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TESTING THE DISJUNCTION HYPOTHESIS USING VORONOI
DIAGRAMS WITH APPLICATIONS TO GENETICS1

BY DAISY PHILLIPS AND DEBASHIS GHOSH

Pennsylvania State University

Testing of the disjunction hypothesis is appropriate when each gene or
location studied is associated with multiple p-values, each of which is of
individual interest. This can occur when more than one aspect of an under-
lying process is measured. For example, cancer researchers may hope to de-
tect genes that are both differentially expressed on a transcriptomic level and
show evidence of copy number aberration. Currently used methods of p-value
combination for this setting are overly conservative, resulting in very low
power for detection. In this work, we introduce a method to test the disjunc-
tion hypothesis by using cumulative areas from the Voronoi diagram of two-
dimensional vectors of p-values. Our method offers much improved power
over existing methods, even in challenging situations, while maintaining ap-
propriate error control. We apply the approach to data from two published
studies: the first aims to detect periodic genes of the organism Schizosac-
charomyces pombe, and the second aims to identify genes associated with
prostate cancer.

1. Introduction. In current genetics and biological research, frequently thou-
sands of hypothesis tests are performed simultaneously. With such a large num-
ber of tests, control of the family-wise error rate (FWER) is overly conservative,
resulting in low power for detection of true alternative signals. For this reason,
False Discovery Rate (FDR) control is an intensely studied topic of interest. Meth-
ods such as the Benjamini–Hochberg (B–H) procedure [Benjamini and Hochberg
(1995)] control FDR when each hypothesis test is associated with a single p-value.
Many refinements have been proposed to increase power [Benjamini and Hochberg
(2000), Benjamini, Krieger and Yekutieli (2006), Ghosh (2011), Storey (2002)].
Pounds (2006) gives a good summary of these approaches. However, when multi-
ple p-values are associated with each hypothesis, these methods alone are insuffi-
cient for declaring significance while controlling FDR.

Multiple p-values can be considered for each hypothesis test in settings such
as repeated experiments in the same study, meta-analysis across multiple studies
and measurement of multiple aspects of a single underlying process of interest. To
perform a single hypothesis test using multiple p-values, techniques for p-value
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combination are frequently used to create a single summarized value. Multiple
comparison adjustments can then be applied to these summarized values.

With this move from single p-values to vectors of p-values, which we refer
to here as p-vectors, clear specification of the null and alternative hypotheses is
critical. If the goal is to pool information, for example, when testing p-vectors
from repeated experiments or from multiple studies, then conjunction or partial
conjunction hypotheses are appropriate. The conjunction null hypothesis is that all
p-values contained in a p-vector are from a null distribution, and rejection is possi-
ble when at least one p-value shows evidence of being from a nonnull distribution.
Rejection of the partial conjunction hypothesis requires at least u of n p-values to
show evidence of being from nonnull distributions. There are scenarios, however,
when the hypothesis associated with each p-value of the p-vector is of interest
individually, and rejection should be possible only when there is evidence that all
such hypotheses are nonnull. In this case, the disjunction hypothesis is of primary
interest. Distinctions between the conjunction, partial conjunction and disjunction
hypotheses are further described in Section 2 of this paper.

Testing of the disjunction hypothesis is appropriate when multiple aspects of a
single underlying biological process are measured. For example, there is interest
in detection of genes related to cancer progression that are both differentially ex-
pressed on a transcriptomic level and show evidence of copy number aberrations
in cancerous tissue [Fritz et al. (2002), Kim et al. (2007), Pollack et al. (2002),
Tonon et al. (2005), Tsafrir et al. (2006)]. Another motivating example is detection
of periodic genes as explored by de Lichtenberg et al. (2005). In this case, the dis-
junction hypothesis is considered through one p-value for periodicity and a second
for regulation of expression. The most commonly used summary method for the
disjunction hypothesis uses the maximum of all p-values for each test [Wilkinson
(1951)] and typically has very low power.

This paper presents an approach for p-value combination appropriate for test-
ing the disjunction hypothesis when there are two p-values associated with each
gene or location. The approach considers p-vectors as locations on the unit square,
where certain challenges absent in the case of single p-values arise. First, the strict
ordering of p-values on the real line is lost. Second, relationships between p-
vectors are complicated and, third, their components may be correlated. In light of
these challenges, a method for large-scale simultaneous testing of the disjunction
hypothesis must accomplish three objectives. It must account for the relative po-
sitioning of the p-vectors in the plane, allow for multiple ordering schemes and,
finally, allow for FDR control under any correlation structure of the test statistics
used to calculate the p-vectors’ components.

The approach proposed here addresses these challenges through the use of
Voronoi diagrams, flexible incorporation of ordering schemes and empirical null
distributions [Efron (2004)]. This paper is organized as follows. Section 2 details
the disjunction hypothesis framework while Section 3 describes background on
control of FDR and existing univariate procedures. Sections 4 and 5 introduce
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Voronoi diagrams and multiple ordering schemes for p-vectors. Section 6 de-
scribes a technique for summarizing p-vectors to a single value and details how
these values can be used to control FDR. We explore properties of the procedure
through simulations in Section 7. A possible extension for higher dimensional p-
vectors is discussed in Section 8. We apply the procedure to two genomic studies
in Sections 9 and 10.

2. The disjunction of null hypotheses. When multiple p-values are associ-
ated with a hypothesis test, the interpretation of significance depends on the speci-
fication of null and alternative hypotheses. Consider m p-vectors, each of length n,
denoted

Pi = (pi1, . . . , pin), i = 1, . . . ,m.(1)

In the context of a genomic study, i is the index of the individual gene, while n is
the number of p-values associated with each gene. We employ notation used by
Benjamini and Heller (2008) to describe null and alternative hypotheses. Testing
the global null hypothesis, also known as the conjunction of the null hypotheses,
is equivalent to testing that at least one of the p-values pi1, . . . , pin is significant:

H
1/n
0 : all hypotheses associated with Pi are null,

H
1/n
A : at least one hypothesis associated with Pi is nonnull.

P -value combination methods for testing the conjunction null include the well-
known Fisher’s and Stouffer’s methods for combining p-values [Fisher (1932),
Stouffer et al. (1949)]. A comparison of these and other methods is presented by
Loughin (2004). Rejection of the conjunction null can result from the influence of
a single highly significant p-value even when all other p-values show no evidence
for the alternative hypothesis. In this setting, the scientific conclusion from rejec-
tion is not as strong it would be if a level of increased consistency across p-values
was enforced.

Benjamini and Heller proposed techniques for addressing this weakness through
testing of the partial conjunction hypothesis:

H
u/n
0 : at least u of n hypotheses associated with Pi are null,

H
u/n
A : at least u of n hypotheses associated with Pi are nonnull.

This hypothesis requires a level of consistency of evidence across u studies that is
unnecessary in the conjunction framework, while still allowing lack of significance
for some associated p-values. It can be considered a compromise between the
conjunction and disjunction hypotheses. The disjunction hypothesis is also referred
to as the disjunction of the null hypotheses and can be expressed as follows:

H
n/n
0 : at least one hypothesis associated with Pi is null,

H
n/n
A : all hypotheses associated with Pi are nonnull.
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TABLE 1
Outcomes for testing m hypotheses

Fail to reject Reject Total

True null U V m0
True alternative T S m − m0

Total m − R R m

This hypothesis is desirable when considering multiple p-values per test that are
each of individual interest. The established p-value combination approach for test-
ing the disjunction hypothesis is to simply select the maximum p-value of each p-
vector [Wilkinson (1951)]. Error control procedures can then be applied to these
maximum values. This approach is generally conservative and exhibits low power.
The procedure described in this paper is suitable for testing the disjunction hy-
pothesis and results in a gain of power over the maximum method of the p-value
combination.

3. The False Discovery Rate and review of existing procedures. To define
FDR we consider Table 1. The False Discovery Rate is defined to be the expected
proportion of false rejections to total rejections, or E[V/R] for R > 0, and 0 if
R = 0. The FWER is defined to be the probability of at least one false rejec-
tion, P(V > 0). Particularly in studies testing thousands or tens of thousands of
hypotheses simultaneously, control of FDR grants additional power for rejection
relative to control of FWER. Allowance of a controlled proportion of false posi-
tives enables increased detection of more true signals relative to limiting rejections
based on the probability of at least one false rejection as required by FWER con-
trol.

We next provide a brief review of two existing procedures that control FDR
when each hypothesis test has exactly one p-value: the Benjamini–Hochberg
(B–H) procedure and the Generalized Benjamini–Hochberg procedure. The latter
motivates our approach to p-value combination for two-dimensional p-vectors.

3.1. The Benjamini–Hochberg procedure and its generalization. Proposed
by Benjamini and Hochberg (1995), the B–H procedure works as follows. As-
sume m continuous p-values p1, . . . , pm and that low values indicate evidence
against the null. Order them as p(1), . . . , p(m) and compare to the thresholds
α/m,2α/m, . . . , α. Define

k̂ = max
{
i :p(i) ≤ i

m
α

}
.(2)

If the set in (2) is nonempty, reject the hypotheses associated with p(1) through
p

(k̂)
, otherwise reject nothing. Benjamini and Hochberg show that this procedure

controls the FDR at a nominal level α.
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Ghosh (2011) proposed a family of testing procedures based on the spacings
of p-values. We present the basic procedure here. Again assume m independent
p-values and order them as p(1), . . . , p(m). Define the spacings [Pyke (1965)] as

p̃i = p(i) − p(i−1), i = 1, . . . ,m + 1,(3)

where p(0) = 0 and p(m+1) = 1. Under the null hypothesis the original p-values are
distributed as Uniform(0,1), whence the spacings p̃i are marginally distributed as
Beta(1,m). It is also simple to calculate certain expectations. Specifically, E[p̃i] =
(m + 1)−1 = E[p̃1].

Recall that the B–H procedure defines k̂ by comparing p(1), p(2), . . . , p(m) to
α/m,2α/m, . . . , α. These quantities can be redefined as

p(i) =
i∑

j=1

p̃j and
i

m
α = i · m + 1

m
· 1

m + 1
· α = i · m + 1

m
· E[p̃1] · α.(4)

By substituting these quantities in the B–H procedure, the original k̂ can be rewrit-
ten in terms of the spacings as follows [Ghosh (2011, 2012)]:

k̂ = max

{
i :

1

i

i∑
j=1

p̃j ≤ m + 1

m
E[p̃1] · α

}
.(5)

According to Benjamini and Hochberg, this procedure controls FDR at αm0/m,
where m0 is the number of p-values associated with the null hypothesis. In equa-
tion (5) there is an extra factor (m + 1)/m. Elimination of this factor results in a
slightly more conservative procedure that preserves FDR control. Thus, k̃ is de-
fined as

k̃ = max

{
i :

1

i

i∑
j=1

p̃j ≤ αE[p̃1]
}
.(6)

The definition of k̃ in (6) hinges on a comparison of the average spacings between
ordered p-values to the value αE[p̃1]. When there are numerous significant p-
values their spacings are small in comparison to the expectation of a spacing under
the null hypothesis. Detecting this change from the small spacings of significant
p-values to the larger spacings of null p-values is also the motivation for the pro-
cedure described in this paper.

4. The Voronoi diagram. In the plane the spacings of two-dimensional p-
vectors are more difficult to characterize. One generalization of “spacing” is the
Voronoi diagram. It is a partition of the plane generated by an input set of points
that creates a cell around each input consisting of the set of all points closer to that
input than to any other. The basic properties are described by Okabe et al. (2010).
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FIG. 1. (a) 200 simulated p-vectors and (b) the corresponding Voronoi diagram.

In the setting of two-dimensional p-vectors, the Voronoi diagram partitions
the unit square. For each p-vector, Pi , the diagram creates a cell, Ci , consist-
ing of all points closer to Pi than to any other p-vector. As Jiménez and Yukich
(2002) discuss, Voronoi diagrams are suitable for extension of the concept of one-
dimensional spacings into higher dimensions. An illustration of the diagram for a
sample set of points is presented in Figure 1(b). We follow this example in Sec-
tion 5 before switching to a larger sample for subsequent sections.

Voronoi cells have many desirable properties that extend spacings to the plane.
Their area and shape reflect the relative positioning of the input points. For exam-
ple, clusters of inputs will have smaller cell areas than uniformly distributed inputs.
Similarly, if the inputs have correlated components, there will be an increased con-
centration of p-vectors along the diagonal of the unit square. The Voronoi cells for
the inputs along this diagonal will be smaller than those near the edge of the clus-
tering. Our procedure uses the areas of the Voronoi cells generated by the set of
p-vectors to account for their relative positions. To compute each diagram and
calculate the cell areas, we use the R package deldir developed by Turner (2013)
and available through CRAN (http://cran.r-project.org/web/packages/deldir/index.
html).

5. Multiple ordering schemes. Recall from Section 3.1 that spacings were
defined as the difference between consecutive p-values. This definition is depen-
dent upon an ordering of the p-values that is unique on the real line. However, this
uniqueness is lost when p-vectors are considered as bivariate locations in the unit
square. We present and test multiple ordering schemes for the plane, while con-
tinuing to assume that small values of pi1 and pi2 indicate evidence against the
null. For this reason the orderings begin at the origin, and each p-vector is ranked
according to increasing values of D, its distance from the origin. Each scheme de-
fines D differently. Thus, for each definition P(1) is the p-vector with the smallest

http://cran.r-project.org/web/packages/deldir/index.html
http://cran.r-project.org/web/packages/deldir/index.html
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value of D, and P(m) with the largest. Here we describe the definition of D for
each scheme:

1. Euclidean ordering results in a movement from the origin in contours with
the shape of circles. Define D(E) as the Euclidean distance from the origin

D
(E)
i =

√
p2

i1 + p2
i2 (i = 1, . . . ,m).(7)

2. Maximum ordering results in contours with the shape of squares. Define
D(M) as

D
(M)
i = max{pi1,pi2} (i = 1, . . . ,m).(8)

3. Summation ordering is equivalent to beginning at the origin and moving out
in contours of right isosceles triangles. In this case, D(S) is defined as

D
(S)
i = pi1 + pi2 (i = 1, . . . ,m).(9)

4. de Lichtenberg ordering is a ranking scheme proposed by de Lichtenberg
et al. (2005). The scheme defines

D
(L)
i = pi1pi2

(
1 +

(
pi1

0.001

)2)(
1 +

(
pi2

0.001

)2)
(i = 1, . . . ,m).(10)

Note that D(L) consists of four multiplicative factors. The first two weight D(L)

according to the value of each individual component, and the last two penalize p-
vectors that have only one very small component. For typical p-vectors the values
for D(L) are very large as a result of division by 0.001 of both pi1 and pi2. This
magnitude is not a concern, as the interest is only in their relative values for the
purpose of ranking and the values themselves are not of particular interest. The
contour lines for this ordering scheme move from the origin in lines approximating
an inverse function such as y = 1/(x3).

Figure 2 illustrates these four ordering schemes using the sample set of 200 p-
vectors from Section 4. Table 2 presents a numerical example using five p-vectors.

It is noteworthy that three of the four ranking schemes described have concave
contour lines: Euclidean, Maximum and Summation. The remaining scheme, de
Lichtenberg, has convex contour lines. As we will see, these characteristics have
important implications for error control.

6. Summarizing p-vectors and declaring significance. The described rank-
ing schemes can be combined with Voronoi cell areas to summarize each ranked
p-vector as a single value in the interval (0,1). Define A(i) as the area of the
Voronoi cell associated with the ordered p-vector P(i) and the cumulative sum of
these ordered areas as

T(i) =
i∑

j=1

A(j) (i = 1, . . . ,m).(11)
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FIG. 2. Illustration of all four ordering schemes with the sample set of 200 p-vectors. The solid
lines join p-vectors that are consecutively ranked, that is, P(1) to P(2), P(2) to P(3), etc.

These cumulative sums serve as combined p-values in an analogous manner that
cumulative spacings comprise p-values in one dimension. These T(i) reflect both
the relative positioning of the p-vectors in space and their distance from the origin.
They can be used to make decisions in the hypothesis testing framework. Figure 3
illustrates a sample set of 1000 p-vectors and a histogram of their cumulative

TABLE 2
Example of ordering results for five p-vectors. For each ranking scheme the distance, D, is

presented for each p-vector along with the resulting rank in parentheses

Pi D
(E)
i D

(M)
i D

(S)
i D

(L)
i

(0.85,0.51) 0.99 (3) 0.85 (3) 1.36 (4) 8.1 · 1010 (4)
(0.91,0.80) 1.21 (5) 0.91 (4) 1.71 (5) 3.9 · 1011 (5)
(0.23,0.97) 1.00 (4) 0.97 (5) 1.20 (3) 1.1 · 1010 (3)
(0.62,0.34) 0.71 (2) 0.62 (1) 0.96 (2) 9.5 · 109 (2)
(0.07,0.63) 0.63 (1) 0.63 (2) 0.79 (1) 8.9 · 107 (1)
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FIG. 3. An example of (a) 1000 simulated p-vectors with independent components and (b) a his-
togram of their cumulative areas calculated using the Euclidean ordering scheme. The sharp spike
in the histogram corresponds to the p-vectors associated with alternative hypotheses.

areas. In this example the components of the p-vectors are independent, and 10%
of p-vectors are associated with an alternative hypothesis.

6.1. Multiple hypothesis testing under independence. When the components
of the p-vectors are assumed to be independent, standard multiple comparisons
procedures such as B–H can be applied to the cumulative spacings with very good
results. Simulation studies were performed to test the properties of FDR control
and the power of this method. For each study 100 sets of test statistics were gener-
ated according to

(ti1, ti2) ∼ MVN
((

μi

μi

)
,

(
1 0
0 1

))
, i = 1, . . . ,2000;

10% of statistics were associated with an alternative hypothesis (μi = μA), while
the remaining 90% were null (μi = 0). P -vectors were formed from 2-sided p-
values according to

Pi = (pi1,pi2) = (
P

(
Z > |ti1|),P (

Z > |ti2|)) where Z ∼ N(0,1)

for i = 1, . . . ,2000. The proposed method was applied to each data set, using the
four described ordering schemes from Section 5. Additionally, the existing p-value
combination technique based on the maximum was applied. After applying the B–
H procedure to each set of summary values, the FDR and 1-non discovery rate
(NDR) was recorded. Using notation from Table 1, 1-NDR is defined as E[S/(S +
T )]. This quantity can be viewed as a measure of power.

Tables 3 and 4 summarize the results for studies where μA = 2,3,4, respec-
tively. The results show that, under all ordering schemes, the proposed combina-
tion method results in greatly increased power. All concave schemes (Euclidean,
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TABLE 3
Power (1-NDR) results of simulation studies under independence

Euclidean Maximum Summation de Lichtenberg Existing procedure

μA = 2 0.200 0.189 0.216 0.205 0.005
μA = 3 0.772 0.760 0.788 0.796 0.098
μA = 4 0.976 0.975 0.977 0.979 0.744

Maximum and Summation) control FDR at the desired level α = 0.05, but the con-
vex de Lichtenberg scheme does not. This difference becomes more pronounced
when p-vectors with correlated components are considered. Additional simula-
tions using correlated test statistics show that application of the B–H procedure
to combined values is insufficient to control FDR when the correlation between
test statistics surpasses 0.2. This loss of FDR control is a result of the increased
concentration of p-vectors along the diagonal of the unit square under correla-
tion, which changes the characteristics of the cumulative areas. In Section 6.2 we
discuss approaches appropriate for multiple testing in these conditions.

6.2. Multiple hypothesis testing under dependence. In certain settings the in-
dividual components of p-vectors may be correlated. For example, correlation be-
tween components may occur when different but related aspects of an underlying
biological process are measured. Any technique used for testing the disjunction hy-
pothesis in this setting should be robust to this structure. Using an empirical null
approach [Efron (2004, 2007)] in the place of the B–H procedure results in FDR
control for all positive correlation structures, although the trade-off is decreased
power in the case of independent components.

The use of an empirical null for determining statistical significance was pro-
posed by Efron (2004). We consider a transformation of the summarized cumula-
tive areas T(i) as defined in (11):

Z(i) = �−1(T(i)) (i = 1, . . . ,m),(12)

where � is the cumulative distribution function for the standard normal random
variable. In the empirical null framework, these transformed values are assumed

TABLE 4
False Discovery Rate results of simulation studies under independence

Euclidean Maximum Summation de Lichtenberg Existing procedure

μA = 2 0.041 0.037 0.048 0.041 0.000
μA = 3 0.042 0.038 0.049 0.056 0.000
μA = 4 0.042 0.040 0.045 0.053 0.000
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to be from a mixture distribution

Z(i) ∼ f (z) = δf0(z) + (1 − δ)f1(z) (i = 1, . . . ,m),(13)

where f0 is the null, or “uninteresting” distribution, and f1 is the alternative, or
“interesting” distribution. Under the theoretical null hypothesis, f0 is the N(0,1)

distribution, however, in large-scale multiple testing problems the majority of val-
ues may behave differently. When this is the case, use of an empirically determined
f0 in place of N(0,1) has important implications for the resulting inference. For
example, if f0 is estimated to be N(0,1.3), then inference based on the assump-
tions of N(0,1) would result in elevated type I error. Similarly, if the empirical
null has smaller variance, then its use results in a gain of power without sacrificing
type I error control.

Figure 4 illustrates the effect of the transformation from T(i) to Z(i) for a sample
set of 1000 p-vectors. The transformation makes it much easier to detect deviations
from the null hypothesis, as true alternative hypotheses are presented as a second,
smaller peak to the left of the null distribution instead of in a single spike for the
original values. The bivariate test statistics used to calculate these p-vectors had a
correlation of 0.7. The histogram of transformed values in Figure 4(c) shows evi-
dence of a null distribution that differs from N(0,1), as the dependence structure
of the p-vectors results in thicker tails than the theoretical null predicts. For this
reason, it is desirable to use an empirical null as a basis for our inference when the
components of the p-vectors show evidence of correlation.

Given the choice of an empirical null, there are several options for declaring
significance while controlling FDR. Efron (2004) defined the local false discovery
rate (fdr) as the posterior probability of a value z being from the null distribution,
given the value of z:

fdr(z) = P(zi ∼ f0|zi = z).(14)

Another important probability that can be estimated using an empirical null is the
left-tail False Discovery Rate. For each value z the corresponding left-tail FDR is
defined as

FDR(z) = P(zi ∼ f0|zi ≤ z).(15)

Inference can be made based on estimated fdr or FDR values. A variety of ap-
proaches have been developed for estimation of empirical null distributions and
related values [Efron (2004), Jin and Cai (2007), Muralidharan (2010), Pounds
and Morris (2003), Strimmer (2008)]. We use an R package (mixFdr) developed by
Muralidharan (2010) and available through CRAN (http://cran.r-project.org/web/
packages/mixfdr), which uses an empirical Bayes mixture method to fit an empir-
ical null, estimate effect sizes, fdr and FDR. The use of other packages or tech-
niques is certainly possible. The function we used in simulation studies, mixFdr,
includes two tuning parameters: J , the number of distributions to be estimated,

http://cran.r-project.org/web/packages/mixfdr
http://cran.r-project.org/web/packages/mixfdr
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FIG. 4. An example of (a) 1000 simulated p-vectors with dependent components, (b) a histogram
of their cumulative areas calculated using the Euclidean ordering scheme, and (c) a histogram of the
transformed cumulative areas with empirical (solid line) and theoretical (dashed line) null distribu-
tions.

and P , a penalization parameter. A higher value of P encourages estimation of a
larger null group and closer estimation of the central peak.

Careful calibration of J and P , and even experimentation with other techniques
for empirical null estimation, are desirable when a single data set is under consid-
eration. The function mixFdr estimates the left-tail False Discovery Rate for each
Z(i), and we declare significant all p-vectors with these estimates of left-tail FDR
less than 0.05. This approach results in appropriate error control that is robust to
correlation in the components of p-vectors. Section 7 describes a simulation study
performed to explore properties of power and FDR control when this approach is
applied to the cumulative areas from ordered p-vectors.

7. Simulation study when components are correlated. To illustrate proper-
ties of the procedure, we ran three simulation studies: one each for strong, moder-
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ate and weak alternative signals. We were interested in evaluating FDR control and
power. For each simulated data set we set m = 2000 and generated test statistics
by

(ti1, ti2) ∼ MVN
((

μi

μi

)
,

(
1 ρ

ρ 1

))
, i = 1, . . . ,m

for strong, moderate and weak alternative signals μA = 4,3,2, respectively. For
null test statistics, μi = 0. 10% of test statistics for each data set were generated
from the alternative distribution. P -vectors were formed from 2-sided p-values.

For each simulation study ρ varied from 0 to 0.8 in increments of 0.1, and 100
data sets were simulated for each value of ρ. We performed the procedure using
all four ordering schemes on each simulated data set, using mixFdr to estimate
empirical null distributions and left-tail FDR for each data set, rejecting all hy-
potheses associated with p-vectors whose estimated left-tail FDR was less than
0.05. We set J = 2 for all data sets, and after calibrating the fit of several example
empirical nulls for weak, moderate and strong signals, we set P = 400, 800 and
1000 for the respective simulations. Additionally, the B–H procedure was applied
to the maximum values from each p-vector to compare the proposed method to an
existing approach. Figure 5 summarizes the results of all three simulation studies.
We include the R code used to perform these simulations as a supplementary file
[Phillips and Ghosh (2014a)].

The proposed technique for combining p-values has improved power when
compared to the existing procedure. This improvement is greatest for weak and
moderate alternatives. These simulations further show that ordering scheme mat-
ters, although the differences between the three convex (Euclidean, Maximum,
Summation) ordering schemes are small compared to the difference between them
and the de Lichtenberg ordering. The de Lichtenberg ordering displays characteris-
tics that differ considerably from the other three. Specifically, it shows a tendency
to lose FDR control as the components of the p-vectors become more correlated.
We present simulation results for this ordering for the sake of completeness, but we
do not recommend using it for data analysis when testing the disjunction null. The
nature of its contour lines suggests this ordering scheme is in fact more appropriate
for testing the conjunction or partial conjunction hypothesis, as these lines resem-
ble the contour lines for Fisher’s or Stouffer’s p-value combination techniques
from Figure 1 of Owen (2009).

Further simulations using the empirical null allowed evaluation of the proposed
approach in the presence of p-vectors constructed from test statistics with means
(0,μA) or (μA,0). These p-vectors should not be found significant in the disjunc-
tion setting, but should be under the conjunction framework. In the presence of
up to 20% of such vectors, and for correlation structures from ρ = 0 to ρ = 0.8,
FDR control was maintained below the nominal 0.05 level, and power properties
showed a clear advantage over existing methods. Detailed descriptions and results
are included in supplementary materials [Phillips and Ghosh (2014b)].
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FIG. 5. Summarized results of simulation studies for test statistics with varying correlation struc-
ture. (a), (b) and (c) present FDR when alternative signals are 2, 3 and 4 standard deviations from
the null. (d), (e) and (f) present 1-NDR for the same data sets. Solid squares, circles, triangles and
diamonds represent Euclidean, Maximum, Summation and de Lichtenberg ordering schemes, respec-
tively. The open circles represent the existing approach using the maximum of each component for
inference.

8. Extension to higher dimensions. The approach described in this paper is
suitable when there are two p-values associated with each hypothesis test, how-
ever, in many situations three or more p-values will be available. In theory, the
procedure can be extended to higher dimensions by replacing cumulative areas
with cumulative volumes, hypervolumes, etc. In practice, however, the computa-
tion complexity for Voronoi cells increases quickly with dimension. Average time
complexity is as low as O(n) in the plane, but is at least O(n2) in 3-space [Okabe
et al. (2010)]. To avoid this disadvantage, we consider an alternative extension us-
ing the sets of all possible pairs of components. Consider a set of m 3-dimensional
p-vectors:

Pi = (pi1,pi2,pi3), i = 1, . . . ,m.(16)

Then define three sets of 2-dimensional p-vectors constructed via a pairwise com-
bination of components of Pi :{

(pi1,pi2)
}
,
{
(pi1,pi3)

}
,
{
(pi2,pi3)

}
, i = 1, . . . ,m.(17)

For each of these sets of two-dimensional p-vectors the Voronoi diagram is
computed and cell areas saved. Thus, each p-vector Pi is associated with three
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TABLE 5
Simulation results for proposed extension

Proposed extension Existing approach

μA = 2 μA = 3 μA = 4 μA = 2 μA = 3 μA = 4

FDR 0.023 0.004 0.023 0.000 0.000 0.000
1-NDR 0.098 0.730 0.986 0.005 0.007 0.610

individual cell areas, A
1,2
i ,A

1,3
i and A

2,3
i , as well as an average area Āi =

(A
1,2
i + A

1,3
i + A

2,3
i )/3. This average area can then be used in conjunction with

an ordering scheme to create the summarized areas used for inference. Define
P(1),P(2), . . . ,P(m) to be the p-vectors ranked according to a specified ordering
scheme such as Euclidean distance from the origin, and Ā(1), Ā(2), . . . , Ā(m) to be
the corresponding average areas. Then the cumulative average areas are defined as
T̄(i) = ∑i

j=1 Ā(i).
Multiple testing can then be performed on these summarized cumulative av-

erage areas using the methods described in Sections 6.1 and 6.2. Further inves-
tigation into the properties of this approach is necessary, as well as research on
other possible extensions for higher dimensions. A preliminary simulation study
using three-dimensional p-vectors with independent components was conducted
with weak, moderate and strong alternative test statistics. For each data set, test
statistics were generated according to

(ti1, ti2, ti3) ∼ MVN

⎛
⎝

⎛
⎝μi

μi

μi

⎞
⎠ ,

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

⎞
⎠ , i = 1, . . . ,m.

Three-dimensional P -vectors were formed from 2-sided p-values. The resulting
p-vectors were ordered according to Euclidean distance from the origin. Hypothe-
sis testing was performed using the B–H procedure on the summarized cumulative
average areas. The existing technique of applying the B–H procedure to the set
of maximum p-values from each p-vector was also performed for comparison.
Table 5 summarizes the findings of the simulations.

9. Application to Schizosaccaromyces pombe data. In 2004 and 2005, three
papers were published investigating the periodicity of genes in the fission yeast
cell Schizosaccharomyces pombe. Specifically, Oliva et al. (2005) produced three
data sets including time points for three complete cell cycles using two different
synchronization techniques. In their paper they identified 750 genes determined
to be periodically expressed based on a ranking scheme and cutoff. We apply our
approach to test for periodicity in a hypothesis testing framework using Fisher’s
exact G statistic to measure evidence of periodicity.
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TABLE 6
Summary of results from Oliva et al. data sets considered separately

Elutriation a Elutriation b Cdc25

Complete genes 3050 2394 3724
Evenly spaced time points 33 31 51
Genes (%) with p-values <0.05, 868 (22.8%) 546 (26.4%) 2458 (66.0%)
Significant genes (%) using B–H 527 (17.3%) 155 (6.5%) 2252 (60.5%)

9.1. The data. Three microarray data sets from Schizosaccharomyces pombe
from Oliva et al. were used: Elutriation a, Elutriation b and Cdc25. The first two
were produced using Elutriation synchronization, and the last using a Cdc25 block-
release synchronization technique. We apply our technique on the two Elutriation
sets, using Fisher’s exact G statistic to calculate the p-vector for each gene. This
test statistic requires evenly spaced time points, necessitating omission of any mea-
surements that occur at uneven intervals. The Elutriation a data set includes 50
time points, however, only 33 are at regular intervals of 8 minutes. For Elutriation
b, many of the time points are technical repeats. We keep the first measurement in
each case, leaving 31 evenly spaced time points for each gene taken at intervals of
10 minutes. The Cdc25 data set has a total of 51 evenly spaced time points, taken
at intervals of 15 minutes. Only genes with complete measurements for all selected
time points are considered.

9.2. Results using existing procedures. The data show evidence of widespread
periodicity. Considered separately, Elutriation a, Elutriation b and Cdc25 have
22.8%, 26.4% and 66% of p-values less than 0.05. Even controlling FDR using
the B–H procedure on each set independently results in a very high rate of rejec-
tion. Table 6 presents a summary of the data and marginal analysis of all three data
sets. Figure 6 presents histograms of the p-values when the data sets are consid-
ered independently.

Consider the p-vectors formed using p-values generated by Elutriation a data
and Elutriation b data. Note that these two Elutriation data sets were both gen-
erated using the same synchronization technique, and the p-values generated by
each repetition have roughly comparable marginal distributions. To test the dis-
junction hypothesis for Elutriation a and Elutriation b, using an existing technique
the maximum p-value for each gene is preserved. The B–H procedure is then ap-
plied to these maximum values. The resulting number of rejections is 15, which is
surprisingly low. Figure 7(a) helps to explain this result. The p-vectors’ compo-
nents do not show evidence of correlation, thus considering only the maximum of
each p-vector’s components gives a distribution that is very different from either
of the marginal distributions. Our proposed approach uses information from both
p-values and gives a different result.
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FIG. 6. Histogram of p-values for (a) Elutriation a, (b) Elutriation b and (c) Cdc25 block release.
Note the strong evidence of periodicity in all three experiments, particularly Cdc25.

FIG. 7. (a) P -vectors formed from Fisher’s G statistic of Elutriation a and Elutriation b, (b) a his-
togram of cumulative cell areas formed using the Euclidean ordering scheme, and (c) a histogram of
cumulative average cell areas when all three experiments are considered.
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9.3. Results using Voronoi p-value combination on Elutriation data. We ap-
ply our p-value combination method using the Euclidean, Maximum and Sum-
mation ordering schemes to the p-vectors formed from the Elutriation a and b
experiments. The p-vectors are plotted in Figure 7(a). The components of the p-
vectors do not show evidence of high correlation, and we apply the B–H procedure
to the cumulative areas generated from each ordering scheme. This application re-
sults in 225, 213 and 249 rejections of the disjunction hypothesis using Euclidean,
Maximum and Summation orderings, respectively.

Application of an empirical null approach to the combined areas yields a very
different result. Because of the high amount of periodicity detected in the experi-
ments, the empirical null is estimated to have a negative mean. This shift to the left
of up to −0.87 results in rejection of far fewer genes: 15, 12 and 11 for the three
concave ordering schemes. These genes could be considered significantly more
periodic than the rest, although other genes also show evidence of periodicity.

The two considerations of the combined values reflect two different scientific
questions. By using the B–H procedure on the combined areas, the genes found
are those that show significant periodic expression in both elutriation experiments.
The genes found using the empirical null procedure are those genes that are sig-
nificantly periodic in both experiments relative to the majority of genes. This dis-
tinction explains the difference in numbers of genes found significant.

9.4. Extension of procedure to include Cdc25. The extension to three dimen-
sions described in Section 8 can be applied to the 3-dimensional p-vectors formed
from Oliva et al. data. We order the three-dimensional p-vectors according to their
Euclidean distance from the origin and calculate the three Voronoi cell areas as-
sociated with each p-vector. From these we calculate each p-vector’s average cell
area and then cumulative average areas. Figure 7(c) presents a histogram of these
values. Note that many of these cumulative areas are quite small as a result of the
high number of very small p-values from the Cdc25 experiment.

Application of the B–H procedure to the cumulative average areas formed using
the Euclidean ordering scheme results in rejection of 165 disjunction hypotheses.
These 165 genes are those that show significant evidence of periodic expression in
all three of the experiments performed by Oliva et al. The existing procedure using
the maximum values yields a mere 12 rejections for these experiments. Using an
empirical null approach on the transformed cumulative average areas yields results
similar to those discussed in Section 9.3. Because of the evidence of widespread
periodicity throughout the experiment, only 8 genes show behavior that is sig-
nificantly more periodic in comparison to the majority of genes when all three
experiments are considered.

10. An application related to prostate cancer. Identification of genes im-
plicated in cancer progression is a research topic of great interest. Several studies
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have shown interest in identifying genes that show both alterations in copy num-
ber and evidence of differential expression in cancerous tumors [Fritz et al. (2002),
Kim et al. (2007), Pollack et al. (2002), Tonon et al. (2005), Tsafrir et al. (2006)].
We applied our method to data produced by Kim et al. in a study on prostate can-
cer progression. Data on copy number and gene expression was gathered for 7534
genes using prostate cell populations from low-grade and high-grade samples of
cancerous tissue. For details on data acquisition and cleaning see the Kim et al.
paper.

We calculated t-statistics for genetic expression and copy number aberrations
comparing tissue types. For each of 7534 genes we compute a two-dimensional
p-vector from the resulting 2-sided p-values based on the t-statistics. Figures 8(a)
and 8(b) present histograms of the expression and copy number p-values, while
Figure 8(c) presents a representation of the resulting p-vectors. Upon close in-
spection, it is revealed that the smallest copy number p-values are much smaller
than the smallest gene expression p-values. Thus, application of the B–H proce-

FIG. 8. Histogram of p-values for (a) expression and (b) copy number. (c) presents the resulting
p-vectors in the unit square.
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TABLE 7
Summary of Gene Functional Classification from DAVID

Number Enrichment
of genes score Keywords

16 0.73 Peptidase; Serine; Endopeptidase; Kringle
11 0.58 Transmembrane; Membrane; Extracellular; Cytoplasmic
3 0.50 Transport: protein, intracellular, vesicle; Golgi apparatus
3 0.36 Catabolic process; Proteosome; Proteolysis

12 0.27 Lumen: nuclear, intracellular, organelle, membrane-enclosed;
Phosphoroprotein; nucleolus; ATP binding

3 0.22 GTP-binding; Nucleotide binding: guanyl, purine;
Ribonucleotide binding: guanyl, purine

20 0.12 Transmembrane; Membrane; Glycoprotein;

dure to copy number p-values yields 62 significant genes, while application to the
expression p-values fails to yield any. It is unsurprising then that application of the
B–H procedure to the set of all maximum p-values for each gene also produces no
significant results.

Using the Voronoi p-value combination followed by the B–H procedure on the
summarized values at α = 0.05 gives 12, 14 and 25 rejections for Euclidean, Max-
imum and Summation orderings. Guided by the results of simulation, we consider
the rejections made using the Summation ordering. Of these 25, four were mapped
to official gene names, and all four were listed in the COSMIC database of cancer
genes [Forbes et al. (2011)]. These four genes are CABLES2, PAK1IP1, CAMKV
and TSHZ1. The COSMIC results suggest that there are mutations in these four
genes that are found in a variety of cancers, thus strengthening the evidence of
these genes being putative oncogenes in prostate cancer.

To use DAVID [Huang, Sherman and Lempicki (2008, 2009)] for further in-
vestigation of our results, a larger gene list was necessary. For this purpose, we
performed the B–H procedure on the combined p-values at α = 0.20. Under the
summation ordering, this yielded 306 rejections, 102 of which could be mapped
to recognized genes by DAVID. The functional annotation tool found significant
enrichment (adjusted p-value of 0.019) in the Fibrinolysis pathway. Fibrinolysis
has been associated with prostate cancer for decades [Tagnon, Whitmore and Shul-
man (1952)]. Tumor classifications for different malignancies have been proposed
based on the behavior of this pathway [Zacharski et al. (1992)]. Results for func-
tional classification of the 102 genes are summarized in Table 7.

11. Discussion. In this paper we have presented a novel approach to p-value
combination for testing the disjunction hypothesis when two p-values are consid-
ered for each test. The approach uses an extension of one-dimensional spacings,
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Voronoi cell areas, in combination with concave ordering schemes to define cu-
mulative areas usitable for multiple testing techniques. When the majority of p-
vectors have independent components, techniques such as the B–H procedure can
be directly applied. If the components are correlated, empirical null techniques are
more suitable. Simulation studies showed that the approach has appropriate error
control properties and results in a gain of power over the existing method. This
increased power is of particular interest for detection of genes related to biological
processes or implicated in cancer progression.

Four candidate ordering schemes were described, and simulations were used
to test their performance in several settings. The concave up ordering proposed
by de Lichtenberg et al. (2005) failed to control FDR in the paradigm of the dis-
junction hypothesis. As discussed in Section 6.1, we suspect that concavity of an
ordering’s contour lines is vital to its FDR control characteristics. Specifically, as
contours become increasingly concave down, the procedure is more conservative.
The reverse applies when considering concave up schemes. For this reason, we
recommend using the summation ordering in practice, as it represents the bound-
ary case between concave up and down. This offers the least conservative, and thus
most powerful, procedure that retains appropriate FDR control.

This approach can be extended in several meaningful directions. The conjunc-
tion or partial conjunction hypotheses could be tested by defining suitable ordering
schemes such as the minimum, or product. Extension to higher dimensions is also
of utmost interest, particularly considering the scale of current biological and ge-
nomic experiments. In Section 8 we described a potential extension to three or
more dimensions, but further investigation of this and other techniques is neces-
sary.
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SUPPLEMENTARY MATERIAL

Supplement A: Summarized results of additional simulation studies (DOI:
10.1214/13-AOAS707SUPPA; .pdf). We present the summarized results of the
proposed procedure’s performance in the challenging situations described in Sec-
tion 7. Results include estimated FDR and 1-NDR for each of the two settings.

Supplement B: Supplementary code and data (DOI: 10.1214/13-
AOAS707SUPPB; .zip). R code including the functions required to perform the
procedure described in this paper, to replicate the described simulation studies and
to perform the described data analysis. The relevant data sets are also included.
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