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Microarray analysis to monitor expression activities in thousands of
genes simultaneously has become routine in biomedical research during the
past decade. A tremendous amount of expression profiles are generated and
stored in the public domain and information integration by meta-analysis to
detect differentially expressed (DE) genes has become popular to obtain in-
creased statistical power and validated findings. Methods that aggregate trans-
formed p-value evidence have been widely used in genomic settings, among
which Fisher’s and Stouffer’s methods are the most popular ones. In practice,
raw data and p-values of DE evidence are often not available in genomic stud-
ies that are to be combined. Instead, only the detected DE gene lists under a
certain p-value threshold (e.g., DE genes with p-value < 0.001) are reported
in journal publications. The truncated p-value information makes the afore-
mentioned meta-analysis methods inapplicable and researchers are forced to
apply a less efficient vote counting method or naïvely drop the studies with
incomplete information. The purpose of this paper is to develop effective
meta-analysis methods for such situations with partially censored p-values.
We developed and compared three imputation methods—mean imputation,
single random imputation and multiple imputation—for a general class of
evidence aggregation methods of which Fisher’s and Stouffer’s methods are
special examples. The null distribution of each method was analytically de-
rived and subsequent inference and genomic analysis frameworks were es-
tablished. Simulations were performed to investigate the type I error, power
and the control of false discovery rate (FDR) for (correlated) gene expression
data. The proposed methods were applied to several genomic applications in
colorectal cancer, pain and liquid association analysis of major depressive
disorder (MDD). The results showed that imputation methods outperformed
existing naïve approaches. Mean imputation and multiple imputation meth-
ods performed the best and are recommended for future applications.

1. Introduction and motivation. Microarray analysis to monitor expression
activities in thousands of genes simultaneously has become routine in biomedi-
cal research during the past decade. The rapid development in biological high-
throughput technology results in a tremendous amount of experimental data and
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many data sets are available from public domains such as Gene Expression Om-
nibus (GEO) and ArrayExpress. Since most microarray studies have relatively
small sample sizes and limited statistical power, integrating information from
multiple transcriptomic studies using meta-analysis techniques is becoming popu-
lar. Microarray meta-analysis usually refers to combining multiple transcriptomic
studies for detecting differentially expressed (DE) genes (or candidate markers).
DE gene analysis identifies genes differentially expressed across two or more con-
ditions (e.g., cases and controls) with statistical significance and/or biological sig-
nificance (e.g., fold change). Microarray meta-analysis in many situations refers to
performing traditional meta-analysis techniques on each gene repeatedly and then
controlling the false discovery rate (FDR) to adjust p-values for multiple com-
parison [Borovecki et al. (2005); Cardoso et al. (2007); Pirooznia, Nagarajan and
Deng (2007); Segal et al. (2004)]. Fisher’s method [Fisher (1925)] was the first
meta-analysis technique introduced in microarray data analysis in 2002 [Rhodes
et al. (2002)], followed by Tippett’s minimum p-value method in 2003 [Moreau et
al. (2003)]. Subsequently, many meta-analysis approaches have been used in this
field, including extensions of existing meta-analysis techniques and novel methods
to encompass the challenges presented in the genomic setting [Choi et al. (2003),
Choi et al. (2007), Moerau et al. (2003), Owen (2009), Li and Tseng (2011), and
see a review paper by Tseng, Ghosh and Feingold (2012)].

To combine findings from multiple research studies, one needs to know either
the effect size or the p-value for each study. Since the differences in data struc-
tures and statistical hypotheses across multiple studies may make the direct com-
bination of effect sizes impossible or the result suspicious, combining p-values
from multiple studies is often more appealing. Popular p-value combination meth-
ods [see review and comparative papers Tseng, Ghosh and Feingold (2012) and
Chang et al. (2013)] can be split into two major categories of evidence aggrega-
tion methods (including Fisher’s, Stouffer’s and logit methods) and order statistic
methods [such as minimum p-value, maximum p-value and r th ordered p-value
by Song and Tseng (2014)]. Evidence aggregation methods utilize summation of
certain transformations of p-values as their test statistics to aggregate differen-
tial expression evidence across studies. Among evidence aggregation methods,
Fisher’s method is the most well known, in which the test statistic is defined as
T Fisher = −2

∑K
k=1 log(pk), where K is the number of independent studies that

are to be combined and pk is the p-value of individual study k,1 ≤ k ≤ K . Un-
der the null hypothesis of no effect size in all studies and assuming that studies
are independent and models for assessing p-values are correctly specified, T Fisher

follows a chi-square distribution with degrees of freedom 2K . Fisher’s method
has been popular due to its simplicity and some theoretical properties, including
admissibility under Gaussian assumption [Birnbaum (1954, 1955)] and asymptot-
ically Bahadur optimality (ABO) under equal nonzero effect sizes across studies
[Littel and Folk (1971, 1973)]. Some variations of Fisher’s methods were pro-
posed by using unequal weights or a trimmed version of Fisher’s test statistic
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[Olkin and Saner (2001)]. Another widely used evidence aggregation method is
the Stouffer’s method [Stouffer (1949)], in which the test statistic is defined as
T Stouffer = ∑K

k=1 �−1(pk), where �−1(·) is the inverse cumulative distribution
function (CDF) of standard normal distribution.

In order to combine p-values, all p-values across studies should be known. In
genomic applications, however, raw data and thus p-values are often not avail-
able and usually only a list of statistically significant DE genes (p-value less
than a threshold) is provided in the publication [Griffith, Jones and Wiseman
(2006)]. Although many journals and funding agencies have encouraged or en-
forced data sharing policies, the situation has only improved moderately. Many
researchers are still concerned about data ownership, and researchers whose stud-
ies are sponsored by private funding are not obligated to share data in the public
domain. For example, in Chan et al. (2008), publications of 23 colorectal cancer
versus normal gene expression profiling studies were collected to perform meta-
analysis to identify consistently reported candidate disease-associated genes. How-
ever, only one raw data set is available from the Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/, GSE3294) and most other papers only provided
a list of DE genes (and their p-values) under a prespecified p-value threshold.
A second motivating example comes from a microarray meta-analysis study for
pain research [LaCroix-Fralish et al. (2011)], in which 19 microarray studies of
pain models were collected to detect the gene signature and patterns of pain con-
ditions. Among the 19 studies, only one raw data set was available on the author’s
website and all the other papers reported the DE gene lists under different thresh-
olds.

In these two motivating examples (details to be shown in Sections 4.1 and 4.2),
the incomplete data forced researchers to either drop studies with incomplete p-
values or apply the convenient vote counting method [Hedges and Olkin (1980)].
Dropping studies with incomplete information greatly reduces the statistical power
and is obviously not applicable in the two motivating examples since the complete
data was available in only one study. The conventional vote counting procedure is
well known as flawed and low-powered [McCarley et al. (2001)]. Ioannidis et al.
(2009) attempted to reproduce 18 microarray studies published in Nature Genetics
during 2005–2006. Interestingly, only two were “in principle” replicated, six “par-
tially” replicated and ten could not be reproduced. This result illustrates well the
widespread difficulty of obtaining raw data or reproducing published results in the
field. Therefore, developing methods to efficiently combine studies with truncated
p-value information is an important problem in microarray meta-analysis.

In this paper, we assume that K = K1 +K2 studies are combined. In K1 studies,
the raw gene expression data matrix and sample annotations are available and the
complete p-values pgi (1 ≤ g ≤ G for genes and 1 ≤ i ≤ K1) can be reproduced
for meta-analysis. For the remaining K2 studies, either the raw data or annotation
is not available. Only incomplete information of a DE gene list (under p-value

http://www.ncbi.nlm.nih.gov/geo/
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threshold αi for study i) is provided in the journal publication. In this situation,
the available information is an indicator function 1{pgi<αi} to represent whether
the p-value of gene g in study i is smaller than αi or not. We outline the paper
structure as the following. In Section 2 a general class of evidence aggregation
meta-analysis methods under a univariate scenario was investigated for the mean
imputation, the single random imputation and the multiple imputation methods,
respectively, in which the exact or approximate null distributions were derived
under the null hypotheses and the results are shown for the Fisher and the Stouffer
methods. In Section 3.1 simulations of the expression profile were performed to
compare performance of different methods. Simulations were further performed in
Section 3.2 using 8 major depressive disorder (MDD) and 7 prostate cancer studies
where raw data were completely available and the true best performance (complete
case) could be obtained. In Section 4 the proposed methods were applied to the
two motivating examples. In Section 4.1 the methods were applied to 7 colorectal
cancer studies, where the raw data were available only in 3 studies. In Section 4.2
the proposed methods were applied to 11 microarray studies of pain conditions,
where no raw data were available. In Section 4.3 we developed an unconventional
application of the proposed methods to facilitate the large computational and data
storage needs in a liquid association meta-analysis. Discussions and conclusions
are included in Section 5 and all proofs are left in the Appendix.

2. Methods and inferences.

2.1. Evidence aggregation meta-analysis methods. Here we consider a gen-
eral class of univariate evidence aggregation meta-analysis methods (for gene g

fixed), in which the test statistics are defined as the sum of selected transforma-
tions of p-values for each individual study. Without loss of generality, assuming
that FX(·) is the cumulative distribution function (CDF) of a continuous random
variable X, the test statistic T is defined as

T =
K∑

i=1

Tk :=
K∑

k=1

F−1
X (pk),(2.1)

where pk is the p-value from the kth study. Theoretically, X can be any continuous
random variable. However, in practice, X is usually selected such that the test
statistic T follows a simple distribution. For instance, when X ∼ χ2

2 , it holds T ∼
χ2

2K (Fisher’s method) and T ∼ N(0,K) holds, provided X ∼ N(0,1) (Souffer’s
method).

The hypothesis that corresponds to testing the homogeneous effect sizes of K

studies by evidence aggregation methods is a union-intersection test (UIT) [Roy
(1953)]:

H0 :
K⋂

k=1

{θk = 0} versus HA :
K⋃

k=1

{θk �= 0}.(2.2)
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In this paper, we focus on two popular special cases:

1. Fisher’s method [Fisher (1925)]: When X ∼ χ2
2 , Tk = F−1

X (pk) =
−2 log(pk).

2. Stouffer’s method [Stouffer (1949)]: When X ∼ N(0,1), Tk = F−1
X (pk) =

�−1(pk).

Another example is the logit method [Hedges and Olkin (1985)], where Tk =
− log(

pk

1−pk
). But since this method is rarely used in practice, we will not examine

it further in this paper. To apply the evidence aggregation meta-analysis methods
mentioned above, all the p-values should be observed. However, in genomic appli-
cations, it often happens that p-values of some studies are truncated and only their
ranges are reported. Two naïve methods are commonly used to overcome this situ-
ation: the vote counting method or the available-case method which only combines
studies with observed p-values. The available-case method discards rich informa-
tion contained in the studies with truncated p-values and, therefore, the statistical
power is reduced. Hedges and Olkin (1980) showed that the power of vote count-
ing converges to 0 when many studies of moderate effect sizes are combined and,
therefore, the vote counting method should be avoided whenever possible. In this
section, three imputation methods—mean imputation, single random imputation
and multiple imputation method—are proposed and investigated to combine stud-
ies with truncated p-values and the corresponding null distributions are derived
analytically, respectively. We first define some notation.

Assume that K independent studies are to be combined and p1, . . . , pK are the
corresponding p-values. Without loss of generality, assume that all the p-values
are available in the first K1 studies and only the indicator function of DE evidence
is reported in the other K2 studies.

Define a pair (ci, xi), i = 1, . . . ,K for each study, in which ci is the “censoring”
indicator satisfying

ci :=
{

0, if pi is observed (i.e.,1 ≤ i ≤ K1),

1, if pi is censored (i.e.,K1 + 1 ≤ i ≤ K),
(2.3)

and xi is the final observed values which is defined as

xi :=
{

pi, if ci = 0,

1{pi<αi}, if ci = 1,
(2.4)

where αi is the p-value threshold for study i (K1 + 1 ≤ i ≤ K1 + K2 = K). For
each i = 1,2, . . . ,K , one can impute the missing value by p̃i :

p̃i = pi · 1{ci=0} + [qi · 1{xi=1} + ri · 1{xi=0}] · 1{ci=1}

with qi ∈ (0, αi), and ri ∈ [αi,1). Sections 2.2–2.4 develop three imputation meth-
ods for selection of qi and ri .
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2.2. Mean imputation method. The simplest imputation method is the mean
imputation method, in which qi = αi

2 and ri = 1+αi

2 . Then the test statistic T̃ for
truncated data satisfies

T̃ =
K∑

i=1

T̃i =
K∑

i=1

F−1
X (p̃i) =

K1∑
i=1

F−1
X (pi) +

K2∑
j=1

F−1
X (p̃K1+j )

(2.5)

= A +
K2∑
j=1

Bj ,

with

A =
K1∑
i=1

F−1
X (pi) and

Bj = F−1
X (p̃K1+j )(2.6)

= F−1
(

αK1+j

2

)
· 1{pK1+j<αK1+j } + F−1

(
1 + αK1+j

2

)
· 1{pK1+j≥αK1+j }

for j = 1, . . . ,K2. Recall that under the null hypothesis, the random variable A sat-
isfies A ∼ χ2

2K1
for the Fisher method and A ∼ N(0,K1) for the Stouffer method.

Obviously, Bj follows a Bernoulli distribution.
The results can be summarized into the following theorem (proof left to Ap-

pendix B.1):

THEOREM 1. For j = 1,2, . . . ,K2 and given t , by defining

bj = F−1
X

(
αK1+j

2

)
− F−1

X

(
1 + αK1+j

2

)
and

(2.7)

c =
K2∑
j=1

F−1
X

(
1 + αK1+j

2

)
,

it holds

P(T̃ ≤ t)
(2.8)

= ∑
(j1,...,jK2 )∈{0,1}K2

K2∏
i=1

α
ji

K1+i (1 − αK1+i )
1−jiFA

(
t − c −

K2∑
i=1

jibi

)
,

where FA(·) is the CDF of A. Given the CDF, the expected values of test statistic
T̃ under null distributions can be calculated as follows:

1. For Fisher’s method, it holds

E(T̃ ) = 2K1 − 2
K2∑
j=1

[
αK1+j log

(
αK1+j

2

)
+ (1 − αK1+j ) log

(
1 + αK1+j

2

)]
,
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while the expectation of the original T is E(T ) = 2K1 + 2K2 = 2K .
2. For Stouffer’s method, it holds

E(T̃ ) =
K2∑
j=1

[
αK1+j�

−1
(

αK1+j

2

)
+ (1 − αK1+j )�

−1
(

1 + αK1+j

2

)]
,

while the expectation of the original T is E(T ) = 0.

Note that there are 2K2 terms summation in the right-hand side of equation (2.8),
which may cause severe computing problem when K2 is large. However, when
some αi are equal, the formula can be simplified. Without loss of generality, as-
sume there are r ≥ 1 different p-value thresholds {β1, . . . , βr} such that

K2∑
j=1

1{αK1+j=β1} = n1, . . . ,

K2∑
j=1

1{αK1+j=βr } = nr and
r∑

l=1

nl = K2,(2.9)

then by defining f (j ;nl, βl) := nl !
j !(nl−j)!β

j
l (1 − βl)

nl−j for j = 0, . . . , nl and l =
1, . . . , r , the formula can be simplified as

P(T̃ ≤ t)

=
n1∑

j1=0

· · ·
nr∑

jr=0

r∏
l=1

f (jl;nl, βl)(2.10)

× FA

(
t − c −

r∑
l=1

jl

(
F−1

X

(
βl

2

)
− F−1

X

(
1 + βl

2

)))
.

Therefore, the summation is reduced from 2K2 terms to
∏r

l=1(nl + 1) terms.
From the above theorem one concludes that T̃ is a biased estimator of the orig-

inal T . This motivates the following two stochastic imputation methods.

2.3. Single random imputation method. It is well known that the mean im-
putation method will underestimate the variance of {pK1+j }K2

j=1 [Little and Rubin

(2002)]. Furthermore, Theorem 1 indicates that the test statistic T̃ from the mean
imputation method is a biased estimator of the original T . To avoid this problem,
one can replace the mean by randomly simulating qi and ri from Uniform(0, αi)

and Uniform(αi,1), respectively.
Recall that for j = 1, . . . ,K2, Bj = F−1

X (p̃K1+j ). The next theorem (proof left
to Appendix B.2) states that Bj ∼ X holds under the null hypothesis, that is, Bj

and X follow the same distribution.

THEOREM 2. For j = 1,2, . . . ,K2, it holds

Bj ∼ X.(2.11)
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The following corollary is a simple consequence of the above theorem.

COROLLARY. For the single random imputation method, the following facts
hold for T̃ :

1. For Fisher’s method, it holds Bj ∼ χ2
2 and therefore T̃ ∼ χ2

2K .
2. For Stouffer method, it holds Bj ∼ N(0,1) and therefore T̃ ∼ N(0,K).

Therefore, in this case, T̃ is an unbiased estimator of T defined in equation (2.1).

2.4. Multiple imputation method. Although the single random imputation
method allows the use of standard complete-data meta-analysis methods, it cannot
reflect the sampling variability from one random sample. The multiple imputation
method (MI) overcomes this disadvantage [Little and Rubin (2002)]. In MI, each
missing value is imputed D times. Therefore, {T̃ l}Dl=1 is a sequence of test statistics
which are defined as

T̃ l =
K∑

i=1

F−1
X

(
p̃l

i

) = A +
K2∑
j=1

Bl
j for l = 1, . . . ,D(2.12)

with

ql
i ∼ Uniform(0, αi) and rl

i ∼ Uniform(αi,1).(2.13)

The test statistic is defined as T = 1
D

∑D
l=1 T̃ l , which satisfies

T = A +
K2∑
j=1

[(
1

D

D∑
l=1

F−1
X

(
ql
K1+j

)) · 1{pK1+j<αK1+j }

+
(

1

D

D∑
l=1

F−1
X

(
rl
K1+j

)) · 1{pK1+j≥αK1+j }
]

= A +
K2∑
j=1

[(
1

D

D∑
l=1

Wl
j

)
· 1{pK1+j<αK1+j } +

(
1

D

D∑
l=1

V l
j

)
· 1{pK1+j≥αK1+j }

]

= A +
K2∑
j=1

[
Wj · 1{pK1+j<αK1+j } + V j · (1 − 1{pK1+j<αK1+j })

] = A +
K2∑
j=1

Zj .

Since Zj = Wj with probability αK1+j and Zj = V j with probability 1 −
αK1+j , Zj is a mixture distribution of Wj and V j and, therefore, T − A is a
mixture distribution of {Wj,V j , j = 1, . . . ,K2}.

Note that Wl
j and V l

j are independent and identically distributed (i.i.d.) for

fixed j . Denoting by (μWj
, σ 2

Wj
), (μVj

, σ 2
Vj

) the mean and variance of Wl
j and
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V l
j , respectively, then by the central limit theorem one concludes that for large

enough D > 0 it holds

Wj =
(

1

D

D∑
l=1

Wl
j

)
∼ N

(
μWj

,
σ 2

Wj

D

)
and

V j =
(

1

D

D∑
l=1

V l
j

)
∼ N

(
μVj

,
σ 2

Vj

D

)
.

Then the following theorem holds.

THEOREM 3. For (j1, . . . , jK2) ∈ {0,1}K2 , by defining U(j1, . . . , jK2) =∑K2
i=1(jiW i + (1 − ji)V i) which satisfies

U(j1, . . . , jK2)
(2.14)

∼ N

[
K2∑
i=1

(
jiμWi

+ (1 − ji)μVj

)
,

1

D

K2∑
i=1

(
jiσ

2
Wi

+ (1 − ji)σ
2
Vj

)]
,

then for sufficiently large D, it holds approximately that

P(T ≤ t)
(2.15)

= ∑
(j1,...,jK2 )∈{0,1}K2

K2∏
i=1

α
ji

i (1 − αi)
1−jiP

(
A + U(j1, . . . , jK2) ≤ t

)
.

The detailed notation is left to Appendix C.

Similar to the mean imputation method, the formula can be simplified when
some p-value thresholds are equal, that is,

P(T ≤ t) =
n1∑

j1=0

· · ·
nr∑

jr=0

r∏
l=1

f (jl;nl, βl)P
(
A + U(j1, . . . , jr) ≤ t

)
,(2.16)

with U(j1, . . . , jr) = ∑r
l=1(jlF

−1
X (ql) + (nl − jl)F

−1
X (rl)), ql ∼ Uniform(0, βl)

and rl ∼ Uniform(βl,1).

3. Simulation results.

3.1. Simulated expression profiles. To evaluate performance of the proposed
imputation methods in the genomic setting, we simulated expression profiles with
correlated gene structure and variable effect sizes as follows:

Simulate gene correlation structure for G = 10,000 genes, N = 100 samples in
each study and K = 10 studies. In each study, 4000 of the 10,000 genes belong to
C = 200 independent clusters.
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Step 1. Randomly sample gene cluster labels of 10,000 genes (Cg ∈ {0,1,2,

. . . ,C} and 1 ≤ g ≤ G), such that C = 200 clusters each containing 20 genes are
generated [

∑
g 1(Cg = c) = 20,∀1 ≤ c ≤ C = 200] and the remaining 6000 genes

are unclustered genes [
∑

g 1(Cg = 0) = 6000].
Step 2. For any cluster c(1 ≤ c ≤ C) in study k(1 ≤ k ≤ K), sample �′

ck ∼
W−1(	,60), where 	 = 0.5I20×20 + 0.5J20×20,W

−1 denotes the inverse Wishart
distribution, I is the identity matrix and J is the matrix with all the entries being 1.
Set vector σck as the square roots of the diagonal elements in �′

ck . Calculate �ck

such that σck�ckσ
T
ck = �′

gk .

Step 3. Denote g
(c)
1 , . . . , g

(c)
20 as the indices for genes in cluster c. In other

words, C
g

(c)
j

= c, where 1 ≤ c ≤ 200 and 1 ≤ j ≤ 20. Sample the expression

of clustered genes by (X′
g

(c)
1 nk

, . . . ,X′
g

(c)
20 nk

)T ∼ MVN(0,�ck), where 1 ≤ n ≤
N = 100 and 1 ≤ k ≤ K = 10. Sample the expression for unclustered genes
X′

gnk ∼ N(0,1) for 1 ≤ n ≤ N and 1 ≤ k ≤ K if Cg = 0.

Simulate differential expression pattern.

Step 4. Sample effect sizes μgk from Unif(0.1,0.5) for 1 ≤ g ≤ 1000 as DE
genes and set μgk = 0 for 1001 ≤ g ≤ G as non-DE genes.

Step 5. For the first 50 control samples, Xgnk = X′
gnk (1 ≤ g ≤ G,1 ≤ n ≤

N/2 = 50,1 ≤ k ≤ K). For cases, Ygnk = X′
g(n+50)k + μgk (1 ≤ g ≤ G,1 ≤ n ≤

N/2 = 50,1 ≤ k ≤ K).

In the simulated data sets, K = 10 studies with G = 10,000 genes simulated.
Within each study, there were N

2 = 50 cases and 50 controls. The first 1000 genes
were DE in all 10 studies with effect sizes randomly simulated from a uniform dis-
tribution on (0.1,0.5), respectively, and the remaining 9000 were non-DE genes.
We chose this effect size range to produce an averaged standardized effect size at

0.3
1·√50

= 0.1414 so that the DE analysis generates ∼500–600 candidate DE genes
(Table 1), a commonly seen range in real applications. In each study, 200 gene
clusters existed, each containing 20 genes. The correlation structure within each
cluster was simulated from an inverse Wishart distribution.

In the simulations, we performed a two sample t-test for each gene in each
study and then combined the p-values using the imputation methods proposed
in this paper. For simplicity, we viewed the p-values from the last 5 studies as
truncated with thresholds (α1, . . . , α5) = (0.001,0.001,0.01,0.01,0.05), respec-
tively. In most genomic meta-analysis, researchers often use conventional permu-
tation analysis by permuting sample labels to compute the p-values to preserve
gene correlation structure. However, such a nonparametric approach is not appli-
cable in our situation, since raw data are not available in some studies. In order
to control the false discovery rate (FDR), we examined the Benjamini–Hochberg
(B–H) method [Benjamini and Hochberg (1995)] and the Benjamini–Yekutieli (B–
Y) method [Benjamini and Yekutieli (2001)] separately. The number of DE genes
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TABLE 1
Simulation results for correlated data matrix at nominal FDR = 5%

Fisher Stouffer

Method/Mean (s.e.) No. DE True FDR No. DE True FDR

B–H Complete cases 632.9 (32.5) 0.043 (0.0013) 518.6 (36.2) 0.046 (0.0015)
Available-case 263.5 (37.4) 0.048 (0.0076) 216.8 (35.3) 0.064 (0.022)

Mean imputation 508.6 (35.1) 0.046 (0.0016) 449.8 (36.2) 0.047 (0.0022)
Single imputation 408.9 (35.7) 0.043 (0.0018) 293.9 (32.6) 0.045 (0.0027)

Multiple imputation 509.2 (35.0) 0.045 (0.0015) 463.8 (35.7) 0.050 (0.0019)

B–Y Complete cases 354.0 (34.4) 0.0041 (0.00083) 261.7 (33.9) 0.0036 (0.00097)
Available-case 102.4 (21.9) 0.0047 (0.0012) 82.8 (20.6) 0.0029 (0.00096)

Mean imputation 234.5 (32.1) 0.0037 (0.00074) 203.8 (30.8) 0.0034 (0.00073)
Single imputation 164.0 (27.3) 0.0057 (0.0014) 113.5 (22.3) 0.0039 (0.0015)

Multiple imputation 235.3 (32.0) 0.0037 (0.00075) 216.1 (30.9) 0.0050 (0.0010)

detected at nominal FDR rate 5% were recorded and the true FDR rates were com-
puted for each meta-analysis method by

FDR =
∑

g 1(gene g detected with g ≥ 1001)

#{genes detected} .

In the multiple imputation method, D = 50 was selected. Simulations were re-
peated for 50 times and the mean and standard errors of numbers of DE genes con-
trolled by B–H and B–Y methods and their true FDR are reported in Table 1. The
results showed that the FDRs were controlled well for B–H correction but rather
conservative for B–Y correction (the true FDR of B–Y is only 1/10 of B–H at
nominal FDR = 5%). This is consistent with the previous observation that the B–Y
adjustment tends to be over-conservative since it guards against any type of corre-
lation structure [Benjamini and Yekutieli (2001)]. As a result, the B–H correction
will be used for all applications hereafter. The simulation results showed consis-
tently that imputation methods had higher statistical power than the available-case
method, and the mean imputation and multiple imputation methods outperform
the single random imputation method with similar performance. Surprisingly, the
ratio of detected DE genes compared to the complete case increased from 41.6%
in the available case (263.5/632.9) to 80.4% in mean imputation (508.6/632.9)
using Fisher’s method. The improvement is even more significant using Stouffer’s
method (from 41.8% to 86.7%), while at the same time the true FDRs were con-
trolled at a similar level for all methods. The result shows that imputation methods
successfully utilize the incomplete p-value information to greatly recover the de-
tection power.

We further examined the situation when gene dependence structure does not
exist [i.e., steps 1–3 were skipped and X′

gnk ∼ N(0,1)]. Table 2 shows the true
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TABLE 2
Type I error control for independent data matrix at nominal significance level 5%

Fisher Stouffer

Complete cases 0.050 (0.00031) 0.050 (0.00037)
Available-case 0.050 (0.00035) 0.050 (0.00033)
Mean imputation 0.050 (0.00031) 0.050 (0.00033)
Single imputation 0.050 (0.00032) 0.051 (0.00032)
Multiple imputation 0.050 (0.00031) 0.051 (0.00031)

type I error control under nominal significance level 5% (i.e., true type I error

=
∑10,000

g=1001 1(gene g is detected at significance level 0.05)

9000 ). The result shows adequate type I
error control and confirms the validity of the closed form or approximated formula
of different imputation methods in Section 2.

To investigate the impact of D on the performance of the multiple imputation
method, simulations were performed for D ∈ {20,30,50,100,150,200,250,300,

500}. The result is shown in Appendix A, Figure 3, which demonstrates that the
performance of the multiple imputation method is quite robust for different number
of imputation D. We use D = 50 throughout this paper.

3.2. Simulation from complete real data sets. In this subsection the proposed
methods were applied to two real microarray data sets, including 7 prostate can-
cer studies [Gorlov et al. (2009)] and 8 major depressive disorder (MDD) studies
[Wang et al. (2012)]. The details are summarized in Supplement Table 1 [Tang et
al. (2014)]. For each data set, about half of the studies (four for MDD and three for
prostate cancer) were randomly selected with p-value truncation threshold 0.05.
Five methods including complete data, available-case, single random imputation,
mean imputation and multiple imputation methods were applied to the data sets
with the simulated incomplete data to impute by Stouffer’s and Fisher’s methods,
respectively. The generated p-values were corrected by the B–H method and the
simulation was repeated for 50 times. Figure 1 shows boxplots of the numbers of
differentially expressed (DE) genes at FDR = 1% for different methods in MDD
and FDR = 0.5% for prostate cancer data. Figure 1 indicates similar conclusions
that the multiple imputation and the mean imputation methods detect more DE
genes than the available-case method and single random imputation method. In
the MDD example, very few DE genes (average of 16 and 83 for Fisher and Stouf-
fer, resp.) were detected using the available-case method if half of the studies have
truncated p-values. The mean and multiple imputation methods greatly improved
the detection sensitivity. About 95.2% (Fisher) and 96.3% (Stouffer) of DE genes
detected by the mean imputation method overlapped with DE genes detected by
complete data analysis in MDD and about 94.7% (Fisher) and 88.1% (Stouffer)
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FIG. 1. Number of DE genes detected by Fisher’s or Stouffer’s method. C: complete data; A: avail-
able-case; Me: mean-imputation; S: single-imputation; Mu: multiple imputation.

of DE genes detected by the mean imputation method overlapped with DE genes
detected by complete data analysis in prostate cancer, showing the ability of impu-
tation methods to recover DE gene detection power.

4. Applications.

4.1. Application to colorectal cancer. In the first motivating example, we fol-
lowed Chan et al. (2008) and attempted to collect 23 colorectal cancer versus nor-
mal gene expression profiling studies. Raw data were available in only one study
[Bianchini et al. (2006)] and 4 of the other 22 studies containing more than 100 DE
genes at different p-value thresholds were included in our analysis. We searched
the GEO database and identified two additional new studies [Jiang et al. (2008)
and Bellot et al. (2012)]. The seven studies under analysis were summarized in
Table 3. After gene-matching, 6361 genes overlapped in all three studies with raw
data. The available-case method, the mean imputation method, the single random
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TABLE 3
Seven colorectal cancer versus normal tissue expression profiling studies included in analysis

No. of No. of Raw data No. of DE No. of overlapped p-value
Study samples genes availability genes DE genes threshold

Bianchini_2006 24 7403 GSE3294 – – –
Bellot_2012 17 18,191 GSE24993 – – –
Jiang_2008 48 18,197 GSE10950 – – –
Grade_2007 103 21,543 – 1950 635 1e–7
Croner_2005 33 22,283 – 130 47 0.006
Kim_2004 32 18,861 – 448 143 0.001
Bertucci_2004 50 8074 – 245 97 0.009

imputation method and the multiple imputation method were applied for the seven
studies for the Fisher and Stouffer methods, respectively, and the results were re-
ported in Table 4. For the single random imputation method and the multiple im-
putation method, the analyses were repeated 50 times and the mean and standard
error of the number of DE genes detected were reported under FDR control by
the B–H method. The results demonstrate that for various FDR thresholds, the
mean imputation method and the multiple imputation method detected more DE
genes than the available-case method and the single random imputation method,
which was consistent with previous findings in simulations. Under FDR = 0.01%
control, the Fisher and Stouffer mean imputation detected 2.07 (1183/571) and
10.35 (383/37) times of DE genes than those by the available-case method, re-
spectively.

4.2. Application to pain research. The second motivating example comes
from the meta-analysis of 20 microarray studies of pain to detect the patterns
of pain [LaCroix-Fralish et al. (2011)]. The original meta-analysis utilized DE
gene lists from each study under different threshold criteria from p-value, FDR
or fold change and identified 79 “statistically significant” genes that appeared in

TABLE 4
Summary of results for colorectal cancer

Fisher Stouffer

FDR Available Mean Single Multiple Available Mean Single Multiple

1% 2587 2855 2172.4 (2.90) 2785.4 (2.93) 1318 1675 668.4 (3.96) 1616.0 (2.10)
0.1% 1472 1874 1265.6 (2.34) 1805.7 (1.50) 299 709 252.7 (1.93) 680.5 (1.12)
0.01% 571 1183 748.4 (1.89) 1138.6 (2.00) 37 383 102.5 (1.65) 366.7 (0.69)
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TABLE 5
Summary of results for patterns of pain

Fisher Stouffer

Mean 280 45
Single 57.04 (1.6228) 16.44 (0.8605)
Multiple 280.36 (0.8105) 77.56 (0.6616)

the DE gene lists of four or more studies. The vote counting method essentially
lost a tremendous amount of information with flawed statistical inference. When
we attempted to repeat the meta-analysis, raw data of only one of the 20 stud-
ies (Barr_2005) could be found. The old platform used in that study, however,
contained only 792 genes and had to be excluded from further meta-analysis. In
the remaining 19 studies, 11 studies contained DE gene lists under various p-
value thresholds (marked bold in Supplement Table 2 [Tang et al. (2014)]) and
were included in our application. In other words, this example contained exclu-
sively only studies with truncated p-values. Table 5 shows the results of three
imputation methods. Fisher and Stouffer identified 280 and 45 genes under 5%
FDR control, respectively. Note that the original meta-analysis tested the 79 genes
using an overall binomial test and the statistical significance was controlled at
an overall p-value level, not at a gene-specific FDR level. As a result, DE gene
lists from the new imputation methods are theoretically more powerful and accu-
rate.

To validate the finding, we used the Gene Functional Annotation tool from the
DAVID Bioinformatics Resources website (http://david.abcc.ncifcrf.gov). DAVID
applied a modified Fisher’s exact test to evaluate the association between the DE
gene lists and pathways. Functional annotation of the 280 DE genes from the
Fisher’s mean imputation method identified 208 pathways at FDR = 5%, among
which selected important pain-related pathways were grouped into five major bi-
ological categories and displayed in Table 6. In contrast, the 79 genes from vote
counting identified only 14 pathways, of which the expected pain-related pathways
under the categories of inflammation and of differentiation, development and pro-
jection are missing (see Table 6). The pathway enrichment q-values after multiple
comparison control of the “280 gene list” were very significant, while those of the
“79 gene list” were not. Since the p-value calculation from Fisher’s exact test can
be impacted by the DE gene size, we further compared the enrichment odd-ratios
of genes in the pathway versus in the DE gene list. Still the enrichment odds-ratios
of the “280 gene list” were generally much higher than those for the “79 gene list,”
showing stronger pain functional association from the Fisher’s mean imputation
method.

http://david.abcc.ncifcrf.gov
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TABLE 6

Summary of pathway analysis by DAVID

280 DE 79 DE
(Fisher’s mean imputation) (Vote counting)

odds odds
Category Pathway ID p-value q-value ratio p-value q-value ratio

Differentiation, GO : 0030182 ∼ neuron differentiation 5.6e–6 0.0006 3.1 0.26 0.95 1.6
development and GO : 0045664 ∼ regulation of neuron differentiation 1.6e–5 0.0011 4.7 0.37 0.98 1.9
projection GO : 0048666 ∼ neuron development 2.5e–6 0.0003 3.6 0.24 0.94 1.7

GO : 0051960 ∼ regulation of nervous system development 6.5e–6 0.0006 4.2 0.29 0.96 1.9
GO : 0031175 ∼ neuron projection development 1.6e–5 0.0012 3.7 0.27 0.96 1.8
GO : 0042995 ∼ cell projection 3.6e–11 3.2e–9 3.5 0.033 0.47 1.9
GO : 0043005 ∼ neuron projection 3.0e–11 3.4e–9 4.3 0.043 0.51 2.0
GO : 0030030 ∼ cell projection organization 1.6e–5 0.0012 3.3 0.24 0.94 1.7

Response GO : 0009611 ∼ response to wounding 3.8e–10 2.8e–7 4.3 2.7e–5 0.016 3.6
to stimuli GO : 0009719 ∼ response to endogenous stimulus 3.2e–8 1.7e–5 3.4 0.35 0.97 1.3

GO : 0048584 ∼ positive regulation of response to stimulus 7.9e–8 2.5e–5 4.9 0.0049 0.34 3.6
GO : 0032101 ∼ regulation of response to external stimulus 1.1e–5 0.001 4.8 0.043 0.71 2.8

Immune GO : 0050778 ∼ positive regulation of immune response 4.2e–7 7.6e–5 5.9 0.018 0.57 4.0
GO : 0002684 ∼ positive regulation of immune system process 1.9e–6 0.0003 4.4 0.0009 0.13 4.2
GO : 0006956 ∼ complement activation 3.0e–5 0.0016 11.5 0.011 0.46 8.4
GO : 0002478 ∼ antigen processing and presentation 1.3e–6 0.00022 19.0 0.00098 0.12 10.64
of exogenous peptide antigen

Inflammation GO : 0002673 ∼ regulation of acute inflammatory response 1.4e–6 0.0002 14.1 0.19 0.93 3.8
GO : 0002526 ∼ acute inflammatory response 7.1e–6 0.0007 6.7 0.012 0.48 4.4
GO : 0050727 ∼ regulation of inflammatory response 1.9e–5 0.0012 6.9 0.17 0.92 2.8
GO : 0006954 ∼ inflammatory response 1.5e–5 0.0012 4.1 0.001 0.11 3.8

Regulation of GO : 0051969 ∼ regulation of transmission of nerve impulse 6.0e–6 0.0006 4.8 0.057 0.80 2.4
Transmission
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4.3. Application to a three-way association method (liquid association). So
far the proposed imputation methods were applied successfully to two real mi-
croarray data sets of colorectal cancer and pain research in which the actual p-
values of some genes were not reported in a subset of studies. In this section we
show that the proposed imputation methods can be useful in the meta-analysis of
“big data” such as GWAS or eQTL, where the main computational problem is
often the data storage.

In the literature it has long been argued that positively correlated expression
profiles are likely to encode functionally related proteins. Liquid association (LA)
analysis [Li (2002)] is an advanced three-way co-expression analysis beyond the
traditional pairwise correlations. For any triplet of genes X,Y and Z, the LA score
LA(X,Y |Z) measures the effect that expression of Z to control on and off of the
co-expression between X and Y . For example, high expression of Z turns on pos-
itive correlation between X and Y , while when expression of Z is low, X and Y

are negatively or noncorrelated. Theory in Li (2002) simplified calculation of the
LA score to a linear order of sample size and made the genome-wide computation
barely feasible. Supposing we want to combine K studies of the liquid association,
liquid association p-values of all triplets in all K = 10 studies have to be stored
for meta-analysis. When the number of genes G = 1000, the number of p-values
to be stored is G · CG−1

2 · K = 4.985 GB. For a reasonable G = 20,000 genome-
wide analysis, storage size for all p-values quickly increases to 39.994 TB. One
may argue that univariate (i.e., triplet by triplet) meta-analysis may be applied re-
peatedly to avoid the need of storing all p-value results. There are many other
genomic meta-analysis situations when this may not be feasible. For example, in
GWAS meta-analysis under a consortium collaboration, raw genotyping data can-
not be shared for privacy reasons and only the derived statistics or p-values can
be transferred for meta-analysis. Below we describe how imputation methods can
help circumvent the tremendous data storage problem.

We performed a small scale of analysis on 566 DE genes previously reported
from the meta-analysis of the eight MDD studies used in Section 3.2 [Wang et al.
(2012)]. The total number of possible triplets (X,Y |Z) was 90,180,780. By set-
ting up a p-value threshold at 0.001, we only needed to store exact p-values for
2,094,123 (∼2.32%) triplets and the remaining were truncated as considered in
this paper. Since we also needed to store the truncation index information, we only
needed to store 2 × 2.32% = 4.64% of the information and the compression ra-
tio was 95.36%. To investigate the loss of information by the truncation, Figure 2
shows meta-analysis p-values [at − log(p) scale] from Fisher’s method using full
data and the Fisher mean imputation method using truncated data. The result shows
high concordance in the top significant triplets, which are the major targets of this
exploratory analysis. Among the top 1000 triplets detected by Fisher’s method us-
ing complete p-value information, 83.7% of them were also identified by the top
1000 by Fisher mean imputation. The remaining 163 triplets were still in top ranks
(rank between 1199 and 4763) using truncated data in the result of Fisher mean
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FIG. 2. − log(p) comparison of the mean imputation method using truncated data with the com-
plete case method using complete data. Vertical line: x = 71.3. Horizontal line: y = 72.58. Points
right to vertical line are top 1000 triplets detected by Fisher’s complete case method, and points
above to horizontal line are top 1000 triplets detected by Fisher’s mean imputation method.

imputation. This result suggests a good potential of applying data truncation to
preserve the most informative information and performing imputation to approxi-
mate the finding of the top targets when meta-analysis of “big data” is needed. The
compression ratio may further increase by a more stringent truncation threshold,
but the performance may somewhat decline as a trade-off.

5. Discussion and conclusion. When combining multiple genomic studies
by p-value combination methods, the raw data are often not available and only
the ranges of p-values are reported for some studies in genomic applications. This
is especially true for microarray meta-analysis since owners of many microarray
studies tend not to publish their data in the public domain. This incomplete data
issue is often encountered when one attempts to perform a large-scale microarray
meta-analysis. If raw data are not available, two naïve methods—vote counting
method and available-case method—are commonly used. Since these two methods
completely or largely neglect the information contained in the truncated p-values,
their statistical power is generally low. In this paper, we proposed three imputa-
tion methods for a general class of evidence aggregation meta-analysis methods
to combine independent studies with truncated p-values: mean imputation, single
random imputation and multiple imputation methods. For each proposed impu-
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tation method, the null distribution was derived analytically for the Fisher and
Stouffer methods. Theoretical results showed that the test statistics from the sin-
gle random imputation and the multiple imputation methods were unbiased, while
those for mean imputation methods were biased. Simulations were performed for
the imputed Fisher method and imputed Stouffer method. The simulation results
showed that type I errors were well controlled for all methods, which was consis-
tent with our theoretical derivation. Compared to the naive available-case method,
all the imputation methods achieved higher statistical powers, and the mean im-
putation and the multiple imputation methods recovered much of the power that
the complete cases method achieved even when half of the studies had truncated
p-values. Furthermore, Figure 3 in Appendix A showed that the power of the mul-
tiple imputation method was robust to the number of imputation D. Although
small to moderate D provided good results, we recommend choosing D being
larger than 50 to guarantee that the central limit theorem can approximate well.
Applications to two motivating examples in colorectal cancer and pain conditions
showed that both mean imputation and multiple imputation performed among the
best in terms of detection sensitivity and biological validation by pathway analy-
sis.

In regression-type missing-data imputation methods, the null distribution of the
error term is unknown and is assumed to be normally distributed with equal vari-
ance, a setting in which the multiple imputation method usually outperforms the
mean imputation in practice and in theory [Little and Rubin (2002)], particularly
because mean imputation underestimates the true variance. However, our simula-
tion results demonstrated that the power of the two methods were quite similar.
Two reasons may contribute to this result. First, although the test statistic from the
mean imputation method is biased and neglects the variation of truncated p-values,
its p-value can be computed accurately when the null distribution is derived an-
alytically. Second and more importantly, we find that the test statistic of mean
imputation is in fact F−1

X (E(p)), while for sufficiently large D, the test statistic of
multiple imputation converges to E(F−1

X (p)) in distribution. It is easy to show that
these two quantities are very close to each other for a small range of p, provided
F−1

X (·) is smooth. Since F−1
X (·) is infinitely differentiable for the Fisher and Stouf-

fer methods, and the small p-value range in (0, α) is particularly of interest to us, it
is not surprising that the mean imputation method and multiple imputation method
perform similarly. Since the mean imputation method achieved almost the same
power as the multiple imputation method with less computational complexity, it
is more appealing and is recommended for microarray meta-analysis, where the
imputed meta-analysis method is performed repeatedly for thousands of genes. In
this paper only the evidence aggregation meta-analysis methods are investigated
and further work will be needed to extend these results to order statistic based
methods such as minP and maxP.
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Note that although the truncated p-value issue discussed in this paper may ap-
pear similar to the problem of “publication bias,” it is fundamentally different.
Publication bias refers to the fact that a study with a large positive treatment effect
is more likely to be published than a study with a relatively small treatment effect,
resulting in bias if one only considers published studies. Denote by p1,p2, . . . , pN

the p-values of all conducted studies that should have been collected. Only a subset
of likely more significant p-values p1,p2, . . . , pn are observed. Under this setting,
N is unknown and pn+1, . . . , pN are unknown as well. Since the number of miss-
ing publications is unknown, Duval and Tweedie proposed the “Trim and Fill”
method to identify and correct for funnel plot asymmetry arising from publication
bias [Duval and Tweedie (2000a) and (2000b)], in which an estimate of the number
of missing studies is provided and an adjusted treatment effect is estimated by per-
forming a meta-analysis including the imputed studies. For the truncated p-value
problem we consider here, the total number of studies, the number of studies with
truncated p-values and the p-value truncation thresholds are all known. Therefore,
investigation of the imputation of truncated p-values in meta-analysis is different
from the traditional “publication bias” problem and has not been studied in the
meta-analysis literature, to the best of our knowledge.

In this paper the methods we developed mainly target on microarray meta-
analysis, but the issue can happen frequently in other types of genomic meta-
analysis [e.g., GWAS; Begurn et al. (2012)]. In Section 4.3 we demonstrated an
unconventional application of our methods to meta-analysis of liquid association.
Due to the large number of triplets tested in the three-way association, the needed
p-value storage is huge. By preserving only the most informative data by trun-
cation, the storage burden is greatly alleviated and our imputation methods help
approximate and recover the top meta-analysis targets with little power loss. In an
ongoing project, we also attempt to combine multiple genome-wide eQTL results
via meta-analysis. In eQTL, regression analysis is used to investigate the asso-
ciation of a SNP genotyping and a gene expression. It is impractical to store all
genome-wide eQTL p-values, as the storage space required is too large (25,000
genes × 2,000,000 SNPS = 5 × 1010 p-values). A practical solution is to record
only the eQTL p-values smaller than a threshold (say, 10−4) for meta-analysis,
which leads to the same statistical setting as discussed in this paper. In another
project we combine results from multiple ChIP-seq peak calling algorithms to de-
velop a meta-caller. Since each peak caller algorithm can only report the top peaks
with p-values smaller than a certain p-value threshold, we again encounter the
same truncated p-value problem in meta-analysis. As more and more complex ge-
nomic data are generated and the need for meta-analysis increases, we expect the
imputation methods we propose in this paper will find even more applications in
the future.
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APPENDIX A: SUPPLEMENTARY FIGURE

FIG. 3. Power analysis at significance level 0.05 for different numbers of imputation D. The dashed
lines represent the theoretical asymptotic power obtained by setting D = 1000.

APPENDIX B: PROOFS OF THEOREMS

B.1. Proof for Theorem 1. Note that in this case, for j = K1 + 1, . . . ,K , it
holds

Bj = F−1
X

(
αj

2

)
· 1{pi<αj } + F−1

X

(
1 + αj

2

)
· 1{pi≥αj }.(B.1)

Let Yj ∼ Bernoulli(αj ). Since pi ∼ Uniform(0,1) under the null hypothesis, it
holds

Bj =
[
F−1

X

(
αj

2

)
− F−1

X

(
1 + αj

2

)]
Yj + F−1

X

(
1 + αj

2

)
(B.2)

= bjYj + cj

and, therefore,

T̃ = A +
K2∑
j=1

bjYj + c with c =
K2∑
j=1

cj .(B.3)
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For given t , it holds

P(T̃ ≤ t) = P

(
A +

K2∑
i=1

biYi + c ≤ t

)

= ∑
(j1,...,jK2 )∈{0,1}K2

P

(
A +

K2∑
i=1

biYi + c ≤ t |Y1 = j1, . . . , YK2 = jK2

)

× P(Y1 = j1, . . . , YK2 = jK2)(B.4)

= ∑
(j1,...,jK2 )∈{0,1}K2

K2∏
i=1

α
ji

i (1 − αi)
1−jiP

(
A ≤ t − c −

K2∑
i=1

jibi

)

= ∑
(j1,...,jK2 )∈{0,1}K2

K2∏
i=1

α
ji

i (1 − αi)
1−jiFA

(
t − c −

K2∑
i=1

jibi

)
,

where FA(·) is the CDF of A.

B.2. Proof for Theorem 2. We show that for given t

P(Bi ≤ t)

= P
(
F−1

X (p̃i) ≤ t
) = P

(
p̃i ≤ FX(t)

)
= P(xi = 1) · P(

p̃i ≤ FX(t)|xi = 1
) + P(xi = 0) · P(

p̃i ≤ FX(t)|xi = 0
)

(B.5)
= αiP

[
qi ≤ FX(t)

] + (1 − αi)P
[
ri ≤ FX(t)

]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αi · FX(t)

αi

= FX(t), if t ∈ (−∞,F−1
X (αi)

]
,

αi + (1 − αi) · FX(t) − αi

1 − αi

= FX(t), if t ∈ (
F−1

X (αi),∞)
= FX(t),

which implies that

Bi ∼ X.(B.6)

APPENDIX C: SOME PARAMETERS IN THEOREM 3 FOR THE
STOUFFER AND FISHER METHODS

C.1. Stouffer’s method. It is easy to obtain that

μWi
=

∫ α

0

1

α
· �−1(t) dt = 1

α

∫ �−1(α)

−∞
ud�(u) = − 1

α
√

2π
e−[�−1(α)]2/2,(C.1)
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μVi
=

∫ 1

α

1

1 − α
· �−1(t) dt = 1

1 − α

∫ ∞
�−1(α)

ud�(u)

= 1

(1 − αi)
√

2π
e−[�−1(α)]2/2

and

σ 2
Wi

= 1 − �−1(α)

α
√

2π
e−[�−1(α)]2/2 − 1

2πα2 e−[�−1(α)]2
,

(C.2)

σ 2
Vi

= 1 + �−1(α)

(1 − α)
√

2π
e−[�−1(α)]2/2 − 1

2π(1 − α)2 e−[�−1(α)]2
.

C.2. Fisher’s method. Similarly, it holds

μWi
=

∫ α

0

1

α

(−2 ln(t)
)
dt = 2[1 − lnα],

(C.3)

μVi
=

∫ 1

α

1

1 − α

(−2 ln(t)
)
dt = 2 + 2α

1 − α
ln(α)

and

σ 2
Wi

= E
(
W 2

i

) − μ2
Wi

= 4, σ 2
Vi

= E
(
V 2

i

) − μ2
Vi

= 4 − 4α

(1 − α)2 ln2 α.(C.4)
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