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This manuscript uses machine learning techniques to exploit baseball
pitchers’ decision making, so-called “Baseball IQ,” by modeling the at-bat in-
formation, pitch selection and counts, as a Markov Decision Process (MDP).
Each state of the MDP models the pitcher’s current pitch selection in a
Markovian fashion, conditional on the information immediately prior to mak-
ing the current pitch. This includes the count prior to the previous pitch, his
ensuing pitch selection, the batter’s ensuing action and the result of the pitch.

The necessary Markovian probabilities can be estimated by the relevant
observed conditional proportions in MLB pitch-by-pitch game data. These
probabilities could be pitcher-specific, using only the data from one pitcher,
or general, using the data from a collection of pitchers.

Optimal batting strategies against these estimated conditional distribu-
tions of pitch selection can be ascertained by Value Iteration. Optimal batting
strategies against a pitcher-specific conditional distribution can be contrasted
to those calculated from the general conditional distributions associated with
a collection of pitchers.

In this manuscript, a single season of MLB data is used to calculate the
conditional distributions to find optimal pitcher-specific and general (against
a collection of pitchers) batting strategies. These strategies are subsequently
evaluated by conditional distributions calculated from a different season for
the same pitchers. Thus, the batting strategies are conceptually tested via a
collection of simulated games, a “mock season,” governed by distributions
not used to create the strategies. (Simulation is not needed, as exact calcula-
tions are available.)

Instances where the pitcher-specific batting strategy outperforms the gen-
eral batting strategy suggests that the pitcher is exploitable—knowledge of
the conditional distributions of their pitch-making decision process in a dif-
ferent season yielded a strategy that worked better in a new season than a gen-
eral batting strategy built on a population of pitchers. A permutation-based
test of exploitability of the collection of pitchers is given and evaluated under
two sets of assumptions.

To show the practical utility of the approach, we introduce a spa-
tial component that classifies each pitcher’s pitch-types using a batter-
parameterized spatial trajectory for each pitch. We found that heuristically
labeled “nonelite” batters benefit from using the exploited pitchers’ pitcher-
specific strategies, whereas (also heuristically labeled) “elite” players do not.
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1. Introduction.

“Good pitching will always stop good hitting and vice-versa.”

—Casey Stengel

Getting a hit off of a major league pitcher is one of the hardest tasks in all
of sports. Consider the fact that a batter in possession of detailed knowledge of
a pitcher’s processes for determining pitches to throw would have a large advantage
for exploiting that pitcher to get on base [Stallings, Bennett and American Base-
ball Coaches Association (2003)]. Pitchers apparently reveal an enormous amount
of information regarding their behaviour through their historical game data [Bickel
(2009)]. However, making effective use of this data is challenging.

This manuscript uses statistical and machine learning techniques to: (i) rep-
resent specific pitcher and general pitching behaviour by Markov processes
whose transition probabilities are estimated, (ii) generate optimal batting strate-
gies against these processes, both in the general and pitcher-specific sense, (iii)
evaluate those strategies on data not used in their creation, (iv) investigate the im-
plication of the strategies on pitcher exploitability, and (v) establish the viability
of the use of algorithmically/empirically-derived batting strategies in real-world
settings. These goals are accomplished by a detailed analysis of two seasons of US
Major League Baseball pitch-by-pitch data.

Parsimony assumptions are necessary to appropriately represent a pitcher’s be-
haviour. For each pitcher, it is assumed that their pitch behaviour is stochastic and
governed by one-step Markovian assumptions on the pitch count. Specifically, each
of the twelve unique nonterminal states of the pitch count are modeled as a Markov
process. It is further assumed that the relevant transition probabilities can be es-
timated by data of observed pitch selections at the twelve unique pitch counts. It
should be noted that the transition could be estimated for a particular pitcher based
on their historical data, or historical data for a representative collection of pitchers
to investigate general pitching behaviour.

It is herein demonstrated that a pitcher’s decisions can be exploited by a data-
informed batting strategy that takes advantage of their mistakes at each pitch count
in the at-bat. To elaborate, if indeed a pitcher’s behaviour is well modeled by a
Markov process on the pitch count, a batter informed of the relevant transition
probabilities is presented with a Markov Decision Process (MDP) to swing or stay
at a given pitch count. Optimal batting strategies for MDPs can be found by a
Reinforcement Learning (RL) algorithm. RL is a subset of artificial intelligence
for finding (Value Iteration) and evaluating (Policy Evaluation) optimal strategies
in stochastic settings governed by Markov processes. It has been used success-
fully in sports gamesmanship, via the study of offensive play calling in American
football [Patek and Bertsekas (1996)]; see Section 5.3.3 for further discussion.
The RL Value Iteration algorithm applied to the pitcher-specific Markov transition
probabilities yields a pitcher-specific batting strategy. In the event that the Markov
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FIG. 1. A schematic of the Reinforcement Learning Value Iteration and Policy Evaluation analysis
of two seasons of MLB data.

transition probabilities were estimated from a representative collection of pitchers,
a general optimal batting strategy would result from RL Value Iteration.

An important component of the development of optimal batting strategy is their
evaluation. To this end, RL Policy Evaluation is used to investigate the perfor-
mance of batting strategies on pitcher-specific and general Markov transition prob-
abilities estimated from data not used in the RL Value Iteration algorithm to de-
velop the strategies. A schematic of the analysis pipeline is given in Figure 1.

In addition to evaluating the batting strategies on new data, comparison of the
performance of the pitcher-specific and general batting strategies yields important
information on the utility of an optimal, data-informed batting strategy against a
specific pitcher. To this point, a pitcher has been exploited if Policy Evaluation
suggests that the pitcher-specific optimal batting strategy against them is superior
to the general optimal batting strategy, with their difference or ratio estimating the
degree of exploitability. The term “exploited” is used in the sense that an opposing
batter would be well served in carefully studying that pitcher’s historical data,
rather than executing a general strategy.

Given this framework, it is possible to investigate hypotheses on general pitcher
exploitability using permutation tests. However, the nature of the tests requires as-
sumptions on the direction of the alternative. Under the assumption that all pitchers
are not equally exploitable, the hypothesis that pitchers can be exploited more than
50% of the time can be investigated. This hypothesis was not rejected at a 5% error
rate. Under the assumption that all pitchers are equally exploitable, the hypothe-
sis was rejected. It is our opinion that the assumption of unequal exploitability is
better suited for baseball’s at-bat setting (see Section 2.4). Thus, this manuscript
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is the first to provide statistical evidence in support of strategizing against specific
pitchers instead of a group of pitchers.

To highlight the utility of an optimal pitcher-specific batting strategy for an
exploitable pitcher, a data-driven validation was conceived. This validation asso-
ciates spatial trajectories with the pitch-type that was employed. The spatial com-
ponent is a classifier that estimates the pitch-type of a batter-parameterized spa-
tial trajectory after training over the respective pitcher’s actual pitch trajectories.
The estimated pitch-type selects the batting action from the exploited pitcher’s
pitcher-specific batting strategy (Section 4.2; the schematic diagram outlining this
process is provided in Figure 4). The simulation therefore uses the spatial and
strategic component to realistically simulate a batter’s performance when facing
an exploited pitcher. The batter’s actual and simulated statistics when facing the
respective pitcher are then compared using typical baseball statistics.

It was found that heuristically-labeled “elite” batters’ simulated statistics are
worse than their actual statistics. However, it was also found that the (also
heuristically-labeled) “nonelite”2 batters’ simulated statistics were greatly im-
proved from their actual statistics. The simulation results suggest that an exploited
pitcher’s pitcher-specific strategies are useful for nonelite batters.

The manuscript is laid out as follows: The section immediately following this
paragraph provides a very brief demonstration of Reinforcement Learning algo-
rithms to help stimulate understanding, Section 2 discusses the strategic compo-
nent, which applies Reinforcement Learning algorithms to Markov processes to
compute and evaluate the respective batting strategies, and Section 3 discusses the
spatial component, which simulates a specific batter’s performance using an ex-
ploited pitcher’s pitcher-specific batting strategy. Section 4 provides the method-
ology used to produce the results given in Section 5.

Reinforcement Learning tutorial. Reinforcement Learning focuses on the
problem of decision-making facing uncertainty, which are settings where the
decision-maker (agent) interacts with a new, or unfamiliar, environment. The agent
continually interacts with the environment by selecting actions, where the environ-
ment then responds to these actions and presents new scenarios to the agent [Sutton
and Barto (1998)]. This environment also provides rewards, which are numerical
values that act as feedback for the action selected by the agent in the environment.
At time-unit t, the agent is given the environment’s state st ∈ S , and selects action
at ∈ A(st ), where A(st ) is the set of all possible actions that can be taken at state
st . Selecting this action increments the time-unit, giving the agent a reward of rt+1
and also causing it to transition to state st+1. Reinforcement Learning methods
focus on how the agent changes its decision-making as a consequence of its exper-
iment in the respective environment. The agent’s goal is to use its knowledge of the

2In our study, nonelite batters are excellent players, some having participated in the MLB All-Star
game.
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FIG. 2. GridWorld. The values in the right grid are determined using Policy Evaluation with a
policy that randomly selects one of the four actions at each state. Reprinted with permission from
Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, published by The
MIT Press.

environment to maximize its reward over the long run. Specifying the environment
therefore defines an instance of the Reinforcement Learning problem [Sutton and
Barto (1998)] that can be studied further.

GridWorld (Figure 2) is a canonical example that illustrates how Reinforcement
Learning algorithms can be applied to various settings. In this example, there are
four equiprobable actions that can be taken at each square (state): left, right, up and
down, where each action is selected at random Any action taken at either square A
or B yields a reward of +10 and +5, respectively, and transports the user to square
A′ or B′, respectively. For all other squares, a reward of 0 is given for actions that
do not result in falling off the grid, where the latter outcome results in a reward
of −1.

The negative values in the lower parts of the grid demonstrate that the expected
reward of square A is below its immediate reward because after we are transported
to square A′, we are likely to fall off the grid. Conversely, the expected reward
of square B is higher than its immediate reward because after we are transported
to square B′, the possibility of running off the grid is compensated for by the
possibility of running into square A or B [Sutton and Barto (1998)].

Employing Reinforcement Learning algorithms in various real-world settings
allows us to “balance” the immediate and future rewards afforded by the outcomes
at each state with their respective probabilities. This approach enables the com-
putation of a sequence of actions, or policy, that maximize the immediate reward
while considering the consequences of these actions.

2. Strategic component—Reinforcement Learning in baseball (RLIB).

2.1. Markov processes. Let {X(t)} be a Markov process with finite state space
S = {E1, . . . ,En} where the states represent pitch counts. We assume station-
ary transition probabilities. That is, pEk→Ej

= P(X(t) = Ej |X(t−1) = Ek) for
Ej ,Ek ∈ S is the same for all t [Feller (1968)]. Figure 3 displays the Markov
transition diagram omitting the absorbing states (hit, out and walk).
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FIG. 3. Our view of an at-bat as a Markov process, where each oval denotes the state {B,S} in the
at-bat, where B and S are the number of balls and strikes, respectively, arrows represent transitions,
and t is the time unit that is the number of pitches thrown in the respective at-bat. Asterisks denote
that some states at the respective time-unit are still valid transitions at higher time-units—that is, if
a batter fouls off a pitch at t = 3 in the {1,2} pitch count, they will still be in this state at t = 4. We
omit the terminal (absorbing) states for neatness.

We define optimal policies as a set of actions that maximize the expected reward
at every state in a Markov process. Conditioning on a batter’s action at a state
yields the probability distribution for the immediate and future state. Since the
at-bat always starts from the s0 = {0,0} state, the long-term reward is defined as

J ∗(s0) = max
π={u0,...,uT }

E

{
T∑

t=0

g
(
st , u

t , st+1
)∣∣∣s0 = {0,0}, π

}
,(1)

where:

• {st } is the sequence of states, or pitch counts, in the state space S visited by
the batter for the respective at-bat. We define the set of terminal states—that is,
states that conclude the at-bat—as E = {O,S,D,T,HR,W} ⊂ S , where O, S,
D, T, HR, W are abbreviations for Out, Single, Double, Triple, Home Run and
Walk, respectively.

• π = {u0, . . . , uT } is the best batting strategy that contains the batting actions
that maximize the expected reward of every state. Since the batter can Swing or
Stand at each state, it follows that u = Swing or u = Stand for each nonterminal
state.
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FIG. 4. Illustration of the two-stage process of computing and evaluating the batting strategy that
is computed over the input training data. This strategy is then given as input, along with the test
data’s transition probability matrix P TEST, to the Policy Evaluation algorithm, which outputs the
expected rewards for each state when following batting strategy π .

• g(st , u
t , st+1) is the reward function whose output reflects the batter’s prefer-

ence of transitioning to state st+1 when selecting the best batting action ut from
state st . The reward function used in our study is

g(i, u, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if j = {O} or j ∈ S ∩ Ec,

1, if j = {W} and u = Stand,

2, if j = {S} and u = Swing,

3, if j = {D} and u = Swing,

4, if j = {T} and u = Swing,

5, if j = {HR} and u = Swing

∀i /∈ E .

Further information on our formulation of the reward function can be found in
Section 5.3.1.

Equation (1) can be viewed as the maximized expected reward of state {0,0}
when following batting strategy π , which is comprised of actions that maximize
the expected reward over all of the at-bats {st } given as input [Bertsekas and Tsit-
siklis (1996)].

To find the batting actions that comprise the best batting strategy, we find the
batting action u that satisfies the optimal expected reward function for state i

[Bertsekas and Tsitsiklis (1996)]:

J ∗(i) = max
u∈U

[∑
j∈S

P TRAINING
u (i, j)

(
g(i, u, j) + J ∗(j)

)] ∀i ∈ S ∩ Ec,(2)

where P TRAINING
u (i, j) is an estimated probability of transitioning from state i to j

when selecting batting action u on the pitch-by-pitch data and J ∗(i) is the max-
imized expected reward of state i when selecting the action u that achieves this
maximum.
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Algorithm 2.1: VALUE ITERATION(P TRAINING, g,S,U )

repeat
� = 0
for each i ∈ S ∩ Ec

do
v ← J (i)

J (i) ← maxu

∑
j P TRAINING

u (i, j)[g(i, u, j) + J (j)]
� ← max(�, |v − J (i)|)

until (� < ε)

output (deterministic policy π = {u0, . . . , un−1})
FIG. 5. The Value Iteration algorithm outputs the batting strategy π that maximizes the expectation
at each state over the input data. Reprinted with permission from Richard S. Sutton and Andrew G.
Barto, Reinforcement Learning: An Introduction, published by The MIT Press.

The Value Iteration algorithm, shown in Figure 5, solves for the batting ac-
tions that satisfy equation (2). Intuitively, the algorithm keeps iterating until the
state’s reward function is close to its optimal reward function J ∗, where in the
limit J ∗ = limk→∞ J k(i) ∀i ∈ S [Patek and Bertsekas (1996)]. The algorithm ter-
minates upon satisfying the convergence criterion � < ε, where ε = 2.22 × 10−16

is the machine-epsilon predefined in the MATLAB programming language; this
epsilon ensures that the reward functions of each state have approximately 15–16
digits of precision.

The Policy Evaluation algorithm, shown in Figure 6, uses the best batting strat-
egy π on a different season of the respective pitcher’s pitch-by-pitch data to calcu-
late the expected reward of each state in the at-bat, given by

Jπ(i) = ∑
j∈S

P TEST
π(i) (i, j)

[
g
(
i, π(i), j

) + Jπ(j)
] ∀i ∈ S ∩ Ec,(3)

where Jπ(i) is the expected reward of state i when following the batting strat-
egy π .

The transition probability matrices estimated via the training and test data, rep-
resented by P TRAINING

u (i, j) and P TEST
u (i, j) in equations (2) and (3), respectively,

are the transition probabilities used by Value Iteration and Policy Evaluation to
compute and evaluate, respectively, the best batting strategy, π . The batting strate-
gies are estimated against probability transitions matrices computed from either
a population of at-bats for one season of a single pitcher’s data (pitcher-specific
batting strategy) or one season of a population of pitchers’ data (general batting
strategy; see Section 4.1).

Policy Evaluation therefore allows a quantitative comparison of the pitcher-
specific and general batting strategies, πp and πg , on the same transition prob-
abilities representing the pitcher’s decision-making. Equation (3) shows that the
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Algorithm 2.2: POLICY EVALUATION(P TEST, g,S, π )

repeat
� = 0
for each i ∈ S ∩ Ec

do
v ← J (i)

J (i) ← ∑
j P TEST

π(i) (i, j)[g(i,π(i), j) + J (j)]
� ← max(�, |v − J (i)|)

until (� < ε)

output (Jπ)

FIG. 6. The Policy Evaluation algorithm, that calculates the expected rewards of every state when
using the batting strategy π , given by Jπ ∈ R

n, on the input data. Reprinted with permission from
Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, published by The
MIT Press.

{0,0} state’s expected reward, denoted by J ({0,0}), requires the expected re-
ward of every other state to be calculated first. It follows that J ({0,0}) is the
expected reward of the entire at-bat. Thus, a pitcher is exploited if and only if
Jπp

({0,0}) ≥ Jπg
({0,0}) [Sutton and Barto (1998)] (see Section 2.4).

2.2. Models. The generality of the Markov process allows us to propose mod-
els with various degrees of resolution, which depends on the number of phenomena
considered at each state. Below we outline two models of information resolution
as useful starting points.

2.2.1. Simple RLIB (SRLIB). Initially, we represented a pitcher’s decisions by
conditioning the pitch outcome (reflected by the future pitch count) on the bat-
ter’s action at the previous pitch count. SRLIB therefore has n = |SS ∩ Ec| = 12
nonterminal states

SS = {{0,0}, {1,0}, {2,0}, {3,0}, {0,1}, {0,2}, {1,1}, {1,2}, {2,1}, {2,2},
{3,1}, {3,2},O,S,D,T,HR,W

}
.

2.2.2. Complex RLIB (CRLIB). CRLIB conditions the pitcher’s selected
pitch-type at the current pitch count on both the pitch-type and batting actions
at the previous pitch count.

We observed that the MLB GameDay system gave as many as 8 pitch-types for
one pitcher. We therefore generalized pitch-types to four categories: fastball-type,
curveball/changeup, sinking/sliding, and knuckleball/unknown pitches. Assuming
the set of pitch-types is T , our abstraction admits at most four pitch-types for every
pitcher—that is, |T | ≤ 4.
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The inclusion of pitch-types results in state space SC = {SS ∩ Ec} × T ∪ E ,
where every nonterminal state incorporates the four pitch-types at each pitch count,
giving n = |{SS ∩ Ec} × T | = 48 nonterminal states,

SC = {{0,0}, {1,0}, {2,0}, {3,0}, {0,1}, {0,2}, {1,1}, {1,2}, {2,1}, {2,2},
{3,1}, {3,2}}

× T ∪ E .

We represent the expected reward of the {0,0} state as the weighted average
over the expected rewards of the four pitch types associated with the {0,0} state:

Jπ ({0,0}) = 1

K

∑
ti∈T

KtiJ
π ({0,0} × ti

)
,

where Kti is the number of times pitch-type ti was thrown in the test data and K

is the total number of pitches in the test data.

2.3. Illustration of batting strategies. We now illustrate the batting strategies
that are produced by either SRLIB or CRLIB, respectively. As shown in Figure 7,
SRLIB and CRLIB have n-dimensional and (n×4)-dimensional batting strategies,
respectively. The action at each state is represented by a binary value correspond-
ing to Stand (0) and Swing (1).

For the strategies given in Figure 7, CRLIB/SRLIB’s pitcher-specific batting
strategy exploited Roy Halladay on the 2010 test data. However, only CRLIB ex-
ploits Halladay on the 2008 test data, presumably because it incorporates informa-
tion about his pitch selection, as it is believed that pitchers often rely on their “best
pitches” in specific pitch counts. For example: If Halladay throws a fastball in the
{2,2} pitch count, π

p
SRLIB selects the batting action u = Stand, whereas π

p
CRLIB

selects u = Swing. In comparison to the SRLIB model, we see that the inclusion
of pitch type gives the CRLIB model an enriched representation that can improve
a batter’s opportunity of reaching base.

2.4. Comparing an “intuitive” and general batting strategy. We show that
the general batting strategy is a more competitive baseline performance mea-
sure than an intuitive batting strategy. This intuitive batting strategy selects
the action Swing at states {1,0}, {2,0}, {3,0}, {2,1}, {3,1}, and Stand in states
{0,0}, {1,1}, {1,2}, {2,2}, {3,2}, {0,1}, {0,2}. In other words, the intuitive batting
strategy reflects the intuition that the batter should only swing in a batter’s count;3

we show that these types of batting strategies are inferior to statistically computed
ones, such as the general batting strategy.

3Please see Appendix for baseball terminology.
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π
p
SRLIB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{0,0}
{1,0}
{2,0}
{3,0}
{0,1}
{0,2}
{1,1}
{1,2}
{2,1}
{2,2}
{3,1}
{3,2}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

0

0

0

0

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

π
p
CRLIB =

⎡
⎢⎢⎢⎣

[ 0 1 0 0 0 1 0 0 0 1 0 0 ]�

[null]�
[ 0 0 1 1 1 0 0 0 1 0 1 0 ]�

[null]�

⎤
⎥⎥⎥⎦

π
g
SRLIB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{0,0}
{1,0}
{2,0}
{3,0}
{0,1}
{0,2}
{1,1}
{1,2}
{2,1}
{2,2}
{3,1}
{3,2}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

1

0

0

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

π
g
CRLIB =

⎡
⎢⎢⎢⎣

[ 0 0 1 0 1 0 1 0 1 0 1 1 ]�

[ 0 0 0 1 0 0 1 1 1 0 1 1 ]�

[ 0 0 0 0 0 0 1 0 1 1 1 1 ]�

[null]�

⎤
⎥⎥⎥⎦

FIG. 7. The pitcher-specific and general strategies, denoted by πp and πg , respectively, computed
on SRLIB and CRLIB for the 2009 season. CRLIB’s pitcher-specific batting strategy for Roy Halladay
had an empty second and fourth row because the MLB GameDay system reported he did not throw
any Sinking/sliding or Knuckleball/unknown type pitches in the training data; a similar argument
holds for the general batting strategy’s fourth row.

After performing Policy Evaluation for both batting strategies, we observed that
the general batting strategy outperformed the intuitive batting strategy 146 out of
150 times. The general batting strategy’s dominant performance justifies its selec-
tion as the competitive baseline performance measure. Thus, we cannot assume
that the pitcher-specific batting strategy will perform better than, or even equal to,
the general batting strategy when performing Policy Evaluation on the respective
pitcher’s test data.

Since each pitcher’s “best pitch(es)” can vary, it follows that the probability dis-
tributions over future states from the current state will also vary, especially in states
with a batter’s count. This is a consequence of the uniqueness of each pitcher’s be-
haviour, which is reflected through their pitch selection at each state in the at-bat,
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and thereby quantified in their respective transition probabilities. This is personi-
fied by R. A. Dickey, as he only has one “best pitch” (knuckleball) and throws other
pitch types to make his behaviour less predictable. Thus, when Dickey’s knuckle-
ball is ineffective, an optimal policy will recommend swinging at every nonknuckle
pitch, as it is computed over data that shows an improved outcome for the batter.
In contrast, pitchers that consistently throw more than one pitch type for strikes,
such as Roy Halladay, are more difficult to exploit via the pitcher-specific batting
strategy because the improved outcome in swinging at their “weaker” pitches is
marginal in comparison to pitchers that consistently throw fewer pitch types for
strikes. Given that the pitcher-specific and general batting strategies are computed
over different populations,4 and each at-bat contains information about the respec-
tive pitcher’s behaviour, it follows that pitchers are not equally susceptible to being
exploited in an empirical setting.

If the pitcher-specific batting strategy performs equal to the general batting
strategy, the competitiveness/dominance of the latter over intuitively-constructed
batting strategies ensures that the respective pitcher is still exploited because
the intuitive batting strategy can be viewed as the standard strategy that is em-
ployed in baseball. Let πi be the intuitive batting strategy and assume that the
pitcher-specific batting strategy performs equal to the general batting strategy.
By transitivity, Jπg

({0,0}) � Jπi
({0,0}), and Jπp

({0,0}) == Jπg
({0,0}), then

Jπp
({0,0}) � Jπi

({0,0}).

3. Spatial component. A spatial component is introduced to highlight the
utility of the exploited pitchers’ pitcher-specific batting strategies. The spatial com-
ponent associates the pitch-type based on the respective pitch’s spatial trajectory,
where this trajectory is parameterized specifically to the batter being simulated.
Thus, the spatial component predicts the pitch-type for the batter-parameterized
spatial trajectory given as input. This allows us to simulate a batter’s performance
when they use the exploited pitcher’s pitcher-specific batting strategy against the
respective pitcher (see Figure 9).

The spatial information for each pitch contains the three-dimensional acceler-
ation, velocity, starting and ending positions. This information is obtained from
the MLB GameDay system after it fits a quadratic polynomial to 27 instantaneous
images representing the pitch’s spatial trajectory. These pictures are taken by cam-
eras on opposite sides of the field. The MLB GameDay system therefore performs
a quadratic fit to the trajectory data.

There are two problems with this fit. First, acceleration is assumed to be con-
stant, which is certainly not true. Second, there exists a near-perfect correlation
between variables obtained from the fit (such as velocity and the end location of a
pitch) and the independent variable (acceleration) used to produce this fit. Figure 8

4Section 1, second last paragraph of page 2.
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FIG. 8. The actual (square) and predicted (circle) locations for Tim Lincecum’s pitches in the 2009
season, when performing OLS regression on break angle, initial velocity, and break length features
to predict the end location of each pitch. The rectangle in the center of the plot represents the strike
zone.

displays pitch locations along with predicted values from regression with velocity
or acceleration as predictors and location as the response.

We see that the quadratic fit severely limits the use of each pitch’s spatial trajec-
tory. To address this limitation, we use the instantaneous positions of every pitch
trajectory to predict the pitch type.

3.1. Batter-parameterized pitch identification. We add α-scaled noise, where
α is a batter-specific parameter, to the original spatial trajectory of each pitch
to represent the respective batter’s believed trajectories. This is achieved by first

FIG. 9. Illustrating our spatial model, where α is parameterized according to the batter, Ktraining
denotes the number of pitches in the respective pitcher’s training data, and 300 represents the
m = 100 three-dimensional points that describe the pitch trajectory. Here, the Learner is a quadratic
kernel Support Vector Machine (SVM).
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drawing independent, identically distributed noise from the uniform distribution
on the [−1,1] interval, which is then multiplied by the parameter α, and finally
added to the m evenly-spaced, three-dimensional, instantaneous positions of the
original (true) pitch trajectory.

For the batter’s believed trajectories to accurately represent their pitch-
identification ability, α is defined as the number of strikeouts divided by the num-
ber of plate appearances on the same year which the batting strategy is computed
on. Only considering strikeouts is justified by the fact that any recorded out from
putting the ball in play implies that a player identified the ball accurately enough
to achieve contact. In contrast, a batter that strikes out either failed to identify the
pitch as a strike or failed to establish contact with the ball. Thus, adding α-scaled
noise to original trajectory reproduces a batter’s believed trajectory.

The training data’s true trajectories are given as input to a Support Vector
Machine (SVM) [Vapnik (1998), Hastie, Tibshirani and Friedman (2009)] with
a quadratic kernel, where each trajectory’s m = 100 three-dimensional instanta-
neous positions form a single data point that has an associated pitch-type. The
SVM algorithm then computes a spatial classifier, which is composed of coeffi-
cients β = [β0, . . . , β300], that best separates the training data’s original trajecto-
ries according to pitch-type, usually with high accuracy.5

The spatial classifier allows pitch-type identification to be standardized across
batters, because the respective batter’s believed trajectory is only identified as the
correct pitch-type if it is similar to the original trajectory. If the believed trajectory
differs enough from the original trajectory, it will be identified as the incorrect
pitch-type; this is reflective of players with higher α values that strike out often.
We can therefore view the spatial classifier as an oracle.

4. Methods and evaluation.

4.1. Strategic component. For our evaluation, we use 3 years of pitch-by-pitch
data for 25 elite6 pitchers, as shown in Table 1. We evaluated the batting strate-
gies performance for all six unique combinations of the training and test data,
which gave a total of 25 × 6 = 150 pitcher-specific batting strategies. The data
was obtained from MLB’s GameDay system, which provided three complete sea-
sons of pitching data, containing the pitch outcome, pitch-type, number of balls
and strikes, and the batter’s actions. The technical details of the data collection
and formatting process, which is necessary before applying the Reinforcement
Learning algorithms, are provided in the supplement [Sidhu and Caffo (2014)].

Initially the general batting strategy was trained over all pitchers data for the
respective season, where it was observed that the general batting strategy out-
performed the pitcher-specific batting strategies on the respective season by a

5Training accuracies are provided in Table 2.
6We remind readers that our definition of elite is heuristically defined.
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TABLE 1
The annual statistics from the 2008, 2009 and 2010 seasons for the 25 pitchers used in our evaluation∗

2008 2009 2010

Player ERA WHIP W L IP ERA WHIP W L IP ERA WHIP W L IP

Roy Halladay 2.78 1.053 20 11 246.0 2.79 1.126 17 10 239.0 2.44 1.041 21 10 250.2
Cliff Lee 2.54 1.110 22 3 223.1 3.22 1.243 14 13 231.2 3.18 1.003 12 9 212.1
Cole Hamels 3.09 1.082 14 10 227.1 4.32 1.286 10 11 193.2 3.06 1.179 12 11 208.2
Jon Lester 3.21 1.274 16 6 210.1 3.41 1.230 15 8 203.1 3.25 1.202 19 9 208.0
Zack Greinke 3.47 1.275 13 10 202.1 2.16 1.073 16 8 229.1 4.17 1.245 10 14 220.0
Tim Lincecum 2.62 1.172 18 5 227.0 2.48 1.047 15 7 225.1 3.43 1.272 16 10 212.1
CC Sabathia 2.70 1.115 17 10 253.0 3.37 1.148 19 8 230.0 3.18 1.191 21 7 237.2
Johan Santana 2.53 1.148 16 7 234.1 3.13 1.212 13 9 166.2 2.98 1.170 11 9 199.0
Felix Hernandez 3.45 1.385 9 11 200.2 2.49 1.135 19 5 238.8 2.27 1.057 13 12 249.2
Chad Billingsley 3.14 1.336 16 10 200.2 4.03 1.319 12 11 196.1 3.57 1.278 12 11 191.2
Jered Weaver 4.33 1.285 11 10 176.2 3.75 1.242 16 8 211.0 3.01 1.074 13 12 224.1
Clayton Kershaw 4.26 1.495 5 5 107.2 2.79 1.229 8 8 171.0 2.91 1.179 13 10 204.1
Chris Carpenter 1.76 1.304 0 1 15.1 2.24 1.007 17 4 192.2 3.22 1.179 16 9 235.0
Matt Garza 3.70 1.240 11 9 184.2 3.95 1.261 8 12 203.0 3.91 1.251 15 10 204.2
Adam Wainwright 3.20 1.182 11 3 132.0 2.63 1.210 19 8 233.0 2.42 1.051 20 11 230.1
Ubaldo Jimenez 3.99 1.435 12 12 198.2 3.47 1.229 15 12 218.0 2.88 1.155 19 8 221.2
Matt Cain 3.76 1.364 8 14 217.2 2.89 1.181 14 8 217.2 3.14 1.084 13 11 223.1
Jonathan Sanchez 5.01 1.449 9 12 158.0 4.24 1.365 8 12 163.1 3.07 1.231 13 9 193.1
Roy Oswalt 3.54 1.179 17 10 208.2 4.12 1.241 8 6 181.1 2.76 1.025 13 13 211.2
Justin Verlander 4.84 1.403 11 17 201.0 3.45 1.175 19 9 240.0 3.37 1.163 18 9 224.1
Josh Johnson 3.61 1.351 7 1 87.1 3.23 1.158 15 5 209.0 2.30 1.105 11 6 183.2
John Danks 3.32 1.226 12 9 195.0 3.77 1.283 13 11 200.1 3.72 1.216 15 11 213.0
Edwin Jackson 4.42 1.505 14 11 183.1 3.62 1.262 13 9 214.0 4.47 1.395 10 12 209.1
Max Scherzer 3.05 1.232 0 4 56.0 4.12 1.344 9 11 170.1 3.50 1.247 12 11 195.2
Ted Lilly 4.09 1.226 17 9 204.2 3.10 1.056 12 9 177.0 3.62 1.079 10 12 193.2

∗Please see Appendix for baseball terminology.
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significant margin. In other words, training the general batting strategy over all
of the pitchers’ annual data led to invalidation of the hypothesis, regardless of
whether pitchers were equally exploitable. Given that the general batting strategy
was trained over a much larger data set than the pitcher-specific batting strategy,
we sought a way to standardize the training data used to compute the general bat-
ting strategy, which is described in the following paragraph. We acknowledge that
in real-world settings, each of the batting strategies should be trained over all avail-
able information, as this information improves the resolution and precision of the
probability estimates exploited by the batting strategy.

The size of the general batting strategy’s training data is approximately equal to
the average number of pitches thrown by the 25 pitchers in the respective season,
where every pitcher’s at-bats in this data set were randomly sampled from all of
their at-bats for the respective season. To ensure the general batting strategy’s train-
ing data is representative of all pitchers’ data for the respective season, sampling
terminates after adding an at-bat for which the total number of pitches exceeds the
proportion of pitches that should be contributed by the pitcher. For example, Roy
Halladay threw 3319 pitches in 2009, and all 25 pitchers threw a total of 80,879
pitches. Roy Halladay therefore contributes �0.04103 × 3235.16� = 133 pitches
to the data set. Repeating this process for all 25 pitchers 2009 data gives a data set
comprised of 3276 pitches.

To address the possibility that the aggregate data sample contains unrepresenta-
tive at-bats for pitcher(s), which would misrepresent the performance of the gen-
eral batting strategy, the aggregate data sample was independently constructed 10
times, where the general batting strategy was computed against each of the 10
(training) data samples. Thus, the general batting strategy performance is the av-
erage over the 10 general batting strategies’ expected rewards on the test data.

We evaluate the hypothesis under two different assumptions: all pitchers are
equally susceptible to being exploited, and all pitchers are not equally susceptible
to being exploited, where we believe the latter assumption is more relevant to the
real-world setting (see Section 2.4 for our explanation). The null hypothesis is
the same under either assumption, but the alternative hypothesis H1 is slightly
different:

H0: p = 1
2 . The pitcher-specific and general batting strategy are equally likely

to exploit the respective pitcher.
H1: p > 1

2 . The pitcher-specific batting strategy will perform:

strictly better than the general batting strategy more than 50% of the time (as-
suming that pitchers are equally exploitable).
better than or equal to the general batting strategy more than 50% of the time
(assuming that pitchers are not equally exploitable).
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For both hypotheses, the p-value calculation is given by

P(X > M) =
150∑

i=M+1

(
150
i

)
pi(1 − p)150−i ,

where M is the number of pitcher-specific batting strategies that exploit the respec-
tive pitcher(s). Under the assumption that the pitchers are equally exploitable, H0
could not be rejected; when assuming that pitchers are not equally exploitable, H0
was rejected only for the CRLIB model (P(X > M) = 3e–2, M = 87).

When Policy Evaluation is performed on the pitcher-specific or general batting
strategy, the pitch-type thrown at the current pitch count is given before select-
ing the batting action. It follows that Policy Evaluation implicitly assumes that
the pitch-types are always identified correctly. This was a desirable assumption
because it only considers the strategic aspect of the at-bat when calculating the ex-
pected rewards for the respective strategy. It follows that the hypothesis evaluation
is completely independent of the batters used in the evaluation.

4.2. Simulating batting strategies with the spatial component. We define the
chance threshold as the proportion of the majority pitch-type thrown in the training
data, which serves as a baseline for a batter’s pitch-type identification ability. We
only simulate batters whose believed trajectories from the test data are classified
with an accuracy above the chance threshold. This stipulation reflects our require-
ment that a batter must be able to identify pitch-types better than guessing the
majority pitch-type. Table 2 provides the classification accuracies for the batters
included in our simulation.

We use the spatial component to evaluate twenty prominent batters. Among
these batters, ten are considered elite and ten are considered to be nonelite. We
simulate each batter’s performance against an exploited pitcher when using the re-
spective pitcher-specific batting strategy. For every at-bat that is simulated, the
spatial component first predicts the pitch-type using the respective batter’s be-
lieved trajectory. Then, this predicted pitch-type is used with the current state to
select the appropriate action from the pitcher-specific batting strategy; see Fig-
ure 10.

After identifying the pitch-type and selecting the batting action, the condi-
tional distribution over the future states in the at-bat becomes determined. We
assign the future states “bin” lengths that are equal to the probability of tran-
sitioning to their respective states, where each bin is a disjoint subinterval on
[0,1]. We then generate a random value from the uniform distribution on the
[0,1] interval and select the future state whose subinterval contains this random
value. To ensure that the performance of the batter versus pitcher is representa-
tive of each state’s distribution over future states, every at-bat is simulated 100
times.
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TABLE 2
Evaluating the pitch identification ability on the 2009 (test) data, after training the spatial classifier on 2010 data. The accuracy is the number of

correctly predicted pitch-types on the respective batter’s believed trajectories from the 2009 season, after only observing the original trajectories from
2010. The chance threshold is provided to show “how much better” the batter is doing than blindly guessing one class∗

Accuracy

Batter Pitcher α Training Test Chance threshold # of PA (in 2009)

Miguel Cabrera Zack Greinke 0.1466 2776/2903 (95.63%) 3135/3376 (92.86%) 2005/3376 (59.39%) 14
Joey Votto Roy Oswalt 0.1929 3050/3374 (90.4%) 1926/3151 (61.12%) 1787/3151 (56.71%) 12
Joe Mauer Justin Verlander 0.0908 3545/3633 (97.58%) 3664/3794 (96.57%) 2553/3794 (67.29%) 14
Ichiro Suzuki CC Sabathia 0.1175 3154/3736 (84.42%) 3089/3985 (71.86%) 2405/3095 (54.99%) 11
Jose Bautista Jon Lester 0.1698 3047/3263 (93.38%) 2486/3397 (73.18%) 2423/3397 (71.33%) 11
Derek Jeter Matt Garza 0.1434 3201/3331 (96.1%) 3125/3288 (95.04%) 2336/3288 (71.05%) 14
Prince Fielder Matt Cain 0.1933 3265/3782 (95.85%) 3019/3177 (95.03%) 1986/3177 (62.51%) 9
Matt Holliday Clayton Kershaw 0.1378 3291/3328 (98.89%) 2872/3062 (93.79%) 2163/3062 (70.64%) 8
Ryan Howard Tim Lincecum 0.2532 3633/3870 (93.88%) 3047/3338 (91.28%) 1874/3338 (56.14%) 7
Mark Teixeira Cliff Lee 0.1713 3292/3427 (96.06%) 3134/3965 (79.04%) 2542/3965 (64.11%) 14
Nick Markakis Jon Lester 0.1311 3047/3263 (93.38%) 2475/3397 (72.86%) 2423/3397 (71.33%) 13
Carlos Gonzalez Matt Cain 0.2123 3265/3782 (95.85%) 3008/3177 (94.68%) 1986/3177 (62.51%) 7
Evan Longoria Roy Halladay 0.1876 3712/3782 (98.15%) 3146/3319 (94.79%) 2445/3319 (73.67%) 23
Brandon Philips Chris Carpenter 0.1208 2884/3420 (84.33%) 1438/2623 (54.82%) 1227/2623 (46.78%) 11
Manny Ramirez Jonathan Sanchez 0.1879 3420/3529 (96.91%) 2391/2724 (87.78%) 1866/2724 (68.50%) 11
Adrian Gonzalez Matt Cain 0.1645 3265/3782 (95.85%) 3042/3177 (95.75%) 1986/3177 (62.51%) 7
Carl Crawford CC Sabathia 0.1569 3154/3736 (84.42%) 3061/3985 (76.81%) 2405/3985 (60.35%) 13
Troy Tulowitzki Clayton Kershaw 0.1475 3291/3328 (98.89%) 2883/3062 (94.15%) 2163/3062 (70.64%) 14
Matt Kemp Jonathan Sanchez 0.2545 3420/3529 (96.91%) 2394/2724 (87.89%) 1866/2724 (68.50%) 11
Alex Rodriguez Roy Halladay 0.1647 3712/3782 (98.15%) 3147/3319 (94.82%) 2445/3319 (73.67%) 18

∗Please see Appendix for baseball terminology.
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FIG. 10. Illustrating the simulation for a batter using an exploited pitcher’s pitcher-specific batting
strategy. The spatial classifier’s predicted pitch-type is used to select the row that contains the batting
actions for the respective pitch-type, and the current pitch count is used to select the batting action
for this pitch-type.

5. Results.

5.1. Strategic component. The number of pitcher-specific batting strategies
that exploited the respective pitcher are given in Table 3. The raw results for SR-
LIB/CRLIB are given in Tables 4 and 5, respectively.

It is apparent that no relationship exists between the performance of the pitcher-
specific batting strategy and the train/test dataset pair that it was computed and
evaluated on. This shows that the exploited pitchers’ pitcher-specific batting strate-
gies do not rely on seasonal statistics from either the training or test data. Instead,
these batting strategies rely on the pitcher’s decision-making, which is presumably
reflected through the pitcher’s pitch selection at each pitch count. It follows that
these characteristics are not reflected in the respective pitcher’s seasonal statistics.

TABLE 3
The number of exploited pitchers using the respective train/test data partitions

Year of computed batting strategy

Model 2008 2009 2010

2009 2010 2008 2010 2008 2009
SRLIB 11 10 5 12 11 14
CRLIB 12 15 11 16 16 16
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TABLE 4

Values obtained from SRLIB after training on one year of data and testing on another. Superscripts πp,πg denote the expected reward from the {0,0}
state when following the pitcher-specific or general batting strategy. The bolded pitcher-specific batting strategies are batting strategies that exploit the

respective pitcher on the respective training and test dataset pair

Training on 2008 data Training on 2009 data Training on 2010 data

2009 2010 2008 2010 2008 2009

Player Jπg
Jπp

Jπg
Jπp

Jπg
Jπp

Jπg
Jπp

Jπg
Jπp

Jπg
Jπp

Roy Halladay 0.655 0.604 0.546 0.491 0.659 0.569 0.569 0.766 0.699 0.560 0.638 0.707
Cliff Lee 0.692 0.706 0.566 0.622 0.680 0.622 0.558 0.499 0.678 0.664 0.707 0.571
Cole Hamels 0.716 0.768 0.814 0.795 0.731 0.700 0.807 0.764 0.724 0.719 0.700 0.680
Jon Lester 0.713 0.764 0.876 0.847 0.742 0.737 0.831 0.718 0.739 0.741 0.710 0.709
Zack Greinke 0.642 0.608 0.747 0.835 0.795 0.688 0.739 0.719 0.824 0.836 0.607 0.672
Tim Lincecum 0.649 0.694 0.822 0.785 0.717 0.694 0.778 0.723 0.686 0.589 0.653 0.565
CC Sabathia 0.810 0.718 0.802 0.698 0.657 0.550 0.792 0.821 0.593 0.550 0.825 0.836
Johan Santana 0.785 0.862 0.773 0.703 0.680 0.694 0.774 0.838 0.651 0.773 0.744 0.852
Felix Hernandez 0.721 0.784 0.823 0.786 0.777 0.765 0.815 0.786 0.717 0.662 0.760 0.613
Chad Billingsley 0.802 0.865 0.788 0.812 0.750 0.790 0.792 0.812 0.752 0.785 0.792 0.860
Jered Weaver 0.860 0.841 0.691 0.734 0.762 0.770 0.704 0.711 0.770 0.759 0.883 0.840
Clayton Kershaw 0.738 0.719 0.716 0.667 0.909 1.125 0.710 0.691 0.996 0.800 0.757 0.837
Chris Carpenter 0.751 0.640 0.691 0.732 0.757 0.692 0.753 0.791 0.667 0.944 0.809 0.914
Matt Garza 0.827 0.792 0.794 0.794 0.725 0.622 0.779 0.834 0.692 0.622 0.797 0.880
Adam Wainwright 0.689 0.690 0.692 0.648 0.609 0.578 0.694 0.738 0.554 0.636 0.707 0.705
Ubaldo Jimenez 0.735 0.709 0.767 0.771 0.867 0.850 0.751 0.741 0.881 0.968 0.741 0.755
Matt Cain 0.753 0.878 0.665 0.610 0.828 0.897 0.693 0.610 0.815 0.854 0.755 0.774
Jonathan Sanchez 0.894 0.842 0.850 0.805 0.794 0.672 0.842 1.096 0.791 0.672 0.968 1.165
Roy Oswalt 0.710 0.639 0.787 0.750 0.876 0.667 0.777 0.651 1.022 0.967 0.687 0.666
Justin Verlander 0.769 0.763 0.757 0.758 0.883 0.758 0.758 0.755 0.930 0.914 0.758 0.776
Josh Johnson 0.683 0.661 0.673 0.701 0.716 0.691 0.689 0.755 0.658 0.691 0.684 0.764
John Danks 0.813 0.845 0.807 0.820 0.772 0.692 0.812 0.868 0.758 0.855 0.819 0.877
Edwin Jackson 0.916 1.053 0.854 0.725 0.948 0.928 0.840 0.802 0.987 0.930 0.966 0.929
Max Scherzer 0.843 0.707 0.794 0.732 0.854 0.728 0.789 0.804 0.847 0.899 0.868 0.774
Ted Lilly 0.714 0.568 0.740 0.666 0.774 0.770 0.689 0.613 0.792 0.780 0.708 0.690
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TABLE 5
Values obtained from CRLIB after training on one year of data and testing on another. Superscripts πp,πg denote the expected reward from the {0,0}
state when following the pitcher-specific or general batting strategy. The bolded pitcher-specific batting strategies are batting strategies that exploit the

respective pitcher on the respective training and test dataset pair

Training on 2008 data Training on 2009 data Training on 2010 data

2009 2010 2008 2010 2008 2009

Player Jπg
Jπp

Jπg
Jπp

Jπg
Jπp

Jπg
Jπp

Jπg
Jπp

Jπg
Jπp

Roy Halladay 0.644 0.594 0.603 0.585 0.544 0.575 0.642 0.784 0.538 0.558 0.568 0.765
Cliff Lee 0.564 0.534 0.532 0.595 0.600 0.562 0.522 0.478 0.627 0.700 0.536 0.557
Cole Hamels 0.644 0.701 0.622 0.664 0.540 0.537 0.595 0.484 0.526 0.634 0.653 0.617
Jon Lester 0.625 0.587 0.651 0.720 0.547 0.527 0.600 0.531 0.556 0.588 0.570 0.610
Zack Greinke 0.526 0.465 0.630 0.668 0.632 0.643 0.636 0.637 0.658 0.762 0.499 0.559
Tim Lincecum 0.531 0.555 0.657 0.497 0.590 0.650 0.565 0.580 0.578 0.583 0.543 0.545
CC Sabathia 0.602 0.543 0.604 0.604 0.514 0.657 0.546 0.659 0.458 0.581 0.588 0.615
Johan Santana 0.569 0.591 0.510 0.533 0.538 0.650 0.526 0.533 0.482 0.575 0.519 0.604
Felix Hernandez 0.580 0.607 0.523 0.564 0.602 0.551 0.529 0.565 0.526 0.504 0.577 0.556
Chad Billingsley 0.581 0.597 0.608 0.576 0.565 0.573 0.598 0.626 0.513 0.490 0.532 0.463
Jered Weaver 0.612 0.590 0.516 0.555 0.554 0.575 0.497 0.634 0.573 0.546 0.638 0.666
Clayton Kershaw 0.452 0.318 0.527 0.477 0.733 0.435 0.506 0.536 0.812 0.506 0.390 0.543
Chris Carpenter 0.542 0.508 0.638 0.506 0.459 0.000 0.686 0.882 0.288 0.269 0.597 0.640
Matt Garza 0.641 0.639 0.611 0.647 0.539 0.500 0.663 0.670 0.574 0.589 0.597 0.631
Adam Wainwright 0.608 0.590 0.595 0.527 0.620 0.785 0.589 0.588 0.464 0.504 0.601 0.546
Ubaldo Jimenez 0.547 0.636 0.529 0.565 0.597 0.690 0.497 0.632 0.604 0.560 0.594 0.597
Matt Cain 0.586 0.658 0.478 0.521 0.600 0.593 0.552 0.463 0.491 0.554 0.575 0.597
Jonathan Sanchez 0.730 0.730 0.585 0.543 0.590 0.478 0.558 0.773 0.593 0.447 0.729 0.861
Roy Oswalt 0.621 0.534 0.498 0.510 0.564 0.453 0.471 0.473 0.598 0.646 0.588 0.542
Justin Verlander 0.601 0.493 0.524 0.480 0.597 0.502 0.518 0.541 0.619 0.597 0.547 0.546
Josh Johnson 0.519 0.631 0.472 0.520 0.667 0.762 0.505 0.519 0.582 0.594 0.554 0.544
John Danks 0.682 0.749 0.537 0.492 0.518 0.512 0.502 0.478 0.502 0.538 0.642 0.656
Edwin Jackson 0.659 0.886 0.657 0.635 0.712 0.785 0.617 0.575 0.708 0.758 0.750 0.692
Max Scherzer 0.667 0.585 0.533 0.634 0.415 0.326 0.536 0.516 0.401 0.537 0.690 0.710
Ted Lilly 0.547 0.614 0.624 0.636 0.592 0.516 0.589 0.522 0.576 0.507 0.497 0.429
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The inclusion of pitch-types in the CRLIB model resulted in a larger number
of exploited pitchers than SRLIB. This suggests the degree to which a pitcher’s
pitch selection is influenced by the pitch count. We use the spatial component
to simulate the batter’s performance against an exploited pitcher when using the
pitcher-specific batting strategy, which illustrates utility of these batting strategies
in actual players’ decision-making.

5.2. Simulating batting strategies with the spatial component. We chose
Miguel Cabrera, Joey Votto, Joe Mauer, Ichiro Suzuki, Jose Bautista, Adrian Gon-
zalez, Carl Crawford, Matt Holliday, Manny Ramirez and Alex Rodriguez as our
elite batters, and Derek Jeter, Ryan Howard, Mark Teixeira, Nick Markakis, Bran-
don Philips, Carlos Gonzalez, Prince Fielder, Matt Kemp, Evan Longoria and Troy
Tulowitzki as our nonelite batters.

We used CRLIB’s strategies from the 2010/2009 train/test dataset pair, where
each batter’s α is calculated from the 2010 season, which is used to construct
the respective batter’s believed trajectories on the 2009 data (for the respective
pitcher). The actual and simulated statistics accrued by the elite batters are pro-
vided in Tables 6 and 7, respectively.

When comparing the elite batters’ simulated statistics to their actual statistics
on the 2009 test data’s at-bats, the simulated statistics do not show an appreciable
performance improvement in comparison to the actual statistics. We evaluated the
performance of the ten nonelite batters to preclude the possibility that an exploited
pitcher’s pitcher-specific batting strategy is detrimental to an elite hitter’s ability
to get on base. These nonelite batters are of course exceptional hitters, but are not
considered as elite at other aspects of the game. If following an exploited pitcher’s
pitcher-specific batting strategy is detrimental to elite hitters, then nonelite hitters
may still benefit.

TABLE 6
The actual statistics of the elite batters when facing the respective pitcher in the 2009 season∗

Batter Pitcher PA AB H BB SO AVG OBP SLG

Miguel Cabrera Zack Greinke 14 14 2 0 5 0.143 0.143 0.286
Joey Votto Roy Oswalt 12 12 4 0 2 0.333 0.333 0.500
Joe Mauer Justin Verlander 14 12 4 2 3 0.333 0.429 0.917
Ichiro Suzuki CC Sabathia 12 10 4 2 3 0.400 0.500 0.600
Jose Bautista Jon Lester 11 8 1 3 2 0.125 0.364 0.125
Adrian Gonzalez Matt Cain 7 7 6 0 1 0.857 0.857 1.714
Carl Crawford CC Sabathia 13 13 4 0 4 0.308 0.308 0.538
Matt Holliday Clayton Kershaw 8 5 2 3 2 0.400 0.625 1.025
Manny Ramirez Jonathan Sanchez 11 9 5 2 1 0.556 0.636 1.111
Alex Rodriguez Roy Halladay 18 17 6 1 2 0.353 0.389 0.471

∗Please see Appendix for baseball terminology.
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TABLE 7
Simulated performance of the elite batters on the 2009 season using the strategic and spatial

components, both of which are trained on 2010 data∗

Batter Pitcher AB H BB SO AVG OBP SLG

Miguel Cabrera Zack Greinke 911 295 0 93 0.324 0.324 0.538
Joey Votto Roy Oswalt 655 136 0 200 0.208 0.208 0.379
Joe Mauer Justin Verlander 723 169 0 127 0.234 0.234 0.390
Ichiro Suzuki CC Sabathia 775 237 0 138 0.306 0.306 0.452
Jose Bautista Jon Lester 701 198 0 181 0.282 0.282 0.413
Adrian Gonzalez Matt Cain 136 39 0 0 0.287 0.287 0.515
Carl Crawford CC Sabathia 978 280 0 231 0.286 0.286 0.457
Matt Holliday Clayton Kershaw 755 187 0 158 0.247 0.247 0.358
Manny Ramirez Jonathan Sanchez 635 321 0 93 0.506 0.506 0.624
Alex Rodriguez Roy Halladay 662 234 0 81 0.353 0.353 0.523

∗Please see Appendix for baseball terminology.

Comparing the nonelite batters’ actual statistics to their simulated statistics,
shown in Tables 8 and 9, respectively, the simulated statistics are superior to the
actual statistics for all of the batters. This suggests that the exploited pitchers’
pitcher-specific batting strategies are beneficial for nonelite players. Considering
that Joe Mauer, Ichiro Suzuki, Joey Votto, Manny Ramirez and Alex Rodriguez
are generational talents, it is possible that elite batters make atypical decisions that
only they can benefit from.

5.3. Discussion. Before discussing the limiting factors on the experiment, we
briefly mention that the batter’s decision-making can be exploited in a similar man-

TABLE 8
The actual statistics of the nonelite batters when facing the respective pitcher in the 2009 season∗

Batter Pitcher PA AB H BB SO AVG OBP SLG

Derek Jeter Matt Garza 14 14 3 0 2 0.214 0.214 0.357
Ryan Howard Tim Lincecum 7 7 2 0 4 0.286 0.286 0.429
Mark Teixeira Cliff Lee 14 13 2 0 3 0.154 0.214 0.231
Nick Markakis Jon Lester 13 13 1 0 6 0.077 0.077 0.077
Brandon Philips Chris Carpenter 11 10 1 3 2 0.100 0.182 0.282
Carlos Gonzalez Matt Cain 14 13 3 1 4 0.231 0.286 0.231
Troy Tulowitzki Clayton Kershaw 14 13 0 1 6 0.000 0.071 0.000
Matt Kemp Jonathan Sanchez 11 11 3 0 0 0.273 0.273 0.364
Evan Longoria Roy Halladay 23 17 4 4 4 0.235 0.348 0.235
Prince Fielder Matt Cain 9 7 1 1 1 0.143 0.222 0.286

∗Please see Appendix for baseball terminology.
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TABLE 9
Simulated performance of the nonelite batters on the 2009 season using the spatial and strategic

components, both of which are trained on 2010 data∗

Batter Pitcher AB H BB SO AVG OBP SLG

Derek Jeter Matt Garza 257 110 0 0 0.428 0.428 0.656
Ryan Howard Tim Lincecum 487 137 0 131 0.281 0.281 0.413
Mark Teixeira Cliff Lee 301 93 0 66 0.309 0.309 0.495
Nick Markakis Jon Lester 925 383 100 125 0.415 0.522 0.520
Brandon Philips Chris Carpenter 269 161 0 0 0.599 0.599 1.115
Carlos Gonzalez Matt Cain 283 86 0 59 0.304 0.304 0.435
Troy Tulowitzki Clayton Kershaw 1017 216 0 176 0.212 0.212 0.306
Matt Kemp Jonathan Sanchez 602 166 0 261 0.276 0.276 0.372
Evan Longoria Roy Halladay 1309 429 0 153 0.328 0.328 0.503
Prince Fielder Matt Cain 450 124 0 115 0.276 0.276 0.429

∗Please see Appendix for baseball terminology.

ner: Batter-specific behaviour could be modeled as a stochastic process. Reinforce-
ment Learning could then be used to obtain optimal pitching strategies against both
specific batters and the general population of batters. This idea is relegated to fu-
ture work.

5.3.1. Potential limitations: Strategic component. The reward function gives
a higher reward for a single than a walk, reflecting the idea that a batter should
not be indifferent between a walk and a single. This is because a single advances
baserunners that are not on first base, whereas a walk does not. We acknowledge
that there are cases, such as when there are no baserunners or one baserunner on
first base, where a single should be considered equivalent to a walk. However, it
is desirable to compute a batting strategy that maximizes a batter’s expectation of
reaching base while also trying to win the game; advancing runners is critical to
winning in baseball. In contrast, the slugging percentage (SLG) calculation can be
interpreted as a reward function that quantifies the batter’s preference of a single,
double, triple and home run as 1, 2, 3 and 4, while ignoring walks. Given that the
On-base Plus Slugging (OPS) metric is often used to measure a player’s ability,
but does not consider walks and hits as a function of the batting action, it was felt
that the reward function used in the study must address this shortcoming by giving
a reward of 1 for a walk; by doing so, all outcomes are considered by the same
reward function, where the lowest nonzero reward is a walk, which addresses the
shortcomings of OPS.

It is possible that performance can be improved by tuning the reward function
through Inverse Reinforcement Learning (IRL) [Abbeel and Ng (2004)], which
can recover the optimal reward function. One caveat with IRL, however, is that it
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requires a near-optimal policy to recover the optimal reward function, which sug-
gests that a good reward function is first required to develop a near-optimal pol-
icy. We therefore see an interdependence between the optimal policy and reward
function, where addressing this interdependence is a focal point of Reinforcement
Learning research.

Under the assumption that all pitchers are not equally exploitable, the results
show that strategizing against a specific pitcher is statistically better than strate-
gizing against a group of the pitchers more than 50% of the time; assuming that
pitchers are equally susceptible to being exploited by either strategy, the hypoth-
esis was rejected. However, we argue the statistically significant result under the
assumption of unequal susceptibility is stronger because each pitcher has unique
behaviour that is reflected in the transition probabilities in each state of the at-
bat (see Section 2.4 for further information). Given that only two fewer pitchers
are exploited under the assumption that pitchers are equally susceptible to being
exploited, which resulted in rejection of our hypothesis, it is possible that evaluat-
ing the hypothesis over a larger number of pitchers would result in a nonrejection
under both assumptions with the CRLIB model.

Important parts of the data provided by MLB’s GameDay system were in-
complete. There were cases where the at-bat’s pitch sequence consisted of one
(or more) pitches that did not have a pitch-type. For the 610,130 at-bats in the
database, there were 32,632 pitches concluded for the at-bat without providing the
pitch-type. This was detrimental to CRLIB because the last pitch of an at-bat deter-
mined the terminal state, and the pitch-type determines the state being transitioned
from. We therefore skipped over pitches with missing pitch-types and simply in-
cremented the pitch count by observing whether the unlabeled pitch was a ball or
strike. We also observed that the 2008 season of data contained many more pitch-
types than the 2009 and 2010 seasons for the same pitcher, which suggested that
the GameDay system data was maturing in its initial years; it’s feasible that future
work using newer data will report even better results than those in this article.

Using the four generalized pitch-types mentioned in Section 2.2.2 may have
a large impact on our results. However, there are 15 different pitch-types in the
GameDay system, and it is unreasonable to give CRLIB 15 × 12 + 6 states due to
issues that would arise with data sparsity, as we did not want to use any sampling
techniques.

A potential criticism of our batting strategy evaluations is that they are evalu-
ated over an entire season of data. We emphasize the fact that we are not assuming
that a pitcher does not adjust to the pitcher-specific batting strategy. After initially
using the pitcher-specific batting strategy in the real world, we update the strat-
egy using online learning algorithms, such as State–Action–Reward–State–Action
(SARSA) [Sutton and Barto (1998)]. Online learning algorithms update and re-
compute the pitcher-specific batting strategy using the pitch-by-pitch data after the
pitcher adjusts to being exploited by the initial batting strategy. We use a season of
pitch-by-pitch data to show the potential of our approach when the pitcher does not
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know they are being exploited. Training and testing our model over two different
seasons of pitch-by-pitch data for the same pitcher shows that the pitcher-specific
batting strategy’s performance is not a consequence of luck.

5.3.2. Potential limitations: Simulating batting strategies with spatial compo-
nent. Readers may argue that assuming the batter can hit the pitch if it is identi-
fied correctly is not representative of the at-bat setting. However, we are simulating
the at-bat setting in a probabilistic manner, which means that there is no guaran-
tee that the batting action will yield a fortuitous outcome. This is because batters
reach base less than being out over an entire season, and this is reflected by the
large probability of the out state.

We do not consider predicting the end location of pitches because there are two
assumptions that we do not agree with: we are assuming that the pitch-type and
current state are related to a pitch’s end location, and we are assuming that the
pitch’s end location is related to the pitch-type, neither of which are true. In the
real world, batters rarely know where the pitch is going. Instead, they rely on iden-
tifying the pitch-type prior to making the choice of swinging or not. The limitations
of the spatial component stem from the absence of the raw spatial information for
each pitch.

Another issue some may have with the spatial component is that, in conjunc-
tion with an exploited pitcher’s pitcher-specific batting strategy, our model fails to
produce walks in all but one case. The lack of walks is a result of CRLIB’s pitcher-
specific strategy suggesting that the batters swing in pitch counts where there are
three balls. Swinging at pitch counts with three balls maximizes the batter’s ex-
pectation because pitchers do not want to walk the batter. We mentioned that our
model puts a higher priority on advancing baserunners, and it is possible that this
prioritization decreased the OBP and AVG statistics. This decrease is explained by
the fact that the batters are swinging in states with large expected rewards, which
can only be reached with a base hit.

Additionally, the actual number of pitches thrown in the at-bat may be a limi-
tation on achieving walks in our simulation. For example, assume that the actual
2009 data shows that the batter chose to swing in a certain pitch count, and this
swing led to them being out. Let us also assume that exploited pitcher’s pitcher-
specific batting strategy selects the batting action “stand.” If this pitch is not thrown
for a strike, the at-bat is incomplete because there are no more pitches left. A sim-
ilar limitation that arises is when the batter identifies a pitch at the respective pitch
count in the test data, but the training data did not contain a case with this pitch
count and pitch-type. For example, the batter identifies the pitch as a fastball in
a {3,0} count, but the training data only contained curveballs being thrown from
the {3,0} count. In either of these situations, we skip the at-bat.7 These examples
illustrate how real-world data can be limiting on a simulation.

7We define “skipped” as the termination of the current simulation. This at-bat is only simulated
again if the 100 simulation limit has not been exceeded.
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5.3.3. Reinforcement Learning in football. Patek and Bertsekas (1996) used
Reinforcement Learning to simulate the offensive play calling for a simplified ver-
sion of American Football. They computed an optimal policy for the offensive
team by giving generated sample data (that was representative of typical play) as
input to their model.

The optimal policy suggested running, passing and running plays when the dis-
tance from line of scrimmage and “our” own goal line was between 1 and 65 yards,
66 yards and 94 yards, and 95 and 100 (touchdown) yards. The optimal policy pro-
duced an expected reward of −0.9449 points when starting from the twenty yard
line. This meant that if the “our” team received the ball at the twenty yard line
every time, they would lose the game. It is possible that the result could have pro-
duced a positive expected reward if real-world data was used, but this data was not
available at the time.

The appealing property of Reinforcement Learning is that it allows the evalua-
tion of arbitrary strategies given as input to the Policy Evaluation algorithm. One
strategy that was reflective of good play-calling in football produced a slightly
worse expected reward (−1.27 points) than the optimal policy. Considering that
this strategy was intuitive, manually constructed and did not perform much worse
than the optimal strategy, Reinforcement Learning provides a platform for inves-
tigating the strategic aspects in sports. After all, every team’s goal is to devise a
strategy that maximizes the team’s opportunity to win the game.

Reinforcement Learning’s applicability to baseball is tantalizing because team
performance depends on individual performance. The distinguishing aspect of Re-
inforcement Learning in baseball (from football) is the scope of the strategy: in
football, a policy reflective of “good” play-calling does not change significantly
with the opponent. In baseball, the batting strategy changes significantly with the
opponent, as the batting strategy is pitcher-specific. Using an exploited pitcher’s
pitcher-specific batting strategy against the respective pitcher should increase the
team’s opportunity of winning the game, as it increases the batter’s expectation of
reaching base.

6. Conclusion. This article shows how Reinforcement Learning algorithms
[Bertsekas and Tsitsiklis (1996), Patek and Bertsekas (1996), Sutton and Barto
(1998)] can be applied to Markov Decision Processes [Lawler (2006)] to statisti-
cally analyze baseball’s at-bat setting. With the wealth of information provided at
the pitch-by-pitch level, evaluating a player’s decision-making ability is no longer
unrealistic.

Earlier work alluded to the amount of information contained in real-world base-
ball data being a limiting factor for analysis [Bukiet, Harold and Palacios (1997)
and Cover and Keilers (1977)]. Noting this, what is particularly impressive about
CRLIB’s statistically significant result, which is produced under the assumption
that pitchers are not equally susceptible to being exploited (See Section 5.3.1), is
that each pitcher-specific batting strategy was computed using a few thousand sam-
ples. In many previous baseball articles, authors have used Markov Chain Monte
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Carlo (MCMC) techniques to produce a sufficient number of samples to test their
model [Albert (1994), Jensen, Shirley and Wyner (2009), Reich et al. (2006)]. Cur-
rently, this is the only model that uses only the real-world pitch-by-pitch data to
produce a result that is both intuitive and supported with algorithmic statistics.

Baseball has a rich history of elite batters making decisions that nonelite bat-
ters cannot. This is exemplified by Vladimir Guerrero, a future first-ballot hall of
fame “bad-ball hitter,” swinging at a pitch that bounced off the dirt for a base hit
during an MLB game. It is therefore possible that elite players do not benefit from
an exploited pitcher’s pitcher-specific batting strategy because they make instinc-
tual decisions. Given that the nonelite batters’ simulated statistics are superior to
their actual statistics, using the exploited pitchers’ pitcher-specific batting strate-
gies would be incredibly useful in a real MLB game. We feel that modeling the
at-bat setting as a Markov Decision Process to statistically analyze baseball play-
ers’ decision-making will change talent evaluation at the professional level.

APPENDIX: BASEBALL DEFINITIONS

A Plate Appearance (PA) is when the batter has completed their turn batting.
An at-bat (AB) is when a player takes their turn to bat against the opposition’s
pitcher. Unlike Plate Appearances, at-bats do not include sacrifice flies, walks,
being hit by a pitch or interference by a catcher.
A Hit (H) is when a player reaches base by putting the ball into play.
A Walk (BB) is when a player reaches base on four balls thrown by the pitcher.
The [pitch] count is the current “state” of the at-bat. This is quantified by the
number of balls and strikes, denoted by B and S, respectively, thrown by the
pitcher.

This is numerically represented as B–S, where 0 ≤ B ≤ 4, 0 ≤ S ≤ 3 and
B,S ∈ Z+, where Z+ is the set of positive integers. Note that an at-bat has
ended if any one of the conditions is true:

• (B = 4) ∩ (S < 3) (referred to as a walk)
• (B < 4) ∩ (S = 3) (a strikeout)
• (B < 4) ∩ (S < 3) and the batter hit the ball inside the field of play. This

results in two disjoint outcomes for the batter: out or hit. There is a special
other case we mention below.

A Foul is when a player hits the ball outside the field of play. If S < 2, then the
foul is counted as a strike. When S = 2 and the next pitch results in a foul, then
S = 2. That is, if a ball is hit for a foul with two strikes, the count remains at
two strikes. However, if a foul ball is caught by an opposing player before it
hits the ground, the batter is out regardless of the count.
A Batter’s count is defined as a pitch count that favors the batter—that is, the
number of balls are greater than the number of strikes (exception of the 3–2
count, which is referred to as a full count).
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A Baserunner is a player who is on base during his team’s at-bat.
A Runner in Scoring Position (RISP) is a baserunner who is on second or third
base. This is because when an at-bat results in more than a double, the baserun-
ner on second base can score.
Walks plus hits per inning pitched (WHIP) is a measurement of how many
baserunners a pitcher allows per inning. It is the sum of the total number of
walks and hits divided by the number of innings pitched.
Earned Run Average (ERA) is the average number of earned runs a pitcher has
given up for every nine innings pitched.
On Base Percentage (OBP) is a statistic which represents the number of times
a player reaches base either through a walk or hit when divided by their total
number of at-bats.
Slugging Percentage (SLG) is a measure of the hitter’s power. It assigns rewards
1, 2, 3 and 4 for a single, double, triple and home run. SLG is a weighted
average of these outcomes.
On-base Plus Slugging (OPS) is the sum of the On-base Percentage and Slug-
ging Percentage—that is, OPS = OBP + SLG.
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SUPPLEMENTARY MATERIAL

Supplement to “MONEYBaRL: Exploiting pitcher decision-making us-
ing Reinforcement Learning” (DOI: 10.1214/13-AOAS712SUPP; .pdf). A high-
level overview of the technical details of the implementation used in this article.
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