introduction. Many complex systems in science and nature are composed
of interacting parts. Such parts can be modeled as nodes and their relationships as
edges in a network. Network modeling has found numerous applications [Newman
(2010)]. Gene association networks is one such example, with genes modeled as
nodes and their interactions as edges. One important application of gene networks
is the identification of communities corresponding to genes with related functional
groupings. Many of these functional groups encode biological pathways. A major
task in understanding biological processes is to identify these pathway genes and
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elucidate the relationships between them. We focus in this paper on modeling gene
interactions. As a result, a gene network can be constructed using the interaction
measures as edge weights and gene functional groups can be inferred as tightly
connected communities in the network.

In gene networks, direct observation of gene relationships by experimental ap-
proaches is extremely cost-prohibitive given that the typical size of the networks is
in the tens of thousands. The gene expression levels, on the other hand, are easier
to measure and can be regarded as sets of covariates associated with the nodes.
Constructing gene networks using expression data has remained a challenging un-
supervised learning problem in the statistics literature due to the complexity of
data structure and the difficulty of finding an appropriate measure for characteriz-
ing gene relationships. A review of existing methods can be found in Wang and
Huang (2014).

Most methods for inferring edges in gene networks are based on the notion
of measuring expression profile similarity or co-expression, which aims to esti-
mate marginal relationships between pairs of genes. Widely used co-expression
measures include the Euclidean distance or the angle between vectors of observed
expression levels or, most commonly, the marginal covariance or correlation. Mea-
sures detecting general statistical dependence such as mutual information (MI)
are also explored. MI offers the advantage of being able to detect nonlinear cor-
relations [Daub et al. (2004)], but some empirical studies [Steuer et al. (2002)]
also show it yields almost identical results as the Pearson correlation. Recently,
a new measure named the maximal information coefficient (MIC) was proposed
by Reshef et al. (2011) based on normalized estimates of MI. Kinney and Atwal
(2014) offer some criticisms and discussions of MIC.

The above measures for estimating marginal dependencies only consider pair-
wise relationships. However, in a real biological pathway, a gene can interact with
a group of genes but their marginal relationships may remain weak. Such higher-
level interactions (i.e., gene group interactions) are better modeled by Gaussian
graphical models (GGM) due to its interpretation in terms of conditional correla-
tions. Under the assumption of multivariate normality of gene expression vectors,
the GGM uses the inverse of the gene covariance matrix (or precision matrix) as
a measure for gene associations. This approach is closely related to the concept of
partial correlations: the (i, j)th element in the precision matrix is proportional to
the partial correlation between gene i and j conditional on the rest of the genes.
To address the “curse of dimensionality” (the number of genes being much larger
than the number of samples) in estimating the precision matrix, one can exploit
the belief that gene networks are inherently sparse and reframe the problem of
estimating partial correlations in a penalized regression setting [Meinshausen and
Bühlmann (2006), Peng, Zhou and Zhu (2009)]. More studies on estimating the
sparse precision matrix in high-dimensional GGMs can be found in, for example,
Schäfer and Strimmer (2005), Friedman, Hastie and Tibshirani (2008) and Zhou
et al. (2011).
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Despite their attractive theoretical properties, these partial correlation-based
methods still have limitations in their estimation methods. In the current literature,
partial correlation is usually calculated conditioned on either all of the available
genes or a more or less arbitrary subset of them that may contain noisy (biologi-
cally unrelated) genes. de la Fuente et al. (2004) reported that conditioning on all
genes simultaneously can introduce spurious dependencies which are not from a
direct causal or common ancestors effect. To alleviate this concern, there are alter-
native approaches using lower order partial correlations [de la Fuente et al. (2004),
Li (2002), Magwene and Kim (2004), Wille and Bühlmann (2006), Wille et al.
(2004)] which condition on one or two other genes. However, these methods come
at a cost of lowering the sensitivity for inferring higher level gene associations and
do not necessarily eliminate the effect of noisy genes. Kim et al. (2012) proposed
to minimize the impact of noisy genes by conditioning on a small set (3–5 genes)
of “seed genes” (i.e., known pathway genes). However, such prior biological in-
formation is not always available, especially in exploratory studies.

In this paper we tackle the problem of estimating gene relationships when the
correct conditional set for partial correlation is unknown. We introduce a new
method of inferring the strength of gene group interactions using sparse canonical
correlation analysis (SCCA) with repeated random partition and subsampling of
the gene expression data set. There has been a growing interest in applying SCCA
to genomic data sets [Lee et al. (2011), Parkhomenko, Tritchler and Beyene (2009),
Waaijenborg, Verselewel de Witt Hamer and Zwinderman (2008), Witten and Tib-
shirani (2009)] in the context of studying relationships between two or more sets
of variables, such as gene expression levels, copy numbers and other phenotype
variations, with measurements taken from the same sample. One novelty of our
method lies in the application of SCCA to a single data set facilitated by a ran-
dom partition scheme. By randomly separating the genes into two groups, SCCA
searches for a strong linear relationship between a small set of genes, for example,
5–20 genes, from both groups of genes (e.g., 500–2000 genes in total). Through
multiple rounds of random partition, this SCCA approach, reframed in a linear
regression setting, gives estimates proportional to partial correlations conditioned
on different sets of signal genes (with noisy genes eliminated through sparsity).
The subsampling procedure analyzes different subsets of the genes at a time and
enables simultaneous identification of multiple interacting groups with different
signal strengths. Using this construction, we build an edge weight matrix for the
whole gene network whose interaction measure reflects an aggregated estimate of
partial correlations of different orders. Our approach is flexible and can be adapted
to work with or without prior biological knowledge.

The rest of the paper is organized as follows. In Section 2 we discuss in de-
tail the motivations behind our new scheme of computing edge weights in a gene
network by assessing gene group interactions and provide an outline of the full
procedure. To identify densely connected communities as potential gene func-
tional modules in the constructed network, we implemented two well-known meth-
ods in the network literature, the stochastic block model (SBM) and hierarchical
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clustering (HC). In Section 3 comparisons are made between our procedure and
correlation-based methods. We demonstrate that our procedure in general achieves
a significant reduction in the rate of false positives. To test its performance in real
data applications, our procedure is applied to an Arabidopsis thaliana microar-
ray data set obtained under oxidation stress. Finally, in Section 4 we discuss the
advantages and potential extensions of the present method.

2. Methods. As mentioned in Section 1, the conditional correlation interpre-
tation of partial correlation suggests it is a more appropriate framework for mod-
eling higher level interactions in gene networks, provided the conditional compu-
tation is carried out properly. In this section, we discuss some of the limitations of
the partial correlation approach that arise due to its reliance on the correct selection
of conditional sets of genes and how our SCCA-based approach circumvents this
difficulty. We then give a detailed description of our new method of estimating an
edge weight matrix using SCCA with subsampling.

2.1. Method motivation. Recall that when the gene expression levels follow
a multivariate normal distribution, for a set of genes W , the partial correlation
between genes i and j can be expressed as

ρij = cor
(
i, j |W \ {i, j}) =

⎧⎨
⎩

− ωij√
ωiiωjj

, i �= j,

1, i = j ,
(2.1)

where ωij are elements in the precision matrix (�G)−1 with �G being the gene
covariance matrix of the set W [see, e.g., Edwards (2000)]. Genes i and j being
conditionally independent is equivalent to the corresponding partial correlation and
element in the precision matrix being zero.

As pointed out in de la Fuente et al. (2004) and Kim et al. (2012), the selection
of a proper set of genes on which the correlation in (2.1) is conditioned determines
the effectiveness of using partial correlation to measure gene interactions. The in-
clusion of noisy (biologically unrelated) genes in the set W \ {i, j} may introduce
spurious dependencies and, consequently, false edges in the estimated network.
The use of partial correlation may also prove problematic when W contains mul-
tiple pathways. Here is a minimal example: suppose the set W has two pathways
{x, y, z} and {u, v} and two independent noisy genes p and q , with expression
relationships

z = x + y + ε1u + ε2v + ε3p, u = δ1x + δ2y + δ3z + δ4q + v,(2.2)

where εi and δj are small constants so that the dependencies between the two
pathways are negligible, and gene v is independent of genes x and y. Computing
the partial correlations, we have the desired dependencies:

cor
(
z, x|W \ {z, x}) = cor

(
z, y|W \ {z, y}) = 1,

cor
(
u, v|W \ {u, v}) = 1,
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but also some spurious ones:

cor
(
u,x|W \ {u,x}) = cor

(
u,y|W \ {u,y}) = cor

(
u, z|W \ {u, z}) = 1.

Using these partial correlations to construct an edge weight matrix would imply
the two pathways are fully connected. The proper calculation should condition
only on genes in the same pathway, but such information is usually hard to ob-
tain in practice. Alternatively, a more appropriate edge weight measure can take
into account the magnitude of the linear coefficients in (2.2) so that it reflects the
amount of contribution each gene makes to a pathway and the two-block nature
of the network. Recall that in a regression setting, the regression coefficients are
multiplicative functions of the corresponding partial correlations. In this sense, the
coefficients encompass more information and provide a better resolution on gene
relationships than the partial correlations alone.

Motivated by these observations, we propose a new way to assess gene group
interactions. In particular, we aim to identify strong linear relationships possessed
by a small subset of the candidate genes. We make direct use of the linear coef-
ficients found by SCCA when applied to two randomly partitioned gene groups.
With repeated random partition on subsampled gene sets, an edge weight matrix
built by the average SCCA coefficients over iterations reflects an aggregated level
of direct or partial gene interactions. More discussion on how CCA coefficients
relate to partial correlations can be found in Section 4 of the supplementary infor-
mation [Wang et al. (2015)]. Sparsity is imposed to reduce dimensionality and, in
particular in the example above, ensures the mixing of the two pathways is negli-
gible on average.

2.2. Review of sparse canonical correlation analysis and its implementation.
Let X ∈ R

n×q1 be a matrix comprised of n observations on q1 variables, and
Y ∈ R

n×q2 a matrix comprised of n observations on q2 variables. CCA introduced
by Hotelling (1936) involves finding maximally correlated linear combinations be-
tween the two sets of variables. More explicitly, one finds α ∈ R

q2 and β ∈R
q1 that

solve the optimization problem

max
α,β

αT �YXβ subject to αT �YY α = 1,βT �XXβ = 1,(2.3)

where �(·,·) represent the correlation matrices. Note that provided the variables in
X and Y have nonzero variances, this is equivalent to the usual CCA formulation
in terms of covariance matrices.

In practice, the population correlations are replaced with their sample counter-
parts. That is, SYX = YT X/(n−1), SXX = XT X/(n−1) and SYY = YT Y/(n−1),
assuming the columns of X and Y have been centered and scaled. Let a and b be
the weight vectors solving the optimization problem

max
a,b

aT SYXb subject to aT SYY a = 1,bT SXXb = 1(2.4)
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for sample correlations.
For high throughput biological data, q1 and q2 are typically much larger than n.

It is thus natural to impose sparsity on a and b, and this can be done by including
(typically convex) penalty functions in (2.4). A number of studies [Parkhomenko,
Tritchler and Beyene (2009), Waaijenborg, Verselewel de Witt Hamer and Zwin-
derman (2008), Witten, Tibshirani and Hastie (2009)] have proposed various meth-
ods for formulating the penalized optimization problem and obtaining sparse solu-
tions. Here we adopt the diagonal penalized CCA criterion given by Witten, Tib-
shirani and Hastie (2009), which treats the covariance matrices in (2.4) as diagonal
and relaxes the equality constraints for convexity:

max
a,b

aT YT Xb subject to aT a ≤ 1,bT b ≤ 1,p1(a) ≤ c1,p2(b) ≤ c2,(2.5)

where p1 and p2 are convex penalty functions. In this paper, we consider an L1
penalty and solve the above optimization using the modified NIPALS algorithm
proposed by Lee et al. (2011), which is reported to yield better empirical perfor-
mance than Witten, Tibshirani and Hastie’s (2009) algorithm. The modified NI-
PALS algorithm performs penalized regressions iteratively on X and Y with the
penalty functions pλ1(·) = λ1‖ · ‖1 and pλ2(·) = λ2‖ · ‖1. This is an equivalent
formulation to iteratively optimizing (2.5) using the bounded constraints.

It is important to note that one more complication arises when SCCA is ap-
plied to gene expression data. In CCA, the estimation of the correlation matrix
using sample correlations requires the data matrices X and Y have independent
rows. However, given a gene expression matrix with genes in columns and exper-
iments in rows, it is often the case that row-wise and column-wise dependencies
co-exist. Row-wise dependencies, or experiment dependencies, can be defined as
the dependencies in gene expression between experiments due to the similar or
related cellular states induced by the experiments [Teng and Huang (2009)]. When
unaccounted for, they can introduce redundancies that overwhelm the important
signals and lead to inaccurate estimates of the gene correlation matrix. To decou-
ple the effect of experiment dependencies from the estimation of gene correlations,
we apply the Knorm procedure from Teng and Huang (2009). The Knorm model
assumes a multiplicative structure for the gene–experiment interactions, and it-
eratively estimates the gene covariance matrix and experiment covariance matrix
through a weighted correlation formula. In addition, row subsampling and covari-
ance shrinkage are used to ensure robust estimation.

2.3. Constructing an edge weight matrix by SCCA with repeated random par-
tition and subsampling. Suppose an observed data set contains measurements of
the expression levels of p genes in n experiments, where each experiment has a
small number of replicates. We next describe our new procedure of computing
edge weights that reflect gene group interactions in the gene network.
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Summary of procedure:
Step (i): Data normalization by Knorm. A gene expression matrix Zb of dimen-

sion n × p can be generated from the full data set by sampling one replicate from
each experiment. Using the Knorm model in Teng and Huang (2009), we normal-
ize Zb as

Z∗
b = (

�̂E)−1/2
(Zb − M̂),(2.6)

where M̂ is the estimated mean matrix and �̂E is the estimated experiment corre-
lation matrix.

Step (ii): Subsampling. For each normalized expression matrix Z∗
b, sample

(without replacement) a fixed fraction s, say, 70%, of the genes to obtain an n× sp

submatrix Zsub
b .

Step (iii): SCCA with random partition on the subsampled matrix. For each par-
tition t , randomly split the columns (genes) of Zsub

b into two groups of equal size
(more explanation given in the remarks below) to form Xsub

b,t and Ysub
b,t . Run SCCA

on Xsub
b,t and Ysub

b,t : find sparse weight vectors asub
b,t and bsub

b,t using the modified
NIPALS algorithm [Lee et al. (2011)] with the L1 penalty and tuning parameters
λ = (λ1, λ2), the choice of which will be discussed in Section 3.

Let cb,t be the list of the absolute values |asub
b,t | and |bsub

b,t | ordered according to
the gene list. For the genes not included in the subsampled matrix, the correspond-
ing values in cb,t are set to 0. Average over all the partitions to obtain the average
weights c̄b. Define edge weight matrix Ab = c̄bc̄T

b , setting diag(Ab) = 0 to exclude
self loops.

Step (iv): Repeat steps (ii) and (iii) B times. Define Ā = 1/B
∑B

b=1 Ab and
normalize by the maximum value in Ā.

As will be demonstrated in Section 3.1, Ā defined above exhibits a natural block
structure when there is one or multiple functional groups. Here are more remarks
on our procedure to construct Ā:

1. Step (i) can be skipped when dependencies between experimental conditions
are weak and not of concern.

2. Step (ii) subsampling is necessary if we aim to identify multiple functional
groups (that may overlap) simultaneously. As there will be multiple groups with
strong interactions, not all of them can be detected unless different subsets of genes
are considered. For more discussion about the subsampling step and the choice of
subsampling levels, we refer to Section 5 in the supplementary information [Wang
et al. (2015)].

3. During the random partition in step (iii), the two sets of genes do not have to
be exactly equal in size, but they need to be comparable in order to maximize the
chance of separating any gene functional group of interest into two sets.

4. Through multiple rounds of random partition, SCCA gives estimates in a
regression setting proportional to partial correlations conditioned on different sets
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of signal genes. Overall, subsampling and random partition enable us to consider
different subsets of the genes and ways to group them. Thus, the elements in Ā can
be interpreted as an aggregated measure of partial correlations of different orders
as the algorithm steps through different conditional sets of genes.

5. As we search through different subsets of genes, different signal groups are
identified depending on the strengths of linear associations in the subset. As will
be shown empirically in Section 3.1, the averaged result leads to the formation of
a distinct block structure with different connectivities in the matrix.

Our procedure is flexible and can be modified easily to incorporate the following
variants:

1. If prior knowledge is available on a pathway of interest, for example, it is
known in advance that some genes are actively involved in that pathway, one may
focus on the identification of the gene group related to this pathway first and incor-
porate the prior knowledge by lowering the penalties associated with those known
pathway genes in the SCCA algorithm. Examples involving using prior knowl-
edge of pathway genes can be found in Section 5 of the supplementary information
[Wang et al. (2015)].

2. If the interest is to identify disjoint gene groups and running time is not
a concern, we can run the whole procedure iteratively with no subsampling, each
time identifying one dominating signal group and removing it from the subsequent
analysis.

Asymptotic behavior of our procedure. Here we first show asymptotically the
validity of our procedure by considering a simple case where there exists only
one functional group and all the other genes are uncorrelated. Due to this simpli-
fication, no subsampling is needed, and the use of CCA without sparsity suffices
since in the asymptotics we consider the regime of n (number of experiments) go-
ing to infinity with p (number of genes) fixed. Without loss of generality, in the
entire gene set G = {1,2, . . . , p} let the first k genes K = {1,2, . . . , k} form one
pathway.

For every partition t , let at and bt be the solutions to (2.4) and ct be the list
of the absolute values |at | and |bt | ordered according to the gene list. Assum-
ing Z follows a multivariate normal distribution and the inverse covariance matrix
has a diagonal block structure (detailed assumptions are presented in Section 2
of the supplementary information [Wang et al. (2015)]), we have the following
proposition regarding the asymptotic difference between the values of {ci,t , i ∈ K}
and {cj,t , j /∈ K} averaged over t . For convenience suppose p is even and denote
q = p/2.

PROPOSITION 2.1. Let c̄ = ∑N
t=1 ct /N , where N is the number of partitions,

then given 1 < k < q ,

lim
N→∞ lim

n→∞
(
min
i∈K

c̄i − max
j /∈K

c̄j

)
= D(2.7)
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for some positive constant D.

In Section 2 of the supplementary information [Wang et al. (2015)], we give
the proof of Proposition 2.1 with a lower bound on D that quantifies the asymp-
totic difference in the assigned weights between functional group genes and noisy
genes. The separation in c̄ implies the genes in the graph characterized by the
edge weight matrix Ā = c̄c̄T can be grouped into different clusters based on their
connectivity.

To further understand the asymptotic behavior of our procedure in general cases
when multiple functional groups exist, we present an example that consists of two
(disjoint) groups of interacting genes and other unrelated genes in supplementary
information Section 2 [Wang et al. (2015)]. We show a theoretical derivation of
Ā = 1/B

∑B
b=1 Ab = 1/B

∑B
b=1 c̄bc̄T

b for this example in detail to highlight and
explain the role of subsampling. We can see that with subsampling, the limiting Ā
(when n → ∞) exhibits a natural block structure corresponding to the two gene
groups, thus extending the validity of Proposition 2.1. The ideas underlying the
analytical derivation in this simple example are straightforward and directly appli-
cable to general cases, though the computations involved would be very tedious.
Note that the analytical computations look tedious even in this small example.

2.4. Identify community structures given the edge weight matrix Ā. To demon-
strate that Ā possesses advantages over traditional approaches in identifying gene
functional modules, subsequent analysis of Ā based on community detection
tools is needed. Many methods are available in this field. In particular, cluster-
ing has been a popular and well-studied technique. Jain, Murty and Flynn (1999),
Kaufman and Rousseeuw (2009), Theodoridis and Koutroumbas (2005) provide
general reviews of various clustering techniques, and reviews with more specific
focus on gene expression data can be found in D’haeseleer, Liang and Somogyi
(2000), Jiang, Tang and Zhang (2004), Kerr et al. (2008). Variants of spectral
clustering are also widely explored for detecting communities in sparse networks
[Ramesh et al. (2010)]. Viewing gene relationships as edges in a graph, a natural
approach is to consider functional modules as tightly connected subgraphs. Genes
with related functionalities are expected to have dense connections, whereas bio-
logically unrelated (noisy) genes may be only sparsely connected. The Stochastic
Block Model (SBM) builds a general probabilistic graph model based on such
an assumption that nodes (genes) have different connectivities depending on their
block memberships.

Below we introduce two popular community detection tools, SBM and hierar-
chical clustering (HC), which we will use in later simulation and real data analysis
to dissect gene interaction groups from Ā. As we have mentioned, there are many
other choices for performing this task. The structure of Ā itself may also imply
some methods are more suitable than others. In this paper, it is not our intention
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to suggest or evaluate the best community detection tools that should be applied
to Ā. Here we are presenting SBM and HC just as two illustrative approaches.

The SBM, formally introduced by Holland, Laskey and Leinhardt (1983), gen-
eralizes the Erdős–Rényi model and defines a family of probability distributions
for a graph. Here is a detailed model definition.

DEFINITION 2.2. A SBM is a family of probability distributions for a graph
with node set {1,2, . . . , p} and Q node blocks defined as follows:

1. Let C = (C1,C2, . . . ,Cp) denote the set of labels such that Ci = k if the
node i belongs to block k:

C
i.i.d.∼ Multinomial(γ ),

where γ = (γ1, γ2, . . . , γQ) is the vector of porportions.
2. Let π = (πlk)1≤l,k≤Q be a symmetric matrix of a block dependent edge prob-

ability matrix and A be the adjacency matrix. Conditioned on the block labels C,
(Aij ) for i < j are independent, and

P(Aij |C) = P(Aij = 1|Ci = l,Cj = k) = πlk.

Discretizing Ā defined in Section 2.3 into a 0–1 matrix, the class labels and the
parameters γ and π are estimated using the psuedo-likelihood algorithm by Amini
et al. (2013). The unconditional version of the algorithm fits the conventional SBM
above, while the conditional version takes into account the variability of node de-
grees within blocks [Karrer and Newman (2011)]. Potential functional groups are
identified as classes having large diagonal entries in π .

Agglomerative HC is another widely used nonmodel-based technique for ex-
tracting communities, especially in the study of social networks [Scott and Peter
(2011)]. In our application, we adopt Ward’s distance [Ward (1963)] for the com-
putation of merging costs. Let gi be the nodes, the distance between two clusters
M1, M2 defined as

d(M1,M2) = n1n2

n1 + n2
‖m1 − m2‖2

= 1

2(n1 + n2)

∑
i,j∈M1∪M2

‖gi − gj‖2 − 1

2n1

∑
i,j∈M1

‖gi − gj‖2

− 1

2n2

∑
i,j∈M2

‖gi − gj‖2,

where n1 and n2 denote the sizes of M1 and M2, and m1 and m2 are the cluster
centers of M1 and M2, respectively. A natural way to define the square of the
pairwise distance is ‖gi − gj‖2 = 1 − Āij for i �= j , and zero otherwise. Since
Ward’s method minimizes the increase in the within group sum of squares at each
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merging and tends to merge clusters that are close to each other and small in size,
a small cluster that manages to survive a long distance before coalescing is likely to
be a tight cluster, indicating the genes it contains have high connectivity with each
other. Thus, at an appropriately chosen cutoff level Q, we identify the smallest few
clusters as potential functional groups.

Both SBM and HC require a priori knowledge of the number of clusters Q, and
the proper selection of Q remains an open problem in the literature. For SBM, we
refer to some discussions in Daudin, Picard and Robin (2008) and Channarond,
Daudin and Robin (2012). For HC, a common way to choose the cutoff Q is to
set it as the number just before the merging cost starts to rise sharply. Due to the
scale and complexity of a typical gene expression data set, this criterion is not very
applicable. In this paper, for the HC approach we choose Q empirically based on
the sizes of the clusters each Q produces. That is, Q is increased incrementally
until small clusters start to emerge. A comparison between SBM and HC can be
found in Section 3.1.

2.5. Flow chart summarizing the whole procedure. A comprehensive sum-
mary of the whole procedure, including the tuning parameters needed in con-
structing Ā and illustrative subsequent analysis of Ā, is provided in Figure 1. The
choices of the parameters are explained in the paper and summarized again in Sec-
tion 3 of the supplementary information [Wang et al. (2015)].

3. Results. In this section we evaluate the performance of the proposed
method and other approaches using simulated and real microarray data sets. In
particular, we compare the quality of the estimated gene functional groups, re-
sulting from different ways of computing edge weights, and the two methods of
community detection (SBM and HC) discussed in Section 2.4. We use precision
and recall, defined as precision = TP/(TP + FP) and recall = TP/(TP + FN), as
measures for evaluating classification performance. Here TP is the number of true
positive findings of functional group genes, FP is the number of false positives
and FN is the number of false negatives. In the context of this study, they can be
regarded as a measure of exactness and completeness of our search results, respec-
tively. The problems of choosing the appropriate proportion of subsampling and λ
for sparsity are also discussed. For detailed analysis of the effects of the tuning pa-
rameters, we refer to Section 3.3 and Section 7 of the supplementary information
[Wang et al. (2015)].

3.1. Simulation.

3.1.1. Generation of simulation data sets. We simulate a microarray data set
consisting of p = 150,300 or 500 genes and n = 30 experiments, with 5 repli-
cates for each experiment. To make the data more realistic, we introduce experi-
ment dependencies, multiple functional groups and random noise. The simulation
parameters are generated as follows:
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FIG. 1. Flow chart summarizing the whole procedure. Each numeric superscript in the diagram
indicates the need for tuning parameters: 1. Subsampling level, 2. Penalty parameter λ.

(i) Experiment correlation matrix, �E . For illustrative purpose, we set the ex-
periment correlation matrix to have 0, 33 and 67% dependencies. In the case of
a 33% dependency, for example, 33% of the experiments have high dependencies
(correlation between 0.5 and 0.6) while the remaining experiments are uncorre-
lated with one another.
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(a) (b)

FIG. 2. Heatmaps of the matrix Ā using data sets with (a) p = 150, 0% experiment dependency,
one functional group, subsampling level 70% and (λ1, λ2) = (9,9); (b) p = 300, 0% experiment
dependency, two functional groups, subsampling level 70% and (λ1, λ2) = (9,15). For clarity, only
the first 100 × 100 entries are shown and the functional groups are placed at positions 1–15 and
16–30, respectively.

(ii) Gene correlation matrix, �G. In each data set, we introduce one or two
functional groups with 15 genes in each. Genes in the same group are correlated,
having either high correlations (0.5–0.6) or low correlations (0.1–0.2) with the
other genes, and otherwise they are not.

Using the above parameters, we generate the simulation data as follows. First,
we generate a 30 × 500 gene expression matrix Z, with vec(ZT ), from a multi-
variate normal distribution with mean zero and a covariance matrix �G ⊗ �E .
To introduce linear relationships, within each group we take linear combinations
of some genes to replace their original values. Using the final 30 × 500 gene ex-
pression matrix, we add random noise with a small SD (e.g., 0.01) to each row to
generate the 5 replicates for each experiment.

3.1.2. Estimated Ā and tuning parameter selection. Figure 2 shows the
heatmaps of the matrix Ā for two data sets with different numbers of functional
groups. For visual clarity, the genes are ordered according to their true group
memberships. In both cases, the matrix demonstrates a clear block structure. In
particular, in the two-group case both pathways are visible, although the first one
is more prominent. We remark here that the difference in signal strength between
the two pathways is introduced by chance variation during data generation and
the use of subsampling is necessary for the identification of the weaker group.
Although we present results obtained with a subsampling level of 70%, a range
of reasonable subsampling levels can be chosen without significantly affecting the
final results (supplementary information Section 7 [Wang et al. (2015)]). The other
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(a) (b)

FIG. 3. Contour plots of the entropy of the upper triangular entries of Ā on the grid
(λ1, λ2) ∈ {0,3, . . . ,18}2 using data sets with (a) p = 150, 0% experiment dependency, one func-
tional group and subsampling level 70%; (b) p = 300, 0% experiment dependency, two functional
groups and subsampling level 70%.

tuning parameter λ is chosen such that the matrix Ā displays optimal contrast be-
tween the pathway and nonpathway groups, and we shall use this as guidance for
assessing the quality of Ā and selecting λ.

Among the common approaches for the selection of optimal tuning param-
eters, cross-validation-based methods are used in Waaijenborg, Verselewel de
Witt Hamer and Zwinderman (2008), Parkhomenko, Tritchler and Beyene (2009)
and Lee et al. (2011). However, all of their methods involve dividing a sample
into multiple sets, which is impractical for data sets with only a few tens of obser-
vations. Witten and Tibshirani (2009) proposed an alternative permutation-based
method which estimates the p-value of the maximal correlation found by per-
forming SCCA on permuted samples. Due to the large number of partitions and
subsamplings required in our method, this approach would be very computation-
ally expensive. Instead we measure the effectiveness of λ using the entropy of Ā,
defined as

H(A) = − ∑
i<j,Aij>0

(Aij /SA) log(Aij /SA),(3.1)

where SA = ∑
i<j Aij . The entropy quantifies the sharpness of its distribution and

thus is indicative of the signal intensity. Figure 3 plots the contours of H(Ā) for
the same two data sets used in Figure 2. Regions with low entropy correspond to λ,
leading to a matrix with better signal intensity.

3.1.3. Performance comparison. Figure 4 compares the classification perfor-
mance of our methods, scca.sbm and scca.hc, with four correlation-based meth-
ods, pearson.hc, pearson.sbm, module.dynamic and module.hybrid. The methods
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(a) (b)

(c)

FIG. 4. Classification performance of different methods using data sets with p = 500, one pathway
group, subsampling level 70%, and (a) 0%, (b) 33% and (c) 67% of experiment dependency. pear-
son.sbm and scca.sbm are applied to matrices at discretization levels {0.3,0.4, . . . ,0.8} (from left to
right on the curve).

are named by cross-mixing the following to allow for comparisons in the two-stage
procedure:

scca: Calculate Ā’s with λ ∈ {9,12, . . . ,27}2 and select 10 of these with the
smallest entropy values. The final cluster membership (after community detection)
is decided by a majority vote based on the selected Ā’s, so only stable clusters and
cluster members are chosen.

pearson: Pearson’s correlation matrix after the data is normalized using equa-
tion (2.6) and Knorm estimates.

module: Transformed Pearson’s correlation matrix used in Langfelder and Hor-
vath (2007).
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TABLE 1
Classification performance of different methods using data sets with p = 500, two pathway groups,

subsampling level 70%, and various levels (0%, 33% and 67%) of experiment dependency

0% 33% 67%

Precision Recall Precision Recall Precision Recall

Pathway 1
scca.hc 0.861 0.533 0.831 0.441 0.811 0.433
pearson.hc 0.238 0.233 0.497 0.427 0.471 0.393
module.dynamic 0.718 0.3 0.742 0.333 0.764 0.38
module.hybrid 0.439 0.407 0.544 0.447 0.453 0.385

Pathway 2
scca.hc 0.808 0.487 0.890 0.489 0.833 0.420
pearson.hc 0.438 0.387 0.323 0.307 0.460 0.273
module.dynamic 0.758 0.4 0.808 0.347 0.8 0.4
module.hybrid 0.565 0.473 0.529 0.387 0.455 0.46

sbm: Fit a SBM on a discretized edge weight matrix (at level {0.3,0.4, . . . ,0.8})
using the unconditional pseudo-likelihood algorithm in Amini et al. (2013) with
Q = 2 (or 3) initialized by spectral clustering with perturbation. Select the cluster
with the highest internal connectivity based on the estimates.

hc: HC with Ward’s distance and cut the dendrogram when clusters of size less
than 25 start to appear as the number of clusters Q increases. The choice of this
upper bound is based on the size of the cluster selected in scca.sbm, and a range of
reasonable numbers can be used without affecting the final results.

dynamic, hybrid: HC with dendrogram cutting methods in the R package dy-
namicTreeCut [Langfelder, Zhang and Horvath (2008)].

Figure 4 plots the average precision and recall of the above six methods cal-
culated on 10 simulation data sets for each level of experiment dependency. It
can be seen that using our SCCA approach to compute edge weights in general
leads to higher precision across all experiment dependency levels. Of the two ways
of community identification, scca.hc produces higher precision than scca.sbm at
comparable recall levels.

Table 1 shows the same performance measures obtained from data sets contain-
ing two independent functional groups for scca.hc, pearson.hc, module.dynamic
and module.hybrid. The numbers are averages from 10 simulation data sets for
each level of experiment dependency. Similar to the one-group case, we choose
the smallest Q that produces two clusters of size less than 25 as the cutoff in
HC. We remark here that when multiple groups are present, scca.sbm tends to de-
tect only the strongest signal group while failing to pick up the weaker one. This
can be explained by considering the within-class homogeneity assumption in the
SBM model and noting that the degree distribution is often less homogeneous in
the weaker signal group (see, e.g., Figure 2). The conditional pseudo-likelihood
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algorithm in Amini et al. (2013) is also not sensitive enough to detect the finer
distinctions. Results from pearson.sbm are also omitted as they are very noisy. In
all the cases, scca.hc demonstrates the best precision at comparable, if not better,
recall.

3.2. Application to real data. We tested the performance of our procedure
by applying it to Arabidopsis thaliana microarray expression data retrieved from
AtGenExpress (http://www.arabidopsis.org/servlets/TairObject?type=expression_
set\&id=1007966941). The analyzed data set included expression measurements
collected from shoot tissues subject to oxidation stress for 22,810 genes under
13 experiment conditions with two replicates for each experiment. In these ex-
periments, the plants were treated with methyl viologen (MV), which led to the
formation of reactive oxygen species (ROS). Various studies have shown that de-
pending on the type of ROS, a different biological response is provoked. Thus,
by focusing on the ROS induced by MV, we were able to show and validate that
the results of our pathway gene search were supported, in part, by other already
published ROS-related microarray experiments.

A subset of all 22,810 genes was selected for analysis based on the following
criteria. (i) The experiment variance of the gene exceeds 0.1. An unvarying ex-
pression profile suggests the gene has an activity level unaltered by the particular
stress condition, and hence is unlikely to be part of any stress-induced pathway.
The inclusion of such genes may cause problems in covariance estimation as well.
We also removed genes with a suspiciously high experiment variance, as it could
suggest inaccuracy in measurements. (ii) The discrepancy between the two repli-
cates is smaller than 2 for each experiment. This ensures only genes with con-
sistent measurements are included in our analysis. (iii) The minimum expression
level exceeds 7. More active genes are likely to possess stronger signals, making
our search easier. This requirement further trims down the data set to a smaller
size more desirable for our procedure. We note here that the inclusion of (iii) is
optional—if running time is not a concern, the minimum expression level could be
either lowered or entirely removed. The final subset for analysis contained 2718
genes.

Potential functional groups were found by scca.hc. Due to the complexity and
noise level of the data set, we did not expect the entropy (3.1) to have a clean-
cut unimodal distribution. Furthermore, the presence of many groups with varying
signal strengths implies each may need a different optimal λ for detection. For ex-
ample, strong groups are likely to require more regularization or, in other words,
larger λ. For this reason, we performed our search in multiple stages starting from
large λ for stronger groups to smaller λ for weaker ones. At every stage, the groups
found were removed from the original set before proceeding to the next stage. The
upper bound on λ was found by increasing λ until the entropy stabilized. Search-
ing down from this upper bound, we chose λ from three grids: {90,100,110}2,

http://www.arabidopsis.org/servlets/TairObject?type=expression_set&id=1007966941
http://www.arabidopsis.org/servlets/TairObject?type=expression_set&id=1007966941
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TABLE 2
GO enrichment of groups

Number of genes with
Group ID Enriched GO term enriched terms P -values

1 Chloroplast organellar gene 10 out of 151 1.10 × 10−4

2 Phenylpropanoid-flavonoid biosynthesis 3 out of 4 6.65 × 10−7

3 Glucosinolate biosynthsis 7 out of 7 1.95 × 10−14

4 Chloroplast organellar gene 3 out of 3 7.83 × 10−3

5 Ribosome 10 out of 15 7.20 × 10−13

8 Ribosome 5 out of 6 8.31 × 10−8

10 Photosystem I or II 8 out of 10 2.87 × 10−14

12 Endomembrane system 3 out of 4 2.35 × 10−3

14 out of the 10 chloroplast genes are mitochondrial organellar genes.

{60,70,80}2 and {30,40,50}2. The cutoff level Q in HC was increased incremen-
tally until at least five clusters of size less than 30 appeared. A reasonable range
of numbers can be used to choose the cutoff and our results are not very sensitive
to the choice of this number. The full procedure produced 13 groups of genes, the
full list of which, including annotations, can be found in Section 6 of the supple-
mentary information [Wang et al. (2015)].

To test the biological significance of all 13 groups found (i.e., whether there is
a functional relationship between genes within the various groups), we first exam-
ined for enrichment of gene product properties, collectively designated gene ontol-
ogy (GO) annotations, within each group using information available at The Ara-
bidopsis Information Resource (http://www.arabidopsis.org/tools/bulk/index.jsp).
We determined that 8 out of 13 groups were highly enriched with genes having
the same GO annotation and calculated their p-values using Fisher’s exact test to
compare with the counts obtained from the full analyzed data set (Table 2).

In addition to the GO enrichment approach for validating the groups, and in
order to support the biological significance of the groups found, we also evalu-
ated other forms of evidence. We were able to determine that for several groups
the genes placed in the groups encode for known pathways. For example, group 2
genes encode steps in the phenylpropanoid-flavonoid (FB) biosynthesis pathway,
and group 3 genes encode for steps in the glucosinolate (GSL) biosynthesis path-
way. Both are well-studied secondary metabolic pathways. Flavonoids are com-
pounds of diverse biological activities such as anti-oxidants, functioning in UV
protection, in defense, in auxin transport inhibition and in flower coloring [Gachon
et al. (2005), Naoumkina et al. (2010), Taylor and Grotewold (2005), Woo, Jeong
and Hawes (2005)], and GSLs are sulfur-rich amino acid-containing compounds
which become active in response to tissue damage and are believed to offer a pro-
tective function [Sønderby, Geu-Flores and Halkier (2010), Verkerk et al. (2009),

http://www.arabidopsis.org/tools/bulk/index.jsp
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TABLE 3
GO enrichment of groups—first cut

Number of genes with
Group ID Enriched GO term enriched terms P -values

9 Cell wall 16 out of 81 4.46 × 10−6

10 Defense response 29 out of 78 1.58 × 10−2

11 Phenylpropanoid-flavonoid biosynthesis 11 out of 76 5.42 × 10−12

Yan and Chen (2007)]. A considerable number of genes in both pathways are in-
duced by broad environmental stresses and regulated at the transcriptional level.
Based on the lists of genes associated with these two pathways reported in Kim
et al. (2012), our analyzed data set contained 13 FB pathway genes and 26 GSL
pathway genes. The precisions of our search are 75% and 100%, respectively.

In order to assess the likelihood that genes in the remaining groups could also
encode steps within specific pathways, we reviewed microarray data from plants
subjected to other forms of oxidative stress (these experiments are similar to the
experiment from which our data set using MV was obtained). Using this approach
we found that genes in each of the additional seven groups (1, 4, 5, 8, 9, 11, 12)
were strongly associated in these independent experiments (supplementary infor-
mation Section 6 [Wang et al. (2015)]).

Of all the groups found, groups 6, 7 and 13 remain uncharacterized in
the literature. Nonetheless, using CoExSearch [part of the ATTD-II database
(http://atted.jp/top_search.shtml #CoexVersion)], all four genes in group 7 were
correlated to some degree with abiotic stress conditions. We also found these genes
were common anoxia-repressed genes [Loreti et al. (2005)]. The lack of complete
characterization for these groups in the current literature leaves potential scope for
further biological examination.

For comparison we applied pearson.hc, module.dynamic and module.hybrid to
the same data. As the simulation study suggests the latter two methods in general
have better performance than pearson.hc, particularly in the multi-group case, we
will present the results from these two methods and refer to Section 6 in the sup-
plementary information [Wang et al. (2015)] for pearson.hc-based results. In order
to compare with our results, we chose two cuts of the dendrogram such that the
first cut produced the same number of groups as our method, and the second one
led to groups with sizes comparable to ours. The first cut resulted in 13 groups with
sizes ranging from 60 to 293. We picked the three most promising groups based
on their annotations and the GO analysis is summarized in Table 3. Although all
of them have statistically significant p-values, their precisions are quite low. In
particular, group 11 contains our group 2 as a subset and includes 11 genes (out
of 76) in the FB pathway and 5 genes are in the isoprenoid biosynthesis pathway.
These two pathways are derived from different initial precursors and are known

http://atted.jp/top_search.shtml
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TABLE 4
GO enrichment of groups—second cut

Number of genes with
Group ID Enriched GO term enriched terms

62 NA 0 out of 6
63 Chloroplast 4 out of 6
64 Located in plasma membrane 2 out of 5
65 Located in plasma membrane 3 out of 5
66 Pyridoxine biosynthetic process 2 out of 5

to be unrelated. We note here that at this cut level, the GSL pathway cannot be
identified by the method. The second cut produces 66 groups with sizes from 5
to 81. We picked five small groups for analysis and only one group with genes
localized in chloroplast has significant GO enrichment (Table 4). Even so, these
genes are unlikely to be functionally related. The comparison suggests our method
can achieve better precision and lead to more biologically meaningful groupings
of genes.

3.3. Effects of tuning parameters. To systematically study the effects of differ-
ent tuning parameters on the identification of gene functional groups, we perform
sensitivity analysis for different choices of subsampling levels and penalty param-
eter λ using both the simulated and real data discussed above. For the sake of com-
pleteness, we also compare tuning parameters from the HC and SBM procedures.
Overall, our results are reasonably stable for a range of λ values. Further stability
can be achieved by pooling results from different λ. As expected, the choice of
subsampling level is more important when there exist multiple functional groups.
Our results suggest levels between 50% and 80% can all be considered in practice.
For community detection, HC is more robust than SBM in the sense that the clas-
sification results are not sensitive to the cutoff chosen. The results are summarized
in Section 7 of the supplementary information [Wang et al. (2015)].

4. Discussion. In this paper we focus on the problem of estimating gene group
interactions in gene networks, where data are given in the form of nodes and their
associated covariates and estimation of the true network is a challenging task. We
propose a new method to construct an edge weight matrix for the full network by
applying SCCA to sampled subsets of genes with random partitioning. To evalu-
ate the quality of the constructed network, subsequent analysis of the community
structures is applied to identify potential gene functional groups. Although the
work is presented under the setting of gene networks, we believe our approach
can be generally applicable to answer similar questions in other biochemical net-
works and even networks in other fields that are sparse and have similar covariate
features.
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Compared to other popular ways of measuring gene interactions, our SCCA
approach is more conceptually appealing. By seeking maximally correlated sets
of genes among randomly sampled subsets, this approach provides an aggregated
measure of gene partial correlations when the correct conditional set is unknown,
and thus gives us a better chance of capturing group interactions. As demonstrated
in both simulation and real data applications, one of the main attractions of our
procedure is its high precision. Although it does not seem to greatly improve recall,
this is not a huge drawback in light of the search algorithm by Kim et al. (2012).
Given the accuracy of our search results in general, one can use these identified
genes as “seed genes” to initiate a more complete search and expand on the current
lists.

Our approach can be modified to handle other practical situations. When it is
known in advance that some genes operate in the same functional group, one may
incorporate the prior knowledge by lowering the penalties associated with those
genes in the SCCA algorithm. Although we have focused on the case with disjoint
functional groups, our method of constructing an edge weight matrix is still appli-
cable to the overlapping case as long as the shared genes possess strong direct or
partial interactions with all the other functional genes (supplementary information
Section 5 [Wang et al. (2015)]). However, a different community detection method
[e.g., mixed membership SBM; Airoldi et al. (2008)] should be applied to identify
the overlapping structures.

The core of our procedure consists of an implementation of SCCA by LASSO
regression, and this naturally opens room for further investigation. For example,
it would be interesting to find out if using other penalty functions yields different
results, more importantly, whether SCCA can be implemented using a different
optimization criterion or a more efficient algorithm to lessen the computational
cost of our procedure. In the theoretical aspect, it would be desirable to incorporate
sparsity into our asymptotic analysis.

On the community detection side, although we used SBM and HC as exam-
ples, there are many other available methods to be further explored, especially
their properties in relation to the edge weight matrix Ā. The use of SBM and
HC also gives rise to other interesting extensions. As noted in Section 3.1, con-
ventional SBM does not perform well when there are multiple groups, which is
mainly caused by the heterogeneity of node degrees. However, fitting a degree-
corrected model using the conditional pseudo-likelihood algorithm does not seem
to offer significant improvement. It would be desirable to carry out further study on
the theoretical properties of the degree-corrected SBM and characterize its iden-
tifiability problem. Another possible extension is to modify these algorithms to
take weighted adjacency matrices without discretization. Developing a practical
but more systematic way of choosing the cutoff level for HC also invites future
study.
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SUPPLEMENTARY MATERIAL

Supplementary information (DOI: 10.1214/14-AOAS792SUPP; .pdf). As-
ymptotic analysis and additional explanations of the procedure, additional sim-
ulation and real data results. The code for estimating the edge weight matrix can
be requested from hhuang@stat.berkeley.edu.
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