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DETECTING DUPLICATES IN A HOMICIDE REGISTRY USING
A BAYESIAN PARTITIONING APPROACH1
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Finding duplicates in homicide registries is an important step in keeping
an accurate account of lethal violence. This task is not trivial when unique
identifiers of the individuals are not available, and it is especially challenging
when records are subject to errors and missing values. Traditional approaches
to duplicate detection output independent decisions on the coreference status
of each pair of records, which often leads to nontransitive decisions that have
to be reconciled in some ad-hoc fashion. The task of finding duplicate records
in a data file can be alternatively posed as partitioning the data file into groups
of coreferent records. We present an approach that targets this partition of the
file as the parameter of interest, thereby ensuring transitive decisions. Our
Bayesian implementation allows us to incorporate prior information on the
reliability of the fields in the data file, which is especially useful when no
training data are available, and it also provides a proper account of the un-
certainty in the duplicate detection decisions. We present a study to detect
killings that were reported multiple times to the United Nations Truth Com-
mission for El Salvador.

1. Introduction. Duplicate detection is the task of finding sets of records that
refer to the same entities within a data file. This task is not trivial when unique
identifiers of the entities are not recorded in the file, and it is especially difficult
when the records are subject to errors and missing values. The existence of dupli-
cates in a data file may compromise the validity of any analysis that uses those data,
and therefore duplicate detection is needed in a wide variety of contexts, includ-
ing public health and biomedical research [e.g., Hsu et al. (2000), Miller, Frawley
and Sayward (2000), Sariyar, Borg and Pommerening (2012)], and census quality
improvement [e.g., Fay (2004), Marshall (2008)].

In the context of an armed conflict, it is common for an institution recording
civilian casualties to receive multiple reports on the same victims. These reports
may come from witnesses who provide different degrees of detail, therefore lead-
ing to nontrivial duplicates in the institution’s data file. Finding duplicates in those
homicide registries is an important step toward keeping an accurate account of
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lethal violence. In this article we study a case from El Salvador, where a Truth
Commission formed by the United Nations in 1992 collected data on killings that
occurred during the Salvadoran civil war (1980–1991). Due to the way in which
those data were collected, a victim could have been reported by different relatives
and friends, and therefore it is important to detect those multiply reported casual-
ties.

1.1. The United Nations Truth Commission for El Salvador. From 1980 to
1991, the Republic of El Salvador, in Central America, underwent a civil war be-
tween the Salvadoran Government and the left-wing guerrilla Farabundo Martí
National Liberation Front (FMLN, after its name in Spanish). The parties signed a
peace agreement in 1992 which later led to the creation of the Commission on the
Truth for El Salvador by the United Nations [Buergenthal (1994, 1996)], hence-
forth abbreviated as UNTC.

Between 1992 and 1993, the UNTC summoned the Salvadoran society to re-
port violations that occurred during the war, mainly focusing on homicides and
disappearances of noncombatants. The UNTC ran announcements on the radio,
television, and in newspapers inviting individuals to testify, and opened offices in
different regions of the country where information from witnesses was collected
[Commission on the Truth for El Salvador (1993)]. Finally, in 1993 the UNTC pub-
lished a report with the results of their investigations, including a list of homicides
directly obtained from testimonials, which were mainly provided by the victims’
family members, but also by close friends. In addition to the names of the victims,
this list contains the reported locations and dates of the killings.

Most of the killings reported to the UNTC occurred several years before 1992,
and therefore it was expected that friends and relatives of the victims would not
recall some details of the killings or would provide testimonials that conflict with
each other. These characteristics of the data collection naturally led to missing in-
formation and nontrivial duplicate records in the UNTC data file. The variability
among records that refer to the same victim and the presence of missing data make
finding duplicates specially challenging. Furthermore, it is difficult to construct
a reliable training data set for duplicate detection, that is, a set of record pairs
with known coreference statuses, which supervised duplicate detection methods
require. In this document we develop a new approach to duplicate detection in-
spired by these type of situations. Our approach handles missing data and allows
the duplicate detection process to be assisted with prior information on the reliabil-
ity of each field in the file, which helps to compensate for the absence of training
data.

1.2. Current approaches to duplicate detection. Duplicate detection differs
from the closely related task of record linkage in the sense that the goal of the latter
is to link multiple files usually obtained from different data collection processes,
and it is assumed that these files do not contain duplicates within them [Fellegi
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and Sunter (1969), Herzog, Scheuren and Winkler (2007), Jaro (1989), Larsen and
Rubin (2001), Winkler (1988)]. Despite this difference, the same principles and
techniques can usually be adapted to solve both tasks.

In this article two or more records referring to the same entity are called corefer-
ent. Traditional approaches to unsupervised duplicate detection and record linkage
fit mixture models on pairwise comparisons of records with the goal of separating
coreferent from noncoreferent pairs [Elmagarmid, Ipeirotis and Verykios (2007),
Herzog, Scheuren and Winkler (2007)]. Traditional supervised approaches train
classifiers on a sample of record pairs with known coreference statuses, and then
predict the coreference statuses of the remaining record pairs [Christen (2012a),
Elmagarmid, Ipeirotis and Verykios (2007)]. Both of these type of approaches
output independent decisions on the coreference status of each record pair, and
therefore neither of them guarantee transitivity of the coreference decisions. For
example, it is possible that records i and j are declared as being coreferent, as
well as records j and k, but records i and k may be declared as noncoreferent.
If i, j and k truly correspond to the same entity, the nontransitivity could occur
due to measurement error and incomplete record information. It may be the case,
however, that only two or none of those records are coreferent, but these method-
ologies do not offer any representation of uncertainty in these situations, and so
they require resolving discrepancies in an ad-hoc post-processing step.

Most recently, Bayesian approaches to both duplicate detection and record link-
age have been proposed, which provide a natural account of the coreference deci-
sions’ uncertainty in the form of posterior distributions. Most of these approaches
directly model the information contained in the data files [Fortini et al. (2002),
Gutman, Afendulis and Zaslavsky (2013), Matsakis (2010), Steorts, Hall and Fien-
berg (2013), Tancredi and Liseo (2011)], which require crafting specific models for
each type of field in the file, and are therefore currently limited to handle nominal
categorical fields or continuous variables modeled under normality. In practice,
however, fields that are complicated to model, such as names, addresses, phone
numbers or dates, are important to detect coreferent records. These type of fields
are often subject to typographical and other types of errors, which make it impor-
tant to take into account partial agreements between their values. This is certainly
an advantage of traditional methodologies, as they base their decisions on pairwise
comparisons of records and therefore can use any type of field, as long as these
can be compared in a meaningful way. The approaches of Fortini et al. (2001) and
Larsen (2002, 2005, 2012) are Bayesian implementations of the traditional unsu-
pervised approach to record linkage [Fellegi and Sunter (1969), Herzog, Scheuren
and Winkler (2007), Larsen and Rubin (2001), Winkler (1988)], which bases its
coreference decisions on pairwise comparison data. These latter approaches, how-
ever, do not currently handle missing data, do not take into account multiple levels
of partial agreement, and they would lead to nontransitive decisions if they were
applied without modification to a duplicate detection problem.
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1.3. Overview of the article. The approach that we propose in this article
builds upon the previous literature by combining a number of desirable charac-
teristics for a duplicate detection technique. Our approach to duplicate detection
guarantees transitivity of the coreference decisions by defining our parameter of
interest as the partition of the data file that groups coreferent records together, as
in Matsakis (2010). Our approach is closely related to those of Fellegi and Sunter
(1969), Winkler (1988), Jaro (1989), Larsen and Rubin (2001), Fortini et al. (2001)
and Larsen (2002, 2005, 2012) for record linkage in the sense that our coreference
decisions are based on comparison data, but we also extend some ideas of Winkler
(1990) to take into account levels of disagreement among the fields’ values. In
practice, it is also common to have missing values in the data file, and so we show
how our method can be adapted to those situations. By taking a Bayesian approach
we can incorporate prior knowledge on the reliability of the fields, which is useful
in situations where no training data are available. The introduction of prior infor-
mation to solve this type of problem has been advocated by Fortini et al. (2001),
Larsen (2002, 2005, 2012) and others. Our Bayesian approach provides us with a
posterior distribution on the possible partitions of the file, which is a natural way
to account for the uncertainty in the coreference decisions, similarly as in Matsakis
(2010) and Steorts, Hall and Fienberg (2013).

The remainder of the article is organized as follows: Section 2 presents a gen-
eral description of the proposed methodology; Section 3 presents a conditional
independence model that leads to a simple way of dealing with missing values,
an illustrative example and a simulation study; Section 4 addresses the problem of
detecting killings reported multiple times to the United Nations Truth Commission
for El Salvador; and Section 5 concludes.

2. Methodology. Assume we have a data file containing r records labeled
{1, . . . , r}, where more than one record may refer to the same underlying entity.
Finding duplicates in such a data file is equivalent to grouping records according
to the underlying entities that they refer to. If there are n ≤ r entities represented
in the data file, we can safely think of partitioning the data file into n groups of
coreferent records. This partition of the file, called coreference partition [Matsakis
(2010)], is our parameter of interest, and it can be represented in different ways.
We use different representations throughout the article depending on which one is
more convenient.

2.1. Representations of partitions. A partition of a set is a collection of
nonempty and nonoverlapping subsets whose union is the original set. In this arti-
cle those subsets are called groups or cells. Given a data file with, say, five records
{1,2,3,4,5}, a partition with cells {1,3}, {2} and {4,5} is denoted as 1,3/2/4,5.
In a coreference partition, each of its cells represents an underlying entity, there-
fore, in this example records 1 and 3 are coreferent, as well as records 4 and 5.
This representation, however, is not useful for computations.
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A partition can also be represented by a matrix. Let us consider the matrix � of
size r × r , whose (i, j)th entry is defined as

�ij =
{

1, if records i and j refer to the same entity;
0, otherwise.

In the context of duplicate detection we will refer to � as a coreference matrix.
Notice that � is symmetric with only ones in the diagonal, and it would be block-
diagonal if coreferent records were contiguous in the data file, with each block
representing a group of coreferent records.

Representing partitions using matrices is computationally inefficient, especially
when the number of records is large. An alternative is to use arbitrary labelings of
the partition’s cells. Since r is the number of records in the data file, it is safe to
assume that r is the maximum number of entities possibly represented in the data
file, and therefore it is the maximum number of labels that we need. By assigning
an arbitrary labeling to these r potential entities, we can introduce the variables Zi ,
i = 1, . . . , r , where Zi = q if record i represents entity q , with 1 ≤ q ≤ r , and the
vector Z = (Z1, . . . ,Zr) contains all the records’ labels. Notice that although the
labeling of the r potentially existing entities is arbitrary, any relabeling leads to the
same partition of the records. In fact, �ij = I (Zi = Zj), where I (·) is the indicator
function, and this relationship does not depend on the labeling that we use. This
relationship is important since a prior distribution on the space of partitions can
be obtained by specifying a distribution for the records’ labels Z. Notice that if
the number of entities n is lower than r , then there will be r − n labels not in
use for each particular labeling. According to this labeling scheme, a partition of
r elements into n cells has r!/(r − n)! possible labelings. Finally, to fix ideas, the
vectors Z = (1,2,1,3,3) and Z = (4,1,4,2,2) are instances of arbitrary labelings
of the partition 1,3/2/4,5, since in both Z1 = Z3 �= Z4 = Z5, and Z2 gets its own
unique value.

The number of ways in which a data file with r records can be partitioned is
given by the r th Bell number [see, e.g., Rota (1964)], which grows rapidly with r .
For example, the number of possible partitions of a file with 10 records is 115,975,
and if the file contains 15 records, the Bell number grows to 1,382,958,545. In
practice, most files are much larger, but fortunately most partitions can be ruled
out at an early stage, as we describe in Section 2.3. To make inferences on the
file’s coreference partition, we find how similar each pair of records is.

2.2. Levels of disagreement as comparison data. Comparison data are ob-
tained by comparing pairs of records, with the goal of finding evidence of whether
two records refer to the same entity. Intuitively, two records referring to the same
entity should be very similar. The way of constructing the comparisons depends
on the information contained by the records. The most straightforward way of
comparing the same field of two records is by checking whether their informa-
tion agrees or not. Although this comparison method is extensively used, and it is
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appropriate for comparing unordered categorical fields (e.g., sex or race), it com-
pletely ignores partial agreement.

Winkler (1990) proposes to take into account partial agreement among fields
that contain strings (e.g., given names) by computing a string metric, such as
the normalized Levenshtein edit distance or any other [see Bilenko et al. (2003),
Elmagarmid, Ipeirotis and Verykios (2007)], and then dividing the resulting set of
similarity values into different levels of disagreement. Winkler’s approach can be
extended to compute levels of disagreement for fields that are not appropriately
compared in a dichotomous fashion.

We compare the field f of records i and j by computing some similarity mea-
sure Sf (i, j). The range of this similarity measure is then divided into Lf + 1
intervals If 0, If 1, . . . , If Lf

, that represent different levels of disagreement. By
convention, the interval If 0 represents the highest level of agreement, which in-
cludes no disagreement, and the last interval, If Lf

, represents the highest level
of disagreement, which depending on the field represents complete or strong dis-
agreement. We can then build ordinal variables from these intervals. For records i

and j , and field f , we define

γ
f
ij = l if Sf (i, j) ∈ If l.

The larger the value of γ
f
ij , the larger the disagreement between records i and j

with respect to field f . These different field comparisons are collected in a vector
for each record pair, as in the record linkage literature [e.g., Fellegi and Sunter
(1969)]. γ ij = (γ 1

ij , . . . , γ
f
ij , . . . , γ F

ij ) denotes the comparison vector for records i

and j , where F is the number of fields being compared.
Notice that, in principle, we could construct γ ij using the original similarity

values Sf (i, j). In our approach, however, we model these comparison vectors
as a way to make inference on the coreference partition. Modeling directly the
original Sf (i, j)’s requires a customized model per type of comparison, since these
similarity measures output values in different ranges, depending on their functional
form and the field being compared. By building levels of disagreement as ordinal
categorical variables, we can use a generic model for any type of comparison, as
long as its values are categorized.

This approach also raises the question of how to choose the thresholds to build
the intervals If l . The selection of the thresholds should correspond to what the re-
searcher genuinely considers as levels of disagreement. This depends on the spe-
cific application at hand and the type of field being compared. For example, in
Sections 3 and 4 we build levels of disagreement according to what we consider
to be no disagreement, mild disagreement, moderate disagreement and extreme
disagreement.

Although in principle the number of record comparisons is
(r
2

) = r(r − 1)/2,
in practice, most record pairs are noncoreferent, and most of them can be triv-
ially detected using some simple criteria, thereby avoiding the computation of the
complete set of comparisons, as we show next.
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2.3. Reducing the inferential and computational complexity. In most applica-
tions there are simple ways to detect large numbers of obvious noncoreferent pairs
at some early stage of the duplicate detection process. Detecting those pairs re-
duces tremendously the inferential and computational complexity of the problem,
given that whenever records i and j are declared as noncoreferent, this translates
to fixing �ij = 0 in the coreference matrix, which in turn assigns probability zero
to all the partitions where records i and j are grouped together.

There are different techniques to detect sets of noncoreferent pairs, and here
we refer to a few of them [see Christen (2012b) for an extensive survey]. The
most popular approach is called blocking, and it consists of dividing the data file
into different blocks (sets of records) according to one or more reliable categorical
fields, such that records in different blocks are considered to be noncoreferent. The
idea is that if a field is reliable enough, then it would be unlikely to find a coreferent
pair among pairs of records disagreeing in that field. For example, if we believe
a field like gender or postal code (zip code) to be free of error, we can declare
records disagreeing on that field to be noncoreferent. This approach is appealing
since it does not even require us to compute comparisons, as the file can be simply
divided according to the categories of the fields being used for blocking.

In many cases no field may be completely trusted, and therefore blocking may
lead to miss truly coreferent pairs. We can, however, exploit prior knowledge on the
types of errors expected for the different fields. By understanding what kind of er-
rors would be unlikely for a certain field, we can declare as noncoreferent any pair
of records that disagrees by more than a predefined threshold with respect to the
field in consideration. Ideally, this comparison should be cheap to compute, since
it will be checked for all record pairs. For example, information on time events
for individuals, such as date of birth or date of death, is misreported in certain
contexts, but it is common that whenever the correct date is not recorded, the date
that appears in the record is somehow close to the true one. In this example, two
records containing dates that are very different could be declared as noncoreferent.
Other fields that can be used in this fashion include age or geographic information,
given that in many contexts it is unlikely to find coreferent pairs among records
that report very different ages or distant locations. Naturally, the validity of any of
these approaches has to be assessed on a case-by-case basis.

Ideally after applying one of the previous steps, or a combination of them, the
set of pairs is reduced to a manageable size for which complete comparisons can be
computed, as explained in Section 2.2. Computationally expensive comparisons,
such as those involving string metrics, should be reserved for this stage. We call
P the set of pairs for which complete comparisons are computed. The compari-
son data for the pairs in P comprises the information that we will use to estimate
the partition of the file. Within P , however, many pairs may still be obvious non-
coreferent pairs that can be detected using combinations of the different levels of
disagreement. Therefore, we can further reduce the complexity of the inferential
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task by declaring record pairs as noncoreferent whenever they strongly disagree
according to some user-defined criteria built using the computed levels of disagree-
ment. For instance, criteria for declaring a pair as noncoreferent could be having
strong disagreements in given and family names, or having strong disagreements
in a combination of fields such as age, race and occupation, if they were available.
Finally, if a pair of records meet any of the established criteria, then it is declared
as noncoreferent. The reasoning behind this approach is that, although no single
field may be enough to distinguish further noncoreferent records, strong disagree-
ments in a combination of fields are probably a good indication of the records
being noncoreferent, and therefore we would expect this approach to be robust to
errors. The set of remaining pairs whose coreference statuses are still unknown
is denoted by C, and we refer to it as the set of candidate pairs. Although we fix
the pairs in P − C as noncoreferent, we use their comparison data in the model
presented in the next section, since those pairs provide examples of noncoreferent
records.

The possible coreference partition of the file is now constrained to the set D =
{� :�ij = 0, ∀(i, j) /∈ C}, that is, the set of partitions that do not group together
the record pairs that have already been declared as noncoreferent. In practice, D
is much smaller than the set of all possible partitions of the file, which is why we
heavily rely on being able to have a small set of candidate pairs C to apply our
method to medium or large size data files.

2.4. Model description. We now present a model for the comparison data
γ = {γ ij }(i,j)∈P such that the distribution of the comparison vectors depends on
whether the pairs are coreferent or not, which will allow us to estimate the corefer-
ence partition. Notice that we model all the pairs in P even though those in P − C
are fixed as noncoreferent.

We assume that the comparison vector γ ij is a realization of a random vector
�ij , and the comparison data γ are a realization of a random array �. It is clear
that the set of record pairs is composed of two types: coreferent and noncoreferent
pairs. Furthermore, we expect the distribution of the comparison vectors �ij to be
very different among those two types. For example, we expect to observe more
agreements among coreferent pairs than among noncoreferent pairs and, similarly,
we expect many more disagreements among noncoreferent pairs than among coref-
erent pairs. This intuition can be formalized by assuming that the distribution of
�ij is the same for all record pairs that refer to the same entity (regardless of the
entity), and that the distribution of �ij is the same for all record pairs that refer to
different entities (regardless of the pair of entities). These assumptions have been
widely employed for linking different data files under the Fellegi–Sunter frame-
work for record linkage [Fellegi and Sunter (1969), Herzog, Scheuren and Winkler
(2007), Larsen and Rubin (2001), Winkler (1988)].
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The intuitive description above can be formalized into a model for the compar-
ison data as

�ij |�ij = 1
i.i.d.∼ G1,

(2.1)
�ij |�ij = 0

i.i.d.∼ G0,

for all (i, j) ∈ P , where G1 and G0 represent the models of the comparison vectors
for pairs that are coreferent and noncoreferent, respectively. These models have to
be specified according to the comparison data at hand. Leaving G1 and G0 un-
specified by now, we can see that for a configuration of the coreference matrix �,
the joint probability of observing the comparison data γ can be written as

P(� = γ |�,�)
(2.2)

= ∏
(i,j)∈C

P1(γ ij |�1)
�ijP0(γ ij |�0)

1−�ij
∏

(i,j)∈P−C
P0(γ ij |�0),

where P1(γ ij |�1) := P(�ij = γ ij |�ij = 1,�1) and, similarly, P0(γ ij |�0) :=
P(�ij = γ ij |�ij = 0,�0), with � = (�1,�0) representing a parameter vector
of the models G1 and G0. Notice that equation (2.2) is obtained given that we
fix �ij = 0 for those pairs in P − C. Also, although the posterior on � does not
depend directly on the comparison data for pairs in P − C, it does depend on
�0, which in turn depends on those pairs in P − C. In fact, the previous formula-
tion is equivalent to a model for only the candidate pairs C, as long as the factor∏

(i,j)∈P−C P0(γ ij |�0) gets incorporated in the prior for �0.

2.5. Prior distribution on the coreference partition. Since the coreference ma-
trix � represents a partition, the entries of � are not independent, for example,
if �ij = 1 and �jk = 1, then �ik = 1. In a mixture model implementation of
the model presented in equations (2.1) and (2.2), the �ij ’s (i < j ) are taken as
i.i.d. Bernoulli(p), where p represents the proportion of coreferent pairs [Christen
(2012a), Elmagarmid, Ipeirotis and Verykios (2007), Sariyar and Borg (2010),
Sariyar, Borg and Pommerening (2009)]. The independence assumption of the
�ij ’s in a mixture model approach to duplicate detection leads to nontransitive
decisions on the coreference statuses of record pairs. To avoid these undesirable
results, we treat � as a partition and put a prior distribution on it accordingly.

As we showed before, D denotes the set of possible coreference partitions. In
this article we use the prior that assigns equal probability to each partition in D.
This flat prior is such that π(�) ∝ I (� ∈ D). We can also obtain this prior in
terms of the partition labelings introduced in Section 2.1. The set D is equivalent
to the set of labelings Z = {Z :Zi �= Zj , ∀(i, j) /∈ C}. A simple way to obtain the
flat prior for � from a prior for Z is by assigning equal probability to each of
the r!/(r − n)! labelings of a partition with n cells, which leads to the prior on
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labelings π(Z) ∝ [(r − n(Z))!/r!]I (Z ∈ Z), where n(Z) measures the number of
different labels in labeling Z.

Notice that in some situations it may be desired to use a more structured prior
on partitions, for example, if the researcher has a prior idea about the percentage
of duplicates. How to appropriately incorporate this information requires further
investigation, since commonly used distributions on partitions encourage the for-
mation of large cells as they are designed for traditional clustering problems [see,
e.g., the Dirichlet-Multinomial model for partitions in Keener, Rothman and Starr
(1987), McCullagh (2011)], but in duplicate detection we rather expect the coref-
erence partition to be composed by small cells.

2.6. Missing comparisons. The model presented in Section 2.4 was described
assuming that the F different comparison criteria were available for each pair of
records. In practice, however, it is rather common to find records with missing
fields of information, which lead to missing comparisons for the corresponding
record pairs. If a certain field is missing for record i, and this field is being used to
compute comparison data, then the vector γ ij , j �= i, will be incomplete, regard-
less of whether the field is missing for record j .

In order to deal with this common situation, we assume that the missing compar-
isons occur at random [MAR assumption in Little and Rubin (2002)], and therefore
we can base our inferences on the marginal distribution of the observed compar-
isons [Little and Rubin (2002), page 90]. The complete array of comparisons � can
be decomposed into observed �obs and missing �mis comparisons; similarly, for
each record pair �ij = (�obs

ij ,�mis
ij ). From equation (2.2), summing over the pos-

sible missing comparison patterns, it is easy to see that the probabilities involving
�obs can be computed as

P
(
�obs = γ obs|�,�

)
(2.3)

= ∏
(i,j)∈C

P1
(
γ obs

ij |�1
)�ij

P0
(
γ obs

ij |�0
)1−�ij

∏
(i,j)∈P−C

P0
(
γ obs

ij |�0
)
,

where

P1
(
γ obs

ij |�1
) = ∑

γ mis
ij

P1
(
γ obs

ij ,γ mis
ij |�1

)
,(2.4)

and we obtain an analogous expression for P0(γ
obs
ij |�0). Notice that equation (2.2)

is a particular case of equation (2.3) arising when all the comparisons are com-
plete for each record pair. In Section 3 we present a simple model under which
this approach leads to a straightforward treatment of missing comparisons. Fi-
nally, we notice that equation (2.3) can be rewritten in terms of partition labelings
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as

P
(
γ obs|Z,�

)
= ∏

(i,j)∈C
P1

(
γ obs

ij |�1
)I (Zi=Zj )

P0
(
γ obs

ij |�0
)I (Zi �=Zj )(2.5)

× ∏
(i,j)∈P−C

P0
(
γ obs

ij |�0
)
.

2.7. Conditional interpretation of the model. Let us think about the hypothet-
ical scenario where we know the coreference partition for all the records except for
the ith one. In this case we are interested in finding the probabilities that record i

refers to the different r potential entities given the comparison data, the model pa-
rameters and the partition memberships of the remaining records, represented by
an arbitrary labeling Z(−i). Using the prior for Z presented in Section 2.5, regard-
less of the parametrization used for G1 and G0, one can show that the probability
that i refers to potential entity q is given by

P
(
Zi = q|Z(−i),γ obs,�

)
(2.6)

∝

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∏
j : Zj=q

I
(
(i, j) ∈ C

)[P1(γ
obs
ij |�1)

P0(γ
obs
ij |�0)

]
,

if q labels a partition cell according to Z(−i);(
r − n

(
Z(−i)

))−1
,

otherwise.

This expression has a simple interpretation. The ratio within square brackets in
the right-hand side of equation (2.6) represents the likelihood ratio for testing the
hypothesis “records i and j are coreferent” versus “records i and j are not coref-
erent,” using the observed comparison vector γ obs

ij . If q is a label in Z(−i), then
the probability that i refers to entity q is the product of the likelihood ratios for all
records that refer to entity q according to Z(−i) (all records j such that Zj = q),
which is a measure of how likely record i is to be coreferent with the group of
records in cell q . However, if there is a record j such that Zj = q , but (i, j) /∈ C,
that is, (i, j) was fixed as noncoreferent, then P(Zi = q|Z(−i),γ obs,�) = 0. Fi-
nally, if q is a label not in use, then record i takes this label with probability
inversely proportional to the number of unused labels, which is equivalent to say-
ing that record i gets its own label with probability proportional to one, and the
specific label is chosen uniformly at random among the r − n(Z(−i)) labels not in
use. Without being exhaustive, equation (2.6) states that if for all partition cells the
products of likelihood ratios are much smaller than one, then record i will assume
its own label with high probability, but if there is a cell partition for which we ob-
tain a product of likelihood ratios much larger than one, then it is likely that record
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i gets assigned to that cell. Equation (2.6) is used in the supplementary material
[Sadinle (2014)] to derive a Gibbs sampler for the model presented in the next
section.

3. A model for independent comparison fields. In this section we describe
a simple parametrization for G1 and G0, which represent the distributions of the
comparison vectors among coreferent and noncoreferent pairs, respectively. Our
model assumes that the comparison fields are independent for both coreferent and
noncoreferent records.

If comparison �
f
ij takes Lf + 1 values corresponding to levels of disagreement,

its distribution among coreferent records can be modeled according to a multino-
mial distribution, this is

P1
(
�

f
ij = γ

f
ij |mf

) =
Lf∏
l=0

(
m∗

f l

)I (γ
f
ij =l)

,(3.1)

where γ
f
ij represents an observed level of disagreement, m∗

f l = P1(�
f
ij = l), and∑Lf

l=0 m∗
f l = 1. It is easy to show that these probabilities can be rewritten as

m∗
f l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mf 0, if l = 0;
mf l

∏
h<l

(1 − mf h), if 0 < l < Lf ;
∏

h<Lf

(1 − mf h), if l = Lf ;

where mf 0 = P1(�
f
ij = 0), and mf l = P1(�

f
ij = l|�f

ij > l − 1) for 0 < l < Lf .
We choose to parameterize G1 in terms of the sequential conditional probabilities
mf l since this facilitates prior specification, as we show in Section 3.2. Using this
parametrization, equation (3.1) can be reexpressed as

P1
(
�

f
ij = γ

f
ij |mf

) =
Lf −1∏
l=0

m
I(γ

f
ij =l)

f l (1 − mf l)
I (γ

f
ij >l)

,

where mf = (mf 0, . . . ,mf,Lf −1). Following an analogous construction of the dis-

tribution of �
f
ij among noncoreferent pairs, we obtain

P0
(
�

f
ij = γ

f
ij |uf

) =
Lf −1∏
l=0

u
I (γ

f
ij =l)

f l (1 − uf l)
I (γ

f
ij >l)

,

where uf 0 = P0(�
f
ij = 0), uf l = P0(�

f
ij = l|�f

ij > l − 1) for 0 < l < Lf , and
uf = (uf 0, . . . , uf,Lf −1). Notice that if Lf = 1, that is, if comparison f is binary,
we obtain the traditional model used in record linkage for binary comparisons [e.g.,
Jaro (1989), Winkler (1988)].
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3.1. Missing comparisons and conditional independence. The assumptions of
the comparison fields being conditionally independent (CI), along with being miss-
ing at random (MAR), make it straightforward to deal with missing comparisons.
In fact, under these assumptions, equation (2.4) can be written as

P1
(
γ obs

ij |�1
) =

F∏
f =1

[Lf −1∏
l=0

m
I(γ

f
ij =l)

f l (1 − mf l)
I (γ

f
ij >l)

]Iobs(γ
f
ij )

,(3.2)

where Iobs(·) is one if its argument is observed, and zero if it is missing, and
�1 = (m1, . . . ,mF ). Similarly,

P0
(
γ obs

ij |�0
) =

F∏
f =1

[Lf −1∏
l=0

u
I (γ

f
ij =l)

f l (1 − uf l)
I (γ

f
ij >l)

]Iobs(γ
f
ij )

,(3.3)

where �0 = (u1, . . . ,uF ). Equations (3.2) and (3.3) indicate that the combination
of the CI and MAR assumptions allow us to ignore the comparisons that are not
observed and yet model the observed comparisons in a simple fashion.

Under the CI assumption we can write the likelihood for Z and � as

L(Z,�|γ obs) =
F∏

f =1

L
(
Z,�f |γ f

obs

)
,

where �f = (mf ,uf ), and

L
(
Z,�f |γ f

obs

) =
Lf −1∏
l=0

m
a1
f l(Z)

f l (1 − mf l)
∑

h>l a
1
f h(Z)

u
a0
f l(Z)

f l (1 − uf l)
∑

h>l a
0
f h(Z)

,

where

a1
f l(Z) = ∑

(i,j)∈C
Iobs

(
γ

f
ij

)
I
(
γ

f
ij = l

)
I (Zi = Zj),

a0
f l(Z) = ∑

(i,j)∈C
Iobs

(
γ

f
ij

)
I
(
γ

f
ij = l

)
I (Zi �= Zj) + ∑

(i,j)∈P−C
Iobs

(
γ

f
ij

)
I
(
γ

f
ij = l

)
.

For a given matrix of memberships Z, a1
f l(Z) and a0

f l(Z) represent the number of
coreferent and noncoreferent records disagreeing at level l for observed compari-
son f .

Although our main interest is to make inferences on the coreference matrix �,
a fully Bayesian approach requires the specification of priors for the parameters �

as well.
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3.2. Prior specification for the model parameters. We now explain our selec-
tion of the priors for mf l and uf l , l = 0, . . . ,Lf − 1. The first parameter that we

focus on is mf 0 = P1(�
f
ij = 0), which represents the probability of observing the

level zero of disagreement in the comparison f among coreferent records. This
level represents no disagreement or a high degree of agreement, so if we believe
that field f contains no error, mf 0 should be, a priori, a point mass at one, but
as the error in field f increases, the mass of mf 0’s prior should move away from
one. We therefore take a priori mf 0 to be in some interval [λf 0,1] with prob-
ability one, for some 0 < λf 0 < 1. If we believe that the field used to compute
comparison f is fairly accurate, then we should set the threshold λf 0 to be close
to one. On the other hand, the more errors we believe a field contains, the lower
the value for λf 0 that we should set. The prior distribution for mf 0 can be taken in
general as Beta(α1

f 0, β
1
f 0), truncated to the interval [λf 0,1], which we denote as

TBeta(α1
f 0, β

1
f 0, λf 0,1).

The parameter mf 1 = P1(�
f
ij = 1|�f

ij > 0) represents the probability of observ-
ing level one of disagreement in the comparison f , among coreferent record pairs
with disagreement larger than the one captured by the level zero. Depending on
the construction of the disagreement levels, and if the number of levels is greater
than two, we can think of level one of disagreement as some mild disagreement
and, therefore, if we expect the amount of error to be relatively small, mf 1 should
be concentrated around values close to one. Following a similar reasoning as for
mf 0, we take the prior of mf 1 as TBeta(α1

f 1, β
1
f 1, λf 1,1), where we can set the

hyperparameters of this distribution, especially λf 1, according to the amount of
error that we expect field f to contain.

We can continue the previous reasoning to specify the prior distribution of the
remaining parameters mf l = P1(�

f
ij = l|�f

ij > l − 1), l = 2, . . . ,Lf − 1. In gen-

eral, we can take the prior of mf l as TBeta(α1
f l, β

1
f l, λf l,1), where the truncation

points λf l change according to the way the disagreement levels were constructed
and the amount of error expected a priori in each field. Notice, however, that if
we believe that a field may be too erroneous, it may be better to exclude it from
the duplicate detection process since its inclusion can potentially harm the results
[Sadinle and Fienberg (2013) explore this issue in the multiple record linkage con-
text]. For simplicity, in this article we set α1

f l = β1
f l = 1, for all fields f and lev-

els l, that is, we take mf l ∼ Uniform(λf l,1), and so we only need to choose the
λf l’s.

The probabilities uf l = P0(�
f
ij = l|�f

ij > l − 1) among noncoreferent records
may have quite different distributions depending on the fields used to compute the
comparisons. For instance, if a nominal field contains a highly frequent category,
then the probability of agreement will be high even for noncoreferent records.
On the other hand, if a field is almost a unique identifier of the entities, then the
probability of agreement will be small among noncoreferent records. We therefore



2418 M. SADINLE

simply take uf l ∼ Uniform(0,1) for all fields and levels of disagreement, although
in general we could take uf l ∼ Beta(α0

f l, β
0
f l), for some hyperparameters α0

f l and

β0
f l if prior information was available.

3.3. Bayesian inference via Gibbs sampler. In the supplementary material
[Sadinle (2014)] we present a Gibbs sampler to explore the joint posterior of Z
and � given the observed comparison data γ obs, for the likelihood obtained from
equations (2.5), (3.2) and (3.3), and the priors presented in the previous subsection.
The supplementary material also contains a brief discussion on point estimation of
the coreference partition.

3.4. An illustrative example. Table 1 presents a small example to illustrate
different situations where different sets of records may be considered as coreferent
depending on how reliable we believe the fields are. We explore the results of our
duplicate detection method under different scenarios where these data could have
arisen, which is why we do not yet specify what the fields year, month, day, and
municipality refer to. This example was inspired by the data file that we study
in Section 4, where we have to compare Hispanic names. Full Hispanic names
are usually composed by four pieces, two corresponding to given name and two
to family name. In practice, however, Hispanic people do not always use their
full given and family names. For example, someone whose full given name is
JULIAN ANDRES may be simply known as JULIAN or as ANDRES in his social
circle. This phenomenon makes it particularly challenging to compare Hispanic
names, for example, it has been reported to cause problems when tracking citations
of Hispanic authors [Fernández and García (2003), Ruiz-Pérez, López-Cózar and
Jiménez-Contreras (2002)].

Records 1, 2 and 3 in Table 1 represent an example where pairwise decisions
on the coreference statuses of record pairs may not be transitive. In this example,
records 1, 2 and 3 agree in all the fields except for month and day. Records 1 and 2
disagree by one month, as well as records 2 and 3, but the comparison for the field
day for those two pairs is missing. Notice also that records 1 and 3 disagree by two
months and have a strong disagreement in the field day. In this situation, a method
taking pairwise decisions, or even a human taking decisions for one pair of records
at a time, may decide that records 1 and 2 are coreferent, as well as records 2
and 3, since those pairs are fairly similar, but may decide that records 1 and 3
are not coreferent, since this pair has more disagreements. Table 1 also presents
records 4 and 5, which agree in all of their information, except for given and family
name. Record 5 could refer to the same person as record 4, since this name is
simply missing the second pieces of given and family name, which is common for
Hispanic names, and the remaining disagreements could be typographical errors.
The decision of whether to declare records 4 and 5 as coreferent will depend on the
levels of error that we believe the fields given and family name may contain. Below
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TABLE 1
Illustrative example: Different sets of records may be considered as coreferent in different contexts

Record Given name Family name Year Month Day Municipality

1. JOSE FLORES 1981 1 29 A
2. JOSE FLORES 1981 2 NA A
3. JOSE FLORES 1981 3 20 A
4. JULIAN ANDRES RAMOS ROJAS 1986 8 5 B
5. JILIAM RMAOS 1986 8 5 B

we show how the proposed method deals with the uncertainty of these situations
under different scenarios.

Let us think of two different scenarios from where the records in Table 1 could
have arisen. In the first scenario, inspired by the application presented in Section 4,
each record refers to a person who was killed during a war, and the data were
reported by witnesses many years after the events occurred. In this scenario, year,
month, day and municipality correspond to the date and location of the killing as
reported by the witnesses. Under this scenario we expect to have reporting errors
in the names of the victim and in the date and place of the killings, since different
witnesses may have different memories of the victims and the events. In the second
scenario, the records in Table 1 come from tax forms, and the information was self-
reported. In this case, year, month, day and municipality correspond to date and
place of birth. In this case we may expect the levels of error in all fields to be much
smaller compared to the first scenario, since it is quite unlikely for one person to
misreport her information, at least unintentionally.

In Table 2 we show a summary of how we construct disagreement levels in this
example. We compare all the record pairs since there are only 10 of them and use a
modification of the Levenshtein edit distance to compare names. The Levenshtein
edit distance between two strings is the minimum number of deletions, insertions

TABLE 2
Construction of levels of disagreement for the example in Table 1

Levels of disagreement

Field Similarity measure 0 1 2 3

Given name Modified Levenshtein 0 (0,0.25] (0.25,0.5] (0.5,1]
Family name Modified Levenshtein 0 (0,0.25] (0.25,0.5] (0.5,1]
Year Absolute difference 0 1 2–3 4+
Month Absolute difference 0 1 2–3 4+
Day Absolute difference 0 1–2 3–7 8+
Municipality Binary comparison Agree Disagree
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or replacements that we need to transform one string into the other. The modifica-
tion that we use simply accounts for the fact that Hispanic names may have missing
pieces. Basically, if name V contains one token and name W contains two tokens,
we take the minimum of the Levenshtein distances between the token of name V

and each token of name W and, finally, we transform this measure to the 0–1 in-
terval. In this scale, 0 means total agreement (up to missing tokens) and 1 means
extreme disagreement. We refer the reader to the supplementary material [Sadinle
(2014)] for details on our comparisons of Hispanic names. The intervals that we
choose to construct the disagreement levels (except for municipality) correspond
to what we consider as no disagreement, mild disagreement, moderate disagree-
ment and extreme disagreement. In this example the field municipality is taken as
a nominal variable, and so we compare it in a binary fashion.

To implement the proposed method for duplicate detection, we need to choose
the prior truncation points of the parameters mf l . For the sake of simplicity, we
suppose that our prior beliefs about each field of information can be classified
in two categories: either the field is nearly accurate or it is inaccurate. If field
f is nearly accurate, we take the prior truncation points for all the parameters
related to this field (all mf l , l = 0, . . . ,Lf − 1) as 0.95, whereas if field f is
inaccurate, these prior truncation points are set to 0.85. For simplicity, we fix the
prior truncation points for year and municipality parameters at 0.95 for all of the
data collection scenarios presented here. For the remaining parameters, in the war
scenario we expect the fields to contain considerable amounts of error, and so
the prior truncation points for those parameters are set equal to 0.85 (case 1 of
Figure 1); for the taxes scenario the prior truncation points are set equal to 0.95
since a priori we expect errors to be rare (case 4 of Figure 1). We also explore two
intermediate cases that fall between the previous two extreme scenarios, where we
consider day and month to be nearly accurate, but given and family names to be
inaccurate (case 2 of Figure 1) and vice versa (case 3 of Figure 1).

For each set of priors we run 10,000 iterations of the Gibbs sampler presented
in the supplementary material [Sadinle (2014)], and in each case we discard 1000
iterations as burn-in. Figure 1 presents the posterior frequencies of the eight par-
titions that appear in the posterior samples. Although a file with five records can
be partitioned in 52 ways (the 5th Bell number), the eight partitions presented in
Figure 1 concentrate 100% of the posterior frequencies in each case.

From Figure 1 we can see that for case 1, that is, when given and family names,
and day and month are inaccurate, the posterior distribution is mostly concentrated
in partition 1,2,3/4,5, that is, records 1, 2 and 3 are assigned to one entity and
records 4 and 5 to another; this result is coherent with our priors, which indi-
cated that the fields were potentially inaccurate, and therefore the disagreements
between fields are not taken as strong evidence of the records being noncoreferent.
In case 2, given and family names are thought to be inaccurate, whereas day and
month are considered to be fairly accurate; in this case the strong disagreements
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Prior truncation points for {mf l}
Given and Day and

family names Month Posterior frequencies

1. 0.85 0.85

2. 0.85 0.95

3. 0.95 0.85

4. 0.95 0.95

Coreference matrices

FIG. 1. Posterior distributions of the coreference partition for the records in Table 1, for different
sets of priors corresponding to different contexts. Prior truncation points for Year and Municipality
parameters are set at 0.95 for all cases. Posterior frequencies are obtained from 9000 iterations of
a Gibbs sampler. The eight partitions presented here concentrate 100% of the posterior frequencies
in each case. The coreference matrices depicted here have black entries representing ones and white
entries representing zeroes.

between records 1 and 3 become important evidence of them not being corefer-
ent, but since record pairs 1 and 2, and 2 and 3 are quite similar, the partitions
1,2/3/4,5 and 1/2,3/4,5 get equal posterior probability. In case 3, we present a
scenario where day and month are thought to be inaccurate, but given and family
names are believed to be accurate, and therefore the posterior gets almost com-
pletely concentrated in the partition 1,2,3/4/5, that is, compared to case 1, dis-
agreements in given and family names become more important for distinguishing
noncoreferent records, and therefore records 4 and 5 are probably noncoreferent.
Finally, in case 4, all the fields are considered as accurate, and therefore the par-
titions where records 4 and 5 are coreferent become unlikely a posteriori, as well
as the partitions where records 1 and 3 are clustered together. Since records 1 and
2 are quite similar, as well as records 2 and 3, but records 1 and 3 have strong
disagreements, the posterior assigns equal probability to the partitions 1,2/3/4/5
and 1/2,3/4/5, which accounts properly for the uncertainty of deciding whether
records 1 and 2, or records 2 and 3 are coreferent.

Finally, it is important to emphasize that although in this example it seems that
the priors of the mf l parameters completely determine the posterior of �, both the
mf l and uf l parameters influence the evolution of the memberships Z in the Gibbs
sampler (see the supplementary material [Sadinle (2014)]). In particular, if these
five records were contained in a larger file, the resolution of their coreference sta-



2422 M. SADINLE

tuses would depend on the distribution of the comparison data for the complete file,
since, for instance, the distributions of the uf l parameters are heavily influenced
by the observed frequencies of the corresponding levels of disagreement.

3.5. A simulation study. We now present a simulation study to explore the per-
formance of the proposed methodology under different scenarios of measurement
error. Peter Christen and his collaborators [Christen (2005), Christen and Pudji-
jono (2009), Christen and Vatsalan (2013)] developed a sophisticated data gen-
eration and corruption tool to create synthetic data sets containing various types
of fields. This tool, written in Python, can include dependencies between fields,
permits the generation of different types of errors, and can be easily adapted to
generate additional fields that are not included in the default settings.

We now describe the characteristics of the data files used in the simulation. We
consider files having either five or seven fields of information. The synthetic files
involving five fields include the following: gender, given name, family name, age,
and occupation. The files with seven fields additionally include postal code and
phone number. The fields gender and given name are sampled jointly from a table
that contains frequencies of given names per gender, and therefore popular given
names appear with higher probability in the synthetic data sets. Family name and
postal codes are generated independently from additional frequency tables. The
three tables mentioned so far were compiled by Christen and his collaborators us-
ing public sources from Australia. Phone numbers are randomly generated follow-
ing the Australian format which consists of a two-digit area code and an eight-digit
number made of two blocks of four digits. The previously described fields were
included in the default configuration of Christen’s generator. In addition, age and
occupation are jointly sampled from a contingency table that serves as an estimate
of the distribution of age and occupation in Australia. This table was obtained from
the webpage of the Australian Bureau of Statistics, and it contains eight categories
of occupation and eight age intervals.

The generator first creates a number of original records which are later used
to create distorted duplicates. The duplicates are allocated by randomly selecting
an original record and assigning a random number of duplicates to it. The num-
ber of duplicates is generated according to a Poisson(1) truncated to the interval
[1,5]. Each duplicate has a fixed number of erroneous fields which are allocated
uniformly at random, and each field contains maximum two errors. The types of
errors are selected uniformly at random from a set of possibilities which vary from
field to field, as summarized in Table 3. In this table, missing values means that
the value of the field becomes missing; edit errors represent random insertions,
deletions or substitutions of characters in the string; OCR errors happen typically
when a document has been digitized using optical character recognition; keyboard
errors use a keyboard layout to simulate typing errors; phonetic errors are simu-
lated using a list of predefined phonetic rules; and finally, misspelling errors are
generated by randomly selecting one of possibly many known misspellings of a
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TABLE 3
Types of errors per field in the simulation study of Section 3.5

Type of error

Field Missing values Edits OCR Keyboard Phonetic Misspelling

Given name � � � �
Family name � � � � �
Age interval �
Gender �
Occupation �
Phone number � � � �
Postal code � � � �

family name. For further details on the generation of these types of errors, see
Christen and Pudjijono (2009) and Christen and Vatsalan (2013).

In the simulation presented here, each synthetic data set is composed of 450
original records and 50 duplicates. To explore the performance of the method as a
function of the amount of error in the data file, we generate 100 five-field and 100
seven-field synthetic data sets for each of three levels of error, which correspond
to the number of erroneous fields per duplicate being one, three and five. For each
file, comparison data were created as indicated in Table 4. For these files we model
all pairs, so |P| = (500

2

)
, and the record pairs having the level three of disagreement

in either given or family name were fixed as noncoreferent, so these pairs consti-
tute the set P − C, as explained in Section 2.3. Our model is then applied under
three different sets of priors. For simplicity, each set of priors has the same prior
truncation point for all the mf l parameters, although in practice the priors should
be chosen carefully based on knowledge of the potential amounts of error in the
file. The prior truncation points are 0.5, 0.8 and 0.95, which correspond to one sce-

TABLE 4
Construction of levels of disagreement for the simulation study of Section 3.5

Levels of disagreement

Field Similarity measure 0 1 2 3

Given name Levenshtein 0 (0,0.25] (0.25,0.5] (0.5,1]
Family name Levenshtein 0 (0,0.25] (0.25,0.5] (0.5,1]
Age interval Binary comparison Agree Disagree
Gender Binary comparison Agree Disagree
Occupation Binary comparison Agree Disagree

Phone number Levenshtein 0 (0,0.25] (0.25,0.5] (0.5,1]
Postal code Levenshtein 0 (0,0.25] (0.25,0.5] (0.5,1]
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nario where we believe the amount of error in the file to be extremely large, one
where we believe it to be moderate, and one where we are optimistic and believe
the amount of error to be very limited. For each data set, and for each set of priors,
we ran 10,000 iterations of the Gibbs sampler and discarded the first 1000 as burn-
in. The average runtime using an implementation in R [R Core Team (2013)] with
parts written in C language was of 24.5 seconds per file, including the computation
of the comparison data, on a laptop with a 2.80 GHz processor. Before starting the
complete simulation study, we obtained some longer chains for some data sets and
for all priors, and we could check that 9000 iterations provided roughly the same
frequencies of partitions as when we ran longer chains.

For each data file, and each set of priors, we obtain a sample of partitions which
approximate the posterior distribution of the coreference partition. We can assess
how good each partition is in terms of classifying pairs of records as coreferent
and noncoreferent. Two records i and j are coreferent according to a partition �′
if both belong to the same cell of the partition, that is, �′

ij = 1. Given �′ and the
true partition �∗, let b11(�

′,�∗) = ∑
i<j �′

ij�
∗
ij be the number of record pairs

that are coreferent in both partitions, and b10(�
′,�∗) = ∑

i<j �′
ij (1 − �∗

ij ) and
b01(�

′,�∗) = ∑
i<j (1−�′

ij )�
∗
ij be the number of record pairs that are coreferent

in one partition but not in the other. Given that �∗ is the true partition, the recall of
�′ is defined as b11(�

′,�∗)/(b11(�
′,�∗) + b01(�

′,�∗)), whereas the precision
of �′ is b11(�

′,�∗)/(b11(�
′,�∗) + b10(�

′,�∗)). The recall of a partition �′
measures the proportion of truly coreferent pairs that are classified correctly by �′,
whereas the precision of �′ measures the proportion of pairs declared as coreferent
by �′ that are truly coreferent. These two measures are preferred for evaluating
performance in duplicate detection and record linkage problems, where the set of
noncoreferent pairs is much bigger than the set of coreferent pairs, and therefore
traditional measures of performance in classification, such as the misclassification
rate and the true negative rate, are misleading [Christen (2012a), page 165].

The results of the simulation are presented in Figure 2, where the rows of panels
correspond to different number of fields and the columns to different priors. No-
tice that for each data set and each set of priors we obtain a distribution of recall
and precision measures, since both of these measures are computed for each parti-
tion in the posterior sample. Therefore, we compute the median, the first and 99th
percentile of each measure for each data set and each set of priors, and average
over all the 100 results corresponding to each level of error, each number of fields
and each prior. In each panel of Figure 2 black lines refer to recall, gray lines to
precision, solid lines show average medians, and dashed lines show average first
and 99th percentiles.

We can see that the performance of the method depends greatly on the amount
of identifying information contained in the files (number and type of fields) and
the interplay between our prior beliefs and the real amount of error. As we would
naturally expect, our ability to obtain results with high precision will depend on
the amount of identifying information contained in the files, that is, in general we
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FIG. 2. Performance of the proposed methodology in the simulation of Section 3.5. Black lines refer
to recall, gray lines to precision, solid lines show average medians, and dashed lines show average
first and 99th percentiles.

will tend to obtain large proportions of false coreferent pairs whenever we have
a small number of fields (see first row of Figure 2). For the five-field data files
the precision of the method is generally sensitive to prior specification, whereas
the recall is somewhat insensitive except for when the amount of error is large
but we believe it to be small (see upper right panel), in which case we obtain
a very poor recall, which means that a large proportion of truly coreferent pairs
will not be detected. For files with seven fields, if the amount of error is small,
then both recall and precision are somewhat insensitive to the choice of the prior
truncation points, as long as the prior is not overly pessimistic in terms of the
expected amount of error, in which case the precision deteriorates (see bottom left
panel). This indicates that when there are not many errors, it is easy to identify
most truly coreferent pairs, but if our priors are overly pessimistic, indicating that
the amount of error is potentially much larger than what it really is, then we will
end up obtaining many false coreferent pairs.

Although for some scenarios it is possible to obtain results that are both good
and not too sensitive to prior specification, the general performance of the method
can be seen in terms of a trade-off between recall and precision: if the priors indi-
cate that the amount of error may be too small when it is actually large, then we
may wind up missing too many true coreferent pairs; if the priors indicate that the
amount of error may be too large when it is actually small, then we may end up
having too many false coreferent pairs.

The results of this simulation study provide us with some guidance for the ap-
plication presented in the next section, where the data file we work with contains
a small number of fields, and we believe its levels of error to be intermediate.
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4. Detecting killings multiply reported to the U.N. Truth Commission for
El Salvador. Unfortunately, the list of homicides obtained by the UNTC was
never made available in electronic form and was publicly available only as pho-
tocopies as of 2007 [Hoover Green (2011)]. As part of her Ph.D. thesis, Amelia
Hoover Green utilized Optical Character Recognition (OCR) technology, along
with data cleaning and standardization, to transfer those scanned lists into spread-
sheet format. The digitized lists therefore contained OCR errors that were cor-
rected by hand as part of the current project.

We now describe how we use the proposed methodology to find duplicated
homicide records in the UNTC database. The fields that we use are given name,
family name, date of death (year, month and day) and municipality of death, sim-
ilarly as in the example of Section 3.4. In this article, a valid homicide report is
defined as a record in the data file that specifies given and family name of the vic-
tim, which leads to a data file containing 5395 records. We believe that no single
field in this file is free of error, and therefore we do not use traditional blocking, as
it may lead to miss many truly coreferent pairs. There are, however, some disagree-
ments between pairs of records that make us confident about their noncoreference
statuses.

4.1. Filtering trivial noncoreferent record pairs, and comparison data. We
consider it reasonable to assume that two reports correspond to different homicides
whenever their recorded municipalities have names with no overlap and are not
geographical neighbors. This approach takes into account the fact that some homi-
cides occurring near the boundary of two municipalities may get reported in the
wrong, although neighboring, municipality. Another source of error occurs when
a municipality gets wrongly coded due to multiple municipalities having similar
names. Although the testimonies were collected in different regions of El Salvador,
they were digitized in a central location and, therefore, if, for example, a report in-
dicated simply San Francisco as the municipality where a killing occurred, the
clerks who entered the data could have potentially assigned the wrong munici-
pality code to this report, given that there are six different municipalities in El
Salvador that include those two tokens, for example, San Francisco Morazán, San
Francisco Lempa, among others. We therefore only fully compare record pairs that
either have the same municipality, neighboring municipalities, municipalities with
names that overlap by at least one token (ignoring the common tokens San, Santa,
Santo, La, El, Las, Los, Del, De), or for which the municipality is missing. The
set of pairs that meet any of the previous criteria constitute the set P introduced
in Section 2.3, and the remaining pairs are fixed as noncoreferent. By using this
approach we only need to fully compare around 12% of the

(5395
2

) = 14,550,315
possible record pairs.

We construct the comparison data in the same way as in the illustrative example
of Section 3.4, as summarized in Table 2. Given and family names were standard-
ized and compared as described in the supplementary material [Sadinle (2014)].
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TABLE 5
Prior truncation points λf l for the mf l parameters in the detection of duplicate homicide records

in the UNTC data file

Field (f )

l Given name Family name Year Month Day Municipality

0 0.85 0.85 0.85 0.85 0.70 0.85
1 0.90 0.90 0.90 0.90 0.70 –
2 0.99 0.99 0.99 0.99 0.70 –

The record pairs having the level three of disagreement in either given or family
name, or in year and month, were fixed as noncoreferent (these are the pairs in the
set P − C introduced in Section 2.3). After this step, the number of pairs on which
we still need to take decisions reduces to only |C| = 759, which involve only 1035
records.

4.2. Prior specification. Following the general guidelines presented in Sec-
tion 3.2, we use uniform priors on [0,1] for all the uf l parameters, f ∈
{Given name, Family name, Year, Month, Day, Municipality}, l = 0, . . . ,Lf − 1.
For the mf l parameters, we use flat priors in the intervals [λf l,1] for the truncation
points λf l given in Table 5. These priors indicate our belief that coreferent pairs
are very likely to have exact agreements, although we still expect a considerable
amount of error in the fields. For example, the probability of exact agreement in
the field year of death for coreferent pairs [mYear,0 = P1(�

Year
ij = 0)] is set to be at

least 0.85 (i.e., λYear,0 = 0.85), which indicates that we expect a pair of coreferent
records to agree exactly on year of death with high probability, but we still think
that the amount of error could go up to 15%. The remaining λf 0 truncation points
have similar interpretations.

The truncation points for the remaining parameters reflect our belief on the
fields’ error structure. We believe that although the fields are erroneous, the er-
ror distribution has to be such that errors become more unlikely as their magnitude
increases. For example, the family name RODRIGEZ is more likely to be a mis-
recording of RODRIGUEZ than of RAMIREZ. Therefore, these truncation points
λf l, l > 0, indicate that the probability of observing a level of disagreement among
coreferent pairs decreases as the disagreement increases. For example, the proba-
bility mYear,1 = P1(�

Year
ij = 1|�Year

ij > 0) is set to be minimum 0.9 a priori, that is,
the probability that a coreferent pair disagrees by one year (level one of disagree-
ment, see Table 2) given that it disagrees in year of death (i.e., �Year

ij > 0) should
be at least 0.9. This indicates that among all coreferent pairs that have disagree-
ments in year of death, we expect the majority to have the minimum disagreement,
which is one year (�Year

ij = 1). Similarly, mYear,2 is set to be minimum 0.99 a pri-
ori, that is, the probability that a coreferent pair disagrees by two or three years
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FIG. 3. The set C of candidate pairs for duplicate detection. Each node represents a record, and
two nodes appear connected if their corresponding records are candidates to be coreferent (i.e., not
fixed as noncoreferent in the preprocessing step). The color and width of the edges convey the same
information: The darker and thicker the edge, the larger the proportion of partitions in the posterior
sample that group the pair together. Therefore, the lightest and thinnest edges indicate that those
pairs never appeared together, and the black and thickest edges indicate those pairs were grouped
together across all partitions in the posterior sample.

(level two of disagreement, see Table 2) given that it disagrees by more than one
year (i.e., �Year

ij > 1) should be at least 0.99. This prior specification constrains
the prior probability of the level three of disagreement (difference of four or more
years, see Table 2) to be very small among coreferent pairs.

Finally, the prior for the field day of death has lower truncation points since we
believe this field to be more unreliable than the rest, given that we do not expect
witnesses to have been very accurate reporting the exact date of the killings.

4.3. Exploring the posterior sample of coreference partitions. We obtained
a posterior sample of partitions of size 19,800 using the Gibbs sampler and the
implementation presented in the supplementary material [Sadinle (2014)]. For the
sake of illustration, in Figure 3 we present a graph where each node represents
one record, and the existence of an edge indicates that the pair was not fixed as
noncoreferent in the preprocessing step, that is, there is one edge per pair in C. This
graph was obtained using the R package “igraph” [Csardi and Nepusz (2006)].
Our target coreference partition can be thought of as a subgraph of this graph
composed by cliques. The sparsity of the graph in Figure 3 illustrates the impact
of fixing trivially noncoreferent pairs in the preprocessing step: the number of
pairs that have to be resolved is small, and the possible set of partitions of the file
gets greatly constrained. In Figure 3 the color and the width of an edge are both
proportional to the number of times that the pair appears grouped together across
the chain of partitions. The thinnest and lightest edges indicate that the pair never
appeared together in the partitions of the chain, whereas the thickest and black
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FIG. 4. Left panel: Percentage of duplicates per reported region of death. The regions are or-
dered by the number of records. Right panel: Percentage of duplicates per reported year of death, in
chronological order. In both cases the corresponding numbers of records appear in parenthesis.

edges indicate that the pair appeared grouped together in all the partitions of the
chain. The black edges in Figure 3 illustrate the property of the method of ensuring
transitive coreference decisions.

The output of our method is a posterior sample of possible coreference parti-
tions. Each of those partitions has a number of cells, which represent unique enti-
ties, or, in this case, unique homicides. The number of records minus the number of
cells of a partition represents the number of duplicates according to that partition.
We can therefore obtain a posterior distribution on this number. For the complete
file, which contained 5395 records, the posterior distribution on the number of
unique homicides has a mean and median of 5008, with a minimum of 4991, and
a maximum of 5026 unique homicides, and a posterior 90% probability interval of
[5001,5015], which corresponds to a posterior interval on the percentage of dupli-
cates of [7.04,7.30]. The rate of duplication greatly varies across different subsets
of the file. In Figure 4 we summarize the posterior distribution of the percentage of
duplicates for subsets of the data file corresponding to the different reported years
and regions. The left panel of Figure 4 presents the regions of El Salvador ordered
by the number of records in the data file. We can observe that the percentage of
duplicates is correlated with the number of homicides reported in that region: the
more homicides reported, the larger the proportion of duplicates. A similar relation
can be observed from the right panel of Figure 4, which shows the percentage of
duplicates per year.

4.4. Evaluation of results and sensitivity analysis. Although there is no
ground truth for the UNTC data file, it is important to have an idea of whether
the results that we obtained are reasonable at all. To this end, we took the UNTC
records that reported Cuscatlán and Ahuachapán as the regions of death (735
records), and identified possible duplicates among them by hand. At this point,



2430 M. SADINLE

FIG. 5. Posterior distribution of precision (left panel) and recall (right panel) computed with re-
spect to hand-labeled records for two regions of El Salvador. Results obtained under three different
sets of prior truncation points λf l of the mf l parameters. The λf 2’s are fixed as in Table 5. The
prior truncation points used in the application to the UNTC data set are indicated in bold italics.

it is important to clarify that we do not intend to treat these hand-labeled records
as ground truth, since they are also the product of our subjective decisions, but
rather we use them as a way to create a sanity check for our results. The idea is
to compare each partition in the posterior sample with the hand-partitioned file
subset in terms of precision and recall.

We also would like to explore how sensitive our results are to small changes in
the prior truncation points that we chose. For this purpose, we obtained two new
posterior samples of partitions using two alternative priors. We consider one prior
more pessimistic and one more optimistic than the one used in our application, in
the sense that the maximum amounts of error in the fields could be larger or smaller
than the ones implied by the prior truncation points set in Table 5. These priors are
obtained from subtracting/adding 0.02 to the prior truncation points of the mf l

parameters in Table 5, for l = 0,1, and for all fields. For these two additional
priors we keep the same truncations of the mf 2 parameters.

In Figure 5 we summarize the posterior distributions of precision and recall un-
der the different priors considered here. We can see that the precision of the method
is somewhat sensitive to changes in the prior truncation points and, although the
recall is somewhat robust, it starts to decay in the more optimistic scenario. These
results agree with the findings presented in Section 3.5 for data files with a small
number of fields. We conclude that the prior employed in the application to the
UNTC data file achieves a good balance between precision and recall, since a
more optimistic prior would lead to less recall, and a more pessimistic prior would
lead to less precision.

Finally, we want to illustrate the issues that we would encounter if we were
using a model that outputs pairwise coreference decisions for the UNTC data set.
We implemented a two-components mixture model version of the model presented
in Section 3 to classify the pairs in C into coreferent and noncoreferent pairs. The

mixture model is obtained by simply taking �ij |p i.i.d.∼ Bernoulli(p), i < j , instead
of treating � as the representation of a partition. We used Bayesian estimation of
this mixture model employing the same priors for the mf l and uf l parameters as
in the application to the UNTC data set, and p ∼ Uniform(0,1). From running
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a Gibbs sampler for 100,000 iterations, we obtained a posterior sample of �ij ’s.
The number of nontransitive triplets varies between 69 and 564 across the Gibbs
iterations, which is not surprising given that this model treats the �ij ’s as inde-
pendent. As we mentioned in the Introduction of this article, if we wanted to use
this mixture model approach, we would have to implement some ad-hoc strategy
to ensure transitivity of the coreference decisions.

5. Conclusions and future work. We presented a novel, unsupervised ap-
proach to duplicate detection problems. This approach improves over current
methodology since it guarantees transitive decisions, it allows us to incorporate
prior information on the amount of error in the fields, and it provides a natural
account for uncertainty of the coreference decisions in the form of a posterior dis-
tribution. We showed that the method provides reasonable results in an illustrative
example and in a realistic simulation study. The application of this methodology to
detect homicides reported multiple times to the Salvadoran UNTC indicates that,
with 90% of probability, between 7.04% and 7.30% of those reports are duplicates.

A number of improvements can be made to this methodology. For example,
the usage of field value frequencies would take into account that, for instance,
a name that is relatively rare has more distinguishing power than a common one
[Winkler (1989)]. Other extensions include modeling dependencies between field
comparisons, possibly building on the work of Larsen and Rubin (2001), and point
estimation for the coreference partition.

Our approach to duplicate detection is especially promising in the context of
multiple systems estimation of population sizes, which plays an important role in
human rights research [see Lum, Price and Banks (2013)]. It is important to note
that the UNTC data file does not cover all the deaths that occurred during the civil
war of El Salvador. Nevertheless, the combination of this source of information
with other data files on killings can provide a better account of the lethal violence
in El Salvador during the civil war. To pursue this goal, our future work includes
the extension of this methodology to link multiple files, at the same time as finding
duplicates within them. Our Bayesian approach to this problem will allow us to
incorporate the uncertainty from record linkage and duplicate detection into sub-
sequent procedures, such as population size estimation.
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SUPPLEMENTARY MATERIAL

Supplement to “Detecting duplicates in a homicide registry using a
Bayesian partitioning approach” (DOI: 10.1214/14-AOAS779SUPP; .pdf). We
provide a Gibbs sampler for the model presented in Section 3, a brief discussion on
point estimation of the coreference partition, we explain how we standardized and
compared Hispanic names and, finally, we present details on the implementation
of the Gibbs sampler for the application in Section 4.
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