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The processes influencing animal movement and resource selection are
complex and varied. Past efforts to model behavioral changes over time used
Bayesian statistical models with variable parameter space, such as reversible-
jump Markov chain Monte Carlo approaches, which are computationally
demanding and inaccessible to many practitioners. We present a continuous-
time discrete-space (CTDS) model of animal movement that can be fit using
standard generalized linear modeling (GLM) methods. This CTDS approach
allows for the joint modeling of location-based as well as directional drivers
of movement. Changing behavior over time is modeled using a varying-
coefficient framework which maintains the computational simplicity of a
GLM approach, and variable selection is accomplished using a group lasso
penalty. We apply our approach to a study of two mountain lions (Puma con-
color) in Colorado, USA.

1. Introduction. Telemetry data have been used extensively in recent years
to study animal movement, space use and resource selection [e.g., Fieberg et al.
(2010), Hanks et al. (2011), Johnson, London and Kuhn (2011)]. The simplest
form of telemetry data consist of a time series of remotely obtained spatial loca-
tions of an animal. Typically, an animal or group of animals are captured and fit
with a tracking device (e.g., a collar with a GPS) which records the animal’s loca-
tion at specified intervals. The ease with which telemetry data are being collected
is increasing, leading to vast improvements in the number of animals being moni-
tored, as well as the temporal resolution at which telemetry locations are obtained
[Cagnacci et al. (2010)]. This combination can result in huge amounts of teleme-
try data on a single animal population under study. Additionally, the processes
driving animal movement are complex, varied and changing over time. For exam-
ple, animal behavior could be driven by the local environment [e.g., Hooten et al.
(2010)], by conspecifics or predator/prey interactions [e.g., Merrill et al. (2010),
Potts, Mokross and Lewis (2014)], by internal states and needs [e.g., Nathan et al.
(2008)], or by memory [e.g., Van Moorter et al. (2009)]. The animal’s response to
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each of these drivers of movement is also likely to change over time [e.g., Hanks
et al. (Hanks et al.), McClintock et al. (2012), Nathan et al. (2008)] as animals
respond to changing stimuli (e.g., dirunal cycles) or energy needs.

Examples of recent models for animal telemetry data include the agent-based
model of Hooten et al. (2010), the velocity-based framework for modeling animal
movement of Hanks et al. (2011), and the mechanistic approach of McClintock
et al. (2012). These three approaches use Markov chain Monte Carlo (MCMC) for
inference, and both Hanks et al. (2011) and McClintock et al. (2012) allow for
time-varying behavior by letting the model parameter space vary, either through a
reversible-jump Markov chain Monte Carlo approach [Green (1995)] or the related
birth–death Markov chain Monte Carlo approach [Stephens (2000)]. Such meth-
ods are computationally demanding and require the user to tune the algorithm to
ensure convergence. Our goal is to provide an approach to modeling complex time-
varying movement behavior that is both scientifically useful and computationally
tractable.

While telemetry data can be collected with relative ease at high resolution, habi-
tat covariates (i.e., landcover) are typically available only in gridded form at a fixed
resolution. Traditional analyses that focus on modeling an animal’s location often
contain redundant information because observations are close enough in time that
the spatially available habitat data contains little information to model the fine
scale movement. Therefore, constructing an analysis with an eye toward the habi-
tat data scale holds promise for the future of telemetry data.

In this manuscript, we present a continuous-time, discrete-space (CTDS) model
for animal movement which allows for flexible modeling of an animal’s response
to drivers of movement in a computationally efficient framework. We consider a
Bayesian approach to inference, as well as a multiple-imputation approximation
to the posterior distribution of parameters in the movement model. Instead of a
state-switching or change-point model for changing behavior over time, we adopt
a time-varying coefficient model. We also allow for variable selection using a lasso
penalty. This CTDS approach is highly computationally efficient, requiring only
minutes or seconds to analyze movement paths that would require hours using the
approach of Hanks et al. (2011) or days using the approach of Hooten et al. (2010),
allowing the analysis of longer movement paths and more complex behavior than
has been previously possible.

In Section 2, Continuous-time Markov chain models for animal movement, we
describe the CTDS model for animal movement and present a latent variable repre-
sentation of the model that allows for inference within a standard generalized lin-
ear model (GLM) framework. In Section 3, Inference on CTDS model parameters
using telemetry data, we present a Bayesian approach for inference and describe
the use of multiple imputation [Rubin (1987)] to approximate the posterior predic-
tive distribution of parameters in the CTDS model. In Section 4, Time-varying be-
havior and shrinkage estimation, we use a varying-coefficient approach to model
changing behavior over time, and use a lasso penalty for variable selection and
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regularization. In Section 5, Drivers of animal movement, we discuss modeling
potential covariates in the CTDS framework. In Section 6, Example: Mountain li-
ons in Colorado, we illustrate our approach through an analysis of mountain lion
(Puma concolor) movement in Colorado, USA. Finally, in Section 7, Discussion,
we discuss possible extensions to the CTDS approach.

2. Continuous-time Markov chain models for animal movement. Our goal
is to specify a model of animal response to drivers of movement that is flexible and
computationally efficient. We propose a continuous-time Markov chain (CTMC)
model for an animal’s CTDS movement through a discrete, gridded space (Fig-
ure 1). We then present a latent variable representation of a CTMC model that
represents the CTMC as a generalized linear model (GLM), allowing for inference
in CTMCs in general and CTDS movement models in particular to be made using
GLM theory and computation (e.g., iteratively reweighted least squares optimiza-
tion routines).

Let the study area be defined as a graph (G,A) of M spatial vertices G =
(G1,G2, . . . ,GM) connected by “edges” � = {λij : i ∼ j, i = 1, . . . ,M}, where
i ∼ j means that the nodes Gi and Gj are directly connected. For example, in a
gridded space each grid cell is a vertex (node) and the edges connect each grid cell
to its first-order neighbors (e.g., cells that share an edge). In ecological studies, the
spatial resolution of the grid cells in G will often be determined by the resolution at
which environmental covariates that may drive animal movement and selection are
available. Discretizing an animal’s path across the study area amounts to studying
movement at the spatial resolution of the available landscape covariates.

An animal’s continuous-time, discrete-space (CTDS) path S̃ = (g,τ ) consists
of a sequence of grid cells g = (Gi1,Gi2, . . . ,GiT ) traversed by the animal and the
residence times τ = (τ1, τ2, . . . , τT ) in each grid cell. The discrete-space represen-
tation S̃ = (g,τ ) of the movement path allows us to use standard continuous-time
Markov chain models to make inference about possible drivers of movement.

While we will relax this assumption later to account for temporal autocorrela-
tion in movement behavior, we initially assume that the t th observation (Git , τt ) in
the sequence is independent of all other observations in the sequence. Under this

FIG. 1. Continuous-time continuous-space and continuous-time discrete-space representations of
an animal’s movement path.
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assumption, the likelihood of the sequence of transitions {(Git → Git+1, τt ), t =
1,2, . . . , T } is the product of the likelihoods of each individual observation. We
will focus on modeling each transition (Git → Git+1, τt ).

If an animal is in cell Git at time t , then define the rate of transition from cell
Git to a neighboring cell Gjt at time t as

λit jt (β) = exp
{
x′
it jt

β
}
,(1)

where xit jt is a vector containing covariates related to drivers of movement specific
to cells Git and Gjt , and β is a vector of parameters that define how each of the
covariates in xit jt are correlated with animal movement. The total transition rate
λit from cell Git is the sum of the transition rates to all neighboring cells: λit (β) =∑

jt∼it
λit jt (β), and the time τt that the animal resides in cell Git is exponentially-

distributed with rate parameter equal to the total transition rate λit (β):

[τt |β] = λit (β) exp
{−τtλit (β)

}
.(2)

When the animal transitions from cell Git to one of its neighbors, the probability
of transitioning to cell Git+1 , an event we denote as Git → Git+1 , follows a multi-
nomial (categorical) distribution with probability proportional to the transition rate
λit it+1 to cell Git+1 :

[Git → Git+1 |β] = λit it+1(β)∑
jt∼it

λit jt (β)
= λit it+1(β)

λit (β)
.(3)

Under this formulation, the residence time and eventual destination are indepen-
dent events, and the likelihood of the observation (Git → Git+1, τt ) is the product
of the likelihoods of its parts:

[Git → Git+1, τt |β] = λit it+1(β)

λit (β)
· λit (β) exp

{−τλit (β)
}

(4)
= λit it+1(β) exp

{−τtλit (β)
}
.

2.1. GLM representation of a continuous-time Markov chain. We now intro-
duce a latent variable representation of the transition process that is equivalent
to (4), but allows for inference within a GLM framework. We note that this latent
variable representation is applicable to any continuous-time Markov chain model
with transition rates {λit jt } and provides a novel approach for inference to this
broad class of models. Representing a CTMC model as a GLM allows us to ana-
lyze animal movement data using existing computational methods for GLMs (i.e.,
estimation through iteratively reweighted least squares). Computational efficiency
is important as our ability to collect long time series of fine-resolution telemetry
data increases.

For each jt such that it ∼ jt , define zit jt as

zit jt =
{

1, Git → Gjt ,
0, o.w.
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and let

[zit jt , τt |β] ∝ λ
zit jt

it jt
exp

{−τtλit jt (β)
}
.(5)

Then the product of [zit jt , τt |β] over all jt such that it ∼ jt is proportional to the
likelihood (4) of the observed transition:∏

jt : it∼jt

[zit jt , τt |β] ∝ ∏
jt : it∼jt

λ
zit jt

it jt
exp

{−τtλit jt (β)
}

= λit it+1(β) exp
{−τtλit (β)

}
where Git → Git+1

= [Git → Git+1, τt |β].
The benefit of this latent variable representation is that the likelihood of

zit jt , τt |β in (5) is equivalent to the likelihood in a Poisson regression with the
canonical log link, where zit jt are the observations and log(τt ) is an offset or
exposure term. The likelihood of the entire continuous-time, discrete-space path
S̃ = (g,τ ) can be written as

[S̃|β] = [Z,τ |β] ∝
T∏

t=1

∏
it∼jt

[
λ

zit jt

it jt
(β) exp

{−τtλit jt (β)
}]

,(6)

where Z = (z1, . . . , zT )′ is a vector containing the latent variables zi = (zi1, zi2,

. . . , ziK )′ for each grid cell in the discrete-space path.

3. Inference on CTDS model parameters using telemetry data. We have
proposed a CTMC model for animal movement that relies on a complete
continuous-time discrete-space (CTDS) movement path S̃ = (g,τ ). In practice,
telemetry data are collected at a discrete set of time points. Let S = {s(t), t =
t0, t1, . . . , tT } be the observed sequence of time-referenced telemetry locations for
an animal. We propose a two-step procedure for inference on β in which we first
obtain a posterior predictive distribution [S̃|S] of the CTDS path conditioned on
the observed telemetry data S. In a Bayesian framework, we specify a Gaussian
prior on β such that

β ∼ N(0,�β)(7)

and then the posterior predictive distribution of β conditioned only on the teleme-
try data S is given by

[β|S] =
∫
S
[β|S̃][S̃|S]dS̃.(8)

Hooten et al. (2010) and Hanks et al. (2011) use composition sampling to obtain
samples from a similar posterior predictive distribution by sampling iteratively
from [S̃|S] and [β|S̃]. In addition to this approach (which we will call a fully
Bayesian approach), we also consider approximate posterior predictive inference
on β using multiple imputation [Rubin (1987)].
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3.1. Multiple imputation. In the multiple imputation literature [e.g., Rubin
(1987, 1996)], S̃ is treated as missing data, and the posterior predictive path dis-
tribution [S̃|S] is called the imputation distribution. The imputation distribution is
typically specified as a statistical model for the missing data S̃ conditioned on the
observed data S.

Under the multiple imputation framework, the distribution [β|S] is assumed
to be asymptotically Gaussian. This assumption holds under the conditions that
the joint posterior is unimodal [see, e.g., Chapter 4 of Gelman et al. (2004) for
details]. This distribution can then be approximated using only the posterior pre-
dictive mean and variance, which can be obtained using conditional mean and
variance formulae

E(β|S) ≈ ES̃|S
(
E(β|S̃)

)
(9)

and

Var(β|S) ≈ ES̃|S
(
Var(β|S̃)

) + VarS̃|S
(
E(β|S̃)

)
.(10)

If we condition on S̃, then the posterior distribution [β|S̃] converges asymptoti-
cally to the sampling distribution of the maximum likelihood estimate (MLE) of β
under the likelihood [S̃|β], and we can approximate [β|S̃] by obtaining the asymp-
totic sampling distribution of the MLE. This allows us to use standard maximum
likelihood approaches for inference, which are well developed and computation-
ally efficient for the GLM formulation in (6).

The multiple imputation estimate β̂MI and its sampling variance are typically
obtained by approximating the integrals in (9) and (10) using a finite sample from
the imputation distribution. The procedure can be summarized as follows:

1. Draw K different realizations (imputations) S̃(k) ∼ [S̃|S] from the path distri-
bution (imputation distribution).

2. For each realization, find the MLE β̂
(k)

and asymptotic variance Var(β̂
(k)

) of
the estimate under the likelihood [S̃(k)|β] in (6).

3. Combine results from different imputations using finite sample approximations
of the conditional expectation (9) and variance (10) results.

This results in point estimates for E(β|S) and Var(β|S), which can be used to
construct approximate posterior credible intervals. Combining the multiple impu-
tation approximation with our GLM formulation of the CTDS movement model
provides a computationally efficient framework for the statistical analysis of po-
tential drivers of movement.

3.2. Imputation of continuous-time paths from telemetry data. Inference us-
ing multiple imputation requires the specification of the imputation distribution
[S̃|S], which for telemetry data is the distribution of the continuous-time movement
path S̃ conditioned on the observed telemetry data S. We will consider imputing
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continuous-time movement paths by fitting a continuous-time movement model
to the observations. Two common continuous-time models for movement data are
the continuous-time correlated random walk (CTCRW) of Johnson et al. (2008a)
and the Brownian bridge movement model (BBMM) of Horne et al. (2007). Both
assume continuous movement paths in time and space, and after estimating model
parameters it is straightforward to draw from the posterior predictive distribution
of the continuous-time path [S̃|S].

The CTCRW model of Johnson et al. (2008a) relies on an Ornstein–Uhlenbeck
velocity process. If the animal’s location and velocity at an arbitrary time t are
s(t) and v(t), respectively, then the CTCRW model can be specified as follows,
ignoring the multivariate notation for simplicity,

dv(t) = γ
(
μ − v(t)

)
dt + σ dW(t),

s(t) = s(0) +
∫ t

0
v(u)du,

where μ is a drift term corresponding to long-time scale directional bias in move-
ment, γ controls the rate at which the animal’s velocity reverts to μ, and σ scales
W(t), which is standard Brownian motion. This model can be discretized and for-
mulated as a state-space model, which allows for efficient estimation of model
parameters from telemetry data and simulation of quasi-continuous discretized
paths S̃ at arbitrarily fine time intervals via the Kalman filter [Johnson et al.
(2008b)]. If a Bayesian framework is used for inference on {μ,γ,σ }, then Johnson
et al. (2008a) show how to obtain the posterior distribution [μ,γ,σ |S] and approx-
imate the posterior predictive distribution of the animal’s continuous path S̃ using
importance sampling.

The CTCRW model is a flexible and efficient model for animal movement that
has been successfully applied to studies of aquatic [Johnson et al. (2008a)] and
terrestrial [Hooten et al. (2010)] animals, and can represent a wide range of move-
ment behavior, as well as account for location uncertainty when telemetry locations
are observed with error. As such, we will use the CTCRW model as our primary
imputation distribution. In the supplemental article [Hanks, Hooten and Alldredge
(2015)], we consider the Brownian bridge model as an alternative path imputation
distribution and compare it to the CTCRW model.

3.3. Links to existing methods. We note that the transition probabilities in (1)
are similar in form to step selection functions [e.g., Boyce et al. (2002)] in multino-
mial logit discrete-choice models for movement data. The key distinction between
the step selection function approach and the approach of Hooten et al. (2010) (and,
by extension, the approach we present) is the imputation of the continuous path be-
tween telemetry locations. Imputing the continuous path distribution allows us to
examine movement and resource selection between telemetry locations, providing
a more complete picture of an animal’s response to landscape features and other
potential drivers of movement.
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The transformation of the movement path from continuous space to discrete
space results in a compression of the data to a temporal scale that is relevant to
the resolution of the environmental covariates that may be driving movement and
selection. Under the discrete-space, discrete-time dynamic occupancy approach
of Hooten et al. (2010), each discrete-time location is modeled as arising from a
multinomial distribution reflecting transition probabilities from the animal’s loca-
tion at the previous time. If the animal is in cell Git−1 at time t − 1, then define the
probability of transitioning to the j th cell at the t th time step as Pijt and the prob-
ability of remaining in cell i as Piit . Hooten et al. (2010) recommend choosing a
temporal discretization �t of the continuous movement path fine enough to ensure
that the animal remains in each cell for a number of time steps before transitioning
to a neighboring cell. If an animal is moving slowly relative to the time it takes to
traverse a grid cell in G, then there will be a long sequence of locations within one
grid cell before a transition to a neighboring grid cell is made. In this situation the
CTDS approach can be much more efficient than the discrete-time discrete-space
approach of Hooten et al. (2010). For sufficiently small �t , discrete-time transi-
tion probabilities are approximated by Pijt ≈ λit jt �t and Piit ≈ 1 − λit �t . Under
this model, the probability of the animal remaining in cell Gi for time equal to τt

and then leaving cell Gi is

λit �t

τt /(�t)∏
t=1

Piit = λit �tP
τt /�t
ii = λit �t (1 − λit �t)τt /�t .

Letting �t → 0 results in

lim
�t→0

λit �t (1 − λit · �t)τt /�t = λit exp{−τtλit }.(11)

Likewise, taking the limit as �t → 0, the probability of transitioning from cell Gi

to Gk , given that the animal is transitioning to some neighboring cell, is

lim
�t→0

Pikt∑
j Pijt

= lim
�t→0

λit kt · �t

λit · �t
= λit kt

λit

,(12)

and (5) is obtained by multiplying the right-hand sides of (11) and (12). Thus, the
CTDS specification could be obtained by using the sufficient statistics (τt , {λit jt })
of the discrete-time, discrete-space approach of Hooten et al. (2010) in the limiting
case as �t → 0. This data compression is especially relevant for telemetry data, in
which observation windows can span years or even decades for some animals.

4. Time-varying behavior and shrinkage estimation. In this section we de-
scribe how covariate effects can be allowed to vary over time using a varying-
coefficient model and how variable selection can be accomplished through regu-
larization.
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4.1. Changing behavior over time. Animal behavior and response to drivers
of movement can change significantly over time. These changes can be driven by
external factors such as changing seasons [e.g., Grovenburg et al. (2009)] or preda-
tor/prey interactions [e.g., Lima (2002)], or by internal factors such as internal en-
ergy levels [e.g., Nathan et al. (2008)]. The most common approach to modeling
time-varying behavior in animal movement is through state switching, typically
within a Bayesian framework [e.g., Forester, Im and Rathouz (2009), Getz and
Saltz (2008), Gurarie, Andrews and Laidre (2009), Jonsen, Flemming and Myers
(2005), Merrill et al. (2010), Morales et al. (2004), Nathan et al. (2008)]. Often,
the animal is assumed to exhibit a number of behavioral states, each characterized
by a distinct pattern of movement or response to drivers of movement. The number
of states can be either known and specified in advance [e.g., Jonsen, Flemming and
Myers (2005), Morales et al. (2004)] or allowed to be random [e.g., Hanks et al.
(2011), McClintock et al. (2012)].

State-switching models are an intuitive approach to modeling changing behav-
ior over time, but there are limits to the complexity that can be modeled using
this approach. Allowing the number of states to be unknown and random requires
a Bayesian approach with a changing parameter space. This is typically imple-
mented using reversible-jump MCMC methods [e.g., Green (1995), Hanks et al.
(2011), McClintock et al. (2012)], which are computationally expensive and can be
difficult to tune. Our approach is to use a computationally efficient GLM (6) to an-
alyze parameters related to drivers of animal movement. Instead of using the com-
mon state-space approach, we employ varying-coefficient models [e.g., Hastie and
Tibshirani (1993)] to model time-varying behavior in animal movement. A similar
approach to modeling time-varying behavior in animal movement was taken by
Breed et al. (2012).

For simplicity in notation, consider the case where there is only one covariate
x in the model (1) and no intercept term. The model for the transition rate will
typically contain an intercept term and multiple covariates {x}, and the varying-
coefficient approach we present generalizes easily to this case. In a time-varying
coefficient model, we allow the parameter β(t) to vary over time in a functional
(continuous) fashion. The transition rate (1) then becomes

λit jt

(
β(t)

) = exp
{
xit jt β(t)

}
,

where t is the time of the observation and xij is the value of the covariate related
to the exponential rate of moving from cell i to cell j . We model the functional
regressor β(t) as a linear combination of nspl spline basis functions {φk(t), k =
1, . . . , nspl}:

β(t) =
nspl∑
k=1

αkφk(t).
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Under this varying-coefficient specification, (1) can be rewritten as

λit jt = exp
{
xit jt β(t)

}

= exp

{
xit jt

nspl∑
k=1

αkφk(t)

}
(13)

= exp
{
ψ ′

it jt
α

}
,

where α = (α1, . . . , αnspl)
′ and ψ it jt

= xit jt ·(φ1(t), . . . , φnspl(t))
′. The result is that

the varying-coefficient model can be represented by a GLM with a modified design
matrix. This specification provides a flexible framework for allowing the effect of
a driver of movement (x) to vary over time that is computationally efficient and
simple to implement using standard GLM software. For our asymptotic arguments
in Section 3.1 to hold, we will only consider the case where nspl is fixed and the
temporal variation in the β(t) models periodic (e.g., diurnal) changes in movement
behavior.

4.2. Regularization. The model we have specified is likely to be overparame-
terized, especially if we utilize a varying-coefficient model (13). Animal move-
ment behavior is complex, and a typical study could entail a large number of
potential drivers of movement, but an animal’s response to each of those drivers
of movement is likely to change over time, with only a few drivers being relevant
at any one time. Under these assumptions, many of the parameters αk in (13) are
likely to be very small or zero. Multicollinearity is also a potential problem, as
many potential drivers of movement could be correlated with each other.

The most common approach to these issues is penalization or regularization
[e.g., Hooten and Hobbs (2015), Tibshirani (1996)]. We propose a shrinkage esti-
mator of α using a lasso penalty [Tibshirani (1996)]. The typical maximum likeli-
hood estimate of α is obtained by maximizing the likelihood [Z,τ |α] from (6) or,
equivalently, by maximizing the log-likelihood log[Z,τ |α]. The lasso estimate is
obtained by maximizing the penalized log-likelihood, where the penalty is propor-
tional to the sum of the absolute values of the regression parameters {αk}:

α̂lasso = max
α

{
log[Z,τ |α] − γ

K∑
k=1

|αk|
}
.(14)

As the tuning parameter γ increases, the absolute values of the regression parame-
ters {αk} are “shrunk” to zero, with the parameters that best describe the variation
in the data being shrunk more slowly than parameters that do not. Cross-validation
is typically used to set the tuning parameter γ at a level that optimizes the model’s
predictive power.

Shrinkage approaches such as the lasso are well developed for GLMs, and
computationally-efficient methods are available for fitting GLMs to data [e.g.,
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Friedman, Hastie and Tibshirani (2010)]. Recent work has also applied the lasso to
multiple imputation estimators [e.g., Chen and Wang (2011)]. The main challenge
in applying the lasso to multiple imputation is that a parameter may be shrunk to
zero in the analysis of one imputation but not in the analysis of another. If the
lasso is used for variable selection, a group lasso penalty [Yuan and Lin (2006)]
can be specified in which a group of parameters is constrained to either all equal
zero or all be nonzero together. In the case of multiple imputation, we consider
the joint analysis of all imputations and constrain the set of {α(k)

p , k = 1, . . . ,K},
where p indexes the parameters in the model and k indexes the imputations, to
either all equal zero or all be nonzero together. This group lasso sets the require-
ment that a parameter must either be zero for all imputations or nonzero for all
imputations. One simple approach to implementing this group lasso is to combine
all imputations and analyze the aggregate paths as if they were independent ob-
served paths. This amounts to the stacked lasso estimate of Chen and Wang (2011)
and is reminiscent of data cloning [Lele, Nadeem and Schmuland (2010)]. We note
that this approach does not yield straightforward estimates of the uncertainty about
the lasso estimates. We will focus on a full Bayesian analysis with lasso prior to
characterize the uncertainty in α under a lasso approach.

In a full Bayesian analysis we consider specifying a shrinkage prior distribution
on α such that the posterior mode of α|S is identical to the lasso estimate (14). In-
stead of the Gaussian prior in (7), we follow Park and Casella (2008) and consider
a hierarchical prior specification:

αk|σ 2
k ∼ N

(
0, σ 2

k

)
, k = 1, . . . ,K,(15)

where the prior on σ 2
k is conditioned on the shrinkage parameter γ :[

σ 2
k |γ 2] ∝ γ 2 exp

{−γ 2σ 2
k /2

}
, k = 1, . . . ,K.(16)

Then, marginalizing over the σ 2
k gives a Laplace prior distribution on α condi-

tioned only on γ :

[αk|γ ] =
∫ ∞

0

[
αk|σ 2

k

][
σ 2

k |γ ]
dσ 2

k

∝
∫ ∞

0

1√
2πσ 2

k

exp
{−α2

k/
(
2σ 2

k

)}
γ 2 exp

{−γ 2σ 2
k /2

}
dσ 2

k

= γ

2
exp

{−γ |αk|},
where the last step uses the representation of the Laplace distribution as a scale
mixture of Gaussian random variables with exponential mixing density [e.g., Park
and Casella (2008)]. Maximizing the resulting log-posterior predictive distribution
for α gives us the lasso estimate (14).

The hyperparameter γ controls the amount of shrinkage in the Bayesian lasso.
While a prior distribution could be assigned to γ , we take an empirical approach
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and estimate γ using cross-validation in the penalized likelihood approach (14) to
the lasso. This estimate can then be used to set the value of the hyperparameter γ

in the Bayesian lasso analysis.

5. Drivers of animal movement. We now provide some examples show-
ing how a range of hypothesized drivers of movement could be modeled within
the CTDS framework. We consider two distinct categories for drivers of move-
ment from cell Gi to cell Gj : location-based drivers ({pki, k = 1,2, . . . ,K}),
which are determined only by the characteristics of cell Gi , and directional drivers
({qlij , l = 1,2, . . . ,L}), which vary with direction of movement. Under a time-
varying coefficient model for each driver, the transition rate (1) from cell Gi to
cell Gj is

λij

(
β(t)

) = exp

{
β0(t) +

K∑
k=1

pkiβk(t) +
L∑

l=1

qlijβl(t)

}
,(17)

where β0(t) is a time-varying intercept term, {βk(t)} are time-varying effects re-
lated to location-based drivers of movement, and {βl(t)} are time-varying effects
related to directional drivers of movement. We consider both location-based and
directional drivers in what follows.

5.1. Location-based drivers of movement. Location-based drivers of move-
ment can be used to examine differences in animal movement rates that can be
explained by the environment an animal resides in. For example, if the animal is in
a patch of highly desirable terrain, surrounded by less-desirable terrain, a location-
based driver of movement could be used to model the animal’s propensity to stay
in the desirable patch and move quickly through undesirable terrain. In the CTDS
context, location-based drivers would be covariates dependent only on the charac-
teristics of the cell where the animal is currently located. Large positive (negative)
values of the corresponding βk(t) would indicate that the animal tends to transition
quickly (slowly) from a cell containing the cover type in question.

5.2. Directional bias in movement. In contrast to location-based drivers,
which describe the effect that the local environment has on movement rates, direc-
tional drivers of movement [Brillinger et al. (2001), Hanks et al. (2011), Hooten
et al. (2010)] capture directional bias in movement patterns.

A directional driver of movement (or bias effect in our GLM) is defined by
a vector which points toward (or away) from something that is hypothesized to
attract (or repel) the animal in question. Let vl be the vector corresponding to the
lth directional driver of movement. In the CTDS model for animal movement, the
animal can only transition from cell Gi to one of its neighbors Gj : j ∼ i. Let wij

be a unit vector pointing from the center of cell Gi in the direction of the center of
cell Gj . Then the covariate qlij relating the lth directional driver of movement to
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the transition rate from cell Gi to cell Gj is the inner product of vl and wij :

qlij = v′
lwij .

Then plij will be positive when vl points nearly in the direction of cell Gj , negative
when vl points directly away from cell Gj , and zero if vl is perpendicular to the
direction from cell Gi to cell Gj .

6. Example: Mountain lions in Colorado. We illustrate our CTDS random
walk approach to modeling animal movement through a study of mountain li-
ons (Puma concolor) in Colorado, USA. R code to download all needed files
and replicate this analysis is available from the R-forge website (http://r-forge.r-
project.org/projects/ctds/). As part of a larger study, a female mountain lion, des-
ignated AF79, and her subadult cub, designated AM80, were fitted with global
positioning system (GPS) collars set to transmit location data every 3 hours. We
analyze the location data S from two weeks (14 days) of location information for
these two animals (Figure 2).

FIG. 2. Telemetry data for a female mountain lion (AF79) and her male cub (AM80). A loca-
tion-based covariate was defined by landcover that was not predominanty forested (a). Potential kill
sites were identified, and a directional (bias) covariate defined by a vector pointing toward the closest
kill site (b) was also used in the CTDS model.

http://r-forge.r-project.org/projects/ctds/
http://r-forge.r-project.org/projects/ctds/
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We fit the CTCRW model of Johnson et al. (2008a) to both animals’ location
data using the “crawl” package [Johnson (2011)] in the R statistical computing
environment [R Core Team (2013)].

For covariate data, we used a landcover map of the state of Colorado created
by the Colorado Vegetation Classification Project (http://ndis.nrel.colostate.edu/
coveg/), which is a joint project of the Bureau of Land Management and the Col-
orado Division of Wildlife. The landcover map contained gridded landcover in-
formation at 100 m square resolution. The area traveled by the two animals in
our study was predominantly forested. To assess how the animals’ movement dif-
fered when in terrain other than forest, we created an indicator covariate where
all forested grid cells were assigned a value of zero, and all cells containing other
cover types, including developed land, bare ground, grassland and shrubby terrain,
were assigned a value of one [Figure 2(a)]. This covariate was used as a location-
based covariate in the CTDS model.

For the subadult male AM80, we created a set of potential kill sites (PKS) by
examining the original GPS location data [Figure 2(b)]. Knopff et al. (2009) classi-
fied a location as a PKS if two or more GPS locations were found within 200 m of
the site within a six-day period. We added an additional constraint that at least one
of the GPS locations be during nighttime hours (9 pm to 6 am) for the point to be
classified a PKS. We then created a covariate raster layer containing the distance
to the nearest PKS for each grid cell [Figure 2(b)]. A directional covariate defined
by a vector pointing toward the nearest PKS was included in the CTDS model.

To examine how the movement path of the mother AF79 affected the movement
path of the cub AM80, we included a directional covariate in the CTDS model for
AM80 defined by a vector pointing from the cub’s location to the mother’s location
at each time point.

We also included a directional covariate pointing in the direction of the most
recent movement at each time point. This covariate measures the strength of corre-
lation between moves and thus the strength of the directional persistence shown by
the animal’s discrete-space movement path. The CTCRW imputation distribution
assumes an underlying correlated movement model, while the Brownian bridge
model does not. See the online supplement for details [Hanks, Hooten and All-
dredge (2015)].

6.1. Comparison of methods under time-homogeneous model. We first com-
pare a full Bayesian analysis of the path of AM80 to the multiple imputation ap-
proximation to the posterior mean (9) and variance (10). For this first analysis,
we do not assume any time-varying behavior, but rather model the cub’s mean
response over time to the landscape, identified PKSs and the movement path of
AF79. For both the full Bayesian analysis and the multiple imputation approxima-
tions we used the CTCRW imputation distribution. We used a Markov chain Monte
Carlo algorithm to draw 20,000 samples from the posterior predictive distribution
of β|S for AM80. We discarded the first 5000 as burn-in and used the remaining

http://ndis.nrel.colostate.edu/coveg/
http://ndis.nrel.colostate.edu/coveg/
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TABLE 1
Results on regression parameters related to movement behavior. Entries are Bayesian posterior
predictive means (β̂) and standard deviations (s.e.) for the fully Bayesian analysis (Bayes), and

multiple imputation approximations to the same for the multiple imputation analyses. Results are
shown for varying numbers of imputations K from the continuous-time correlated random

walk (CTCRW) path imputation distribution [S̃|S]. Starred entries indicate parameters
with a 95% Bayesian credible interval that does not overlap zero

Forest cover Dist. to PKS Dist. to AF79 CRW

Method [S̃|S] K β̂ s.e. β̂ s.e. β̂ s.e. β̂ s.e.

Bayes CTCRW NA 0.326 0.197 0.297∗ 0.043 0.059 0.048 0.398∗ 0.0518
MI CTCRW 50 0.326 0.197 0.297∗ 0.043 0.059 0.048 0.398∗ 0.051
MI CTCRW 10 0.334 0.197 0.305∗ 0.042 0.063 0.050 0.399∗ 0.0487
MI CTCRW 5 0.372 0.154 0.293∗ 0.040 0.076 0.061 0.407∗ 0.043
MI CTCRW 2 0.228 0.168 0.300∗ 0.046 0.035 0.055 0.431∗ 0.040

samples to approximate the posterior predictive distribution. Posterior means and
standard deviations are shown in Table 1. Each parameter whose posterior pre-
dictive distribution’s 95% equal-tailed credible interval does not overlap zero is
marked with a star in Table 1. We then applied the multiple imputation approach
to approximate the posterior distribution using the K = 2,5,10 and 50 continuous
paths drawn from the CTCRW imputation distribution: [S̃|S]. The resulting mean
and posterior standard deviations are given in Table 1. We constructed symmet-
ric asymptotically normal 95% confidence intervals for each regression parameter,
and mark each estimate with a star in Table 1 when the confidence interval does not
overlap zero. The multiple imputation results approximate the mean and variance
of the posterior predictive distribution in this example with reasonable precision,
even when very few imputations are used, and when K = 50 imputed paths are
used, the multiple imputation approximation yields results that are nearly identical
to the results from the fully Bayesian analysis.

The results show that much of the subadult male’s movement can be explained
by a correlated random walk with attractive points at PKSs [Figure 2(b)]. The
results also show that the animal’s movement behavior is fairly homogeneous
when in forested and in nonforested terrain. These results are consistent for all
approaches using the CTCRW imputation distribution.

6.2. Simulation study. We conducted a simulation study motivated by our data
analysis to examine our ability to find the correct subset model using multiple
imputation with lasso penalty. We are interested in identifying which parameters
affect animal movement and directional bias, and so focus on a group lasso penalty
which will force estimates for regression parameters to be either zero or nonzero
in all imputations. An alternative approach would be to obtain a lasso estimate of
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TABLE 2
Simulation study results. A simulation study was conducted, by setting the true covariate effects for
“Not forest,” “Direction to nearest PKS” and “Distance to AF79” to various values motivated by
the estimates in Section 6.1. We then simulated a CTDS random walk under the true parameters,

and thinned the simulated path to “observed” locations at four-hour intervals (to simulate regular
telemetry observations). The resulting simulated observations were fit using our proposed approach

using the CTCRW model to impute continuous-time paths and a lasso penalty on the fitted GLM.
This simulation study was repeated for the case when the true covariate effects are all zero.

In each case, 1000 paths were simulated and fit, with the results summarized below

True Proportion Proportion
Covariate value β̂ �= 0 β̂ = 0 Min Max

Not forest 0.000 0.000 1.000 0.000 0.000
Direction to PKS 0.300 0.634 0.866 0.000 0.217
Distance to AF79 0.000 0.000 1.000 0.000 0.000

Not forest 0.000 0.000 1.000 0.000 0.000
Direction to PKS 0.000 0.002 0.998 0.000 0.016
Distance to AF79 0.000 0.000 1.000 0.000 0.000

the regression parameters (14) for each imputated path, and then combine them
using the standard combining rules.

We first simulated a CTDS movement path using the forest cover and direction
to nearest PKS covariates from our mountain lion analysis, as well as a simulated
covariate meant to mimic the directional effect of the conspecific (AF79). Various
combinations of true parameter values were specified, and a full CTDS path was
simulated for a two-week period (equal to the observation period of the moun-
tain lions in our study). We then simulated telemetry data from the CTDS path by
recording the simulated location only every four hours. The resulting simulated
telemetry locations were used to estimate the movement parameters using our ap-
proach with a CTCRW imputation distribution and lasso penalty, with the lasso
tuning parameter chosen by 10-fold cross-validation using the “glmnet” package
[Friedman, Hastie and Tibshirani (2010)] in R. This was repeated 1000 times for
each set of parameters. The results are shown in Table 2.

Our approach is very accurate at estimating model parameters as equal to zero
when the true parameter is zero. When the true value of the parameter related to
the directional gradient toward the nearest PKS is positive (0.30), the approach cor-
rectly estimates this parameter as positive 86.6% of the time, and never incorrectly
estimates this parameter as being negative.

From this simulation study we see that our proposed approach with lasso penalty
provides a conservative estimate of the relationship between an animal’s observed
movement and the potential drivers of animal movement in the model (17).

6.3. Time-varying behavior. We next examine changing movement behavior
over time using a varying-coefficient model for each covariate in the model, where
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FIG. 3. Time-varying results for the location-based and directional covariates in the conti-
nuous-time discrete-space model for a male mountain lion (AM80) obtained using a lasso shrinkage
prior. The x-axis is time of day in hours. The y-axis is the effect size.

behavior was allowed to vary with time of day. For all covariates we specified
a B-spline basis expansion with regularly-spaced spline knots at 6 hour intervals
over the course of a 24 hour period. Observations over multiple days (14 days
in this study) are replications in this model and allow for inference about diurnal
changes in movement behavior.

For this analysis, we fit the CTDS model with CTCRW imputation distribution
and a lasso penalty. After estimating the model parameters and choosing the lasso
tuning parameter using cross-validation, we used the chosen lasso tuning param-
eter γ as a hyperparameter in the full Bayesian model with lasso shrinkage prior
(15)–(16). The resulting posterior predictive mean and equal-tailed 95% credible
interval bounds for β(t) are shown in Figure 3.

In Figure 3(b) the peak in the value of the β(t) associated with movement to-
ward the nearest PKS indicates the animal shows some preference for returning to
a PKS near dusk (8 pm). The confidence bands of the other parameters include zero
throughout the day, indicating that we lack evidence that the animal’s response to
the relevent covariates is synchronous with the diurnal cycle.

7. Discussion. While we have couched our CTDS approach in terms of mod-
eling animal movement, we can also view this approach in terms of resource selec-
tion [e.g., Manly, McDonald and Thomas (2002)]. Johnson et al. (2008a) describe
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a general framework for the analysis of resource selection from telemetry data us-
ing a weighted distribution approach where an observed distribution of resource
use is seen as a reweighted version of a distribution of available resources, and the
resource selection function (RSF) defines the preferential use of resources by the
animal. Warton and Shepherd (2010) describe a point process approach to resource
selection that can be fit using a Poisson GLM, similar to the CTDS model we de-
scribe here. In the context of Warton and Shepherd (2010), the CTDS approach can
be viewed as a resource selection analysis with the available resources at any time
defined as the neighboring grid cells. The transition rate (17) of the CTDS process
to each neighboring cell contains information about the availability of each cell, as
well as the RSF that defines preferential use of the resources in each cell.

One alternative to our continuous time model for animal movement is the spatio-
temporal point process modeling approach of Johnson, Hooten and Kuhn (2013),
where the movement process is considered as a set of points that exist in space and
time, instead of as a dynamic process occurring in space and time. In the spatio-
temporal point process context, telemetry points can arise in a space that is both
geographical and temporal, and Johnson, Hooten and Kuhn (2013) integrate over
the temporal dimension and arrive at a marginal spatial point process model. Our
approach is explicitly dynamic in that it models actual transition probabilities as
function spatio-temporally varying environmental and ecological conditions. Fur-
thermore, we allow for additional flexibility and predictive ability in our approach
through the use of regularization.

Representing a CTMC model for CTDS animal movement in terms of a Poisson
GLM likelihood (6) allows for the possibility of inference under a wide variety of
statistical approaches. An alternative to our Bayesian approach based on MCMC,
generalized additive modeling approaches and software [e.g., Wood (2011)], as
well as approximate Bayesian approaches such as integrated nested Laplace ap-
proximations [INLA, Rue, Martino and Chopin (2009)], could be used for infer-
ence on time-varying parameters in (13).

The use of directional drivers of movement has a long history. Brillinger et al.
(2001) model animal movement as a continuous-time, continuous-space random
walk where the drift term is the gradient of a “potential function” that defines an
animal’s external drivers of movement. Tracey, Zhu and Crooks (2005) use circu-
lar distributions to model how an animal moves in response to a vector point-
ing toward an object that may attract or repel the animal. Hanks et al. (2011)
and McClintock et al. (2012) make extensive use of gradients to model directed
movements and movements about a central location. In our study of mountain lion
movement data, we used directional drivers of movement to model conspecific
interaction between a mother (AF79) and her cub (AM80). Interactions between
predators and prey could also be modeled using directional covariates defined by
vectors pointing between animals. Some movements based on memory could also
be modeled using directional covariates. For example, a directional covariate de-
fined by a vector pointing to the animal’s location one year prior could be used
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to model seasonal migratory behavior. The ability to model both location-based
and directional drivers of movement make the CTDS framework a flexible and
extensible framework for modeling complex behavior in animal movement.
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SUPPLEMENTARY MATERIAL

Alternate path imputation distribution (DOI: 10.1214/14-AOAS803SUPP;
.pdf). This supplement contains details of a Brownian bridge path imputation dis-
tribution and its use with our CTDS approach to modeling animal movement.
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