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Reverse-phase protein array (RPPA) analysis is a powerful, relatively
new platform that allows for high-throughput, quantitative analysis of pro-
tein networks. One of the challenges that currently limit the potential of this
technology is the lack of methods that allow for accurate data modeling and
identification of related networks and samples. Such models may improve the
accuracy of biological sample classification based on patterns of protein net-
work activation and provide insight into the distinct biological relationships
underlying different types of cancer. Motivated by RPPA data, we propose
a Bayesian sparse graphical modeling approach that uses selection priors on
the conditional relationships in the presence of class information. The nov-
elty of our Bayesian model lies in the ability to draw information from the
network data as well as from the associated categorical outcome in a unified
hierarchical model for classification. In addition, our method allows for in-
tuitive integration of a priori network information directly in the model and
allows for posterior inference on the network topologies both within and be-
tween classes. Applying our methodology to an RPPA data set generated from
panels of human breast cancer and ovarian cancer cell lines, we demonstrate
that the model is able to distinguish the different cancer cell types more ac-
curately than several existing models and to identify differential regulation
of components of a critical signaling network (the PI3K-AKT pathway) be-
tween these two types of cancer. This approach represents a powerful new
tool that can be used to improve our understanding of protein networks in
cancer.
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1. Introduction.

1.1. Protein signaling pathways in cancer. The treatment of cancer is rapidly
evolving due to an improved understanding of the signaling pathways that are ac-
tivated in tumors. Global profiling of DNA mutations, chromosomal copy num-
ber changes, DNA methylations and gene expression have greatly improved our
appreciation of the heterogeneity of cancer [Blower et al. (2007), Ehrich et al.
(2008), Gaur et al. (2007), Nishizuka et al. (2003), Shankavaram et al. (2007)].
However, the characterization of protein signaling networks has proven to be much
more challenging. Several reasons underscore the critical importance of overcom-
ing this challenge: first, changes in cellular DNA and RNA both ultimately result in
changes in protein expression and/or function, thus, protein networks represent the
summation of changes that happen at the DNA and RNA levels. Second, research
has demonstrated that many of the most common oncogenic genetic changes acti-
vate proteins in kinase signaling pathways. Numerous studies of protein networks
and expression analysis have shown promising results. Due to the hyperactivation
of kinase signaling pathways, numerous kinase inhibitors have been used in clin-
ical trials, frequently with dramatic clinical activity. Inhibitors that target protein
signaling pathways have been approved by the U.S. Food and Drug Administra-
tion for a variety of cancer types, including chronic myelogenous leukemia, breast
cancer, colon cancer, renal cell carcinoma and gastrointestinal stromal tumors [as
reviewed in Davies, Hennessy and Mills (2006)].

Protein networks need to be assessed directly, as DNA or RNA analyses often
do not accurately reflect or predict the activation status of protein networks. Many
proteins are regulated by post-translational modifications, such as phosphorylation
or cleavage events, that are not detected by the analysis of DNA or RNA. Several
studies have also demonstrated marked discordance between mRNA and protein
expression levels, particularly for genes in kinase signaling and cell cycle regula-
tion pathways [Shankavaram et al. (2007), Varambally et al. (2005)]. It has been
demonstrated recently, in both cancer cell lines and tumors, that different genetic
mutations in the same signaling pathway can result in significant differences in
the quantitative activation levels of downstream pathway effectors [Davies et al.
(2009), Park et al. (2010), Stemke-Hale et al. (2008), Vasudevan et al. (2009)].
Although these observations support the suggestion that direct measurements are
essential to measure protein network activation, a number of studies have demon-
strated that signaling pathways are frequently regulated by complex feed-forward
and feedback regulatory loops, as well as cross-talk between different pathways
[Halaban et al. (2010), Mirzoeva et al. (2009), Zhang et al. (2009)]. Thus, de-
veloping an accurate understanding of the regulation of protein signaling networks
will be optimized by approaches that: (1) assess multiple pathways simultaneously
for different tumor types and/or conditions, and (2) allow for the use of rigorous
statistical approaches to identify differential functional networks.
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1.2. Reverse-phase protein lysate arrays. As explained, there is a strong ratio-
nale for methods that will directly assess the activation status of protein signaling
networks in cancer. Traditional protein assays include immunohistochemistry
(IHC), Western blotting, enzyme-linked immunosorbent assay (ELISA) and mass
spectroscopy. Although IHC is a very powerful technique for the detection of
protein expression and location, it is critically limited in network analyses by
its non- to semi-quantitative nature. Western blotting can also provide important
information, but due to its requirement for relatively large amounts of protein, it
is difficult to use when comprehensively assessing protein networks, and also is
semi-quantitative in nature. The ELISA method provides quantitative analysis, but
is similarly limited by requirements of relatively high amounts of specimen and
by the high cost of analyzing large pools of specimens. Mass spectroscopy is a
powerful, quantitative approach, but its utility is mainly limited by the cost and
time required to analyze individual samples, which limits the ability to run large
sample sets that are needed to appropriately assess characteristics of disease het-
erogeneity and protein networks. Reverse-phase protein array (RPPA) analysis is
a relatively new technology that allows for quantitative, high-throughput, time-
and cost-efficient analysis of protein networks using small amounts of biological
material [Paweletz et al. (2001); Tibes et al. (2006)].

RPPA data collection. We provide a brief overview of the RPPA experiment
and data collection. In order to perform RPPA, proteins are isolated from the bi-
ological specimens such as cell lines, tumors or serum using standard laboratory-
based methods. The protein concentrations are then determined for the samples
and, subsequently, serial 2-fold dilutions prepared from each sample are then ar-
rayed on a glass slide. Each slide is then probed with an antibody that recog-
nizes a specific protein epitope that reflects the activation status of the protein.
A visible signal is then generated through the use of a signal amplification system
and staining. The signal reflects the relative amount of that epitope in each spot
on the slide, as shown in Figure 1. The arrays are then scanned and the result-
ing images are analyzed with an imaging software specifically designed for the
quantification of RPPA analysis (MicroVigene, VigeneTech Inc., Carlisle, MA).
The relative signal intensities of the dilution series for each sample on the ar-
ray are used to calculate the relative protein concentrations [Neeley et al. (2009),
Zhang et al. (2009)]. Background correction is used to separate the signal from
the noise by subtracting the extracted background intensity from the foreground
intensity for each individual spot. Relative protein amount is calculated using a
joint estimation method that utilizes the logistic model of Tabus et al. (2006). This
method overcomes quenching at high levels and background noise at low levels.
An R package, SuperCurve, developed to use with this joint estimation method
is available at http://bioinformatics.mdanderson.org/Software/OOMPA. As with
most high-throughput technologies, the normalization of the resulting intensities

http://bioinformatics.mdanderson.org/Software/OOMPA
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FIG. 1. An example of a reverse-phase protein array (RPPA) slide. (A) Each slide is comprised of 4
rows (A–D) of 12 columns (1–12) grids of 11X11 spots. (B) Each grid has 22 individual samples and
11 controls. Each row of the grid consists of 2 individual samples (each with 5 serial 2-fold dilutions)
and one control spot. Reproduced with permission from Tabchy et al. (2011).

is conducted before any downstream analysis in order to adjust for sources of sys-
tematic variation not attributable to biological variation. Technical differences in
protein loading for each sample are determined by first dividing the results for
each protein measured by the average value among all the specimens, and then by
determining the average value for each sample across all of the measured proteins.
This relative loading factor is then used to normalize the raw data for each sample,
to correct for any differences in protein loading between specimens. We refer the
reader to Paweletz et al. (2001) and Hennessy et al. (2010) for more biological and
technical details concerning RPPAs.

Biological researchers typically choose specific targeted pathways containing
50–200 proteins, usually assayed using the same number of arrays, with each ar-
ray hybridized against one protein. Because of the reverse design (as compared to
conventional gene expression microarrays), RPPAs allow much larger sample sizes
than the traditional microarrays, thus allowing detailed and integrated analyses of
protein signaling networks with higher statistical power. Furthermore, this makes
it possible to use RPPAs to measure protein expression for multiple tumor classes
and/or cell conditions. The scientific aims we address using RPPA data in this pa-
per are threefold: to infer differential networks between tumor classes/subtypes;
to utilize a priori information in inferring protein network topology within tumor
classes/subtypes; and, finally, to utilize network information in designing optimal
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classifiers for tumor classification. We believe this will improve our understand-
ing of the regulation of protein signaling networks in cancer. Understanding the
differences in protein networks between various cancer types and subtypes may
allow for improved therapeutic strategies for each specific type of tumor. Such
information may also be relevant when determining the origin of a tumor, which
is clinically important in cases with indeterminate histologic analysis, particularly
for patients who have more than one type of cancer.

1.3. Graphical models for network analysis. A convenient and coherent statis-
tical representation of protein networks is accorded by graphical models [Lauritzen
(1996)]. By “protein network” we mean any graph with proteins as nodes, where
the edges between proteins may code for various biological information. For ex-
ample, an edge between two proteins may represent the fact that their products
interact physically (protein–protein interaction network), the presence of an in-
teraction such as a synthetic-lethal or suppressor interaction [Kelley and Ideker
(2005)], or the fact that these proteins code for enzymes that catalyze successive
chemical reactions in a pathway [Vert and Kanehisa (2003)].

Our focus is on undirected graphical models and on Gaussian graphical models
(GGM) in particular [Whittaker (1990)]. These models provide representations of
the conditional independence structure of the multivariate distribution—to develop
and infer protein networks. In such models, the nodes represent the variables (pro-
teins) and the edges represent pairwise dependencies, with the edge set defining
the global conditional independence structure of the distribution. We develop an
adaptive modeling approach for the covariance structure of high-dimensional dis-
tributions with a focus on sparse structures, which are particularly relevant in our
setting in which the number of variables/proteins (p) can exceed the number of
observations (n).

GGMs have been under intense methodological development over the past
few years in both frequentist [Bickel and Levina (2008), Chaudhuri, Drton
and Richardson (2007), Friedman, Hastie and Tibshirani (2008), Meinshausen
and Bühlmann (2006), Yuan and Lin (2007)] and Bayesian settings [Carvalho and
Scott (2009), Giudici and Green (1999), Roverato (2002)]. Wong, Carter and Kohn
(2003) proposed a reversible jump MCMC-based Bayesian model for covariance
selection. In high-dimensional settings, Dobra et al. (2004) used regression analy-
sis to find directed acyclic graphs and converted them to undirected (sparse) graphs
to explore the underlying network structure, and Rodríguez, Lenkoski and Dobra
(2011) proposed a new approach for sparse covariance estimation in heterogeneous
samples. However, most of the approaches we have cited focused on inferring the
conditional independence structure of the graph and did not consider classification,
which is one of the foci of our article. Rapaport et al. (2007) used spectral decom-
position to detect the underlying network structure and classify genetic data using
support vector machines (SVM). More recently, Monni and Li (2010) proposed a
graph-based regression approach incorporating pathway information as a prior for



1448 V. BALADANDAYUTHAPANI ET AL.

classification procedures, however, their method does not detect differential net-
works based on available data. Zhu, Shen and Pan (2009) proposed network-based
classification for microarray data using support vector machines. This was ex-
tended to network-based sparse Bayesian classifiers by Miguel Hernández-Lobato,
Hernández-Lobato and Suárez (2011), but these approaches do not estimate the
network and also do not take into account the differences in network structure be-
tween the two classes. Another recent method is that of Fan, Jin and Yao (2013),
who propose a two-stage approach wherein they first select features and then sub-
sequently use the retained features and Fisher’s LDA for classification using only
one covariance matrix for both the classes.

In this article, we propose a constructive method for sparse graphical models
using selection priors on the conditional relationships in the presence of class in-
formation. Our method has several advantages over classical approaches. First,
we incorporate (integrate) the uncertainty of the parameters in deriving the op-
timal rule via Bayesian model mixing. Second, our network model provides an
adaptively regularized estimate of the covariance matrix and hence is capable of
handling n < p situations. More importantly, our model uses this information in
deriving the optimal classification boundary. The novelty of our Bayesian model
lies in the ability to draw information from the network data from all the classes as
well as from the associated categorical outcomes in a unified hierarchical model
for classification. Through this process, it offers the advantages of sparse Bayesian
modeling of GGM, as well as the simplicity of a Bayesian classification model. In
addition, with available online databases containing tens of thousands of reactions
and interactions, there is a pressing need for methods integrating a priori pathway
knowledge in the proteomic data analysis models. We integrate prior information
directly in the model in an intuitive way such that the presence of an edge can
be specified by providing the probability of an edge being present in the correla-
tion matrix. Our method is fully Bayesian and allows for posterior inference on
the network topologies both within and between classes. After fitting the Bayesian
model, we obtain the posterior probabilities of the edge inclusion, which leads to
false discovery rate (FDR)-based calls on significant edges.

The structure of our paper is as follows. In Section 2 we outline our Bayesian
graph-based model for classification of RPPA data. Section 3 focuses on Bayesian
FDR-based determination of significant networks. Section 4 presents the results of
our case study using an RPPA experiment. We end with a discussion and conclu-
sion in Section 5. All technical details and additional analysis results are presented
in the supplementary material [Baladandayuthapani et al. (2014)].

2. Probability model. Our data construct for modeling is as follows. We ob-
serve a tuple: (Zi,Yi), i = 1, . . . , n, where Zi is a categorical outcome denoting
the type or subtype of cancer (binary or multi category) and Yi = (Y

(1)
i , . . . , Y

(p)
i )

is a p-dimensional vector of proteins assayed for the ith sample/patient/array. We
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detail the model here for binary classification (when Zi is a binary variable), not-
ing that generalization to multi-class classification can be achieved in an analogous
manner. We factorize the joint distribution (likelihood) of the data p(Yi,Zi), ∀i in
the following manner

p(Yi,Zi) = p(Yi|Zi)p(Zi),

where the first component models the joint distribution of the p proteins given the
class variable Zi and the second component models the marginal distribution of
the class variables. We model the first component as a mixture of the multivariate
normal distributions as

p(Yi|Zi,μ,�) ∼ ZiN
(
μ(1),�(1)) + (1 − Zi)N

(
μ(2),�(2)),

where μ(•) and �(•) are the corresponding means and covariances for the two
classes. To specify the marginal component, we note that in the classification
framework only a fraction of Z’s, say Zu, will be unobserved (specifically in the
case of prediction, as shown in Section 2.2) and they will be further modeled as

p
(
Zu|h) ∼ Bernoulli(h),

where we assign a Beta prior on probability h as h ∼ Beta(η, ζ ). Note that this
prior can be generalized to be class-specific by allowing h to depend on the class
k by changing the corresponding hyperparameters ηk, ζk .

Our main constructs of interest in this framework are (μ(k),�(k)), k = 1,2 for
each of the classes, where the latter provides a dependence structure between the
proteins, which we model in a GGM framework. The key idea behind GGMs is
rather to model the precision matrix �(k) = �(k)−1

, which dictates the network
structure between the variables. In this framework of particular interest is the
identification of zero entries in the precision matrix—a zero entry at the ij th ele-
ment of � indicates conditional independence between the two random variables
Yi and Yj , given all other variables. This is often referred to as the covariance
selection problem in GGMs [Cox and Wermuth (2002), Dempster (1972)]. In the
section below we provide a constructive method for sparse estimation (identifica-
tion of many zeros) of the precision matrix in high-dimensional settings, but also
allow for borrowing strength between classes to estimate the class-specific preci-
sion matrices for conducting classification.

2.1. Parameterization of the precision matrix. Given the number of vari-
ables p, the size of the precision matrix (p × p) is potentially of high dimen-
sion. Instead of specifying a global (joint) distribution on the precision matrix, we
explore local dependencies by breaking it down into components. For some appli-
cations, it is desirable to work directly with standard deviations and correlations
[Barnard, McCulloch and Meng (2000), Liechty, Liechty and Müller (2004)] that
do not correspond to any type of parameterization (e.g., Cholesky, etc.). This pa-
rameterization has a practical motivation because most biologists think in terms of
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correlations between the proteins, thus easing prior elicitation, as we show below.
To this end, we parameterize the precision matrix (for each class k, suppressing the
superscript for ease of notation) as � = S × C × S, where S is a diagonal matrix
with nonzero diagonal elements that contains the inverse of the partial standard
deviations and C is a matrix that contains partial correlation coefficients. Note that
the correlation matrix C satisfies the properties of a correlation matrix, that is,
the partial correlation coefficients (ρij ) between variables i, j share a one-to-one
correspondence to the elements Cij as

ρij = −�ij

(�ii�jj )1/2 = −Cij .

Due to this correspondence, sparse estimation of � directly implies the identi-
fication of zeros in the elements of C. Thus, we model C as a convolution,

C = A � R,

where � is the Hadamaard operator indicating element-wise multiplication be-
tween the two (stochastic) matrices: a selection matrix A and the corresponding
correlation matrix R with the following properties:

• Both A and R are symmetric.
• Both A and R have ones as their diagonal elements.
• The off-diagonal elements of A are either 0 or 1 and the off-diagonal elements

of R lie in the range [−1,1].
• Both A and R need not be positive definite, but the convolution C has to be

positive definite.

In essence, A is a binary selection matrix that selects which of the elements in R
are zero or nonzero. In other words, A performs variable selection on the elements
of the matrix R by shrinking the nonrequired variables (edges) exactly to zero and
thus inducing sparsity in the estimation of the resulting precision matrix governing
the GGM. We discuss hereafter the estimation and prior specifications for each of
these matrices.

Prior construction. R is a matrix with all of its off-diagonal elements in the
range [−1,1], therefore, we assign an independent uniform prior over [−1,1] for
all Rij , i < j . Correspondingly, since the off-diagonal elements of A are binary
(0 or 1), we assign an independent Bernoulli prior with probability qij for the
element Aij , i < j . Note that this element-wise prior specification on A and R does
not ensure that the C (=A � R) is positive definite—hence a valid graph. Thus,
a key ingredient of our modeling scheme is that we need an additional constraint:
C ∈ Cp where Cp is the space of all proper correlation matrices of dimension p,
such that the joint convolved prior on A and R can be written as

A,R|q ∼ ∏
i<j

{
UniformRij

[−1,1]BernoulliAij
(qij )

}
I (A � R ∈ Cp),
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where I (•), the indicator function, ensures that the correlation matrix is positive
definite and introduces dependence among the elements of the matrices R,A, and
qij is the probability of the ij th element being selected as 1.

We ensure the positive-definiteness constraint in our posterior sampling sche-
mes. Specifically, we perform MCMC sampling in such a way that the constraint
C ∈ Cp is satisfied—to search over the possible space of valid correlation matrices.
To implement the constraint, we draw Rij ,Aij , sequentially conditioned on all
other elements of R and A such that the realized value of Cij ensures C is positive
definite given all other parameter values. Briefly, we follow the method of Barnard,
McCulloch and Meng (2000) to find the range [uij , vij ] on the individual elements
of R that will guarantee the positive definiteness of C. The resulting form of the
conditional prior on the off-diagonal elements Rij can be written as

Rij |aij ,A−ij ,R−ij ∼ Uniform(uij , vij )I (−1 < Rij < 1), i �= j, i < j,

where R−ij contains all other off-diagonal elements of R except the ij th element
and A−ij contains all elements of A except the ij th element. The limits of the
Uniform distribution uij and vij are chosen such that C = A�R is positive definite
and (conditionally) uij and vij are functions of R−ij and A−ij (see Appendix A
in the supplementary material [Baladandayuthapani et al. (2014)] for the detailed
proof).

In this construction, the parameter probability qij controls the degree of sparsity
in the GGM in an adaptive manner by element-wise selection of the entries of the
correlation matrix. We assign a beta hyperprior for the probabilities qij as

qij ∼ Beta(aij , bij ), i �= j,

where the hyperparameters aij , bij can be set to induce prior information on the
graph structure (see Section 2.3). To complete the hierarchical specification, we
choose an (exchangeable) inverse-gamma prior on the inverse of the partial stan-
dard deviations S, which is a diagonal matrix containing entries Si = �

1/2
ii as

Si ∼ IG(g,h), i = 1,2, . . . , p.

Borrowing strength between classes. Note that in the above construction all
the parameters are class-specific, that is, are different for each class k, and
thus model fitting and estimation can be done for each class separately. But the
main advantage of Bayesian methodology lies in borrowing strength between
the classes for both estimation of the graphical structure and subsequent predic-
tion/classification. This can be accomplished by having a variable that introduces
dependence between the classes linking the selection matrix A. We introduce a
latent variable λij defined as

λij =
⎧⎨
⎩

1, if A1
ij �= A2

ij ,

0, if A1
ij = A2

ij ,
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where A1 and A2 are the class-specific selection matrices. The binary variables
λij ’s imply the presence or absence of the same edge in the graphical model of
both classes. In other words, λij = 1 signifies a differential edge (i.e., the rela-
tion between the covariates i, j is significant in only one class but not the other),
whereas λij = 0 signifies a conserved edge (i.e., the relation between the covari-
ates i, j is significant in both classes). Thus, the λ’s serve a dual purpose in our
model setup. They not only introduce dependence between the classes, since they
are shared between both classes, but also have a distinct interpretation in terms of
differential/conserved patterns of dependence between the graphs for the classes.
This information is vital for understanding the biological processes and inferring
conclusions from the analysis, as we show in Section 4.

Since the λij ’s are binary random variables, we propose a Bernoulli prior on λij

as

λij ∼ Bernoulli(πij ), i < j,

where the parameter πij is the probability that the relation between the ith and j th
variables is different. We further assign a beta hyperprior for the probabilities πij

as

πij ∼ Beta(eij , fij ), i �= j.

To complete the prior specification on the graphical model, we propose a normal
prior on the means (μ(1),μ(2)) as

μ(k) ∼ N
(
μ

(k)
0 ,B−1

0
(k))

, k = 1,2.

2.2. Prediction. In this section we lay out our graph-based prediction (clas-
sification) scheme. Suppose the class variables Z (of size n × 1) are partitioned
into a vector of training samples Zt (of size nt × 1) and a vector of (unknown)
test/validation cases Zu (of size nu × 1) to be predicted. The corresponding ob-
served variables are also partitioned as [Yt ;Yu]. Denote the observed data by
D = {Yt ,Zt ,Yu}. In Bayesian prediction, for a new sample with protein expres-
sion information Yu, we have to obtain the posterior predictive probability that its
class variable Zu, given all observed data D, is p(Zu|D).

To estimate these probabilities, we treat Zu ≡ {Zu
o :o = 1, . . . , nu} as a param-

eter in the model and extend the MCMC analysis to sample these values at each
iteration. Specifically, we draw Zu from the corresponding conditional posterior
distribution in each MCMC iteration (see Appendix B in the supplementary ma-
terial [Baladandayuthapani et al. (2014)] for the full conditional distribution). The
way our model is specified, the posterior distribution of Zu is analyzed condi-
tional not only on all the data from both classes D, but also on the parameters
that are shared between the classes. Thus, the predictions are obtained in a single
MCMC fitting procedure along with all other parameters, thereby accounting for
all sources of variation. We note that the limitation of this method is that training
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and test splits of the data must be contemplated prior to analysis (as is usually
done) and/or analysis fully repeated if new predictions are required.

The complete hierarchical formulation of our graph-based binary classification
model can be succinctly summarized as shown hereafter. In addition, the directed
acyclic graph (Figure 6 in the supplementary material [Baladandayuthapani et al.
(2014)]) shows a graphical representation of our model where the circles indicate
parameters and the squares observed random variables:

Y = [
Yt ,Yu] ∼ ZN

(
μ(1),�−1(1)) + (1 − Z)N

(
μ(2),�−1(2))

,

Z = [
Zt ,Zu]

,

Zu
o ∼ Bernoulli(ho),

ho ∼ Beta(η, ζ ),

μ(k) ∼ N
(
μ

(k)
0 ,B−1

0
(k))

,

�(k) = S(k)(A(k) � R(k))S(k),

A(k),λ,R(k)|q(k),π ∼ ∏
i<j

Uniform(uij , vij )Bernoulli
(
q

(k)
ij

)

× Bernoulli(πij )I
(
C(k) ∈Cp

)
,

q
(k)
ij ∼ Beta

(
α

(k)
ij , β

(k)
ij

)
,

πij ∼ Beta(eij , fij ), i �= j,

S
(k)
i ∼ IG(g,h),

where k = 1,2 corresponds to the two classes, i, j = 1, . . . , p, and o = 1, . . . , nu

corresponds to the size of the test/validation sample. The full conditional distri-
butions for MCMC sampling of the model parameters and random variables are
provided in Appendix B in the supplementary material [Baladandayuthapani et al.
(2014)].

2.3. Incorporating prior pathway information and hyperparameter settings.
As we mentioned before, there exists a huge amount of literature (prior knowledge)
describing the functional behaviors of proteins, as characterized in metabolic, sig-
naling and other regulation pathways. We formally incorporate this a priori knowl-
edge in our model through the hyperparameter settings on the prior specification
of qij , the probability that the edge between protein (i, j) will be selected. In
particular, we impose an informative prior on π(qij ) ∼ Beta(aij , bij ) and set the
hyperparameters aij and bij such that the distribution has a higher mean to reflect
our prior knowledge of the presence of an edge. For example, one could set the
following:
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• prior on qij as Beta(2,10) with mean 0.17, if there is biological evidence that
the edge does not play an important role in the pathway;

• prior on qij as Beta(10,2) with mean 0.83, if there is biological evidence that
the edge plays an important role in the pathway;

• prior on qij as Beta(2,2) with mean 0.5, if no prior information is available.

The prior information incorporated in the qij ’s from online databases is assumed
to represent normal conditions only. Information on relations between proteins that
is affected by an intervention and/or mutation can be elicited by expert opinion
(e.g., from a biologist). Information on the edges of graphs that is perturbed by
a mutation can be incorporated formally through our prior on πij , the probability
that controls the differential/conserved edge between two different conditions. We
specify informative priors in a manner analogous to that of qij (as shown above)
in cases where such information exists by setting eij , fij similarly to aij and bij .
Finally, for the hyperparameters of the variance components, we obtain a vague
inverse gamma prior by setting (g,h) = 1 and set the hyperparameters for the beta
prior on ho to be diffuse using (η, ζ ) = 2.

3. FDR-based determination of significant networks. Once we apply the
MCMC methods, we are left with posterior samples of the model parameters that
we can use to perform Bayesian inference. Our objective is twofold: to detect the
“best” network/pathway based on the significance of the edges and also to detect
differential networks between treatment classes. Given p proteins, our network
consists of p(p − 1)/2 unique edges, which could be large even for a moderate
number of proteins. Therefore, we need a mechanism that will control for these
large-scale comparisons, discover edges that are significant and also detect differ-
ential edges between classes. We accomplish this in a statistically coherent manner
using false discovery rate (FDR)-based thresholding to find significant networks
and also to differentiate networks across samples.

The MCMC samples explore the distribution of possible network configurations
suggested by the data, with each configuration leading to a different topology of the
network based on the model parameters. Some edges that are strongly supported
by the data may appear in most of the MCMC samples, whereas others with less
evidence may appear less often. There are different ways to summarize this infor-
mation in the samples. One could choose the most likely (posterior mode) network
configuration and conduct conditional inference on this particular network topol-
ogy. The benefit of this approach would be the yielding of a single set of defined
edges, but the drawback is that the most likely configuration may still appear only
in a very small proportion of MCMC samples. Alternatively, one could use all
of the MCMC samples and, applying Bayesian model averaging (BMA) [Hoeting
et al. (1999)], mix the inference over the various configurations visited by the
sampler. This approach better accounts for the uncertainty in the data, leads to es-
timators of the precision matrix with the smallest mean squared error and should
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lead to better predictive performance in class predictions [Raftery, Madigan and
Hoeting (1997)]. We will use this Bayesian model averaging approach.

From our MCMC iterations, suppose we have M posterior samples of the cor-
responding parameter set {A(m)

ij ,m = 1, . . . ,M}, for which the selection indicator
of the ij th edge is in the model. Suppose further that the model averaged set of
posterior probabilities is set P , the ij th element of which Pij = M−1 ∑

m A
(m)
ij

and is a p × p-dimensional matrix. Note that 1 −Pij can be considered Bayesian
q-values, or estimates of the local false discovery rate [Newton et al. (2004), Storey
and Tibshirani (2003)], as they measure the probability of a false positive if the ij th
edge is called a “discovery” or is significant. Given a desired global FDR bound
α ∈ (0,1), we can determine a threshold φα with which to flag a set of edges
Xφ = {(i, j) :Pij ≥ φα} as significant edges.

The significance threshold φα can be determined based on classical Bayesian
utility considerations such as those described in Müller et al. (2004) and based on
the elicited relative costs of false-positive and false-negative errors or can be set
to control the average Bayesian FDR, as in Morris et al. (2008). The latter is the
process we follow here. For example, suppose we are interested in finding the value
φα that controls the overall average FDR at some level α, meaning that we expect
that only 100α% of the edges that are declared significant are in fact false positives.
Let vec(P) = [Pt ; t = 1, . . . , p(p − 1)/2] be the vectorized version of the set P
containing the unique posterior probabilities of the edges, stacked columnwise.
We first sort Pt in descending order to yield P(t), t = 1, . . . , p(p − 1)/2. Then

φα = P(ξ), where ξ = max{j∗ : j∗−1 ∑j∗
j=1 P(t) ≤ α}. The set of regions Xφα then

can be claimed to be significant edges based on an average Bayesian FDR of α.
This FDR-based thresholding procedure can be extended to find differential

networks between different populations (tumor classes/subtypes), for example, to
identify edges that are significantly different between tumor types. To this end, we
use the corresponding parameter set {λ(m)

ij ,m = 1, . . . ,M}, which is the selection
indicator of the differential edge between the ij th covariates in the model. The
model averaged set of posterior probabilities is set Pd , the ij th element of which
Pd

ij = M−1 ∑
m λ

(m)
ij . We use this same procedure to arrive at a set of differen-

tial edges Xφ = {(i, j) :Pd
ij ≥ φα} with φα chosen to control the Bayesian FDR at

level α. We use a similar procedure on the parameter set {1−λ
(m)
ij ,m = 1, . . . ,M},

to arrive at a set of common edges Xφ = {(i, j) :Pc
ij ≥ φα} with φα chosen to con-

trol the Bayesian FDR at level α.

4. Data analysis.

4.1. Classification of breast and ovarian cancer cell lines. Breast and ovarian
cancer are two of the leading causes of cancer-related deaths in women [Jemal et al.
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(2009)]. Both of these diseases are frequently affected by mutations in kinase sig-
naling cascades, particularly those involving components of the PI3K-AKT path-
way [Bast Jr., Hennessy and Mills (2009), Hennessy et al. (2008), Mills et al.
(2003), Yuan and Cantley (2008)]. The PI3K-AKT pathway is one of the most
important signaling networks in carcinogenesis [Vivanco and Sawyers (2002)]
and is affected more than any other signaling pathway by activating mutations
in cancer tissues [Yuan and Cantley (2008)]. Aggressive drug development efforts
have targeted this critical oncogenic pathway, and inhibitors of multiple differ-
ent components of the PI3K-AKT pathway have been developed and are in var-
ious stages of preclinical and clinical testing [Courtney, Corcoran and Engelman
(2010), Hennessy et al. (2005)].

We applied our methodology to identify differences in the regulation of the
PI3K-AKT signaling network in breast and ovarian cancers. For this analysis, we
used expression data of p = 50 protein markers in signaling pathways from an
RPPA analysis of human breast (n1 = 51) and ovarian (n2 = 31) cancer cell lines
grown under normal tissue culture conditions [Stemke-Hale et al. (2008)]. We used
the known connections in the PI3K-AKT pathway suggested by previous studies
and expert opinion as a priori information in our model, as stated in Section 2.3.

The significant networks based on a Bayesian FDR cutoff of α = 0.1 for breast
and ovarian cancer samples are shown in Figure 2(a) and (b), respectively. The
red edges indicate a negative association (regulation) and the green edges indicate
a positive interaction between the proteins. The edges are represented by lines of
varying degrees of thickness based on the strength of the association (correlation),
with higher weights having thicker edges and lower weights having thinner edges.
In order to identify biological similarities and differences between the breast and
ovarian cancer cell lines, we compared the results of our network analyses of the
two cancer types. Plotted in Figure 3(a) are the conserved (common) edges be-
tween the two cancer types. The differential network between the two cancer types,
controlling for a Bayesian FDR cutoff of α = 0.1, is shown in Figure 3(b).

A number of protein–protein relationships demonstrated significant similarity
between the two cancer types. For example, both breast cancer and ovarian cancer
cell lines exhibited a marked negative association between the levels of PTEN
and phosphorylated AKT (Akt.pT308). This relationship was expected due to
the critical regulation of 3-phopshatidylinositols by the lipid phosphatase activ-
ity of PTEN, and has previously been demonstrated as a significant interaction
in multiple tumor types [Davies et al. (1998, 1999, 2009), Park et al. (2010),
Stemke-Hale et al. (2008), Vasudevan et al. (2009)]. Although this concordance
was expected, our analysis also identified a large network of differential pro-
tein interactions among the breast and ovarian cancer cell lines [Figure 3(b)]. In
this figure, the edges in blue indicate relationships between proteins that were
present in the ovarian cancer cell lines but not in the breast cancer cell lines
using our FDR cutoff, and the orange edges indicate relationships present in
the breast cancer cell lines but not in the ovarian cancer cell lines. In addition,
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(a) Breast network

(b) Ovary network

FIG. 2. Significant edges for the proteins in the PI3K-AKT kinase pathway for breast (a) and ovarian cancer cell lines (b) computed using a Bayesian
FDR of 0.10. The red (green) lines between the proteins indicate a negative (positive) correlation between the proteins. The thickness of the edges
corresponds to the strength of the associations, with stronger associations having greater thickness.
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(a) Conserved network between ovarian and breast cancer cell lines

(b) Differential network between ovarian and breast cancer cell lines

FIG. 3. Conserved and differential networks for the proteins in the PI3K-AKT kinase pathway
between breast and ovarian cancer cell lines computed using a Bayesian FDR set to 0.10. In the con-
served network (top panel), the red (green) lines between the proteins indicate a negative (positive)
correlation between the proteins. In the differential network (bottom row), the blue lines between the
proteins indicate a relationship that was significant in the ovarian cancer cell lines but not in the
breast cancer cell lines; the orange lines between the proteins indicate a relationship in the breast
cancer cell lines but not in the ovarian cancer cell lines. The thickness of the edges corresponds to
the strength of the associations, with stronger associations having greater thickness.

the thickness of the edges corresponds to the strength of the association. No-
table differential connections in this analysis include the association of phos-
phorylated AKT (Akt.pS473) with BCL-2 (Bcl2) and phosphorylated MAPK
(MAPK.pT202.Y204) in breast cancer. Both of these, BCL-2(Bcl2) and phospho-
rylated (activated) MAPK (MAPK.pT202.Y204), may contribute to tumor pro-
liferation and survival, and are therapeutic targets with available inhibitors. The
association of different proteins with the expression of the estrogen receptor, phos-
phorylated PDK1 (PDK1.pS241) and MAPK (MAPK.pT202.Y204) in breast can-
cer and phosphorylated AMPK (AMPK.pT172) in ovarian cancer, may also have
therapeutic implications, as the estrogen-receptor blockade is a treatment used in
both advanced breast and ovarian cancer.

We used this network information to build a classifier to distinguish between
breast cancer and ovarian cancer samples as explained in Section 2. We assessed
the performance of the classifiers using cross-validation techniques. In particu-
lar, we generated 100 random selections of training and test data sets with 66%
and 33% splits of the data, respectively. We fit our Bayesian graph-based classi-
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TABLE 1
Misclassification error rates for different classifiers for ovarian and breast cancer data sets. The

methods compared here are SVM (network-based support vector machine), LDA (linear
discriminant analysis), KNN (K-nearest neighbor), DQDA (diagonal quadratic discriminant

analysis), DLDA (diagonal linear discriminant analysis), NBC (naive Bayes classifier) and BGBC
(Bayesian graph-based classifier), which is the method proposed in this paper with and without

incorporating prior information, denoted by BGBC (prior) and BGBC (w/o prior), respectively. The
mean and the standard deviation are values of the misclassification percentage over 100 random

splits of the data

SVM KNN LDA DLDA DQDA NBC BGBC BGBC w/o prior

Mean 8.03 15.14 25.48 12.07 13.74 13.37 6.59 10.88
SD 5.44 6.82 10.63 5.829 6.70 6.96 4.06 6.31

fier (BGBC) and compared our method to six other methods: the network-based
support vector machine (SVM) [Zhu, Shen and Pan (2009)], K-nearest neighbor
(KNN), linear discriminant analysis (LDA), diagonal linear discriminant analysis
(DLDA), diagonal quadratic discriminant analysis (DQDA) and naive Bayes clas-
sifier (NBC) [John and Langley (1995)] methods. We implemented the network-
based SVM using the R package “pathclass.” The network structure was specified
to be the common network for the two classes obtained from the BGBC algorithm,
as this method does not explicitly estimate the network. All other input parameters
were set at the default settings for the network-based SVM function. We imple-
mented all the other methods using the corresponding MATLAB functions.

The average misclassification errors (along with standard errors) across all splits
for all the methods on the test set are shown in Table 1. The BGBC method had
much lower misclassification rates compared to the other methods (the other meth-
ods ignore the underlying network structure of the proteins). We believe that this
improved precision is due to the fact that the mean expression profiles of the breast
and ovarian cancer cell lines are very similar so there is not enough information in
the mean to classify the two cases. Hence, means-based classifiers, especially KNN
and LDA (both of which use identity and diagonal covariances), underperform as
compared to our method. The results of the DQDA method could be a bit closer to
those of the BGBC method, but the former method ignores the cross-connections,
that is, network information, and hence results in a higher misclassification rate.
The QDA could not be performed because the estimation of different covariance
matrices for different classes is an ill-posed problem for n < p. We also tested
the performance of BGBC using prior information and without using prior infor-
mation in estimating the networks. The last two columns of Table 1 show that
incorporating prior information improves our classification performance. Further-
more, the inclusion of prior information leads to sparser networks (as shown in
Figure 7 in the supplementary material [Baladandayuthapani et al. (2014)]), as the
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prior information provides information about important and unimportant relation-
ships, which aids our classification model.

We further note that nonlinear (quadratic) boundaries are obtained by us-
ing network information (since we model the covariance matrix), whereas lin-
ear boundaries are obtained by ignoring the network information (linear/diagonal
discriminant based approaches). The classification boundary (Figure 8 in the sup-
plementary material [Baladandayuthapani et al. (2014)]) exemplifies our intuition
and approach. We have a p(= 50)-dimensional quadratic classification boundary
based on the GGM. In order to visualize this, we projected the boundary and the
data onto two randomly selected dimensions/covariates. Two of those projections
are shown in the figure, which confirm our intuition of how nonlinear boundary is
more effective than a linear boundary in classification.

4.2. Effects of tissue culture conditions on network topology. Cell lines de-
rived from tumors are a powerful research tool, as they allow for detailed charac-
terization and functional testing. Genetic studies support the concept that cell lines
generally mirror the changes that are detected in tumors, particularly at the DNA
and RNA levels [Neve et al. (2006)]. However, the activation status of proteins can
be impacted by the use of different environmental conditions in the culturing of
cells. A key scientific question in the analysis of protein networks in cancer cell
lines is the variability of network topologies due to differing tissue culture condi-
tions. In order to assess if different network connectivity is observed under varying
culture conditions, we used three different tissue culture conditions to grow the 31
ovarian cancer cell lines used in the previous analysis.

For condition “A,” the cells were grown in tissue culture media that was sup-
plemented with growth factors in the form of fetal calf serum (5% of the total
volume), which is a standard condition for the culturing of cancer cells. For con-
dition “B,” the cells were harvested after being cultured in the absence of growth
factors (serum) for 24 hours. For condition “C,” cells were grown in the absence of
growth factors for 24 hours, then they were stimulated acutely (20 minutes) with
growth factors (5% fetal calf serum). Proteins were harvested from each cell line
for each tissue culture condition. The experimental procedure used for the isola-
tion and RPPA analysis of proteins from the cancer cells growing under normal,
serum-replete tissue culture conditions has been described previously [Davies et al.
(2009), Park et al. (2010)]. Protein isolation, processing and RPPA analysis were
performed using the same methodology for all three conditions.

The RPPA data for each condition were then analyzed for protein–protein in-
teractions using the GGM method. The topology maps for the ovarian cancer cells
for the A, B and C tissue culture conditions are shown in Figure 12(a), (b) and (c)
(provided in the supplementary material [Baladandayuthapani et al. (2014)]), re-
spectively. We then performed comparisons of the results based on each of the
three conditions in order to identify protein topology networks that were similar
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and different between each of the tissue culture conditions. As conditions A (me-
dia replete with growth factor) and B (media starved of growth factor) both rep-
resented steady-state tissue culture conditions, we initially compared these protein
networks using a Bayesian FDR of 10%. The networks that are shared between
the two conditions are shown in Figure 4(a); the differential associations are pre-
sented in Figure 4(d). We detected 21 significant protein interactions that were
common for conditions A and B, and 4 interactions that were different. Thus, the
overwhelming majority of protein–protein associations that were observed were
maintained regardless of the presence or absence of growth factors (serum) in the
tissue culture media. We then compared the significant relationships identified for
condition B (media starved of growth factor) versus condition C (media starved,
then acutely stimulated with growth factor). This comparison showed increased
discordance of results, as we detected 20 associations that were common for con-
ditions B and C [Figure 4(b)], but 11 associations that differed significantly [Fig-
ure 4(e)]. Similarly, the comparison of networks between the A and C conditions
identified 22 shared protein interactions [Figure 4(c)] and 12 differential inter-
actions [Figure 4(f)]. Of the differential interactions noted for the comparisons
of conditions B versus C and A versus C, only 2 were observed in both com-
parisons (c-KIT and P38; VEGFR2 and MAPK.pT202.Y204). Neither of these
2 relationships was among the differential protein interactions in the analysis of
condition A versus condition B. Of the 4 relationships that differed in the compar-
ison of condition A versus condition B, 3 of the relationships were also identified
as differing significantly when comparing condition B versus condition C (eIF4E
and P38.pT180.Y182; c-Kit and PARP.cleaved; PARP.cleaved and ER.alpha), and
the fourth differed significantly for the comparison of condition A versus con-
dition C (AMPK.pT172 and eIF4E). This analysis suggests that protein–protein
relationships are largely maintained under steady-state tissue culture conditions.
However, these interactions may differ significantly in the setting of acute growth
factor stimulation. We have included the explicit comparisons of our inferred net-
works with the prior PI3K-AKT pathway in Figures 13–16 in the supplementary
material [Baladandayuthapani et al. (2014)]. The posterior means of the covari-
ance matrices corresponding to the networks are also now plotted as heat maps in
Figures 17–20 in the supplementary material [Baladandayuthapani et al. (2014)].
The exact posterior mean estimates are also provided as excel files downloadable
from the corresponding authors’ website at http://odin.mdacc.tmc.edu/~vbaladan/
Veera_Home_Page/Software_files/Covariance_Matrices.xlsx.

5. Discussion and conclusions. We present methodology to model sparse
graphical models in the presence of class variables in high-dimensional settings,
with a particular focus on protein signaling networks. Our methods allow for bor-
rowing strength between classes to assess differential and common networks be-
tween the classes of cancer/tumor conditions. In addition, our method allows for
the effective use of prior information about signaling pathways that is already

http://odin.mdacc.tmc.edu/~vbaladan/Veera_Home_Page/Software_files/Covariance_Matrices.xlsx
http://odin.mdacc.tmc.edu/~vbaladan/Veera_Home_Page/Software_files/Covariance_Matrices.xlsx
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(a) Conserved network of Ovary A and Ovary B

(b) Conserved network of Ovary B and Ovary C

(c) Conserved network of Ovary A and Ovary C

(d) Differential network (e) Differential network (f) Differential network
of Ovary A and Ovary B of Ovary B and Ovary C of Ovary A and Ovary C

FIG. 4. Conserved and differential networks for the proteins in the PI3K-AKT kinase pathway
between ovarian cancer cell lines grown in three different tissue culture conditions: A, B and C (see
main text) computed using a Bayesian FDR set to 0.10. In the conserved network [(a)–(c)], the red
(green) lines between the proteins indicate a negative (positive) correlation between the proteins. In
the differential network [(d)–(f)], the blue lines between the proteins indicate a relationship that was
significant in the ovarian cancer cell lines but not in the breast cancer cell lines; the orange lines
between the proteins indicate a relationship in the breast cancer cell lines but not in the ovarian
cancer cell lines. The thickness of the edges corresponds to the strength of the associations, with
stronger associations having greater thickness.
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available to us from various sources to help in decoding the complex protein net-
works. Improved understanding of the differential networks can be crucial for biol-
ogists when designing their experiments, allowing them to concentrate on the most
important factors that distinguish tumor types. Such information may also help to
narrow the drug targets for specific types of cancer. Knowledge of the common
networks can be used to develop a drug for two different types of cancer that tar-
gets proteins that are active in both types. Data on the differential edges may be
used as a good screening analysis, allowing researchers to eliminate unimportant
proteins and concentrate on effective proteins when designing advanced patient-
based translational experiments.

In this article we focused on undirected graphical models and not on directed
(casual) networks. Directed graphical models, such as Bayesian networks and di-
rected acyclic graphs (DAGs), have explicit causal modeling goals that require
further modeling assumptions. In our formulation, we provide a natural and useful
technical step in the identification of high posterior probability undirected graph-
ical models, assuming a random sampling paradigm. In addition, our models in-
fer network topologies that assume a steady-state network. Some of the protein
networks may be dependent on causal relations between the nodes, which would
require us to model data over time to infer the complete dynamics of the network.
We leave this task for future consideration.

With regard to computation time, our MCMC chains are fairly fast for high-
dimensional data sets such as those we considered, with a 5000-iteration run taking
about 15 minutes. The source code, in MATLAB (The Mathworks, Inc., Natick,
MA), takes advantage of several matrix optimizations available in that language
environment. The computationally-involved step is the imposition of a positive
definiteness on the correlation matrix. Optimizations to the code have been made
by porting some functions into C. The software is available by contacting the first
author.

Our main motivation for this work was to provide a constructive framework to
conduct classification using sparse graphical methods that incorporate prior infor-
mation. We assume parametric structures (likelihood/priors) throughout for ease of
interpretation and computation, and our results indicate that this performs reason-
ably well on both real and simulated data sets. Extending to nonparametric settings
would be an excellent avenue of future research that we would wish to undertake.

Acknowledgments. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Cancer Institute or
the National Institutes of Health.

SUPPLEMENTARY MATERIAL

Supplement to “Bayesian sparse graphical models for classification with
application to protein expression data” (DOI: 10.1214/14-AOAS722SUPP;
.pdf). The supplementary material includes Appendix A: Positive definiteness con-
straint, Appendix B: Full conditional distributions and Appendix C: Simulations.

http://dx.doi.org/10.1214/14-AOAS722SUPP
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