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A MULTI-FUNCTIONAL ANALYZER USES PARAMETER
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We develop a model-based methodology for integrating gene-set infor-
mation with an experimentally-derived gene list. The methodology uses a pre-
viously reported sampling model, but takes advantage of natural constraints in
the high-dimensional discrete parameter space in order to work from a more
structured prior distribution than is currently available. We show how the nat-
ural constraints are expressed in terms of linear inequality constraints within
a set of binary latent variables. Further, the currently available prior gives low
probability to these constraints in complex systems, such as Gene Ontology
(GO), thus reducing the efficiency of statistical inference. We develop two
computational advances to enable posterior inference within the constrained
parameter space: one using integer linear programming for optimization and
one using a penalized Markov chain sampler. Numerical experiments demon-
strate the utility of the new methodology for a multivariate integration of ge-
nomic data with GO or related information systems. Compared to available
methods, the proposed multi-functional analyzer covers more reported genes
without mis-covering nonreported genes, as demonstrated on genome-wide
data from association studies of type 2 diabetes and from RNA interference
studies of influenza.

1. Introduction. In statistical genomics, the gene list is a recurring data struc-
ture. We have in mind situations where experimental results amount to a collection
of genes measured to have some property. Examples include the following: RNA
expression studies, in which the property might be differential expression of the
gene between two cell types; genome-wide RNA knock-down studies, in which
the property is significant phenotypic alteration caused by RNA interference; chro-
matin studies recording genes in the vicinity of transcription factor binding sites
or having certain epigenetic marks. In all cases, the reported gene list is really the
result of inference from more basic experimental data. These more basic data may
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be available to support subsequent analyses, but we are concerned with the impor-
tant and relatively common case in which the gene list itself is the primary data set
brought forward for analysis.

The statistical question of central importance in the present paper is how to in-
terpret the gene list in the context of preexisting biological knowledge about the
functional properties of all genes, as these exogenous data are recorded in database
systems, notably Gene Ontology (GO), the Kyoto Encyclopedia (KEGG) and the
reactome, among others [The Gene Ontology Consortium (2000); Kanehisa and
Goto (2000); Matthews et al. (2009); Gentleman et al. (2004)]. For us, exogenous
data form a collection of gene sets, with each set equaling those genes previously
determined, by some evidence, to have a specific biological property. Recently,
for example, the full GO collection contained 16,527 sets (GO terms) annotating
17,959 human genes.5 Needless to say, genes are typically annotated to multi-
ple gene sets (median 7 sets per gene among the genes annotated to sets which
contain between 3 and 30 genes, e.g.), covering all sorts of functional properties.
The task of gene-set analysis is to efficiently interpret the functional content of
an experimentally-derived gene list by somehow integrating these endogenous and
exogenous data sources [Khatri, Sirota and Butte (2012)].

Our starting point is an exciting development in the methodology of gene-set
analysis. Model-based gene-set analysis (MGSA) expresses gene-level indicators
of presence on the gene list as Bernoulli trials whose success probabilities are de-
termined in a simple way by latent activity states of binary variables associated
with the gene sets [Bauer, Gagneur and Robinson (2010); Bauer, Robinson and
Gagneur (2011)]. Inference seeks to identify the active gene sets, as these rep-
resent functional drivers of the experimental data. Inference is computationally
difficult because the activity state of a given gene set depends not only on exper-
imental data for genes in that set, but also on the unknown activity states of all
other gene sets that annotate these same genes. MGSA overcomes the problem
through Bayesian inference implemented with an efficient Markov chain Monte
Carlo (MCMC) sampler, and thus provides marginal posterior probabilities that
each gene set is in the active state. The MGSA methodology is compelling. Be-
cause it treats all gene sets in the collection simultaneously, it provides a truly mul-
tivariate analysis of the exogenous data source, where most available approaches
are univariate (one set at a time). Where set/set overlaps are a nuisance in most
gene-set methodologies, MGSA utilizes them directly in modeling and inference.
This accounts for pleitropy, that genes have multiple biological functions, reduces
the risk of spurious associations, and leads to cleaner output whereby a typical list
of gene sets inferred to be active is simpler and exhibits less redundancy than in
standard univariate analyses [Bauer, Gagneur and Robinson (2010); Newton, He
and Kendziorski (2012)].

5Bioconductor package org.Hs.eg.db, version 2.8.0.
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Our analysis reveals a feature of MGSA that adversely affects its statistical
properties. In ever denser collections of gene sets, the MGSA prior distribution
puts more and more mass on logically inconsistent joint activity states. As a result,
data need to work ever harder to overcome this misguided prior probability. The
effect is tangible; for a given amount of data, fewer truly activated gene sets are in-
ferred to be active, compared to what is achievable with an alternative formulation.
We propose a new methodology, the multi-functional analyzer (MFA), which aims
to improve the statistical efficiency of MGSA. It uses two computational advances
that enable posterior inference in the high-dimensional constrained space of joint
activity states. One is an efficient MCMC sampling scheme constructed by penal-
izing the log-posterior in the unconstrained space and one is a discrete optimizaton
scheme that translates the inference problem into an integer linear programming
(ILP) problem.

We note that inference about gene-set activity states may be interesting from the
general perspective of high-dimensional statistics. Typically, dependence among
data from different inference units (sets, in this case) is considered a nuisance and
testing aims to identify nonnull units (active sets) by some methodology that is
robust to dependencies, since these dependencies are often difficult to estimate
from available data. In the present context dependencies are complicated but ex-
plicit, and inference benefits by using them to advantage. Finally, we also note that
the probability model underlying our methodology—the role model—has poten-
tial utility in other domains of application. It provides a simple way to relate data
collected at one level (genes, in this case) to inference units that are unordered
collections of the former (gene sets, in this case).

2. Role model.

2.1. Model. Following the description in Newton et al., we have a finite num-
ber of parts p and a finite number of wholes w, where each whole is an unordered
set of parts. The incidence matrix I = (Ip,w) is determined from external knowl-
edge, where Ip,w = 1 if and only if p ∈ w. The intended correspondence is that
genes are parts and gene sets (i.e., functional categories) are wholes. The matrix I

encodes a full collection of gene sets. We will have measured data on the parts and
aim to make inference on properties of the wholes.

The experimentally-derived gene list may be viewed as a vector of Bernoulli
trials X = (Xp), with Xp = 1 if and only if part (gene) p is on the list. First
proposed in Bauer, Gagneur and Robinson (2010), the role model describes the
joint distribution of X in terms of latent binary (0/1) activity variables Z = (Zw)

and by part-level activities induced by them: Ap = 1 if Zw = 1 for any w with
p ∈ w or, equivalently,

Ap = max
w : p∈w

Zw.(2.1)
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This conveys the simple assumption that a part is activated if it is in any whole
that is activated. For false-positive and true-positive parameters α,γ ∈ (0,1), with
α < γ , the model for X entails mutually independent components (conditionally
on latent activities), with

Xp ∼ Bernoulli
{

α, if Ap = 0,
γ, if Ap = 1.(2.2)

Simply, activated parts (i.e., those with Ap = 1) are delivered to the list at a higher
rate than inactivated parts. A key feature of the model is that a part (gene) is acti-
vated by virtue of any one of its functional roles; this implies that a gene may be
activated and yet be part of a functional category that is inactivated, which is in
contrast to most other gene-set inference methods [e.g., Goeman and Bühlmann
(2007); Barry, Nobel and Wright (2008); Sartor, Leikauf and Medvedovic (2009)]
and which provides for a fully multivariate analysis of the gene list. In Bauer, Gag-
neur and Robinson (2010) it is further assumed, for the sake of Bayesian analysis,
that uncertainty in whole-level activities is represented with a single rate parameter
π ∈ (0,1):

Zw ∼i.i.d. Bernoulli(π).(2.3)

Taken together, the model (2.2) and the prior (2.3) determine a joint posterior for Z

given X. The R package MGSA (model-based gene-set analysis) reports MCMC-
computed marginal posterior probabilities P(Zw = 1|X), also integrating uncer-
tainty in the system parameters α, γ and π , and thus provides a useful ranking
of the wholes [Bauer, Robinson and Gagneur (2011); R Development Core Team
(2011)].

In addition to the system incidence matrix I , a useful data structure for compu-
tations turns out to be the bipartite graph G, having whole nodes and part nodes,
and an edge between w and p if and only if Ip,w = 1 (i.e., iff p ∈ w).

2.2. Activation hypothesis. As defined above, the role model allows that
a whole can be inactive while all of its parts are active. This can happen because
of overlap among the wholes. Specifically, if w is contained in the union of other
wholes {w′}, then all Zw′ = 1 will force Ap = 1 for all p ∈ w, regardless of the
value of Zw . This rather odd situation calls into question the meaning of active
and what we might realistically expect can be inferred from data. Indeed, the issue
is related to identifiability of the activity vector Z, since it shows that distinct Z

vectors may produce the same part-level activity vector A = (Ap). (In the case
above, switching Zw from 0 to 1 does not change A.) The mapping Z −→ A

given by (2.1) is not necessarily invertible, depending on the system as defined
in I . Lack of identifiability would not necessarily create difficulty in a Bayesian
analysis, however, in the present case we are specifically interested in inferring the
activity states of the gene sets and prioritizing these sets, and so it stands to reason
that we ought to confer a real, if still only model-based, meaning on the activities.
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When activity is defined more fully, there is a simple solution to the problem.
The activation hypothesis asserts that a set of parts is active if and only if all parts
in the set are active. It was shown previously (Newton et al.) as follows:

THEOREM 2.1. Under the activation hypothesis (AH), the mapping Z −→ A

defined by

Ap = max
w : p∈w

Zw

is invertible, with inverse A −→ Z

Zw = min
p : p∈w

Ap.

The inverse mapping is simply that a whole is inactive if and only if any of
its parts is inactive. So the odd case at the beginning of the section cannot occur
under AH; if all parts are active, then Zw = 1 must hold. Further, with parame-
ters α and γ fixed, the Z vector is identifiable under AH, since different Z vectors
necessarily give different probability distributions to data X.

The first contribution of the present work is to show that the activation hypoth-
esis is equivalent to a set of linear inequality constraints on the activity variables.
The finding is useful for posterior inference computations. We prove in Section 7
the following:

THEOREM 2.2. AH holds if and only if all of the following hold:

1. Zw ≤ Ap for all p,w with p ∈ w;
2. Ap ≤ ∑

w : p∈w Zw for all p;
3.

∑
p : p∈w(Zw − 2Ap + 2) ≥ 1 for all w.

Evidently, the i.i.d. Bernoulli prior (2.3) does not respect AH in the sense that
vectors Z which violate AH have positive prior probability. In simple systems such
violation may be innocuous. We provide evidence that in the complex systems such
as GO, this violation creates a substantial loss of statistical efficiency. We note first
that alternative prior specifications are available that respect AH. A simple one is
to condition prior (2.3) on the AH event, namely,

P(Z = z) =
(

1

c

)
π

∑
w zw(1 − π)

∑
w(1−zw) if z satisfies AH,(2.4)

otherwise P(Z = z) = 0, where c is the probability, in prior (2.3), that Z satisfies
AH, and z is a vector of binaries representing a possible realization of Z. In other
words, with subscript “1” for the i.i.d. prior (2.3) and “2” for prior (2.4), we have
P2(Z = z) = P1(Z = z|AH). Upon conditioning, the (Zw) are not necessarily ei-
ther mutually independent or identically distributed.
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3. Statistical properties. The role of the prior distribution in Bayesian anal-
ysis has surely been the subject of considerable debate. On the one hand, it helps
by regularizing inference, especially in high dimensions. On the other hand, data
need to work against it to produce inferences that trade off empirical characteristics
with prior assumptions. A fact of relevance to the present problem is that gene-list
data must work against either prior [(2.3) or (2.4)] to deliver an inferred list of
activated gene sets. For two Bayesian analysts, one using prior (2.3) and the other
using prior (2.4), the true state is ascribed different prior mass. The ratio of these
masses, ρ, represents the extra effort needed to be done by the data to overcome
prior (2.3) compared to prior (2.4):

ρ = P2(Z = ztrue)

P1(Z = ztrue)
= P1(Z = ztrue|AH)

P1(Z = ztrue)
= 1

P1(AH)
≥ 1.(3.1)

Here we have used the particular structure of prior (2.4) and also the assumption
that ztrue satifies AH. If ztrue did not satisfy AH, the target of inference would be
beyond the realm of any gene-level data set to estimate, owing to lack of identifi-
ability. Indeed, it is difficult to see what meaning could be ascribed to ztrue in that
case. The observation to be gained from (3.1) is that the probability of AH under
the i.i.d. prior affects the efficiency of inference. In systems where that probability
is very small, there is reason to believe that improved inferences are possible. As to
the precise effect of ignoring AH, that depends on the particular system I , the true
activation state, and the system parameters α and γ . What our initial investigation
finds is that a truly activated whole w may tend to have P1(Zw = 1|X) smaller
than P2(Zw = 1|X), and if so the P1 inference is too conservative.

Whether or not AH holds for a given state Z may be assessed by calculating the
part-level activities A and then checking Theorem 2.2. Alternatively, we consider
whole-level violation variables (Vw). These Bernoulli trials are defined as follows:

Vw =
⎧⎨
⎩

1, if Zw = 0 and if for all p ∈ w there exists w′
with p ∈ w′ and Zw′ = 1,

0, otherwise.
(3.2)

The probability, under P1, that Z satisfies AH is equivalent to the probability of no
violations, that is,

P1(AH) = P1(Vw = 0,∀w),(3.3)

and so AH probability might be approachable by considering the violation vari-
ables. Except in stylized examples, we do not expect these variables to be mu-
tually independent; indeed, they may have a complicated dependence induced by
overlaps of the wholes and, hence, direct calculation of P1(AH) is intractable.
However, the expectations of Vw are readily computable for a given system, ei-
ther by Monte Carlo or by a more sophisticated algorithm [Wang et al. (2014)].
Considering the Chen–Stein result for Poisson approximations, we conjecture that
− logP1(AH) is approximately equal to E1(

∑
w Vw), though we have not been



A MULTI-FUNCTIONAL ANALYZER 231

FIG. 1. Expected number of sets that violate the activation hypothesis (AH) for four recent ver-
sions of Gene Ontology (GO), considering sets holding between 5 and 20 genes, taken on the i.i.d.
Bernoulli prior. Calculations are done at π = 1/100. Respectively, these systems contain 3591, 4096,
4449 and 4772 gene sets, and correspond to versions of org.Hs.eg.db.

able to guarantee an error on this approximation [cf. Arratia, Goldstein and Gor-
don (1990)].

Figure 1 charts the expected value E1(
∑

w Vw) over four recent versions of
Gene Ontology, for π = 1/100. For concreteness it focuses on GO terms holding
between 5 and 20 genes (for which an exact calculation of the expectation is fea-
sible), though the key finding is not sensitive to that restriction, as evidenced by
Monte Carlo computations (not shown). As one might expect by the increasing
density and complexity of GO, the expected number of AH violations increases.
This may very well reflect the fact that P1(AH) is decreasing over time, which
indicates to us that ignoring AH is becoming an ever greater problem for gene-set
analysis.

In terms of modeling assumptions, there is no additional cost to accounting for
AH in the Bayesian analysis; the cost is purely computational, since inference must
now deal with the constraints imposed by AH on the space of latent activities. The
next sections describe two computational advances that address the problem.

4. Decoding functional signals via constrained optimization.

4.1. MAP via ILP. Decoding a discrete signal is frequently accomplished by
algorithms that compute the parameter state having the highest posterior mass: the
maximum a posteriori (MAP) estimate. Although limited as a posterior summary,
the MAP estimate may contain useful multivariate information [e.g., Carvalho and
Lawrence (2008)]. Our representation of model-based gene-set analysis reveals
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that under model (2.2) and prior (2.4), the log posterior is linear in the joint collec-
tion of whole and part activity variables. This log posterior is

l(Z,A) = ∑
w

{
Zw log(π) + (1 − Zw) log(1 − π)

}

+ ∑
p

{
Ap

[
xp log(γ ) + (1 − xp) log(1 − γ )

]
(4.1)

+ (1 − Ap)
[
xp log(α) + (1 − xp) log(1 − α)

]}
,

where xp is the realized value of the gene-list indicator Xp , and α, γ , and π are
system parameters, which are considered fixed in the present calculation. Con-
sidering Theorem 2.2, finding the MAP estimate (Ẑ, Â) amounts to maximizing
a linear function in discrete variables subject to linear inequality constraints. As
such, it fits naturally into the domain of integer linear programming (ILP), an ac-
tive subfield of optimization. Our computations take advantage of ILP software
available in the GNU Linear Programming Kit through its interface with R.6 We
employed a series of basic code checks to assure our implementation worked in:
(1) simple examples where the MAP estimate is computable by other means; and
(2) limiting situations where Xp was Binomial having a high sample size, and thus
where the MAP estimate must converge to the true activity state.

The reconstruction Ẑ obtained through this optimization holds an estimate of
the activated and inactivated gene sets. We refer to the overall method as the multi-
functional analyzer (MFA), and specifically MFA-ILP to refer to the posterior
mode computed by ILP. We note that by invertibility of the mapping Z −→ A

under AH, the log-posterior l could be expressed either as a function of Z only
or as a function of A only, however, in neither reduced case would l be linear in
the input variables. Moreover, in neither reduced case could the constraints be ex-
pressed as linear inequality constraints. By expanding the domain we formulate
the constrained optimization as an integer linear program.

4.2. Numerical experiments. In each experiment reported below we repre-
sented a system with a parts-by-wholes incidence matrix I ; we fixed the false-
positive rate α = 1/10 and the true positive rate γ = 9/10. We simulated 100
gene-lists X from model (2.2), each time using a simulated activity vector Z. For
methods comparison, we applied the following: (1) the commonly used Fisher ex-
act test for enrichment of each gene set in the data X [Khatri, Sirota and Butte
(2012)], (2) MGSA (version 1.7.0), and (3) MFA-ILP. We allowed both model-
based methods to know the system parameter settings. To evaluate performance,
we calculated specificity, sensitivity, and precision of the estimated activity vec-
tor Ẑ for the true activity vector Z by averaging over the 100 replicates.

6See www.gnu.org/software/glpk and cran.R-project.org/package=Rglpk.

http://www.gnu.org/software/glpk
http://cran.R-project.org/package=Rglpk
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TABLE 1
Simulation comparison of three gene-set methods, a case of low overlap among gene sets: Tabulated

are mean values from 100 simulated data sets. On average 7.3 truly activated sets occur

Method Predicted # active Sensitivity Specificity Precision

MFA-ILP 7.4 0.963 0.997 0.958
Fisher (cut-off = 0.05) 5.9 0.790 0.998 0.966
Fisher (cut-off = 0.1) 6.8 0.873 0.996 0.948
MGSA (cut-off = 0.5) 7.2 0.954 0.998 0.968

Experiment 1: Low overlap. Initially, I had size 300 genes (parts) by 100 gene
sets (wholes). We randomly picked 5 and 10 parts for each whole in columns 1–
50 and 51–100, respectively. Then we removed parts not contained by any whole,
leaving a 296 × 100 incidence matrix. We sampled Z from prior (2.3) and then
projected it onto AH by constructing Ap = maxw : p∈w Zw and then updating Zw =
minp : p∈w Ap . All methods exhibit similar operating characteristics in this case
(Table 1).

Experiment 2: Higher overlap and parent-child structure. Initially, I had size
300 parts by 105 wholes. From column 1 to column 20, each column has 20 parts,
of which 15 parts are in common with each other and 5 parts are randomly selected
from the other parts; column 21 has 10 parts which are randomly picked from the
15 common parts shared by columns 1–20. Thus, columns 1–20 have a lot of over-
laps and column 21 is a child of columns 1–20. Similarly, we built columns 22–42,
43–63, 64–84 and 85–105. The common 15 parts in each column combination are
all different. Then parts not contained by any whole were removed, which resulted
in a 265 × 105 incidence matrix. We activated wholes by sampling one whole
from columns 1–20, 22–41, 43–62, 64–83 and 85–104 as activated, respectively,
and projected onto AH as above.

Table 2 exhibits properties of three methods in relatively complicated system
just defined. The univariate Fisher test tends to select the wholes with a high corre-

TABLE 2
Simulation comparison of three gene-set methods, a case of higher overlap among gene sets:

Tabulated are mean values from 100 simulated data sets. On average there are 10.1 truly activated
sets in this case

Method Predicted # active Sensitivity Specificity Precision

MFA-ILP 10.2 0.975 0.997 0.993
Fisher (cut-off = 0.05) 104.2 0.996 0.008 0.096
Fisher (cut-off = 0.1) 104.8 0.996 0.002 0.096
MGSA (cut-off = 0.5) 5.5 0.490 0.995 0.920
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lation (overlap) with the truly activated wholes, which results in high sensitivity but
low specificity (or precision). The extra activation calls correspond to spurious as-
sociations that the multivariate, model-based approaches are able to recognize. The
MGSA method often fails to discover truly activated wholes, which corresponds
to a reduced sensitivity. The small child wholes tend to be missed by MGSA in
this case. The proposed MFA-ILP method is right on target.

4.3. ILP for large systems. Large systems strain unaided ILP computation, but
the special structure of the gene-set problem allows for several refinements.

Shrinking I . Up to a constant, the objective function in (4.1) may be expressed

l(Z,A) = c1
∑
w

Zw + c2
∑

p∈P −
Ap + c3

∑
p∈P +

Ap,

where

c1 = logπ − log(1 − π),

c2 = log(1 − γ ) − log(1 − α),

c3 = logγ − logα

and where P − and P + denote the observed inactivated and activated parts, re-
spectively. That is, p ∈ P − if xp = 0 and p ∈ P + if xp = 1. By assumption (2.2),
α < γ and so c2 < 0 and c3 > 0. If we further insist that π < 1/2, then c1 < 0
also. In some cases we can know which Ẑw and Âp must equal 0 in the optimal
solution, and if so we can remove these variables from the system prior to imple-
menting ILP. For each whole w denote P +

w = w∩P + and similarly P −
w = w∩P −,

and define W ∗ = {w : c1 + c3
∑

p∈P +
w

1 < 0}. Clearly, those wholes containing no
reported parts are in W ∗, but there may be others. We prove in Section 7 that if
W ∗ is not empty, then we may be able to shrink the system prior to solving the
constrained optimization problem via ILP.

THEOREM 4.1. Suppose π < 1/2 and let w0 denote an element of W ∗. If
there exists p0 ∈ w0 such that {w :p0 ∈ w} ⊂ W ∗, then Ẑw0 = Âp0 = 0.

Letting W0 and P0 denote wholes and parts for which the optimal solution is
known (in advance of computation), we may remove these from the incidence
matrix I , effectively shrinking it. The amount of shrinkage may be dramatic, but it
depends on the observed data x, the system I , and system parameters α, γ and π .
When α is small and γ is large, the effects may be minimal.

A sequential approach. In the unlikely event that the system matrix I is sepa-
rable into blocks of wholes that do not overlap between blocks, then ILP may be
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applied separately to these distinct blocks in order to identify the MAP activities.
We do not expect this separability in GO or related systems, but we can take advan-
tage of size variation of the wholes and work sequentially from small ones to larger
ones. As an example, let S10 denote the sets containing no more than n.up = 10
genes. In order to obtain the optimal solution for the full problem, we start from the
sub-matrix I.10 obtained by extracting these sets from I . Suppose Z∗

10 is the MAP
solution based on the data for I.10, and use notation S∗

10 to denote the active sets
in S10 as inferred by Z∗

10. We aim to find the optimal solution Z∗
11 for I.11 using

what has already been computed in the smaller system. Denote the newly added
sets in I.11 by S11

10 (i.e., the sets containing exactly 11 genes). We just need to
consider the sets with the possibility being active in the optimal solution on I.11.
First of all, S∗

10 and S11
10 should be included, in the case we have no any other prior

knowledge about Z∗
11. Second, by the 3rd AH inequality (Theorem 2.2), any set

in S10 \ S∗
10 which is a subset of some set in S11

10 , denoted by D, should also be
included. But these sets already considered are not enough. Actually, for each set
w1 in S11

10 , we need to check whether there exists some set w2 in S10 \ (S∗
10 ∪ D)

satisfying

c1 + c2
∑

p∈P −∩P
w2
w1

Ap + c3
∑

p∈P +∩P
w2
w1

Ap > 0,(4.2)

where P w2
w1

denote the set of genes contained by w2 and not by w1. We do this since
each set in S11

10 may be active in the optimal solution Z∗
11, and we need to check

whether some sets in S10 should be activated toward maximizing the objective
function. We denote the sets in S10 \ (S∗

10 ∪D) satisfying the condition (4.2) by E.
Finally, by the 3rd AH inequality (Theorem 2.2), any set in S10 \ (S∗

10 ∪ D ∪ E)

which is a subset of some set in E, denoted by F , should also be included.
Thus, we need to run the ILP on the incidence matrix only for S∗

10 ∪ S11
10 ∪ D ∪

E ∪ F , instead of I.11. Hence, we obtain a sequential approach to solve the full
ILP problem from a sequence of smaller problems. Examples show this is feasible
in GO for subsystems holding sets of up to 50 genes, without excessive computa-
tional burden.

5. Posterior sampling.

5.1. Penalized MCMC. To obtain a sample from the posterior distribution de-
fined by prior (2.4) and model (2.2) in which the whole activity variables Z = (Zw)

have positive probability only when Z satisfies AH, we design a Markov chain to
run within the unconstrained space according to a penalized posterior:

l̃(Z) = l(Z,A) − λ
∑
w

Vw,(5.1)

where l(Z,A) is defined in (4.1), Vw is the violation indicator (3.2), and λ ≥ 0 is a
tuning parameter. The desired sample is obtained by discarding any sampled states
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that do not satisfy AH. Note that there are no violations (
∑

w Vw = 0) for Z that
satisfy AH, so that l̃(Z) = l(Z,A) in this case and the conditional log posterior
distribution under l̃(Z) restricted to AH is identical to the target log posterior dis-
tribution. Increasing the tuning parameter λ increases the probability of AH in the
larger state space, which is essential for efficient sampling when this probability
is small. We find that penalizing the log posterior within the unconstrained space
leads to a conditional sampler that mixes well in the constrained space, where our
previous attempts to constrain move types were less successful.

It is helpful to visualize the Markov chain as operating by changing colors on
the node-colored bipartite graph G having whole nodes and part nodes, with an
edge between a whole node w and part node p if and only if p ∈ w, and where the
coloring of the whole nodes {w} and part nodes {p} match the activities Z and A,
respectively. It is useful in assessing the state of the Markov chain to associate with
each node a count n(·) of its active connected neighbors in G. Ap = 1 if and only
if n(p) > 0 and Vw = 1 if and only if Zw = 0 and n(w) = deg(w), the number of
part nodes p ∈ w.

The Markov chain proceeds by selecting at random a whole node w and propos-
ing a color swap (a change in the status of the activity variable, Z∗

w = 1 − Zw) for
this node.7 This proposed change can, but need not, affect the activities of parts
contained in this whole. When Z∗

w = 1, the active neighbor counts n(p) increase
by 1 for each p ∈ w. If Ap changes from 0 to 1, then each node w′ that contains p

(including w) gains an additional active neighbor and n(w′) increases by 1. This
increase could cause a violation if p were the only remaining inactive neighbor
of an inactive w′, causing Vw′ to change form 0 to 1. If node w were in violation
before this proposal, activating it would eliminate the violation. Similarly, when
Z∗

w = 0, the active neighbor counts n(p) decrease by 1 for each p ∈ w. If this de-
crease is from 1 to 0, then the activity Ap changes from 1 to 0 as well and all of the
whole nodes w′ connected to p would lose an active neighbor, n(w′) decreasing
by 1. If the whole node w′ had been in violation, this change would eliminate the
violation with Vw′ changing from 1 to 0.

Careful accounting of the changes to a few key counts allows for quick calcu-
lation of the change in l̃(Z∗) and subsequent acceptance or rejection of the pro-
posal by Metropolis–Hastings. The log posterior l̃(Z∗) is a function of α, γ , π ,
the penalty λ and the counts of the numbers of active and inactive whole nodes
[
∑

w Zw and
∑

w(1 −Zw), resp.], the number of whole nodes in violation (
∑

Vw),
the numbers of active part nodes with realized values 1 and 0 [

∑
p Apxp and∑

p Ap(1 − xp), resp.], and the numbers of inactive part nodes with realized val-
ues 1 and 0 [

∑
p(1 − Ap)xp and

∑
p(1 − Ap)(1 − xp), resp.].

7Efficiency gains may be possible by using a nonuniform sampler, for instance, depending on the
set size or the number of reported parts in the whole, though we use a uniform proposal in the present
work.
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5.2. Numerical experiment. To assess the performance of MFA-MCMC, we
simulated gene-list data according to the role model in the D. melanogaster
genome, following the scheme presented in Bauer, Gagneur and Robinson (2010).
Briefly, we used 3275 GO terms annotating between 5 and 50 fly genes, accord-
ing to version 2.14.0 of Bioconductor package org.Dm.eg.db. In each simulation
run, a number of GO terms were activated and then a gene list was constructed
from independent Bernoulli trials depending on the activation states and settings
of false-positive and false-negative error rates. Figure 2 shows receiver-operating
(ROC) curves and precision-recall curves for two parameter settings, based on
100 simulated gene lists in each setting. Selection to the reported set list is based
on thresholding the marginal posterior probability (MGSA, MFA-MCMC) or the

FIG. 2. Operating characteristics of MFA-MCMC, MGSA, and Fisher’s test based on simulating
the role model in the D. melanogaster genome.
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p-value (Fisher). Evidently, MGSA and MFA-MCMC are accurate and show sim-
ilar behavior when error rates are low, though MFA-MCMC shows improved pre-
cision and sensitivity in more difficult settings.

In subsequent calculations we deploy both MAP estimation (MFA-ILP) and
MCMC sampling on each data set in order to infer wholes that are probably acti-
vated. For MCMC, we use 107 sweeps, burn-in of 106, and λ = 5, which causes
about one third of the states to satisfy AH. MFA-ILP gives a summary functional
decoding of the gene list. Posterior probabilities from the MCMC computation
provide a measure of confidence in the inferred sets and also highlight notable
non-MAP sets. Fisher’s test is the default univariate method for gene-list data; we
include it for comparison, even though the hypotheses it tests are different from
the activation states assessed by MFA and MGSA.

6. Examples.

6.1. Genes implicated in type 2 diabetes (T2D). From a large-scale genome-
wide association study (GWAS) involving more than 34,000 cases and 114,000
control subjects, 77 human genes have been implicated as affecting T2D disease
susceptibility [Morris et al. (2012), Supplementary Table 15, primary list]. To as-
sess the functional content of this gene list, we applied MFA, MGSA, and simple
enrichment via Fisher’s exact test, all in the context of 6037 gene ontology terms,
each annotating between 5 and 50 genes.8 Here and in other examples we took
advantage of available information on likely false positive (α) and false negative
(1 − γ ) error rates at the gene level. Using the fitted mixture model from Morris et
al., we estimated α = 0.00019 and γ = 0.02279 for this large-scale GWAS [details
in Wang et al. (2014)].

Figure 3 summarizes the application of MFA, MGSA, and Fisher’s test to this
example. Table 3 reports those gene sets inferred by MFA-ILP to be activated
in T2D. Tables S1–S4 provide further information for comparison of MFA with
MGSA and Fisher’s test [Wang et al. (2014)]. The example illustrates features we
see repeatedly with these methods. Sets identified by Fisher’s test tend to over-
lap substantially, reflecting the univariate nature of the approach; both MGSA
and MFA-ILP alleviate this redundancy problem, but MGSA finds fewer sets than
MFA-ILP. As expected, each of the 11 sets inferred by the ILP algorithm (i.e., the
MAP estimate of the activated sets) has high marginal posterior probability of ac-
tivation (P.MFA). Furthermore, MFA-ILP is able to explain more of the gene level
findings than the other methods, as indicated by the number of genes that are both
in the reported gene list (T2D) and are in at least one of the gene sets inferred to
be activated (coverage). It does this without increasing the mis-coverage, which is

8These 6037 terms annotate a total of 10,626 genes; among the 77 T2D-associated genes, 58 are
in this moderately annotated class.
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FIG. 3. GO terms inferred by three methods (A, Fisher’s test; B, MGSA; C, MFA-ILP) to be acti-
vated to explain the type 2 diabetes associated genes (58 of the 77 are annotated to the 6037 GO terms
used). Panels are linked by the location of sets; three sets (black) were identified by multiple methods.
GO ID is on the outer rim, and sets are ordered by size as in Tables 3 and S1–S3, from largest (noon)
and decreasing clockwise; numbers inside circles indicate the number of T2D genes annotated to
that set; a line connects two sets if their intersection contains at least one T2D-associated gene. The
total number of T2D genes explained by the identified sets (coverage), lower right, as a subset of the
58 starting genes. Similarly, the mis-coverage (mcov) counts the number of genes within the inferred
active sets that are not on the observed gene list. GO:0046323 (glucose import) and its relations are
highlighted in panel A (grey circle, black lines).

the number of non-T2D genes within the inferred active sets. Figure 3 summarizes
the sets found by these methods and reports these coverages.

An interesting set in this case is the GO term glucose import (GO:0046323),
for which the proportion 5/41 of observed T2D genes is very high (small Fisher
p-value), but there is very small posterior activation probability according to MFA.



240 WANG, HE, LARGET AND NEWTON

TABLE 3
MFA results in type 2 diabetes (T2D) example: 11 GO terms are inferred to be active using the ILP

algorithm to compute the MAP estimate (rows). Basic statistics on these terms are provided
(# T2D-associated genes/set size). The next two columns give the MCMC-computed marginal
posterior activation probabilities for these terms, both using MGSA and MFA, the constrained
alternative. The final column holds the Benjamini–Hochberg adjusted Fisher-test p-value. All
calculations start with 6037 GO terms (those annotating between 5 and 50 human genes) that

together annotate 10,626 human genes. Of the 77 total T2D genes, 58 have at least one annotation
to these 6037 GO terms. The inferred gene sets cover 26 of these 58 T2D genes

Gene set (GO term) Statistics P.MFA P.MGSA Fisher

RNA polymerase II core promoter. . . 3/45 0.517 0.028 0.161
Positive regulation of insulin secretion 4/41 0.964 0.372 0.016
Positive regulation of peptidyl-serine. . . 2/35 0.537 0.096 0.756
Negative regulation of insulin secretion 4/23 0.996 0.201 0.003
ER overload response 2/9 0.398 0.159 0.102
Positive regulation of insulin secretion. . . 0/9 0.964 0.002 1.000
Hepatocyte differentiation 2/9 0.316 0.016 0.102
Endodermal cell fate specification 2/8 0.596 0.036 0.091
Exocrine pancreas development 3/8 0.946 0.600 0.003
Negative regulation of protein. . . 2/5 0.420 0.101 0.051
Lamin filament 2/5 0.790 0.400 0.051

That is because the 5 genes are explained more easily as parts of three other terms
in the MAP estimate that have yet other genes supporting their activation.

A second curious case is GO:0035774, a small term (9 genes) to do with reg-
ulation of insulin secretion. None of these genes was reported to be involved in
T2D, however, the set is fully contained in a parent set which is inferred to be ac-
tivated by MFA-ILP. As the calculation respects AH, all subsets of activated sets
are activated. This may be a set-level false-positive call, as none of the contained
genes was reported to be T2D associated. MFA favors the explanation that each of
the 9 noncalls was a gene-level false negative, finding the weight of evidence sup-
porting that interpretation. When we recall that the gene-level false-negative rate is
almost 98% (following the mixture calculation from Morris et al.), this assessment
seems plausible. We note that for the sake of further simplification of output, it is
reasonable to suppress any such subsets from primary tabulations [see trimming
algorithm, Wang et al. (2014)].

6.2. RNA interference and influenza-virus replication. In a meta-analysis of
four genome-wide studies of influenza virus, Hao et al. (2013) reported that 984
human genes had been detected by RNA interference as possibly being associated
with viral replication. As in the T2D example, we compared MFA with MGSA
and Fisher’s test on this gene list using 6037 GO terms annotating between 5 and
50 human genes. Among the 984 influenza-involved genes, 683 are annotated to
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FIG. 4. Sets (GO terms) identified by three methods (A, Fisher’s test; B, MGSA; C, MFA) as acti-
vated to explain the influenza-involved human genes. The layout is as in Figure 3.

at least one of these terms. To apply the model-based methods, we took advantage
of external information on the false positive rate α and the true positive rate γ [see
Wang et al. (2014)]. Figure 4 illustrates the sets found by MFA-ILP, MGSA, and
Fisher’s test, and Tables S5–S8 [Wang et al. (2014)] contain further details of the
comparative analysis. Again, we find that MFA-ILP dominates the other methods
in terms of gene coverage, with 245 genes explained as compared to 226 (MGSA)
and 90 (Fisher) and with mis-coverages 635 (MFA-ILP), 634 (MGSA), and 206
(Fisher). Furthermore, MFA-ILP detects more sets than MGSA (50 in the trimmed
list compared to 30 by MGSA).

To better understand differences between the methods, consider one gene set
GO:0032434, regulation of proteasomal ubiquitin-dependent protein catabolic
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process, which annotates 48 human genes, 12 of which were in the 984-list of
influenza involved genes (highlighted in Figure 4). The Benjamini–Hochberg cor-
rected Fisher p-value is 0.017, and so the term would be considered enriched in
the standard analysis; it is also inferred to be active by MGSA (posterior proba-
bility 0.897). But it is not in the MAP estimate by MFA-ILP and its posterior ac-
tivation probability is 0.000. Now 10 of these 12 influenza-involved GO:0032434
genes are part of the child term GO:0032436, positive regulation of proteasomal
ubiquitin-dependent protein catabolic process, a set of size 31 genes. Both terms
are found by the univariate Fisher procedure, exemplifying the redundancy issue;
the more specific term GO:0032436 is identified by MFA-ILP and has high pos-
terior activation probability. The MFA calculation favors the explanation whereby
the smaller set is activated; this fails to cover two of the 12 GO:0032434 influenza
genes, but it also simplifies the explanation of nonlisted genes in that set. If the
larger set (GO:0032434) is activated, then we have a lot more mis-covered genes,
that is, those in the set but undetected by RNAi [15 = (48 − 12) − (31 − 10)].
With this example, it may be that the more specific positive regulation term better
characterizes the experimental gene list.

In Hao et al., gene set analysis was used to show that the four separate RNAi
studies agreed more substantially than was evident by inspecting overlaps among
the four gene lists. It was applied separately to the study-specific gene lists, and
then the agreement among these four set lists was measured. For both Fisher’s test
and MGSA-ILP, the among-study set-level agreement was significant according
to a simple permutation calibration. Curiously, the agreement by MGSA was not
significant by that measure, owing primarily to the fact that very few sets were
inferred to be active in the separate studies. The common set-level signal, in con-
junction with other forms of meta-analysis, provided evidence that genome-wide
RNAi studies have higher false-negative rates than false-positive rates.

6.3. Other issues. The full effects of prior choice in model-based gene-set
analysis require further investigation. As to the practical importance of one choice
over another, we do not examine the biological distinctions between the infer-
ences produced by different methods. A close reading of the T2D and RNAi case
studies above provides an initial indication of how and why reported set lists can
differ, but assessing the biological significance of these differences is beyond the
present scope. The procedures have distinct statistical properties and MFA more ef-
ficiently captures the functional content of the reported gene list in terms of model
fit. We point out that the distinctions present themselves when using the relatively
complex GO system. Control calculations show that MGSA and MFA give essen-
tially the same results when applied to the less complex KEGG system [Figures
S1 and S2, Wang et al. (2014)].

In our comparisons we used MGSA to obtain an estimate of the hyper-
parameter π , which affects the overall rate of set activity. In order to control the
comparison, we used the same numerical value of π in the MFA calculations (in
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both MFA and MGSA we fixed the other parameters α and γ at externally de-
rived values). Further improvements of MFA may be possible using alternative
estimates of π . Other model elaborations which could be useful in some applica-
tions include extending MFA beyond binary Xp and allowing dependence in gene
level measurement errors.

Compute times for MFA depend on the size and content of the gene list, the
incidence matrix I , and the model parameters: MFA-ILP used 2.5 CPU hours for
T2D, and 23 CPU hours for RNAi;9 less time was required for MFA-MCMC (20
and 45 CPU minutes, resp.).

We have argued that temporal changes in GO reflect an increase in the complex-
ity of the functional record that justifies the more refined prior distribution used in
MFA (Figure 1). These changes also tell us that the results of a given analysis nat-
urally depend on the GO version, since the sets involved and the annotations of
genes to sets continue to evolve. To assess the version effect, we applied MFA to
four recent GO versions (2010–2013) in both the T2D and RNAi examples, and
using sets annotating between 5 and 50 human genes (GO[5:50]). Table 4 records
how similar are time-adjacent versions of GO as well as how similar are results
of MFA. The changes in GO reflect new terms and new annotations, as well as
sets moving in and out of GO[5:50] as more genes become annotated. Against this

TABLE 4
Version effects: Tabulated are similarity scores comparing set structure and inferred active sets over

time-adjacent versions of GO[5:50]. The collections of sets annotating between 5 and 50 human
genes fluctuate over recent versions of GO. Respectively, in the four most recent fall versions of

Bioconductor, the collections contain 4830, 5546, 6037 and 6488 gene sets. The first row shows the
Jaccard index (size of intersection over size of union) comparing subsequent versions of these

gene-set collections. In addition to the collections changing, the annotations recording which genes
are in which sets also change over time. The second row measures similarity of the sets of
annotations. Subsequent rows show similarity of reported lists of gene sets in the two main

examples. In this comparison, the set is reported if it is in the MAP estimate by MFA-ILP and if its
marginal posterior probability exceeds a threshold (50% or 80%). Inferred active sets depend to

some extent on the GO version in view; setting stronger marginal posterior thresholds reduces the
false-discovery rate and reduces the version effect

2010–2011 2011–2012 2012–2013

Sets 0.72 0.82 0.80
Annotations 0.54 0.70 0.66
T2D 50/MAP 0.33 0.60 0.30
T2D 80/MAP 1.00 0.75 0.60
RNAi 50/MAP 0.72 0.70 0.88
RNAi 80/MAP 0.90 0.79 0.85

9R was running on a 4× AMD Opteron(TM) Processor 6174 (48 cores) with 128 GB RAM.
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substantial evolution of GO we see that MFA results do also change, but that the
changes are less the more stringent is the marginal posterior probability cutoff.

A feature of MGSA and MFA is that activation of the set implies activation of
all genes in the set. This strict form of nonnull relationship is quite different from
many univariate methods, which would claim a set is nonnull if any of its con-
tained genes is nonnull [e.g., the self-contained tests of Goeman and Bühlmann
(2007)]. It is precisely this relationship, however, that enables multivariate (i.e.,
mult-set) analysis, as the role model offers a straightforward approach to deal with
the complex overlaps in the functional record. We note that the role model allows
a weaker interpretation; for instance, we could continue to assert that a gene is
activated if it is contained in any activated set, while allowing that only a fraction
of activated genes are nonnull. The difference would be in the tabulation of errors
(e.g., Xp = 0 might not be a false negative when Ap = 1) and in the interpretation
of α and γ ; the family of joint distributions would be the same. As GO and other
repositories record functions of ever more specific gene combinations, it is reason-
able to expect that a combination of genes relevant in the cells on test is within the
repository. The strict interpretation of activation is parsimonious and is justified
when the repository is sufficiently well endowed with relevant sets. We performed
a small simulation study, using the T2D data structure, to assess MFA’s ability to
recover small activated sets. In each of 100 simulated cases, we fixed the reposi-
tory (GO[5:50]), we randomized the response vector X = (Xp) by appending to
the T2D genes a randomly selected small (5–10 genes) set from GO, and we in-
ferred the activated sets using MFA. In 91 cases the appended set was identified as
active by MFA-ILP, demonstrating in a limited way the ability of the methodology
to recover signals represented in the repository.

7. Proofs.

7.1. Proof of Theorem 2.2. Relative to all the sets and parts in the system I , we
say AH holds if and only if Ap = maxw : p∈w Zw for all p and Zw = minp : p∈w Ap

for all w. Recall that all Ap and Zw are binary, in {0,1}. The first condition Ap =
maxw : p∈w Zw implies Ap ≥ Zw for all w with p ∈ w; that Ap achieves the max
of the Zw’s has to account for the possibility that Ap = 1 when all Zw = 0, but this
is covered by having Ap ≤ ∑

w : p∈w Zw . Thus, the condition Ap = maxw : p∈w Zw

is equivalent to the first two constraints in Theorem 2.2.
To address the second condition, that Zw = minp : p∈w Ap for all w, define a new

variable

Tw = 1 + ∑
p : p∈w

(Ap − 1),

and notice that Tw = 1 if and only if Ap = 1 for all p ∈ w, otherwise Tw ≤ 0.
Observe that the second condition is equivalent to∑

p : p∈w

(Zw − Ap + 1) − Tw ≥ 0(7.1)
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since if all Ap = 1, for p ∈ w, then Tw = 1, and Zw must equal 1 to satisfy (7.1);
otherwise, if at least one of the Ap’s equals 0, then Tw ≤ 0, and noting that the
summation in (7.1) is positive confirms the claim. Next, replacing Tw in (7.1) with
its definition, we obtain the third stated inequality∑

p : p∈w

(Zw − 2Ap + 2) ≥ 1.

7.2. Proof of the Theorem 4.1. Compared to Zw0 = 0, the possible maximal
value added to the objective function by letting Zw0 be 1 is c1 + c3

∑
p∈P +

w0
1 (con-

sidering parts in P −
w0

may already be activated or w0 has no parts in P −, the best
case), however, which is negative since w0 ∈ W ∗. So Zw0 = 0 is preferred toward
maximizing the objective function. Next we need to prove that letting Zw0 = 0 and
Ap0 = 0 will not violate the inequalities in Theorem 2.2.

Denote by W0 and P0 the sets of w0 and p0 satisfying the state in the theorem,
respectively. We claim that for each p0 ∈ P0, {w : Ip0,w = 1} ⊂ W0. If not, then
there exists w∗ ∈ W ∗ \W0 such that Ip0,w

∗ = 1, so w∗ will be in W0. This is a con-
tradiction. Thus, Ap0 = max{w : Ip0,w=1} Zw = 0, so the first two AH inequalities
are satisfied. It is readily verified that the third inequality is also satisfied.
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SUPPLEMENTARY MATERIAL

Supplement: More on role modeling (DOI: 10.1214/14-AOAS777SUPP;
.pdf). We provide further details on violation probabilities, on estimating false-
positive and true-positive error rates, on preparing data for the ILP algorithm, and
on further data analysis findings in the T2D and RNAi examples.
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