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Investigation of species abundance has become a vital component of
many ecological monitoring studies. The primary objective of these studies is
to understand how specific species are distributed across the study domain, as
well as quantification of the sampling efficiency for detecting these species.
To achieve these goals, preselected locations are sampled during scheduled
visits, in which the number of species observed at each location is recorded.
This results in spatially referenced replicated count data that are often un-
balanced in structure and exhibit overdispersion. Motivated by the Balti-
more Ecosystem Study, we propose Bayesian hierarchical binomial mixture
models, including Binomial Conway–Maxwell Poisson (Bin-CMP) mixture
models, that formally account for varying levels of spatial dispersion. Our
proposed models also allow for variable selection of model covariates and
grouping of dispersion parameters through the implementation of reversible
jump Markov chain Monte Carlo methodology. Finally, using demographic
covariates from the American Community Survey, we demonstrate the effec-
tiveness of our approach through estimation of abundance for the American
Robin (Turdus migratorius) in the Baltimore Ecosystem Study.

1. Introduction. Investigation of species abundance is a topic of widespread
interest in ecology. To estimate and model variation in species abundance, pre-
determined survey points are visited at each sampling occasion and the number
of animals detected are recorded. This results in spatially referenced point count
data. Such a sampling protocol is easier to implement than the traditional capture–
recapture experiment [e.g., see Williams, Nichols and Conroy (2002) and the refer-
ences therein], since each animal encountered does not have to be distinctly tagged.
Nevertheless, these spatially referenced data can be utilized to estimate the abun-
dance of animals, for which individual tagging might be difficult or even infeasible
due to the amount of effort involved, for example, in some avian ecology surveys.
Therefore, to estimate abundance, the development of binomial mixture models
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has drawn significant attention over the past few decades [e.g., Carroll and Lom-
bard (1985), Kéry (2008), Kéry, Royle and Schmid (2005), Royle (2004), Webster,
Pollock and Simons (2008)].

In developing statistical models for count data, the choice of the distribu-
tion function frequently depends on the dispersion associated with the data. For
equidispersed data (i.e., equal mean and variance), the Poisson distribution is fre-
quently used due to its explicit assumption of equidispersion. However, to model
overdsipersed data (i.e., the variance is greater than the mean), the choice of dis-
tribution functions needs to be made [e.g., see Ver Hoef and Boveng (2007)].
Often, the negative binomial (NB) distribution [Cameron and Trivedi (1998)] is
employed, due to a dispersion parameter that conveniently controls the level of
overdispersion. Alternatively, the Poisson distribution can also be used with a ran-
dom effect included to relax the restrictive assumption of equidispersion. Although
the Poisson and NB distributions have become the de facto options for count data,
neither of them accounts for underdispersion (i.e., the variance is less than the
mean). Admittedly, overdispersion is more common for data arising from eco-
logical monitoring studies, while underdispersion is often present for rare event
data [e.g., Herbers (1989), Oh, Washington and Nam (2006), Ridout and Besbeas
(2004)]. Nevertheless, cases can arise in ecological monitoring studies where the
species of interest is less prevalent (due to being rare occurrences). In principle,
these situations would manifest themselves as underdispersion.

The Conway–Maxwell Poisson (CMP) distribution [Conway and Maxwell
(1962)] is an ideal candidate for modeling count data with different types of disper-
sion, as it has an extra dispersion parameter that flexibly allows for equi-, over-, and
underdispersion. Moreover, the CMP distribution is closely related to many other
discrete distributions. For example, the CMP distribution contains the Poisson dis-
tribution as a special case and generalizes Bernoulli and geometric distributions
in the limiting cases [Shmueli et al. (2005)]. Owing to its versatility, the CMP
distribution has become increasingly popular among many subject-matter disci-
plines. For example, in the context of breeding bird surveys, Wu, Holan and Wikle
(2013) develop a Bayesian hierarchical spatio-temporal CMP model for complex
and high-dimensional count data. A unique aspect of this research is that it allows
for dynamic spatial dispersion (i.e., the dispersion over the spatial domain evolves
over time). A comprehensive overview regarding the CMP model is provided by
Sellers, Borle and Shmueli (2012) and the references therein.

Binomial mixture models have become increasingly popular for analyzing spa-
tial point referenced count data in the context of estimating and modeling varia-
tion in species abundance. As a result, various models have been developed with
this application in mind. For example, Carroll and Lombard (1985) consider a
Binomial-Beta mixture model to study the problem of estimating an unknown
population, N , that follows a discrete uniform distribution, in which efficient es-
timators were obtained through the use of an integrated likelihood method. To
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improve the estimator proposed by Carroll and Lombard (1985), Royle (2004) de-
velops a Binomial–Poisson (Bin–Pois) mixture model, in which N is considered
to be an independent random variable from a Poisson distribution. Subsequently,
Royle and Dorazio (2006) propose a more general hierarchical modeling frame-
work with the goal of addressing animal abundance in the case of imperfect detec-
tion, wherein the variation associated with the observed data was partitioned into
that of abundance and that of detectability. In the context of avian ecology stud-
ies, Kéry, Royle and Schmid (2005) and Kéry (2008) apply the Bin–Pois models
to the estimation of bird abundance. Webster, Pollock and Simons (2008) pro-
pose a Bin–Pois model, in which a conditional autoregressive (CAR) model was
used to address spatial dependence found in the bird density. Wenger and Freeman
(2008) develop zero-inflated Bin–Pois and zero-inflated Binomial–negative bino-
mial (Bin–NB) models for the estimation of species abundance. Kéry and Royle
(2010) develop a Bin–Pois model with a site-specific random effect to allow for
overdispersion and, thus, the equidispersion assumption of the Poisson distribution
is relaxed. Graves et al. (2011) apply the Bin–Pois model to estimate abundance
for a grizzly bear population using multiple detection methods, in which covari-
ates are introduced to explain variation in both the detection and intensity pro-
cess. Under the frequentist framework, Dail and Madsen (2011) propose a general
Bin–Pois model to allow for a formal statistical test regarding the assumption of
population closure. However, none of the aforementioned models simultaneously
allows for data with different levels of dispersion (over- and underdispersion) and
Bayesian model selection (e.g., using the Conway–Maxwell Poisson distribution
and reversible jump Markov chain Monte Carlo).

Some experiments in ecological studies can be viewed as a robust design [e.g.,
see Pollock (1982)], that is, there are secondary, and possibly subsequent, sampling
periods nested within each primary sampling occasion. For example, the Amer-
ican Robin (Turdus migratorius) data we consider from the Baltimore Ecosys-
tem Study (BES) falls into this category. This nested sampling design contains
the design with one primary sampling occasion as a special case. Motivated by
American Robin data from BES (Section 6), we develop a Binomial Conway–
Maxwell Poisson (Bin-CMP) mixture model that accommodates both overdis-
persed and underdispersed data under a nested/unbalanced data structure. The
Bin-CMP models we propose are cast in a general Bayesian hierarchical bino-
mial mixture model framework that can accommodate mixtures using distributions
other than the CMP.

Compared with the existing models in the literature, our contribution can be
seen as follows. First, we develop a flexible class of binomial mixture models
to account for replicated count data with different types of dispersion, which is
achieved by choosing a suitable model for the abundance parameter (e.g., using
the CMP distribution). In the case of overdispersed data, our methodology is ad-
vantageous from an estimation perspective when compared to the general mod-
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eling strategy that includes a random effect to account for extra dispersion [e.g.,
see Kéry and Royle (2010)], as our model has a fewer number of parameters to
be estimated. Although each parameter may be more computationally expensive,
compared to the strategy of including a random effect, this computational burden
can be alleviated through the use of a lower level programing language and paral-
lel computation. More importantly, our model provides an explicit quantification
of dispersion and can also be used in the context of underdispersed data. Addition-
ally, the models we consider can flexibly account for spatial dependence in species
abundance by adding a low-rank spatial component to the model for the inten-
sity process. In contrast to the CAR models used by Webster, Pollock and Simons
(2008), our methodology does not require us to define a neighborhood structure
for the point count data, which can be difficult in many cases. In the setting of our
motivating example, where the bird counts themselves are modeled at the point
level rather than on areal units, a geostatistical approach may be more appropri-
ate. Further, through reversible jump Markov chain Monte Carlo (RJMCMC), we
introduce automated variable selection for covariates and grouping of dispersion
parameters into the binomial mixture modeling framework and, to the best of our
knowledge, our approach constitutes the first successful RJMCMC implemented
on the CMP dispersion parameters. Last, the variable selection allows us to iden-
tify important predictors related to high detectability and abundance for a given
species of interest.

This paper is organized as follows. Section 2 introduces our motivating data
from the BES and provides preliminary background information on the CMP dis-
tribution. Section 3 describes our proposed Bayesian hierarchical binomial mix-
ture models, including the Bin-CMP model. Section 4 provides relevant infor-
mation on Bayesian variable selection and grouping using RJMCMC. Simulated
examples are presented in Section 5, illustrating the effectiveness of our model-
ing approach. Section 6 contains an analysis of our motivating data, estimating
abundance of the American Robin from the BES, and demonstrates the utility of
our methodology. Discussion is provided in Section 7. For convenience of expo-
sition, specific details surrounding our Markov chain Monte Carlo (MCMC) algo-
rithm and full conditional distributions are left to a supplemental article [Wu et al.
(2015)].

2. Data and preliminary background.

2.1. Baltimore Ecosystem Study survey data. As a long-term ecological mon-
itoring study, the BES considers the City of Baltimore, Maryland as a study area,
with the objective of understanding how the City of Baltimore evolves as an
ecosystem over time [Pickett et al. (2011)]. Collected as a part of the BES, the
American Robin (Turdus migratorius) data we consider constitutes spatially repli-
cated point count data on 132 bird census points in the City of Baltimore, which are
randomly selected from a set of urban forest effect (UFORE or I-Tree Eco) model
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points (Section 6). Considered as the most widespread North American thrush, the
American Robin has become common in many North American cities [Sallabanks
and James (1999)]. Despite its abundance, conservation measures, which are en-
forced by the Migratory Bird Treaty Act of 2004, have been taken to protect the
American Robin throughout its geographical range in the United States. Although
BES data have been collected across bird survey points since 2005, as an illus-
tration, we consider a subset of data over five years from 2005 to 2009, due to
incomplete data in later years. In each year, three surveys were scheduled for each
of the survey points throughout May and August, each of which consisted of a five
minute survey conducted between 5 am and 10 am on days without rain. During
each survey, the recorded count represents the combination of birds that were seen,
heard, or flew over each survey point. In the current context, the secondary sam-
pling period consists of the five minute daily survey, while the primary sampling
periods are the time frames determined by the dates on which three daily surveys
are conducted. As a result, the nested sampling design provides a maximum of 15
spatially referenced counts for each bird census point. Despite the fact that several
species are available in the BES, as an illustration, we consider American Robin
counts in our analysis, due to their higher abundance relative to other species.
Among the 132 bird census points, 131 of them have American Robin detections
(Figure 1).

FIG. 1. Plot of 131 bird census points for American Robin in the City of Baltimore, Maryland
(using R package “RgoogleMaps”). The solid circles are bird census points.
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2.2. The Conway–Maxwell Poisson distribution. Let X denote a CMP dis-
tributed random variable, that is, X ∼ CMP(λ, ν), where λ > 0 and ν ≥ 0 are the
CMP intensity and dispersion parameters, respectively. The probability mass func-
tion (pmf) of X is given by

P(X = x) = λx

(x!)ν
1

Z(λ, ν)
, x = 0,1,2, . . . ,(1)

where

Z(λ, ν) =
∞∑

j=0

λj

(j !)ν(2)

is a normalizing constant (often referred to as the “Z-function”). With the addi-
tional parameter ν, the CMP distribution conveniently accommodates equidisper-
sion, overdispersion, and underdispersion. Specifically, ν = 1 corresponds to the
Poisson distribution, whereas ν < 1 and ν > 1 represent overdispersion and un-
derdispersion, respectively. In addition, the CMP distribution generalizes to the
geometric and Bernoulli distributions in the limiting cases [Shmueli et al. (2005)].

For the calculation of (1), the Z-function needs to be computed numerically due
to the summation of an infinite series. For certain combinations of λ and ν, many
terms will be needed in order to truncate the infinite summation with sufficient ac-
curacy, which leads to intensive computation. For these cases, Minka et al. (2003)
derived an asymptotic approximation to the Z-function, which is accurate when
λ > 10ν . Wu, Holan and Wikle (2013) discuss further improvements on compu-
tation by taking advantage of parallel computing through Open Multiprocessing
(OpenMP) and Compute Unified Device Architecture (CUDA), that is, graphics
processing unit (GPU).

3. Hierarchical Binomial mixture models.

3.1. Model development. Let {si}Gi=1, si ∈ D ⊂ R
2 denote a set of sampling

locations. We consider an experimental design in which animals are surveyed at
each sampling location si for a total of J primary sampling occasions, in which
there are potentially K nested secondary sampling periods. In principle, the pri-
mary sampling occasions can be over any arbitrary time interval, for example, in
weeks or months. In addition, we assume a closed population within each primary
sampling occasion so that the species abundance at each location varies across
primary sampling occasions but not within. Relative to the primary sampling oc-
casion, the secondary sampling period might be over a shorter time interval, for
example, daily surveys within the three-month long primary sampling occasions.
To allow for an unbalanced data structure, due to missing observations, we assume
nij ≤ K successful visits to site si during the j th primary sampling period with
the number of animals detected recorded. Therefore, it follows that 0 ≤ nij ≤ K ,
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i = 1,2, . . . ,G; j = 1,2, . . . , J . We note that “missing” values are not uncommon
and can occur for many reasons. For example, some scheduled visits might not
be made due to illness of the observer, and as a result no data will be recorded.
In the current context, we assume that any missing data are missing completely at
random (MCAR) [Little and Rubin (2002)].

For i = 1,2, . . . ,G, j = 1,2, . . . , J , and k = 1,2, . . . , nij , let yijk be the
number of animals observed at location si during the kth secondary sampling
within the j th primary sampling occasion. The observed data can be denoted
by Y = {yij : i = 1,2, . . . ,G; j = 1,2, . . . , J }, where yij = (yij1, yij2, . . . , yijnij

)′
and 1 ≤ nij ≤ K . Note that nij = 0 corresponds to the case that no successful vis-
its are made to site i and, thus the vector yij does not have any elements. Further,
let pijk be the probability of detecting an animal during the kth (k = 1,2, . . . , nij )
secondary sampling within the j th primary sampling occasion (j = 1,2, . . . , J ) at
location si and denote Nij as the unknown animal abundance at location si during
the j th primary sampling occasion. In other words, Nij represents the total num-
ber of animals available for sampling during the j th primary sampling occasion
at location si . Due to the closed population assumption, Nij does not vary among
secondary sampling periods within each primary sampling occasion.

The nested design we consider is more general than many of the designs pre-
viously investigated [e.g., Kéry (2008), Kéry, Royle and Schmid (2005), Royle
(2004), Royle and Dorazio (2006), Royle and Link (2005), Webster, Pollock and
Simons (2008)], all of which can be seen as a special case of ours by setting K = 1.
In contrast, our study design is more similar to those found in Chandler, Royle and
King (2011) and Dail and Madsen (2011). Additionally, for the sake of flexibil-
ity, it is not necessary that nij ≡ K (for all i = 1,2, . . . ,G and j = 1,2, . . . , J ).
Importantly, the replicated data collected in the secondary sampling provides addi-
tional information that could alleviate potential issues caused by missing values as
well as improve the accuracy of parameter estimation over the nonnested design.
The primary objective of our analysis is to estimate abundance and draw infer-
ence about detectability. To achieve these goals, we propose a class of hierarchical
binomial mixture models, that includes the Bin-CMP model.

The class of binomial mixture models naturally fits into the hierarchical frame-
work [e.g., Cressie and Wikle (2011), Royle and Dorazio (2008)]. In this frame-
work, we define the observation model as

yijk|Nij ,pijk ∼ Bin(Nij ,pijk),(3)

for i = 1,2, . . . ,G; j = 1,2, . . . , J ; k = 1,2, . . . , nij , where the probability pijk

corresponds to the kth secondary sampling within the j th primary sampling occa-
sion at location si . For the design we consider, (3) allows us to estimate abundance
parameters Nij , which are both location- and time-specific. Also, since the abun-
dance Nij at each site si varies over time, we are able to describe the temporal
changes in species abundance for all spatial locations, which is often vital in the
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context of long-term ecological monitoring studies. Another benefit of the design
we consider is the potentially sharper estimates of the detection probability. Using
a single probabilistically coherent model, we are able to provide spatial maps that
illustrate the changes in abundance over time as well as the spatial variation [e.g.,
see Figures 2 and 3 in the supplementary article, Wu et al. (2015)]. More impor-
tantly, (3) also suggests how over- and underdispersion can be explicitly accounted
for in the subsequent model development through the choice of an appropriate
count model for abundance parameter, Nij . Specifically, under the assumption of
independence between Nij and pijk , it follows that

E(yijk) = E(pijk)E(Nij ),

Var(yijk) = E(pijk)E(Nij ) + E
(
p2

ijk

){
Var(Nij ) − E(Nij )

}
.

Hence, the mean and variance relationship in the data can be addressed through
that of Nij . For example, for data with over- and underdispersion, we can choose
a model for Nij such that Var(Nij ) > E(Nij ) or Var(Nij ) < E(Nij ), respectively.
As such, our approach addresses over- and underdispersed count data through the
choice of an appropriate model for abundance parameter, Nij .

For i = 1,2, . . . ,G and j = 1,2, . . . , J , the process model we consider for the
abundance, Nij , is given by

Nij |λij , νj ∼ f (λij , νj ),(4)

where f (·) is used to generically denote an appropriate count distribution with
intensity parameter λij and primary sampling period-varying dispersion parame-
ters νj . There are many possible choices for the distribution function f (·) in the
process model (4), including the Pois, NB, and CMP, among others. We focus
on the case where f (·) is chosen to be the CMP distribution, resulting in a flexi-
ble Bin-CMP mixture model that allows for equi-, over-, and/or underdispersion.
Alternatively, if f (·) is chosen to be the NB distribution, the resulting Bin–NB
mixture model provides a suitable candidate for modeling overdispersed data. Fi-
nally, it is important to note that, although we focus on the CMP distribution, in
our framework, f (·) can be chosen to be any valid count distribution.

Specification of the parameter model is usually problem-specific and often de-
pends on the research questions under consideration. In long-term ecological mon-
itoring studies, it is often of interest to understand which factors might be important
constituents in the probability of detection, so that an efficient sampling protocol
can be designed. To achieve this goal, we relate the detection probability, pijk , to
the covariates xijk,1, . . . , xijk,P through a logistic link function, that is,

logit(pijk) = β1xijk,1 + · · · + βP xijk,P ,(5)

where logit(r) = log{r/(1 − r)}, i = 1,2, . . . ,G, j = 1,2, . . . , J , and k =
1,2, . . . , nij . Note that (5) allows for an intercept, by setting xijk,1 ≡ 1 for all
i, j , and k. By incorporating covariates into the model, the objective is to identify
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and draw statistical inference on important factors governing the probability of
detection. Another interest in long-term ecological studies is to gain deeper under-
standing surrounding the intensity λij , which influences species abundance. The
second part of the parameter model defines a model for the intensity, λij , as

logλij = w′
ijγ = wij,1γ1 + · · · + wij,MγM,

(6)
i = 1, . . . ,G; j = 1, . . . , J.

Here, wij = (wij1, . . . ,wij,M)′ are a set of covariates and γ = (γ1, . . . , γM)′ de-
notes the associated coefficients.

3.2. Accounting for spatial dependence. For spatially replicated count data,
such as those typically encountered in monitoring studies, it is sometimes neces-
sary to explicitly account for spatial dependence in the model for intensity. Under
this scenario, we can extend (6) to explicitly incorporate spatial dependence by
adding a spatial component in the model for the intensity, that is,

logλij = w′
ijγ + φ′

iαj , i = 1, . . . ,G; j = 1, . . . , J,(7)

or

logλ = w′γ + (
� ⊗ α′) vec(Iτ×τ ),

where αj = (αj1, . . . , αjτ )
′; α = (α1,α2, . . . ,αJ ); λ = (λ11, . . . , λ1J , . . . , λG1,

. . . , λGJ )′; w = (w11, . . . ,w1J , . . . ,wG1, . . . ,wGJ ); � denotes a G × τ matrix
of spatial basis functions � = [φ′

1; . . . ;φ′
G]; φ′

i = (φi1, . . . , φiτ ) is a row vector
denoting the ith row of �; Iτ×τ is a τ × τ identity matrix; τ is the number of basis
functions and α ∼ N(0,�α). There are several advantages to incorporating spatial
effects when modeling the intensity function. Most importantly, capturing spatial
dependence in the intensity function among neighboring locations will allow us
to borrow strength from correlated observations, potentially improving parameter
estimation, statistical inference, and prediction.

The choice of basis functions is typically problem specific, with advantages aris-
ing from specific choices. Popular choices include empirical orthogonal functions
(EOFs), Fourier basis function, splines, wavelets, bi-square and predictive pro-
cess basis [e.g., see Cressie and Johannesson (2008), Cressie and Wikle (2011),
Royle and Wikle (2005) and the references therein]. In spatial statistical modeling,
low-rank representations are often considered [Wikle (2010)]. Following Ruppert,
Wand and Carroll (2003), we use the thin plate spline basis functions, where

� = [
C(si − κ l)

]
1≤l≤τ

1≤i≤I and C(r) = ‖r‖2v−2 log‖r‖, v > 1,

where κ l (l = 1,2, . . . , τ ) denote fixed knot points in R
2 and v is a smoothness

parameter [see Holan et al. (2008) for further discussion]. Here, we choose v = 2
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[cf. Ruppert, Wand and Carroll (2003), page 257] and assume cov(αj ) = σ 2
αj

	,
where

	 = [
C(κ l − κ l′)

]
1≤l,l′≤τ

.

The selection of knot points can be facilitated through space-filling designs, as
implemented in the fields package [Furrer, Nychka and Sain (2012)] in R
[R Development Core Team (2013)]. The number of knots τ can be chosen based
on computational considerations followed by sensitivity analysis. Alternatively,
the number of knots can be chosen according to τ = max{20,min(G/4,150)}
[Ruppert, Wand and Carroll (2003), page 257]. Following Ruppert, Wand and Car-
roll (2003), we define �∗ = �	−1/2 and α∗ = 	1/2α. Then, for i = 1,2, . . . ,G

and j = 1,2, . . . , J , we can rewrite (7) as

logλij = w′
ijγ + φ∗′

i α∗
j = g′

ij γ̃ j ,(8)

where φ∗′
i is the ith row of the matrix �∗ and cov(α∗

j ) = σ 2
αj

Iτ×τ . Further, g′
ij =

(w′
ijφ

∗′
i ) and γ̃ j = (γ1, . . . , γM,α∗

j1, . . . , α
∗
jτ )

′.

3.3. The likelihood. To account for spatial dependence, we require that α∗
j ,

j = 1,2, . . . , J in (8) are in the model with probability one. Since (6) and (8)
are essentially of the same form, we will use the former in the subsequent dis-
cussion. We now derive the likelihood function for the model defined by (3),
(4), (5), and (6). Let M = {Mβ,Mγ ,Mν}, and Mβ,Mγ ,Mν denote the
model structures for the set of covariates x and w and the dispersion parameters
ν = {ν1, . . . , νJ }, respectively. For example, in the case of P = 6,M = 6, J = 5,
Mβ = {x1, x3} indicates that only x1 and x3 are included in the model for detection
probability or, equivalently, β2 = β4 = β5 = β6 = 0; Mγ = {w1,w2} indicates
that only w1 and w2 are included in the model for intensity; Mν = {1,2, . . . , J }
indicates that there is only one grouping for dispersion parameters, meaning νj ≡ ν

for j = 1,2, . . . , J . Under the assumption of conditional independence, the likeli-
hood function for the binomial mixture models we propose is given by

L(Y|M,β,γ , ν) =
G∏

i=1

J∏
j=1

nij∏
k=1

[yijk|Nij ,β,Mβ][Nij |Mγ ,γ ,Mν, νj ],(9)

where, generically, [ξ |θ ] denotes the conditional distribution of ξ given the param-
eters θ . Integrating out Nij in (9) yields the marginal distribution of observing yij

as

P(yij |M,β,γ , νj )

=
∞∑

Nij≥ymax
ij

{ nij∏
k=1

Nij !
yijk!(Nij − yijk)!p

yijk

ijk (1 − pijk)
Nij−yijk

}
(10)

× f (Nij |Mγ ,γ ,Mν, vj ),
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where ymax
ij = max{yij }. Consequently, we can derive the joint posterior distribu-

tion function π(M,β,γ , ν|Y) based on (10) as

π(M,β,γ , ν|Y)

∝
{

G∏
i=1

J∏
j=1

P(yij |M,β,γ , νj )

}
(11)

× [β|Mβ][γ |Mγ ][ν|Mν][Mβ][Mγ ][Mν].
Here [θ] denotes the joint prior distribution function of the parameters θ .

Examination of (11) raises several computational concerns. First, the calcula-
tion of P(yij |M,β,γ , νj ) can be computationally prohibitive, since a multiple
integral is involved. This computational issue becomes exacerbated when the do-
main of Nij covers a wide range of values and/or if G and J are large. In addition
to calculating a multiple integral, in the case where f (·) denotes the CMP distribu-
tion, evaluating (10) requires computing the Z-function, which involves the sum-
mation of infinite series. Specifically, for the Bin-CMP model, it is worth pointing
out that within each MCMC iteration, sampling elements in γ or ν from their full
conditionals requires both the computation of the multiple integral and the approx-
imation of the Z-function. Therefore, implementation of our proposed model can
be computationally intensive in some cases. We resolve these computational is-
sues through the use of low level programming in C and parallel computing with
OpenMP.

Finally, we assume the following prior distributions for the model parameters:
β ∼ Gau(μβ,�β); γ ∼ Gau(μγ ,�γ ). For the dispersion parameters, we assume
νj ∼ Unif(aj , bj ), j = 1,2, . . . , J , where aj and bj are chosen appropriately to
allow for different levels of dispersion in the data (e.g., for overdispersed data, one
may set aj ≡ 0.02 and bj ≡ 1.0). In our case, we assign vague prior distributions
that are noninformative relative to scale of the data.

4. Automated Bayesian model selection. For the binomial mixture models
we propose, there are several ecological objectives. First, there is a clear need to
identify important covariates among a set of candidate covariates in order to gain
an understanding of the factors affecting the detectability for a given species of in-
terest. In addition, the selection of influential covariates is vital for studying which
factors influence species abundance. Last, the grouping of dispersion parameters
will provide us with further information about the level of dispersion associated
with the data across different years in the study. In such cases, grouping is desired
since some years may exhibit a similar level of dispersion due to environmental
changes or other exogenous factors. For example, in our setting, specific neighbor-
hoods may experience slow growth in terms of the number of buildings established
and/or certain climate conditions may be more (or less) similar from year to year.
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Thus, it is conceivable that some years may experience a similar dispersion param-
eter. As such, we allow for data-driven grouping of the dispersion parameters. To
achieve these goals, we first discuss variable selection and grouping in the context
of the models we propose.

4.1. Bayesian variable selection and grouping. The literature on Bayesian
variable selection is fairly extensive [e.g., see Hooten and Hobbs (2015), O’Hara
and Sillanpää (2009) for a comprehensive review]. Among the many available
choices, the two most commonly used techniques are stochastic search variable
selection [George and McCulloch (1993, 1997)] and reversible jump MCMC
(RJMCMC) [Green (1995)]. For grouping, however, RJMCMC is typically consid-
ered more appropriate and, thus, we utilize it for both model selection and group-
ing. Although one could consider model selection through various model selection
criteria [e.g., Deviance Information Criterion—Spiegelhalter et al. (2002)], this
would be less advantageous when the goal is both simultaneous variable selection
and grouping.

For convenience of exposition, we explain our algorithm in the context of the
Bin-CMP model and note that the migration to other binomial mixture models
is analogous. The implementation of variable selection for x and w involves two
types of moves: BIRTH (B) and DEATH (D) defined as follows:

B: propose to add a covariate (xm or wm) to the current model with probability
pb

m,
D: propose to remove a covariate (xm or wm) from the current model with proba-

bility pd
m.

As an example, we consider a D move for x. In general, only a subset of covariates
are subject to variable selection, while others are forced to remain in the model
with probability one. For notational simplification, let Ax denote the set of indices
corresponding to covariates x that are available for variable selection. For example,
if there are three covariates x1, x2, and x3 available and only x1 and x3 are subject
to variable selection (i.e., x2 is in the model with the probability 1), then we have
Ax = {1,3}. Moreover, let |Ax | denote the cardinality of the set Ax . For each
covariate in Ax , we assume an equal probability of a B or D move, that is,

pb
m = pd

m = 1/2 for m ∈ Ax.

Suppose at the current iteration t , the model structure is given by Mt =
{Mt

β,Mt
γ ,Mt

ν}. The RJMCMC algorithm for variable selection on x can be out-
lined as follows:

Step 1: Start with the model structure Mt = {Mt
β ,Mt

γ ,Mt
ν}, where Mt

β =
{xi1, . . . , xim} with β t = {βi1, . . . , βim}.

Step 2: Randomly draw an index from Ax with an equal probability 1/|Ax |. As-
sume is ∈ Ax is chosen:
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– if is ∈ Mt
β , then propose a D move and obtain M′

β = Mt
β \ {xis } and

M′ = {M′
β ,Mt

γ ,Mt
ν} and β ′ = {βi1, . . . , βis = 0, . . . , βim};

– otherwise propose a B move and obtain M′
β = Mt

β ∪ {xis } and M′ =
{M′

β,Mt
γ ,Mt

ν} and β ′ = {βi1, . . . , βim, βis }.
Step 3: Adjust the coefficient βis corresponding to the covariate xis :

– if a D move, set βis = 0;
– otherwise generate βis ∼ q(·).

Step 4: Generate u ∼ Unif(0,1):

– if u < min{1,BF(M′
β,Mt

β) × R}, then set Mt+1
β = M′

β and Mt+1 =
M′;

– otherwise Mt+1
β = Mt

β and Mt+1 =Mt .

Step 5: Repeat.

In terms of the proposal distribution q(·), we used a Gau(0, ζ ) distribution with ζ

being a user-defined tuning parameter. Moreover,

R =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pb
is

pd
is

× q(βis), if D move,

pd
is

pb
is

× 1

q(βis)
, if B move,

and

BF
(
M′

β,Mt
β

) = P(M′
β ,β ′|Y,Mt

γ ,γ ,Mt
ν, ν)

P (Mt
β ,β t |Y,Mt

γ ,γ ,Mt
ν, ν)

.

We now discuss the grouping algorithm for the dispersion parameters ν. As-
sume there are nt different arrangements T1, T2, . . . , Tnt for ν at the t th iteration
of the MCMC, that is, Mt

ν = {T1, T2, . . . , Tm, . . . , Tnt }. For each grouping Tm,
m = 1,2, . . . , nt , the corresponding elements are subscripts for the dispersion pa-
rameter group membership. For example, if nt = 1, we have T1 = {1,2, . . . , J },
that is, νj ≡ ν, for j = 1,2, . . . , J . Similar to the variable selection previously
described, we allow for two types of moves as follows:

C: propose to combine two different arrangements into one arrangement with pc,
S: propose to split the arrangement into two arrangements with probability ps .

Without loss of generality, assume an equal probability of proposing a C or S move,
that is, pc = ps = 1/2. As an illustration, we describe only the S move. Suppose
there are ns

t out of nt arrangements in Mt
ν that have more than one single element.

We randomly choose each of these ns
t arrangements with an equal probability.
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Assume that group Tm is chosen, where m ∈ {1, . . . , ns
t } and |Tm| > 1. Assuming

we split Tm into two nonempty sets Tm1 and Tm2 , we denote the resulting model
structure as M′

ν = {T1, T2, . . . , Tm1, Tm2, . . . , Tnt }. The RJMCMC algorithm for
grouping of ν can be outlined as follows:

Step 1: Calculate the probability P(M′
ν |Mν) and P(Mν |M′

ν) as

P
(
M′

ν |Mν
) = 1

2

1

ns
t

1

2(|Tm|−1) − 1
,

P
(
Mν |M′

ν

) = 1

2

1(ns
t +1
2

)
[King and Brooks (2002)].

Step 2: Let νm denote the value common to all dispersion parameters in Tm and
νm1 and νm2 be the values of dispersion parameters in Tm1 and Tm2 , re-
spectively. Define a bijective mapping between νm and νm1, νm2 as

νm1 = νm + ε and νm2 = νm − ε,

where ε ∼ h(·).
Step 3: Generate ξ ∼ Unif(0,1):

– if ξ < min{1,BF(M′
ν,Mt

ν) × Rs}, then set Mt+1
ν =M′

ν and Mt+1 =
M′;

– otherwise Mt+1
ν = Mt

ν and Mt+1 = Mt .

In terms of the proposal distribution h(·), we used h(η) = Unif(−η,η) where η is
chosen through pilot tuning. Moreover,

BF
(
M′

ν,Mt
ν

) = P(M′
ν, νm1, νm2 |Y,Mt

γ ,γ ,Mt
β,β t )

P (Mt
ν, νm|Y,Mt

γ ,γ ,Mt
β,β t )

,

Rs = P(Mν |M′
ν)

P (M′
ν |Mν)

× 1

h(ε)
×

∣∣∣∣∂(νm1, νm2)

∂(νm, ε)

∣∣∣∣.
5. Simulated examples. To evaluate the performance of the binomial mixture

models we propose, we considered two simulated examples using the Bin-CMP
model, the difference of which only resides in whether or not a spatial compo-
nent is included in the intensity model. For both simulations, we choose G = 131,
J = 5, and K = 3 to be the same as the American Robin data presented in Sec-
tion 6. For both examples, we simulate data as yijk|Nij ,pijk ∼ Bin(Nij ,pijk). For
the probability of detection, we consider

logit(pijk) = β1xijk,1 + β2xijk,2 + · · · + βP xijk,P ,

where the values for the covariates x are set to be the same as in the American
Robin data for i = 1,2, . . . ,G, j = 1,2, . . . , J , k = 1,2, . . . ,K , l = 1,2, . . . ,
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P = 4. In addition, we set β = (−2.31,−0.4,0.0,−0.4)′ with {x1, x2, x4} be-
ing important covariates. For the true abundance parameters Nij , we simulated
from Nij ∼ CMP(λij , νj ), with ν1 = ν3 = ν5 = 0.15, ν2 = ν4 = 0.06 and γ 0 =
(0.31,0.13,0.44,0.16,0.35)′, as estimated from the American Robin data pre-
sented in Section 6. For i = 1,2, . . . ,G and j = 1,2, . . . , J , the intensity λij is
simulated according to

S1: logλij = w′
iγ + γ0j ,

S2: logλij = w′
iγ + φ∗′

i α + γ0j ,

where φ∗′
i for i = 1,2, . . . ,G and γ 0 = (γ01, . . . , γ05)

′ are determined according
to the American Robin data with τ = 10. In each of the two models, wi are set
to be the same as in the American Robin data presented in Section 6. Further,
we set M = 11 and γ = (0.0,0.0,0.0,0.0,0.0,0.06,0.0,0.0,0.0,0.03,0.0)′, that
is, with {w6,w10} being important covariates. Particularly, for S2, the coefficients
of spatial components, α, are randomly sampled from Unif(0,1) to avoid yijk

being too large. For the two simulations, we apply RJMCMC to perform variable
selection and grouping. Similar to the analysis presented in Section 6, we require
α to be included in the model with probability one for S2 and set aj ≡ 0.02 and
bj ≡ 2.0 to allow for both over- and underdispersion. In addition, we set μβ =
μγ ≡ 0, �β = 102IP , and �γ = 102IM .

Table 1 provides the posterior marginal probabilities for the most probable
model for x, w, and ν in the Bin-CMP models S1 and S2. For model S1, the most
frequent detection probability model was given by {x1, x2, x4} and appeared with a
frequency of 99.73%. The most frequent intensity model was defined by {w6,w10}
and had a frequency of 89.92%. In addition, the most frequent grouping for dis-
persion parameters is Mν = {{2,4}, {1,3,5}}, which appeared with a frequency
of 72.51%. In all cases, the RJMCMC correctly identified the set of important co-
variates as well as grouping for dispersion parameters with the posterior marginal
probability greater than or equal to 72.51%. In terms of parameter estimation, in
most cases the 95% credible intervals (CIs), averaged over the different models,
contain the true values—providing further indication that the correct model is se-
lected with high probability. For model S2, the most frequent set of covariates for
the detection probability model was given by {x1, x2, x4} and appeared with a fre-
quency of 99.57%. The most frequent set of covariates {w6,w10} for the intensity
model had a frequency of 93.57%. In addition, the most frequent grouping for the
dispersion parameters is Mν = {{2,4}, {1,3,5}}, which appeared with a frequency
of 76.00%.

In summary, the two simulations suggest that we are able to correctly identify
important covariates and grouping for dispersion parameters with high posterior
probability. Finally, for the estimation of abundance in the two simulations, our
approach performs satisfactorily, as measured by coverage of the 95% CIs. In the
presence of spatial components, however, we note that the model averaged esti-
mates of dispersion parameters can be adversely affected by missing data.
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TABLE 1
Posterior marginal probabilities of the most probable model for x, w,
and ν in the Bin-CMP mixture models S1 and S2 simulated examples

(Section 5) using RJMCMC. Note that S1 contains only the
covariates in the intensity model, whereas S2 contains both

covariates and spatial components in the intensity model and that the
posterior probability for x under both S1 and S2 are slightly less

than 1.00 and become 1.00 as a result of rounding

(a) Variable selection and grouping for S1

Para- Posterior
meter Model Frequency probability

x {x1, x2, x4} 59,838 1.00

w {w6,w10} 53,951 0.90
{w2,w6,w10} 4386 0.07

ν T1 = {2,4}, T2 = {1,3,5} 43,507 0.73
T1 = {1,3}, T2 = {2,4}, T3 = {5} 7801 0.13
T1 = {1}, T2 = {2,4}, T3 = {3,5} 3918 0.07

(b) Variable selection and grouping for S2

Para- Posterior
meter Model Frequency probability

x {x1, x2, x4} 59,741 1.00

w {w6,w10} 56,139 0.94

ν T1 = {2,4}, T2 = {1,3,5} 37,071 0.76
T1 = {3}, T2 = {2,4}, T2 = {1,5} 7573 0.13

6. Application: The Baltimore Ecosystem Study. In the urban ecosystems
literature, bird communities are often used as surrogates for studying urban bio-
diversity or species responses to urbanization [Aronson et al. (2014), Shochat,
Lerman and Fernández-Juricic (2010)]. Within urban areas the bird community is
shaped by local-scale features such as habitat features that vary among neighbor-
hoods, landscape pattern, and socioeconomic characteristics of residents that may
influence land management decisions [Pickett et al. (2012)]. The American Com-
munity Survey (ACS) is an ongoing survey that is able to provide timely economic,
social, and demographic information on small geographies such as census tracts.
Thus, to examine the effects of certain demographic characteristics on abundance,
we consider several ACS variables. Additionally, environmental features of differ-
ent neighborhoods can be described by many factors, such as vegetation diversity
and are, therefore, also considered in our analysis.
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Substantial research has been undertaken to investigate how socioeconomic sta-
tus and environmental variables influence the abundance and diversity of various
avian species [see Denison (2010), Loss, Ruiz and Brawn (2009), Smallbone, Luck
and Wassens (2011) and the references therein]. Using socioeconomic variables
from the decennial census in 2000 associated with each census tract block groups
as covariates, Denison (2010) considered a simple NB regression with no spatial
components under the frequentist paradigm to estimate the relative abundance for
European starling in the City of Baltimore, Maryland using a portion of data col-
lected from 2005 to 2007. In contrast, we consider American Robin data from the
BES collected from 2005 to 2009 and apply various Bin-CMP models in order
to select important covariates for estimating the detection probability and abun-
dance of the American Robin, as well as to identify the grouping of dispersion
parameters. Due to missing values, the data we consider has an unbalanced struc-
ture. In particular, the percentage of secondary sampling occasions with at least
one missing observation for each of five primary sampling occasions is 6.87%,
6.87%, 3.05%, 77.1%, and 50.38%, respectively. Moreover, the overall percentage
of missing observations in the American Robin data set is 9.62%.

For the American Robin data, a total of 131 bird survey points were visited
during three secondary daily surveys within each of the five primary sampling
occasions from 2005 to 2009. With three covariates available, we considered a full
model for the detection probability as

logit(pijk) = β1 + β2timeijk + β3airtempijk + β4cloudcoverijk,(12)

for i = 1, . . . ,131, j = 1, . . . ,5, and k = 1, . . . , nij ≤ K = 3. Regarding the co-
variates in (12), time, airtemp, and cloudcover correspond to the start time,
air temperature, and cloud cover (i.e., the fraction of the sky obscured by clouds)
recorded on each visit to the bird survey points, respectively.

In terms of full models for the intensity, we considered the following three mod-
els:

M1: logλij = w′
iγ + φ̃∗′

i α + γ0j ,

M2: logλij = w′
iγ + γ0j ,

M3: logλij = φ∗′
i α + γ0j ,

where, for j = 1, . . . , J , γ0j is a year-specific intercept and φ∗′
i is the ith row

of the matrix �∗ as discussed in Section 3. Moreover, the covariates in the in-
tensity model are given by w′

i = (uftreei , ufbldgi , ufmgrassi , bld200mi ,
for200mi , veg200mi , Africani , bachelori , fmkdsi , pubassiti ,
houseyri ). These covariates are specific to each survey location and do not
vary with primary sampling occasions. Among these environmental variables,
uftree, ufbldg, and ufmgrass are the UFORE plots variables that indicate
tree cover, ground cover by buildings and maintained grass, respectively. Further,
bld200m, for200m, and veg200m are variables that measure tree cover, other
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vegetation cover, and cover by buildings in the 200 meter radius plot, respectively
[see Figure 1 in the supplemental article, Wu et al. (2015)]. For the ACS variables
specific to each census tract block group, African is the percentage of African
American residents; bachelor is the percentage of population with Bachelor’s
degree or higher; fmkds is the percentage of housing units occupied by female
householder and children under 18 years; pubassit is the percentage of house-
holds on government public income assistance; hourseyr is the median year that
a housing unit was built. We used the five-year period estimates from 2005 to 2009
for these ACS variables, which can be obtained at the U.S. Census Bureau web-
site (http://www.census.gov/acs/www/). Our specific choice of ACS variables was
facilitated by a social areas analysis approach [Denison (2010), Maloney and Auf-
frey (2013), Müller et al. (2013)]. Note that we standardize the covariates in (12)
and in the intensity model for numerical stability. Further, based on exploratory
analysis involving various collinearity diagnostics (e.g., condition number, etc.)
of the site covariates (not shown) and subject matter knowledge, we expect any
effects of collinearity between the site covariates to have a minimal affect on the
variable selection algorithm. Finally, for model M1, we orthogonalize the matrix
of spatial basis function with respect to covariates, to alleviate potential confound-
ing with the covariate effects [Hodges and Reich (2010)]. As a result, φ̃∗′

i is the ith
row of the matrix of �̃∗ after the orthogonalization.

It is worth pointing out that the choice of models above depends on the goal of
the ecological study. For example, M3 can be used if no covariates are available
for modeling the intensity. For other cases where covariates are available, but there
is no spatial dependence (or the spatial dependence is negligible after accounting
for covariates), model M2 can be utilized. Given both covariates are available and
spatial dependence is present, M1 represents a potential model.

When implementing the RJMCMC algorithm, we require the “intercept”
term β1 in (12) and γ 0, in the model for intensity, to be included with probability
one. In addition, in the presence of spatial components, we require α to be in the
model for the intensity with probability one. For the choice of knot points, when
using low-rank thin plate basis functions, we considered a sensitivity analysis to
choose the number of knots and a space-filling design for placement. Specifically,
for three different choices of the number of knot points, τ = 10, 15, and 32 in M1,
similar results are obtained in terms of abundance estimation, although parameter
estimation becomes more difficult as τ gets large. Equally important, the results
of a sensitivity analysis indicate that the variable selection and grouping for the
dispersion parameters seem robust to a different number of knot points. Hence, we
choose τ = 10 for both M1 and M3. We used a Metropolis–Hastings within Gibbs
sampler consisting of a total of 120,000 MCMC iterations, with the first 60,000
discarded as burn-in. Our inference is based on every third sample after burn-in,
which results in a total of 20,000 samples used.

In terms of posterior marginal probability, the model having time and cloud-
cover has the highest probability of being selected in the model for detectabil-
ity. Similarly, for the intensity model, ufbldg, veg200m, and pubassit are

http://www.census.gov/acs/www/


BAYESIAN BINOMIAL MIXTURE MODELS 19

selected with higher probability relative to other covariates. However, the group-
ing of dispersion parameters varies across models depending on whether spatial
components are included. This is not unexpected, as there is a trade-off between
the dispersion parameter and inclusion of spatial components. The three models
we considered all produce similar results in terms of the selection of important
covariates and abundance estimates (results not shown). However, since the goal
of our analysis is to identify and draw inference on important covariates relating
to detectability and abundance, we present results from the more parsimonious
model M2. From Table 2, it can be seen that time and cloudcover are identi-

TABLE 2
Posterior probabilities of the most probable model for M2 and the
posterior summary statistics in the Bin-CMP model assuming the

posterior mode model for M2. Note that M2 only contains covariates
in the intensity model, and R̂ refers to the Gelman–Rubin diagnostics

(a) Variable selection and grouping

Posterior
Variable Model Frequency probability

x {cloudcover} 31,992 0.53
{time, cloudcover} 27,587 0.46

w {veg200m, pubassit} 51,343 0.86
{ufbldg, veg200m, pubassit} 7234 0.12

ν T1 = {2,4}, T2 = {1,3,5} 38,973 0.65
T1 = {2}, T2 = {1,3,4,5} 7445 0.12
T1 = {2}, T2 = {4}, T2 = {1,3,5} 3745 0.06

(b) Parameter estimation

Parameter μpost σpost Q0.025 Q0.975 ̂R

intercept −2.31 0.07 −2.45 −2.17 1.00
time −0.10 0.03 −0.15 −0.04 1.00
cloudcover −0.04 0.03 −0.09 0.01 1.00
ufbldg −0.02 0.01 −0.03 −0.01 1.00
veg200m 0.06 0.01 0.05 0.09 1.00
pubassit 0.02 0.01 0.01 0.04 1.00
γ01 0.35 0.07 0.23 0.51 1.01
γ02 0.16 0.05 0.07 0.26 1.01
γ03 0.48 0.08 0.33 0.67 1.01
γ04 0.14 0.05 0.05 0.24 1.01
γ05 0.38 0.07 0.25 0.55 1.01
ν24 0.08 0.02 0.05 0.11 1.01
ν135 0.17 0.03 0.12 0.23 1.01
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fied as important predictors for detectability of American Robin. For the covariates
in the intensity model, ufbldg, veg200m, and pubassit are selected as the
important factors in all cases. For the dispersion parameters, the results suggest
the most probable model has the grouping T1 = {2,4}, T2 = {1,3,5} (with poste-
rior probability 0.6496), indicating that the data in 2005, 2007, and 2009 exhibit
a similar amount of dispersion, whereas the data for 2006 and 2008 show similar
amounts of dispersion.

Last, we consider the posterior mode model (i.e., the model with the highest
posterior probability) for the Bin-CMP mixture model M2 in order to draw in-
ference about how the different covariates affect high detectability and abundance
of the American Robin within the study domain. We conclude that an important
covariate is a positively (or negatively) significant factor if the lower (or upper)
end of 95% CIs is greater (or smaller) than 0, respectively. For the posterior mode
model, we include only the intercept, time, and cloudcover in (12), whereas
for the covariates in the intensity model, only ufbldg, veg200m, and pub-
assit are included. For the dispersion parameters, we consider the case where
ν2 = ν4 = ν24 and ν1 = ν3 = ν5 = ν135. Table 2 presents the posterior summary
statistics and Gelman–Rubin diagnostics [Brooks and Gelman (1998)] for model
parameters. It is shown that in all cases R̂ is close to 1, indicating convergence
has been reached. Moreover, time is negatively correlated with the detectabil-
ity of the American Robin, that is, the earlier the survey is conducted, the more
likely it is that we can detect American Robin. In terms of the intensity, ufbldg
is negatively related to the abundance of American Robin, whereas veg200m and
pubassit are positively related. As a result, for bird survey points nearby more
buildings, the abundance of American Robin is lower; while for survey points with
a higher percentage of vegetation and residents of lower socio-economic status,
the abundance of American Robin is higher. As an example, Figure 2 provides a
spatial map for the posterior mean and standard deviation of the abundance es-
timate (from M2) for 2009, whereas Figures 2 and 3 of the supplemental article
[Wu et al. (2015)] illustrate how the abundance estimates and their standard errors
change over the duration of the period studied (2005–2009). Last, our results sug-
gest that the American Robin are overdispersed within the study domain over all
of the years considered.

7. Discussion. Motivated by the American Robin data from the BES, we de-
veloped a class of Bayesian hierarchical binomial mixture models that allow for
automated variable selection and grouping in the presence of unbalanced nested
design. In addition, we demonstrate that over- and underdispersion in the data can
be accounted for by specifying an appropriate model for the abundance parame-
ter, namely, a Bin-CMP model. More importantly, we allow for large-scale spatial
dependence to be accounted for by adding a spatial component to the intensity
model (i.e., through a spatial basis function expansion). Under the binomial mix-
ture modeling framework, the use of a low-rank spatial representation proves to be
a computationally advantageous approach to building in spatial dependence.
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FIG. 2. Plots of posterior mean and standard deviation of abundance estimates for 2009 in the
Bin-CMP model assuming the posterior mode model for M2. Note that M2 only contains covariates
in the intensity model. (a) Posterior mean, (b) posterior sd.
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Although we have presented a model (M2) that accounts for covariate informa-
tion, spatial maps that predict abundance at unobserved locations could be obtained
using model M3 and thereby take advantage of the spline formulation. In contrast,
both models M1 and M2 would require imputation of covariates at unobserved lo-
cations (i.e., additional data models) to predict abundance at unobserved locations.
Consequently, since our goal is primarily inferential, this direction has not been
pursued here.

The class of binomial mixture models we consider assume population closure
within each primary sampling period. Such an assumption is often justified based
on biological and/or ecological considerations, when the primary sampling period
covers a relatively short time frame. In our case, the justification of the closed
population assumption is based on ecological considerations. However, it may also
be possible to extend our model to verify the assumption of population closure
following the framework of Dail and Madsen (2011) by decomposing the true
abundance into the sum of two independent components, that is, the total number
of survivors from the previous sampling period (by introducing a survival rate
parameter in the model) and new additions prior to the current sampling period (by
introducing a birth parameter in the model). This is a subject of future research.

Although the binomial mixture models we propose can accommodate unbal-
anced data structures, the amount of missing data can impact model selection and
parameter estimation. As discussed in the second simulated example, the model
averaged estimates for dispersion parameters are positively biased when the simu-
lated data exhibit the same missing pattern as the American Robin data and spatial
components are included to account for spatial dependence in the intensity model.
Nevertheless, we note that grouping of dispersion parameters leads to a “borrow-
ing of strength,” since data collected over different years are pooled together if the
corresponding dispersion parameters fall into the same group. In other words, this
pooling of data helps mitigate the negative impacts of missing values. In general,
a comprehensive assessment of the effect of missing data is problem specific and
depends on both the pattern of missingness and the underlying spatial dependence
(e.g., the effective sample size). In practice, we advocate evaluating these effects
through simulated data examples, similar to those conducted here.

It is important to note that all of the models we considered for the Ameri-
can Robin data provide similar results regarding the identification of important
covariates for detectability and intensity, as well as the grouping of dispersion
parameters. First, time, and cloudcover are identified to be important co-
variates for high detectability of the American Robin, with the former being
negatively related to observing the American Robin. However, one should be
careful when interpretating cloudcover due to the difficulty in estimating it
objectively [Vignola, Michalsky and Stoffel (2012)]. On the other hand, ufbldg,
veg200m, and pubassit are found to be important predictors for abundance
of the American Robin. In terms of dispersion, the American Robin data demon-
strates overdisperion. Importantly, the class of binomial mixture models we pro-
pose is of independent interest and when coupled with the CMP distribution can be
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used in cases where the type of dispersion (i.e., over- and underdispersion) varies
over time. In this sense, the Bin-CMP mixture model is extremely versatile, as it
can be used for modeling equi-, over-, and underdispersed data (e.g., for modeling
abundance of less prevalent species, such as the Eastern Wood Pewee or Wood
Thrush in the BES).
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SUPPLEMENTARY MATERIAL

Supplement to “Bayesian binomial mixture models for estimating abun-
dance in ecological monitoring studies” (DOI: 10.1214/14-AOAS801SUPP;
.pdf). The supplementary material contains the MCMC sampling algorithm, details
regarding computation times for the models implemented, and additional figures.
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