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Bacterial growth models are commonly used for the prediction of mi-
crobial safety and the shelf life of perishable foods. Growth is affected by
several environmental factors such as temperature, acidity level and salt con-
centration. In this study, we develop two models to describe bacterial growth
for multiple populations under both equal and different environmental condi-
tions. First, a semi-parametric model based on the Gompertz equation is pro-
posed. Assuming that the parameters of the Gompertz equation may vary in
relation to the running conditions under which the experiment is performed,
we use feedforward neural networks to model the influence of these environ-
mental factors on the growth parameters. Second, we propose a more general
model which does not assume any underlying parametric form for the growth
function. Thus, we consider a neural network as a primary growth model
which includes the influencing environmental factors as inputs to the net-
work. One of the main disadvantages of neural networks models is that they
are often very difficult to tune, which complicates fitting procedures. Here,
we show that a simple Bayesian approach to fitting these models can be im-
plemented via the software package WinBugs. Our approach is illustrated
using real experimental Listeria monocytogenes growth data.

1. Introduction. The predictability of bacterial growth is of major interest
due to the influence of bacteria on food safety and health. The evolution of mi-
croorganisms in food products can spoil the products or even cause pathogenic
effects. Foods are ecosystems composed of the environment and the organisms
that live in it. The food environment is composed of intrinsic factors inherent to
the food (pH, water activity, nutrients) and extrinsic factors external to it (tem-
perature, gaseous environment, bacteria). The interactions between the chemical,
physical and structural aspects of a niche and the composition of its specific mi-
crobial population emphasize the dynamic complexity of food ecosystems [ICMSF
(1980)]. Food may contain multiple microenvironments and can be heterogeneous
on a micrometer scale [Montville and Matthews (2005)]. Products in the modern
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food supply are often preserved by multiple hurdles that control microbial growth,
increase food safety and extend product shelf life [Leistner (2000)]. Salt, high-
or low-temperature processing and storage, pH, redox potential and other addi-
tives are examples of hurdles that can be used for preservation [IOM, Institute of
Medicine of National Academies (2010)]. The influence of pH on bacterial gene
expression is a relatively new area [Montville and Matthews (2005)]. The expres-
sion of genes governing proton transport, amino acid degradation, adaptation to
acidic or basic conditions, and even virulence can be regulated by the external pH.
The influence of temperature on microbial growth is very important, both in growth
rate and in gene expression. Cells grown at different temperatures express differ-
ent genes (governing from motility to virulence) and are physiologically different
[Montville and Matthews (2001)]. Salt is effective as a preservative because it re-
duces the water activity of foods (i.e., the amount of unbound water available for
microbial growth and chemical reactions) by the ability of sodium and chloride
ions to associate with water molecules [Fennema and Tannenbaum (1996); Potter
and Hotchkiss (1998); IOM, Institute of Medicine of National Academies (2010)].
Adding salt to foods can also cause osmotic shock in bacteria cells, limit the oxy-
gen solubility, interfere with cellular enzymes, or force cells to expend energy to
exclude sodium ions from the cell [Davidson (2001); Shelef and Seiter (2005);
IOM, Institute of Medicine of National Academies (2010)]. L. monocytogenes is
able to grow over a wide range of temperatures (−0.4 to 45◦C), pH values (4.39
to 9.4) and osmotic pressures (NaCl concentrations up to 10%). It is also faculta-
tively anaerobic [Montville and Matthews (2005)]. Summarizing, all these factors
can be manipulated to preserve food due to their influence on the microbial growth.
However, even when it is well known that these factors affect bacterial growth, the
kind of effects and the interactions of the factors are still unclear and need more
research. Accurate models which describe the bacterial growth and the effect of en-
vironmental factors are very important to prevent diseases by determining the shelf
life of perishable foods or by predicting the behavior of foodborne pathogens.

Starting from Gompertz (1825), various parametric growth models which de-
scribe the evolution of the population size directly as a function of time—called
primary models—have been developed; see, for example, McKellar and Lu (2004)
for a good comparison. These models perform well in describing the evolution of
bacterial density under fixed experimental conditions. Nevertheless, as described
before, bacterial growth is strongly affected by environmental conditions such as
temperature, acidity or salinity of the environment and, therefore, when multiple
bacterial populations are analyzed, it is important to account for these effects in
growth curve modeling.

In predictive microbiology, models that describe the effect of environmental
conditions on the growth parameters are called secondary models; see, for exam-
ple, Ross and Dalgaard (2004). For example, the square-root model of Ratkowsky
et al. (1982) was developed to describe the effect of suboptimal temperature on
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growth rates of microorganisms. This initial approach was later extended to in-
clude other factors such as level of acidity, water activity and salt concentration in
additive or multiplicative models; see, for example, McMeekin et al. (1987), Miles
et al. (1997), Wijtzes et al. (1995, 2001). The most common secondary models are
polynomial models [see, e.g., McClure et al. (1993)], which allow any of the envi-
ronmental factors and their interactions to be taken into account but include many
parameters without biological interpretation. Another important model class is the
cardinal parameter models [see Rosso et al. (1995), Augustin and Carlier (2000)
and Pouillot et al. (2003)], which assume that the effect of environmental factors
is multiplicative.

A disadvantage of these models is that they assume simple parametric forms
for the effects of the different environmental factors. Therefore, more recently,
there has been interest in modeling bacteria growth curves using nonparametric
approaches such as artificial neural networks; see, for example, Hajmeer, Basheer
and Najjar (1997), Geeraerd et al. (1998) and García-Gimeno et al. (2002). One
advantage of neural networks is their capability to describe very complex nonlin-
ear relationships without imposing any structure on the relationship between the
interacting effects. Furthermore, using a suitable (logistic) basis function which is
of a similar shape to typical bacterial growth curves, neural networks can capture
these curves without the necessity of using large numbers of nodes.

To achieve the general objective of a high level of protection of human health,
food law shall be based on risk analysis [FAO/WHO (1995); NACMCF (1997);
CEC (2002)]. Quantitative microbial risk assessment (QMRA) is the scientific
evaluation of the known or potential adverse health effects resulting from human
exposure to foodborne microbiological hazards. The objective of a QMRA is to
derive a mathematical statement, based on the probability of certain events, of the
chance of adverse health consequences resulting from exposure to a microbiolog-
ical agent capable of causing harm [FAO/WHO (1995); CAC (1996); NACMCF
(1997)].

In this paper, we shall develop two approaches which are applicable to growth
curve estimation for bacterial populations under different environmental condi-
tions. The first model is based on the Gompertz function where the dependence
of the growth parameters on the environmental factors is modeled by a neural net-
work. Second, we shall consider a direct nonparametric approach based on the use
of neural networks as a primary growth model. An important feature of our ap-
proaches is that in cases where we observe bacterial growth in various colonies
under possible different environmental conditions, we use hierarchical modeling
to improve estimation of any single growth curve by incorporating information
from the various different bacterial populations. Although hierarchical analysis of
parametric bacteria growth models has been undertaken [see, e.g., Pouillot et al.
(2003)], to the best of our knowledge, hierarchical analysis has not been combined
with nonparametric approaches previously in this context.

In most empirical work the fitting of any secondary models is carried out in two
steps. First, a primary growth model is fitted to estimate the growth parameters
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and, second, a secondary model is fitted conditional on the estimated parameters
to estimate the controlling factors. One problem with this strategy is that the es-
timated uncertainty of the first stage is not taken into account in the second stage
and, therefore, a poor fit at the first stage could produce inaccurate estimations at
the second stage. Second, most work in fitting such models has used classical sta-
tistical techniques such as least squares, which, as noted in Pouillot et al. (2003),
may also underestimate uncertainty.

To overcome these problems, inference for our models is undertaken throughout
using a Bayesian approach. In the case of the parametric primary model and neural
network secondary model, the use of this approach avoids the problems inherent in
the two-stage inference outlined previously. Furthermore, our Bayesian approach
permits the prediction of unobserved growth curves and of growth curve values at
future time periods. To our knowledge, neural networks techniques have not been
used either in food risk analysis or with the objective of a QMRA procedure in
mind. We have built a neural network risk model with direct application in food
industry and using very well-known noncommercial software in the context of
Bayesian analysis, because, although previously the implementation of Bayesian
inference for neural networks models has required the use of complicated sampling
algorithms [see, e.g., Lee (2004)], here, we show that inference can be carried
out via the use of the well-known WinBugs software through the R2WinBugs
interface.

The present work covers different issues related to bacterial dynamics: (i) the
use of the hurdle technology with different combinations of temperatures, pH val-
ues and percentage of NaCl with great importance in ready-to-eat foods safety
conditions and in food handling as part of the foodservice industry; (ii) the use of
NN to model the selected combinations of hurdles because of its absence of im-
posed restrictions (i.e., a new approach to the variability of the bacterial behavior
under different environmental conditions and its application to QMRA); (iii) pre-
dictions of new data (interpolate) from the experimental growth curves obtained
in the laboratory (i.e., to obtain proper new data avoiding the time-consuming and
expensive assays carried out in the laboratory); and (iv) the study of the behavior of
Listeria for its application to ready-to-eat foods under the legal requirement of 100
CFU (colony-forming units)/g or ml established by the EU Regulation 2073/2005
[CEC (2005)] and the QMRA procedures widely applied in food industry.

We begin in Section 2 with a brief introduction to neural networks. In Section 3
we propose two alternative models for bacterial growth curves that include envi-
ronmental conditions as influencing factors modeled by neural networks. In Sec-
tion 4 we show how to undertake Bayesian inference for these models and then,
in Section 5, we illustrate the models with an application to a database of Listeria
monocytogenes growth curves generated under various experimental conditions.
Finally, in Section 6, we present our conclusions and some possible extensions of
our approach.
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2. Feedforward neural networks. In many situations it is assumed that
there are q dependent variables, (Y1, . . . , Yq) = Y, and they can be modeled as
an approximate linear or polynomial function of a set of explanatory variables,
(x1, . . . , xp) = x, via, for example, multivariate regression. However, such a re-
lationship may not always be appropriate and a more general functional relation
between the dependent and independent variables must be assumed, say,

E[Y|x] = g(x),

where the functional form, (g1, . . . , gq) = g :Rp → R
q , is unknown. One of the

most popular methods of modeling the function g is via neural networks; see, for
example, Stern (1996). In particular, a feedforward neural network takes a set of
inputs x and from them computes the vector of output values as follows:

g(x) = B · �T (
xT �

)
,(1)

where B is a q × M matrix with q ∈ N the number of output variables and M ∈N

the number of nodes and � is a p × M matrix with p ∈ N being the number
of explicative variables. The element γrk ∈ R is the weight of the connection from
input r to hidden unit k and the element βsk ∈ R is the weight connection from hid-
den unit k to output unit s. Finally, �(a1, . . . , aM) = (�(a1), . . . ,�(aM)), where
� is a sigmoidal function such as the logistic function

�(x) = exp(x)

1 + exp(x)
,(2)

which we will use here, as typically bacterial growth curves have an approximately
sigmoidal form. Equations (1) and (2) define a feedforward neural network with
logistic activation function, p explanatory variables (inputs), one hidden layer with
M nodes and q dependent variables (outputs) that can be illustrated as in Figure 1.

FIG. 1. Neural network representation.
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Note that each output combines the node values in a different way. For practical
fitting of neural networks models, it is typically assumed that the input variables
are all defined to have a similar finite range, for example, [0,1]. From now on, we
shall assume this throughout.

3. Neural network-based growth curve models. Bacterial growth is very in-
fluenced by environmental factors. For example, bacteria grow in a wide range of
temperatures, but in higher temperatures bacterial growth increases and in lower
temperatures it decreases. In a similar way, changes on the level of acidity or salin-
ity affect the growth of bacteria. The grade and the direction of the effect depend on
the strain of bacteria and also on the level of the other factors. Figure 2 shows the
different behaviors of Listeria growth under different environmental conditions.

To account for these effects, we develop growth curve models based on the use
of neural networks.

3.1. A neural network-based Gompertz model. The bacterial growth process
is typically characterized by three distinct phases, that is, the lag stage that reflects
the adaptation of cells inoculated in a new medium; the exponential stage that
represents the bacterial growth by binary fission; and, finally, the stationary stage
which describes the decay of the growth rate as a consequence of nutrient depletion
and accumulation of waste which is followed by death or decline of the population.
Sigmoidal functions which account for these three phases have been typically used
to model microbial growth; see, for example, Skinner, Larkin and Rhodehamel

FIG. 2. Bacterial growth under different environmental conditions.
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(1994). In particular, the Gompertz equation is a well-known model for bacterial
growth over time and it has been used extensively by researchers to fit a wide
variety of growth curves from different microorganisms; see, for example, Ross
and McMeekin (1994) and McKellar and Lu (2004).

Here we consider a reparameterized Gompertz equation proposed by Zwietering
et al. (1990). Let Nt represent the population concentration of bacteria cultivated
in a Petri dish experiment at time t ≥ 0. Then the Gompertz equation is

E[Nt |N0,D,μ,λ] = g(t,N0,D,μ,λ)
(3)

where g(t,N0,D,μ,λ) = N0 + D exp
(
− exp

(
1 + μe(λ − t)

D

))
,

where e is Euler’s number, N0 is the initial bacterial density, D is the difference
between the maximum bacterial density, μ is the maximum growth rate and λ is
the time lag.

The primary growth model described in (3) does not allow for the case where
we wish to study bacterial populations under a variety of controlled environmental
conditions. Thus, suppose that we observe the growth of I bacterial populations
under similar initial conditions and that we have J different environments deter-
mined by temperature, level of acidity (pH) and salt concentration (NaCl). Under
fixed environmental conditions, it may be reasonable to assume that all replications
have the same growth curve parameters. However, growth rates will vary under dif-
ferent conditions and, therefore, assuming a Gompertz model, we propose the use
of neural networks to reflect the parameter dependence on the environmental fac-
tors. If Ntij is the concentration in population i under environmental conditions j

at time t , the Gompertz function is

E[Ntij |N0j ,Dj ,μj , λj ] = g(tij ,N0j ,Dj ,μj , λj ),(4)

where g(·) is as in (3), for i = 1, . . . , I and j = 1, . . . , J . Now, we model the
growth parameters μ, λ and D as a function of the temperature, the level of acidity
and the salt concentration by a feedforward neural network, that is,

θ s =
M∑

k=1

βsk · �(
x′γ k

)
for s = 1,2,3,(5)

where θ s stands for the parameters D,μ,λ and x = (T ,pH,NaCl) is the vector of
explanatory variables and � is the logistic function. Note that this network does
not include an intercept term. In our practical experiments we have found that the
addition of an intercept produces no significant differences to typical curve fits.
The model defined in this section by expressions (4) and (5) will be referred to as
the GNN model.
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3.2. A hierarchical neural network model. Here, we generalize the previous
model to a new one which does not assume any underlying parametric growth
function. Instead, we propose a neural network as a primary model. The output of
the network is the instantaneous reproduction rate per member of the population
and the inputs are the current population size and the experimental conditions.
Formally, we can write the model as

E[Ntij |N(t−1)ij , fj , Tj ,pHj ,NaClj ]
(6)

= N(t−1)ij + N(t−1)ij fj (N(t−1)ij , Tj ,pHj ,NaClj ),

fj (N(t−1)ij , Tj ,pHj ,NaClj )

=
M∑

k=1

βjk

(
�(γ1kN(t−1)ij + γ2kTj + γ3kpHj + γ4kNaClj )(7)

− �(γ2kTj + γ3kpHj + γ4kNaClj )
)
,

for i = 1, . . . , I and j = 1, . . . , J , and fj (·) is the growth rate for populations with
environmental condition j . As previously, we could consider adding an intercept
term to the network. However, for the given model, given the addition of an error
term as defined in the following subsection, when N(t−1)ij = 0, then Ntij = 0, so
that once the population has died out, then it remains extinct. Including an intercept
would mean that this desirable property is lost. The model defined in this section
by (6) will be referred to as the NN model.

3.3. Error modeling. In the previous subsections two approaches to modeling
the expected population density have been provided. These models are completed
by including an error term. Thus, in the case of the full neural network model, we
assume that

Ntij = N(t−1)ij + N(t−1)ij fj (N(t−1)ij , Tj ,pHj ,NaClj ) + εtij ,(8)

where we assume that the error term is

εtij |N(t−1)ij , σ, v ∼N
(
0, σ 2Nv

t−1
)
,(9)

where σ 2 ≥ 0 and v = 0.5 so that the possibility that the error variance in-
creases with population density is allowed for. Figure 3 illustrates different bac-
terial growth curves from Petri dish experiments under the same conditions. It can
be seen that the curves are closer together initially when the population density is
lower and diverge over time as the population density grows, which suggests that a
model of this type is reasonable. Our empirical experiments suggest that the value
of v = 0.5 is appropriate here, although, clearly, a prior distribution for v could be
considered. Following the same idea of increasing error variance, we assume for
the GNN model that the error term is

εtij |gtij , σ, v ∼ N
(
0, σ 2g(tij )

v)
,(10)

where g(·) is the Gompertz function evaluated at the current time point.
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FIG. 3. 15 replications of bacterial growth under T = 42◦C, pH = 7.4 and NaCl = 2.5%.

4. Bayesian inference for the neural network models. Given a set of ob-
served inputs and outputs from a neural network, say, D = (x1, y1), . . . , (xN, yN),
inference can be carried out using a variety of approaches; see, for example, Neal
(1996) and Fine (1999) for reviews. Here, we shall consider a Bayesian approach.
To implement such an approach, we must first define suitable prior distributions for
the neural network parameters β and γ and for the uncertainty. First, we suppose
little prior knowledge concerning the variance and, hence, we propose a vague
inverse-gamma prior distribution for it, σ−2 ∼ G(a/2, b/2). In neural network
models, it is common to use relative uninformative prior distributions due to the
scarcity of prior information about the parameters. For simplicity, we choose nor-
mal and gamma distributions with a hierarchical structure, that is,

βik|miβ, σ 2
β ∼ N

(
miβ, σ 2

β

)
,

γ k|mγ ,σ 2
γ ∼ N

(
mγ , σ 2

γ I
)
,

where the subscript i in the GNN model accounts for the growth parameters and
in the NN model for the groups defined by the environmental conditions. The
Bayesian approach is completed by vague, but proper prior distributions for the
remaining hyperparameters as follows:

miβ |σ 2
β ∼ N

(
m0β,

σ 2
β

cβ

)
,



BAYESIAN MODELING OF BACTERIAL GROWTH 1525

m0β |σ 2
β ∼ N

(
0,

σ 2
β

eβ

)
,

1

σ 2
β

∼ G
(

dβ1

2
,
dβ2

2

)
,

mγ |σ 2
γ ∼ N

(
0,

σ 2
γ

cγ

I

)
,

1

σ 2
γ

∼ G
(

dγ 1

2
,
dγ 2

2

)
,

where cβ, eβ , dβ1, dβ2, cγ , dγ 1 and dγ 2 are assumed known and fixed. Similar
hierarchical prior distributions are typically used in Bayesian inference for neu-
ral network models; see, for example, Lavine and West (1992), Müller and Insua
(1998) and Andrieu, de Freitas and Doucet (2001). For alternatives, see, for exam-
ple, Lee (2004), Robert and Mengersen (1999) and Roeder and Wasserman (1997).

Usually, we will have good prior knowledge about the average initial popula-
tion density, m0 = E[N0i |m0, s0], and the variance, s0, as typically Petri dishes
are seeded with very similar quantities of bacteria close to a known theoreti-
cal level, so we shall typically assume that these are known. Otherwise, a sim-
ple noninformative prior distribution f (m0, t0) ∝ 1/t0, where t0 = 1/s2

0 can be
used when, immediately, we have that given the observed set of initial densities,
N0 = (N01, . . . ,N0I ),

m0|N0, s0 ∼ N
(
N0,

s2
0

I

)
,

s2
0 |N0 ∼ IG

(
I − 1,

I∑
i=1

(N0i − N0)2

)
,

where N0 = 1
I

∑I
i=1 N0i is the average initial density and IG means inverse

gamma.
Given the above prior structure, a closed form for the posterior parameter

distributions is not available. However, Markov Chain Monte Carlo (MCMC)
techniques can be employed to allow us to generate an approximate Monte
Carlo sample from the posterior parameter distributions; see, for example, Gilks,
Richardson and Spiegelhalter (1996) for a full review. Various different MCMC
algorithms have been proposed in the neural networks literature, but in general the
efficiency of such samplers depends on the model; see, for example, Lee (2004).

As an alternative, here, we propose using the generic MCMC sampler,
WinBugs, as developed by Spiegelhalter, Thomas and Best (1999), which is ap-
propriate for hierarchical modeling situations, programmed in combination with R,
via R2WinBugs.
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FIG. 4. Dependence structure of the NN model.

Figure 4 illustrates the dependence structure of the NN model in WinBugs
style (although code cannot be constructed directly from this diagram). In the
figure, random and logical nodes are represented by ellipses and fixed nodes
(independent variables) are represented by rectangles. The arrows represent de-
pendence relationships, with the single arrows showing stochastic dependence
and the double arrows representing logical dependence. For more details see
http://www2.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml.

As WinBugs is a generic approach to MCMC sampling, it is important to check
on the convergence of the sampler. Various tools can be used to check the conver-
gence. In particular, as well as standard graphical techniques such as looking at
the trace, the evolution of the mean and the autocorrelations of the sampled out-
put, we also use formal diagnostic techniques such as the modified Gelman–Rubin
statistic, as in Brooks and Gelman (1998).

Note finally that the codes for running both models are available in the supple-
mental materials [Palacios et al. (2014a, 2014b)].

4.1. Model selection. Thus far, inference is conditional on the number of hid-
den nodes, M , being known. Various approaches to estimating M may be con-
sidered. One possibility is to treat M as a variable and, given a prior distribution
for M , use variable-dimensional MCMC approaches to carry out inference; see,
for example, Müller and Insua (1998) or Neal (1996). Another approach which we
shall use in this article is to use an appropriate model selection technique to choose
the value of M .

A number of criteria have been proposed for model selection in Bayesian in-
ference. A standard Bayesian selection criterion which is particularly appropriate
when inference is carried out using MCMC methods is the deviance information

http://www2.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
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criterion (DIC), as proposed in Spiegelhalter et al. (2002). However, in the context
of neural networks, the possible lack of identifiability of the model or multimodal-
ity of the posterior densities make this criterium unstable. Many variants of the
DIC have also been considered and, here, we prefer to apply the DIC3 criterion of
Celeux et al. (2006). For a model M with parameters θ and observed data y, the
DIC3 is defined as follows:

DIC3 = −4Eθ

[
logf (y|θ)|y] + 2 log

n∏
i=1

Eθ

[
f (yi |θ ,y)

]
.

In Celeux et al. (2006) this criterion is recommended in the context of latent vari-
able models. Furthermore, Watanabe (2010) recommends the use of this criterion
in the case of singular models such as neural networks.

An alternative approach which we also consider when comparing different mod-
els is the posterior predictive loss performance (PPLP) proposed by Gelfand and
Ghosh (1998). Based on the posterior predictive distribution, this criterion consists
in defining a weight loss function which penalizes actions for departure from the
corresponding observed value as well as for departure from what we expect the
replication to be. In this way, the approach is a compromise between the two types
of departures: fit and smoothness. For squared error loss, the criterion becomes

PPLP = k

k + 1

n∑
i=1

(mi − yi)
2 +

n∑
i=1

s2
i ,

where mi = E[yrep
i |y] and s2

i = Var[yrep
i |y] are, respectively, the mean and the

variance of the predictive distribution of y
rep
i given the observed data y and k is

the weight we assign to departures from the observed data. The first term of the
PPLP is a plain goodness-of-fit term and the second term penalizes complexity and
rewards parsimony.

5. Application: Listeria monocytogenes. In this section we analyze a data
set taken from Petri dish experiments of one of the authors (EQ) and consisting
of measures of the concentrations of Listeria monocytogenes bacteria in a Petri
dish under several experimental conditions. A strain of Listeria monocytogenes
previously isolated from poultry meat was provided by the Department of Ani-
mal and Food Sciences, School of Veterinary Medicine, Autonomous University
of Barcelona, Spain, and used in the present study. L. monocytogenes growth data
was obtained as reported by Eduardo et al. (2011). Briefly, an automated method
(SLT 340 ATTC microplate reader, SLT Labinstruments, Austria) for the measure-
ments of the optical density of a L. monocytogenes culture was used. Aliquots of
the microorganism, previously cultured in nutrient broth at 31◦C overnight and se-
rially diluted, were inoculated into the microplate wells and read at a wavelength
of 595 nm every 15 min. Optical density curves of bacterial growth were obtained.
At the same time, aliquots were also spread onto Petri plates with nutrient agar and
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cultured at 31◦C overnight. The environmental factors taken into account are tem-
perature, level of acidity and salinity. Temperatures range between 22◦C and 42◦C,
pH between 4.5 and 7.4 and NaCl between 2.5% and 5.5%. There are 96 different
combinations of environmental factors (we call groups) and for each group there
are several replications. The number of observations per curve varies between 16
and 24, depending on the curve. We kept for the analysis 74 groups (excluding the
cases with extreme values of factors which inhibit growth) and chose randomly
10 replications for each one so that the remaining curves could be used for cross-
validation and prediction purposes and to reduce computational time. The temper-
atures selected cover the following situations in food handling: room temperature
in northern countries (22 and 26◦C); room temperature in warm countries (30 and
34◦C); and inadequate reheating treatments of ready-to-eat foods previous to con-
sumption (38 and 42◦C). The selected pH values cover most of the range of the
pH values tolerated by Listeria. The percentages of NaCl selected are well un-
der the limits tolerated by Listeria, but it is very important to know their possible
effects under a hurdle technology point of view combined with temperature and
pH values. A reduced version of this data set including six groups under the same
environmental conditions as the data illustrated in Figure 2 and each with ten repli-
cations is contained in the supplemental materials [Palacios et al. (2014a)].

Using the DIC3 criterion as outlined earlier, the optimum number of nodes for
both models is 2. Temperature, pH and NaCl as inputs of the neural networks were
previously scaled onto [0.1, 0.9] as recommended in Valero et al. (2007). In the
implementation of the GNN model we keep the hyperparameters miβ , σβ , mγ and
σγ fixed at miβ = 0, σβ = 10, mγ = (0, . . . ,0)′ and σγ = 10. Regarding the error
variance, we choose a = 0.2 and b = 0.2. In the NN model the highest level of
hyperparameters were set to cβ = 10, eβ = 10, dβ1 = 0.1, dβ2 = 0.01, cγ = 10,
dγ 1 and dγ 2 = 0.01.

For both models, we generated chains with random initial values and 200,000
iterations each, including 100,000 iterations of burn-in. To diminish autocorrela-
tion between the generated values, we also used a thinning rate of 1000. Trace
plots and autocorrelation functions were used to check convergence in the predic-
tions and in all cases it was found that the burn-in period of 100,000 iterations was
reasonable. Furthermore, the Gelman–Rubin statistic was equal or very close to 1
for predictions, being a good indicator of convergence.

In order to have a benchmark for the comparison of models, we also fit two dif-
ferent simple models, the independent Gompertz model and the pooled Gompertz
model. The first one implies that each observed curve, including the replications,
is independent and therefore has its own Gompertz growth parameters. Indepen-
dent normal prior distributions with mean zero and variance 100 are assumed for
these parameters. In contrast, the pooled model assumes that the replications un-
der a fixed set of environmental conditions are samples from a unique underlying
growth curve for that set of conditions. Normal priors are then placed on the pa-
rameters of this growth curve as for the independent model. For both benchmark
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TABLE 1
Model comparison

Model DIC3 PPLP

Independet Gompertz −19,136 781
Pooled Gompertz −39,420 211
Gompertz & NN −40,099 41
Neural Networks −58,492 28

models the errors are the same as in the GNN case with a G(0.1,0.1) prior distri-
bution for the error variance.

The DIC3 and the PPLP criteria were computed to compare the different models
under consideration and Table 1 shows the estimated values for all of these models.
As is expected, the pooled model performs better than the independent one since
the assumption of independence for all the curves is somewhat extreme. There-
fore, it seems reasonable to assume different curves under different environmental
conditions, but under equal conditions we assume a common curve and this is the
approach we choose for the proposed models. But the problem with this model is
that it does not explain the effect of the environmental factors and it is needed to
estimate one model for each group of conditions. Then, regarding our proposed
models which incorporate the environmental factors as explanatory variables, the
results show that the hierarchical neural network model outperforms the Gompertz
model with neural networks for the parameters. The DIC3 and the PPLP values are
lowest for the former model.

Figure 5 shows for a particular curve (T = 34◦C, pH = 6.5 and NaCl = 5.5%)
the fitting of both models. On the left, the Gompertz model with neural networks
explains the dependence of the growth parameter on the environmental factor and
on the right the fitting of the hierarchical neural network model. The observed
values are represented by points, the estimated growth curves are represented by
the solid line, and the dashed lines represents the 95% credible interval computed
from the posterior distributions. It can be observed that the fit is good in both cases
and the credible intervals included all the true observations. Nevertheless, note that
the NN model overestimates the lag period. In the remaining curves (replications
and different group conditions), we also found good fits for both models. Similar
results are observed in the fitted plots for all the groups.

Additionally, with the GNN model we can make predictions of the growth pa-
rameter values for a certain level of environmental factors. Based on previous
works, it should be expected that an increase of temperatures and a decrease in
pH values kills a foodborne pathogen. However, predictions from our model show
an interesting behavior of Listeria under several environmental conditions. The
impact of temperature on growth is not the same when considering different pH
values, changing even the direction of the effect. On the other hand, the effects
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FIG. 5. Fitting of the GNN model (left) and the NN model (right). Points represent real data, the
solid lines represent the posterior means and the dashed lines represent the 95% credible interval.

seem to be irregular and interacting, which emphasizes the utility of a neural net-
work model which does not impose a rigid functional form on the dependencies.
To illustrate these effects, we plot the posterior mean of the growth rate parameter
as a function of the environmental factors (see Figure 6).

For example, when pH values range between 4.5 and 5.5, an increase in the
temperature values is needed to decelerate the growth rate of Listeria. In contrast,
when pH is equal to 6.5 or 7.4, the temperature must be decreased to diminish the
microorganism growth.

Regarding the percentage of NaCl, we found a decrease in the growth rate when
the percentage of NaCl increases. Additionally, the impact grade of the tempera-
ture changes for different values of NaCl. When NaCl is equal to 5.5% the differ-

FIG. 6. Posterior mean of the growth rate parameter μ for the GNN model. NaCl = 2.5% (left)
and pH = 6.5 (right).
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FIG. 7. One-step-ahead predictions of the GNN model (left) and the NN model (right). Points
represent real data, the solid lines represent the posterior means and the dashed lines represent the
95% credible interval.

ences among the temperature effects are minimal, but those differences increase
for lower levels of NaCl.

Now, we consider predictions of future values of a growth curve and predictions
of a full curve under an unobserved set of environmental conditions. For the first
case, we computed one-step-ahead predictions. That is, for a particular curve we
observe data until observation t and predict the population size at t + 1. In the next
step, we observe data until t + 1 and predict the population size at t + 2 and so
on, until the completion of the predictive curve. Figure 7 shows the one-step-ahead
predictive curves for both models for a particular growth curve (T = 42◦C, pH =
5.5 and NaCl = 2.5%). In contrast to the fitting results, the Gompertz model shows
a slightly better performance regarding the mean prediction. The mean square error
of the prediction in the Gompertz model is equal to 0.001, while for the NNs model
it is 0.008. But in the second model higher accuracy is reached, as can be seen from
the narrower credible interval.

In the context of model checking, several authors, for example, Gelfand (1996)
and Vehtari and Lampinen (2003), have proposed the use of cross-validatory pre-
dictive densities. Following this approach, the data set is divided in two subsets
(y1,y2). The first subset is used to fit the model and to estimate the posterior dis-
tribution of the parameters, while the second set is used to compute the cross-
validatory predictive density: f (y1|y2) = ∫

f (y2|θ)f (θ |y1) dθ . In our case, we
computed the predictive density for one of the groups which was not used in
the model fitting. Given the hierarchical structure of the models, it is possible to
make predictions of a growth curve under an unobserved set of conditions, due to
the knowledge learned from the other observed group of conditions. To illustrate,
we make predictions for a new unobserved group with T = 26◦C, pH = 6.5 and



1532 PALACIOS, MARÍN, QUINTO AND WIPER

FIG. 8. Prediction out of sample of the GNN model (left) and the NN model (right). Shadings
represent the area where real data of all replications lie, the solid lines represent the posterior means
and the dashed lines represent the 95% credible interval.

NaCl = 5.5%. Figure 8 shows the mean prediction (solide line) and the 95% credi-
ble interval (dashed line) for both models, GNN on the left and NN on the right. As
there are many replications for this group, we plot only the mean curve and shade
the area between the minimum value and the maximum value observed for each
time t among replications. As an input of the neural network for the NN model we
used the mean curve of the replications.

The out-of-sample predictions of both models are fairly good and constitute one
of the main contributions of this work. Although the good performance of both
models, in the case of the GNN model some observations lie outside the credible
interval—a small shaded area lies outside the dashed line. Moreover, comparing
the mean prediction with the mean observed curve, the NN model yields more
accurate predictions.

6. Conclusions and extensions. In this paper we have shown a methodolo-
gical contribution which can be easily and directly applied for microbiological
researchers. Neural networks were used as a secondary model that explains the
dependence on environmental factors and also as a primary model which, besides
time, includes experimental conditions as explanatory variables. Inference was car-
ried on in a Bayesian approach that avoids the problems for doing inference in two
steps. Both models yield accurate estimations and good predictions which show
that NNs can be used to model bacterial growth, describing accurately the com-
plex interacting effects of environmental factors without imposing any simplifying
assumption. On the other hand, the modified Gompertz equation was used as the
base model for the first approach we considered, but other parametric bacteria
growth models such as Baranyi or logistic are equally applicable.
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Estimations were implemented in WinBugs via R2WinBugs, showing that
WinBugs can be a powerful and flexible tool that is able to handle very complex
models such as neural networks with great ease. As MacKay (1995) pointed out,
the Gibbs sampling method is not the most efficient of MCMC methods, but there
may be problems of interest where the convenience of this tool outweighs this
drawback.

Previous studies have special interest for the food industry. The conditions in-
side a food-processing plant (humidity, temperature, food processing techniques,
sanitation procedures, etc.) relate to each other in a very complex way, creating
microenvironments with adequate conditions for the growth of Listeria, such as
hard-to-reach areas (drains, etc.). The use of NNs gives more flexibility, as they
do not impose restrictions to the hurdle technology effects on microorganisms and
can show more freely the variability inherent to any form of life under different
environmental conditions. And it is necessary to take into account that variability
does not only appear in a laboratory assay, but also and most importantly appears
in a food industry production chain, in a foodservice company, in a food distribu-
tor or at home before the moment of consumption. Following this reasoning, the
application of the NNs to quantitative microbial risk assessment seems a very use-
ful and realistic tool, reflecting with fewer restrictions the behavior of foodborne
pathogens. This flexibility in the model has allowed us to get new conclusions,
different to previous studies.

Food safety conditions and food handling are part of the foodservice industry,
and different conditions of temperature, pH and percentage of NaCl give a new
insight in terms of inhibitory effects of those conditions. Montville and Matthews
(2001), who studied the effect of temperature with different pH values, concluded
that the growth rate increases with temperature, reaching a maximum at 40◦C to
decay afterward. The behavior of the growth rate is similar for different values of
pH. Similar conclusions can be found in the literature, however, in our work the
results are fairly different. The effect of temperature on the growth rate is not as
it was shown in previous studies. Secondary models show a very continuous line
of increasing growth rate values with temperature or pH changes [Montville and
Matthews (2001); McKellar and Lu (2004)]. In contrast, in our work, for a fixed
pH value the effect of temperature is not so smooth, and the growth rate shows
oscillations that have not been described in the literature with any secondary model
as far as we know. Moreover, the maximum growth rates are achieved at different
levels of temperature when the pH values vary, differing from the CAPM models.

Specifically, when pH is about 7.4, the temperature must be diminished to de-
crease the growth rate of Listeria, but if pH is about 4.5, then the temperature
must be increased to decrease growth rates. Therefore, consequences in terms of
food conservation vary regarding their respective pH. For example, in fruits and
vegetables, which present in general low pH values, it is convenient to increase
temperature; on the contrary, in dairy products, biscuits, chocolate and eggs it is
convenient to decrease temperatures.
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It is generally accepted that predictions of the response within that range can
be made by interpolation. Usually, a three-dimensional space could be constructed
with the ranges of the three parameters studied. The interpolation region of the
combinations tested is called the minimum convex polyhedron [Baranyi et al.
(1996)] and it is used to make predictions. However, Baranyi et al. (1996) noted
that this is not always a good approach. These authors reported a prediction of an
optimal growth for Salmonella under approximately 2% NaCl, which is not correct
for that microorganism. Additionally, Davey (1989) noted that polynomial equa-
tions did not have a consistent form across a range of bacterial growth data and
that such models appeared to lack of universality. That is, the coefficient values of
polynomial models are very data dependent. In this work, we have implemented
two kinds of predictions which were not widely used in the literature but which
are of greater relevance in the context of the microbiology. We have shown that
predictions out of sample are very accurate, being a good alternative to the use
of polynomials of different orders (2nd or 3rd order) and response surfaces for
predictive microbiology.

A restriction in the models, as assumed here, is that we suppose that data are
equally spaced in time. Although this is typically the case in Petri dish or in optical
density experiments, this may not be true with more general populations. In the
case of irregularly spaced data, differential equation models with diffusion type
approximations with the neural network models for the growth functions may be
considered [see Donnet, Foulley and Samson (2010)].

Finally, alternative approximations to the hierarchical neural network models
for growth functions may be considered as spline methods from a classical point
of view, functional data analysis or Gaussian process approximations.

SUPPLEMENTARY MATERIAL

Supplement A: Code for the NN and GNN models (DOI: 10.1214/14-
AOAS720SUPPA; .zip). The file contains two programs, NN model.odc for
running the neural network model and GNN model.odc for running the Gom-
pertz neural network model.

Supplement B: Data sets (DOI: 10.1214/14-AOAS720SUPPB; .xls). The file
data.xls contains 10 replications in 6 groups of bacteria under the environmen-
tal conditions outlined in Figure 2.
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