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A SEMI-PARAMETRIC BAYESIAN MODEL OF INTER- AND
INTRA-EXAMINER AGREEMENT FOR PERIODONTAL

PROBING DEPTH

BY E. G. HILL1 AND E. H. SLATE2

Medical University of South Carolina and Florida State University

Periodontal probing depth is a measure of periodontitis severity. We de-
velop a Bayesian hierarchical model linking true pocket depth to both ob-
served and recorded values of periodontal probing depth, while permitting
correlation among measures obtained from the same mouth and between
duplicate examiners’ measures obtained at the same periodontal site. Peri-
odontal site-specific examiner effects are modeled as arising from a Dirichlet
process mixture, facilitating identification of classes of sites that are measured
with similar bias. Using simulated data, we demonstrate the model’s ability to
recover examiner site-specific bias and variance heterogeneity and to provide
cluster-adjusted point and interval agreement estimates. We conclude with an
analysis of data from a probing depth calibration training exercise.

1. Introduction. Periodontitis is a chronic infectious disease characterized by
gingival bleeding and attachment loss, an increase in pocket depth (the distance
from the gingival crest to the base of the periodontal pocket), and bone loss. Pe-
riodontitis is diagnosed using measures of clinical attachment loss and probing
depth, and the present analysis concerns examiner agreement with respect to the
latter.

1.1. Data description. The motivating data were obtained from a calibration
exercise for dental hygienists in the clinical core of the South Carolina Center
of Biomedical Research Excellence for Oral Health at the Medical University of
South Carolina. These data are from a pilot calibration study used to obtain pre-
liminary measures of agreement and corresponding uncertainty. Results were used
subsequently to design a formal examiner calibration study described elsewhere
[Hill et al. (2006)].

Periodontitis is a periodontal site-specific disease, meaning that one site may be
severely affected, while a neighboring site on the same tooth remains unaffected.
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For this reason, pocket depth is measured using a manual probe at six sites on the
same tooth: the distobuccal, midbuccal, mesiobuccal, distolingual, midlingual, and
mesiolingual. Buccal sites are those nearest the cheek or lips, lingual sites are those
nearest the tongue, and distal and mesial sites are those farthest from and closest to
the midline of the dental arch, respectively. To facilitate development of the model
presented in Section 2, we distinguish between the following quantities: (1) pocket
depth, the true biological state; (2) observed probing depth, the manually probed
measure of pocket depth observed on a continuum; and (3) recorded probing depth,
equal to the greatest integer less than or equal to the observed probing depth. The
collection of recorded probing depths comprise the recorded data for the purposes
of analysis.

Prior to formal examiner calibration, a pilot calibration exercise was devised
to provide initial assessment of examiners’ performance and identify areas in
which examiners required additional training. In this study, a standard exam-
iner (S)—an experienced periodontist with extensive training in periodontal re-
search techniques—provided initial training for each of three dental hygienists
(A, B and C) in basic methodology for clinical research and correct procedures for
performing standardized periodontal examinations. The pilot calibration study was
designed so that the standard and all hygienists measured pocket depth at all six
periodontal sites of all teeth except third molars and teeth restored with implants.
Probing depth was recorded as the largest whole millimeter less than or equal to
the value observed on a manual probe, with minimum and maximum allowable
probing depth measures of 0 mm and 15 mm, respectively.

A randomization sequence was used to assign examiner pairs to all quadrants—
upper right, upper left, lower left and lower right—of calibration subjects. This
scheme guaranteed examiners evaluated an equal number of quadrants from the
upper and lower arches, and right and left sides. Probing depth measurements were
obtained from nine subjects, and both inter- (AS, BS, CS, AB, AC and BC) and
intra-examiner (AA, BB, CC and SS) data were collected. Each site was probed
by exactly two examiners since pocket depth may increase with additional repeat
probings [Osborn et al. (1992)]. Measures of a site by the same examiner con-
tributed to intra-examiner assessment, while those from different examiners were
used to evaluate inter-examiner agreement. Thus, a fully dentate calibration subject
contributes 336 site-level measurements (28 teeth × 6 sites per tooth × 2 examiner
measurements per site) from which we obtain examiner-pair calibration indices
reflecting agreement at the level of the periodontal site.

1.2. Measuring agreement. In a separate analysis of these data, Hill et al.
(2006) demonstrate the need to account for within-subject correlation among site-
level binary indices of agreement. They report cluster-adjusted point and inter-
val estimates of percent exact agreement and agreement within 1 mm for probing
depth, with confidence intervals constructed as described by Cochran [Cochran
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(1977), pages 240–270]. For this pilot calibration data, the asymptotics of the vari-
ance estimator for the cluster-adjusted sample proportion are compromised due to
two dominant data characteristics: (1) the number of clusters (subjects) for a given
examiner pair is small (range = 1 to 5); and (2) for a given examiner pair, the
cluster sizes are large relative to the number of clusters (average cluster size = 35
periodontal sites). Of the 20 cluster-adjusted 95% confidence intervals for percent
agreement (exact or within 1 mm) of probing depth reported by Hill et al. (2006),
one is truncated at 0%, nine are truncated at 100%, two are nonestimable because
the point estimate is constructed from a single cluster, and one is nonestimable be-
cause the within-cluster estimates of agreement are equal. We note that estimating
the uncertainty associated with any agreement measure (e.g., weighted kappa or
intra-cluster correlation) is complicated by these data limitations.

Other authors have addressed the issue of agreement estimation for correlated
observations. Williamson and Manatunga (1997) use a latent variable model to
assess examiner agreement in classifying cervical ectopy where the examiners use
two different cervical assessment methods. Their model includes random effects
to capture both the correlation among ratings from the same subject using different
assessment methods, as well as the correlation between ratings obtained from the
same examiner using different assessment methods. In another paper, Williamson,
Lipsitz and Manatunga (2000) analyze this same data using a pair of generalized
estimating equations (GEEs), the first modeling the marginal distribution of the
ratings and the second modeling the binary indicator of agreement between two
subject-level ratings. Oden (1991) tackles the problem of agreement estimation for
correlated binocular ratings. He derives an expression for the approximate variance
of a pooled-κ estimate for paired left- and right-eye ratings under the assumption
that the true left- and right-eye κ values are the same.

For our data, we use a Bayesian hierarchical modeling approach and specify
three separate but conditionally related models for: (1) pocket depth, with subject-
specific random effects capturing the marginal correlation among pocket depths
within the same mouth; (2) observed probing depth conditional on pocket depth,
with marginal correlation between duplicate observations from the same periodon-
tal site, and a Dirichlet process prior (DPP) on the examiner-bias parameters to
accommodate possible latent class structure in examiner effects; and (3) recorded
probing depth conditional on observed probing depth, from which the data like-
lihood is constructed. We simulate data from the posterior predictive distribution
to estimate indices of agreement and to obtain corresponding interval estimates
corrected for the correlation in these data.

The motivation for our approach is twofold. First, a model-based approach uti-
lizing all the data facilitates borrowing of strength across examiner pairs and helps
mitigate problems associated with small numbers of large clusters (here, nine clus-
ters with maximum size of 336). Second, by placing the DPP on model parameters,
factors associated with examiner bias need not be specified a priori. Rather, our
model learns characteristics associated with bias, and allows these to vary by site,
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subject and examiner. Investigating such effects in more traditional modeling set-
tings would require specifying in advance all potential main and interaction effects
of interest. We describe our model in Section 2 and present results from a simu-
lation study in Section 3. We apply our method to the periodontal probing depth
calibration study data and summarize our results in Section 4. We conclude in Sec-
tion 5 with a discussion of the merits of our approach and identify areas for further
research.

2. Model specification. We consider recorded probing depths to be measure-
ments that result from error-prone and biased observations made of unobservable
true pocket depth. We therefore construct our hierarchical model by sequentially
modeling these phenomena, from truth to data.

2.1. Pocket depth. Among U.S. adults, probing depth follows a positively
skewed distribution with the majority of values falling in the 1 mm to 3 mm range;
depths greater than 6 mm occur infrequently [Albandar, Brunelle and Kingman
(1999)]. Based on this observation and assuming all pockets have positive depth,
we model pocket depth using lognormal distributions as described below.

For each of n subjects, mi periodontal sites are examined, where i = 1, . . . , n

and mi is the total number of sites examined across all teeth for subject i. Let θij

be the pocket depth for the j th site of the ith subject, j = 1, . . . ,mi . We model the
marginal correlation among pocket depths from the same subject using random
effects. Specifically, we write

log(θij ) = μ + bi + εij ,(1)

where bi |σ 2
b ∼ N(0, σ 2

b ), εij |σ 2
ε ∼ N(0, σ 2

ε ), and bi and εij are assumed indepen-
dent. This model yields an exchangeable correlation structure in which all sites
in the same mouth are equally correlated, a simplifying assumption that has been
used previously in the analysis of periodontal data [DeRouen, Mancl and Hujoel
(1991)].

2.2. Observed probing depth. Like pocket depth, we assume observed prob-
ing depth is positive and follows a lognormal distribution. Let k = 1,2 index the
duplicate observed probing depth measures, Tijk , for the j th periodontal site of
subject i. Because Tijk is the probing depth observed by any one of the four ex-
aminers, we introduce indicator variables to denote the examiner associated with
observation Tijk . Hygienists’ performance relative to the standard is of primary im-
portance, and we therefore select the standard as the reference level for the exam-
iner indicator variables. Accordingly, let XE,ijk equal 1 when Tijk is measured by
examiner E = A, B or C, and 0 otherwise. Then Xijk = (XA,ijk,XB,ijk,XC,ijk)

′
consists of all zeros if the examiner is the standard, and is a vector of zeros and a
single one otherwise. Let βE,ij be the effect, relative to the standard examiner, of
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examiner E on observed probing depth, so that βij = (βA,ij , βB,ij , βC,ij )
′ is the

parameter vector associated with Xijk .
Let Tij = (Tij1, Tij2)

′ and model Tijk as

log(Tijk) = log(θij ) + X′
ijkβij + γijk.(2)

To accommodate variance heterogeneity across examiners, we model the error
terms γijk|Xijk,σ

2 ∼ N(0, X̃′
ijkσ

2), where X̃ijk = (X′
ijk,

∏
E(1 − XE,ijk))

′ and

σ 2 = (σ 2
A,σ 2

B,σ 2
C,σ 2

S )′. Thus, the γijk are independent mean zero Gaussian ran-
dom variables with variance one of σ 2

A, σ 2
B , σ 2

C or σ 2
S according to the examiner

associated with observation Tijk . We further assume that γijk and bi , and γijk and
εij are independent. Finally, since θij is a random quantity, duplicate observations
(Tij1 and Tij2) are marginally correlated.

Throughout, we assume the standard examiner exhibits no bias. However, if un-
biased measuring behavior for the standard cannot be assumed, then equation (1)
represents “truth” as seen by the standard. Our reference model, Model 0, has com-
mon examiner variances and no examiner biases. Specifically, σ 2

A = σ 2
B = σ 2

C =
σ 2

S = σ 2 and βij ≡ 0. We consider three alternative models for observed probing
depth described as follows.

2.2.1. Unequal variances and no biases. Model 1 assumes βij ≡ 0, but im-
poses no constraints among the examiner variances. Here examiners may differ in
the variability of their probing depth measures, but all are unbiased.

2.2.2. Unequal variances and constant bias. Model 2 relaxes Model 1 by per-
mitting a common examiner effect so that βE,ij = βE for all i and j . Thus, study
examiners A, B and C are equally biased for all periodontal sites, but need not have
the same bias.

2.2.3. Unequal variances and site-level biases. Model 3 further relaxes as-
sumptions by placing a nonparametric Dirichlet process prior (DPP) on βE,ij that
supports different effects for examiners A, B and C associated with site-level char-
acteristics. Our motivation is to incorporate flexibility in the examiner bias pa-
rameters to facilitate discovery of any latent class structure among the sites. Here
classes define collections of sites with common measurement bias, the identifica-
tion of which may be useful in designing follow-up training for examiners or future
calibration exercises. Our approach is similar to that used by Congdon (2007) in
which he placed DPPs on regression coefficients in a bivariate analysis of male
and female suicides in England to capture spatial variability in the regression pa-
rameters.

Escobar and West [Escobar and West (1995, 1998)] describe mixture modeling
via DPPs. Congdon (2001), pages 260–273, summarizes their work (and others)
and provides examples of DPP mixture modeling using WinBUGS [Lunn et al.
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(2000)]. To briefly summarize, let yi , i = 1, . . . , n, be drawn from the distribution
f (yi |φi), where the parameter φi is unknown. The DPP treats the underlying dis-
tribution of φi as unknown but centered around a base distribution, G0, from which
candidate values for φi are drawn according to a concentration parameter, α. The
φi cluster based on similarities among the yi , so that assignment of a given candi-
date value from G0 to multiple φi may be expected. In practice, M ≤ n candidate
values, denoted φ∗

m with m = 1, . . . ,M , are drawn from G0 and M∗ ≤ M of these
are allocated to one or more of the φi . The density of φi more closely resembles
G0 for large values of α, while small values of α result in a density similar to a
finite mixture model. A practical approach to implementation of the DPP using
a ‘stick-breaking prior’ is described by Ishwaran and James (2001) and is based
on a finite version of the constructive definition introduced by Sethuraman (1994).
Our implementation uses this finite approximation.

In our probing depth application, we accommodate different latent class struc-
tures across examiners A, B and C, and assign the DPP to the model regression
parameters, βE,ij , as βE,ij |
E ∼ 
E with 
E ∼ DP(αEGE,0). We specify GE,0

to be a normal distribution with examiner-specific mean and variance, and αE is a
precision parameter. Sites (i, j) and (i′, j ′) are identified as belonging to the same
cluster for examiner E when βE,ij = βE,i′j ′ . Congdon (2001) notes the number
of classes cannot exceed the number of distinct data values. In our application,
recorded probing depth takes integer values ranging from 0 mm to 8 mm, with the
difference in duplicate measures ranging from −4 mm to 4 mm. These values lead
to at most 9 distinct intervals for the observed probing depth and, although Tijk

may vary within these intervals, such variation within 1 mm adds little to under-
standing examiner performance. Since we place separate DPPs on the distribution
of βE,ij for examiners A, B and C, we use an examiner subscript for the num-
ber of candidate values, ME , drawn from the baseline distribution, GE,0. We used
ME = 6 for all examiners to facilitate sufficient model flexibility to discover la-
tent class structure. We specified a range of potential values for the concentration
parameters with αE = 0.5,1,2,3,4,5,6,7,8,9,10 and 20 and conducted a sensi-
tivity analysis (summarized in Section 3.1) to facilitate selection. Based on com-
parisons of posterior class inference across the range of αE values, we selected
αE = 8 for all E.

2.3. Recorded probing depth. The translation from observed to recorded prob-
ing depth is based on both examination protocol and physical characteristics of the
manual probe. The probe is scored at sequential millimeter markings so that ob-
served probing depths fall at or between markings. In our study, probing depths
were recorded as the greatest integer less than or equal to the probing depth ob-
served on the manual probe. Although our protocol accommodated recorded prob-
ing depths up to 15 mm, the largest recorded value was 8 mm.
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Let Uijk be the recorded probing depth for the kth replicate of the j th site for
the ith subject. Then

Uijk =
{ �Tijk�, if 0 ≤ Tijk < 15,

15, otherwise,
(3)

where �a� is the greatest integer less than or equal to a. It follows that

πu,ijk = Pr
(
Uijk = u| log(θij ),βij ,Xijk,σ

2)

=
⎧⎨
⎩

ζu+1, if u = 0,
ζu+1 − ζu, if u = 1, . . . ,14,
1 − ζu, if u = 15,

where ζu = 
[{log(u) − log(θij ) − X′
ijkβij }/X̃′

ijkσ
2] and 
(·) is the standard

normal distribution function. Let Vijk = (V0,ijk, V1,ijk, . . . , V15,ijk)
′ be a vec-

tor of length 16 consisting of 15 zeros and a single one such that Vu,ijk = 1
when Uijk = u. Then Vijk| log(θij ),βij ,Xijk,σ

2 ∼ Multinomial(1;π ijk), where
π ijk = (π0,ijk, π1,ijk, . . . , π15,ijk)

′ and the (conditional) likelihood, L, is given by

L ∝
n∏

i=1

mi∏
j=1

2∏
k=1

15∏
u=0

π
Vu,ijk

u,ijk .(4)

2.4. Estimation and inference.

2.4.1. Prior specifications. For all analyses, we placed diffuse proper priors
on the pocket depth model parameters, with μ ∼ N(0,1000), σb ∼ Uniform(0,10)

and σε ∼ Uniform(0,10). Likewise, we placed Uniform(0,10) priors on all stan-
dard deviation parameters of the observed probing depth model, σA, σB , σC

and σS . For the DPP on the examiner effects, we used the stick-breaking prior
of Ishwaran and James (2001) with GE,0 = N(0,1000), ME = 6 and αE = 8 for
all examiners.

We fit our model using WinBUGS [Lunn et al. (2000)]. We ran three chains and
assessed convergence graphically using trace plots and modified Gelman–Rubin
statistics [Brooks and Gelman (1998)]. We used the batch-means method of Jones
and colleagues [Jones et al. (2006)] to assess the precision with which posterior
quantiles of agreement indices (the endpoints of primary interest in our analysis)
were estimated. We used a burn-in of 50,500 iterations and conducted inference
based on a chain of length 10,000 from the posterior distributions of model pa-
rameters. Additionally, we constructed point and interval estimates of agreement
(weighted kappa, percent exact agreement and percent agreement within 1 mm)
based on 10,000 samples from the posterior predictive distribution of recorded
probing depths. We used an Intel Core 2 Quad CPU Windows machine for model
fit with a total run time (including monitoring of all nodes) of 1468 minutes (ap-
proximately 24 hours) for our data.
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2.4.2. Posterior clustering inference. The clustering induced by the DPP
on the βE,ij ’s is used to identify examiner-specific classes of biased ratings.
(Henceforth the terms ‘cluster’ and ‘class’ are used synonymously.) We used
the least-squares clustering approach of Dahl (2006) to identify the most likely
clustering among those sampled from its posterior distribution. Specifically, let
cE,1, . . . , cE,D be D draws from the posterior clustering distribution of the βE,ij ’s.
For each clustering cE in cE,1, . . . , cE,D , let δ(cE) be an L×L (L= ∑n

i=1 mi ) as-
sociation matrix with element δ(cE)��′ = 1 indicating the examiner effects associ-
ated with sites � and �′ jointly classified, and 0 otherwise. Element-wise averaging
of the collection of association matrices yields the pairwise probability cluster-
ing matrix, �E . Examiner E’s least-squares cluster, cLS

E , is the observed clustering
from the Markov chain for which the squared deviation of its association matrix,
δ(cLS

E ), from the pairwise probability clustering matrix, �E , is a minimum. Specif-
ically,

cLS
E = arg min

cE∈{cE,1,...,cE,D}

L∑
�=1

L∑
�′=1

(
δ(cE)��′ − �E,��′

)2
.

The posterior clustering via Dahl’s algorithm was performed on a 9-node cluster
with 72 CPUs using code written by the authors in R (version 2.8.1), and took an
average of 615 minutes (approximately 10 hours) of user time to conduct inference
for a single examiner.

2.4.3. Understanding class membership. For each examiner, we examined the
posterior density estimates of the βE,ij ’s for sites in a common class to shed
light on the magnitude and direction of bias if present. Additionally, following
Fleiss et al. (1991), we examined the association of tooth position (anterior ver-
sus posterior, and maxillary versus mandibular) and site location (proximal versus
mid-tooth, and lingual versus buccal) with site class membership. We compared
the proportion of sites with specified tooth and location characteristics between
classes using generalized estimating equations (to accommodate within-mouth
clustering).

3. Model evaluation.

3.1. Data simulation model. Due to the extensive run time to both fit the
model and conduct posterior clustering inference for three examiners, we con-
ducted a simulation using a single data realization. While generalizability of
findings are necessarily limited, we explored the model’s ability to recover-known
parameter values and measures of agreement based on draws from the joint
posterior and posterior predictive distributions, respectively. We constructed the
simulated data to reflect the calibration study’s experimental design and resulting
structure of the data. Accordingly, we simulated data composed of pocket depths
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for each of nine subjects using equation (1) with μ = 1, σb = 0.2 and σε = 0.3. For
simplicity, we assumed each subject was fully dentate, resulting in a total of 1512
simulated pocket depths. We modeled duplicates of observed probing depth con-
ditional on pocket depth by specifying examiner biases dependent on site-specific
characteristics as follows:

log(Tijk) = log(θij ) + βB,ij · I (θij ≥ 4 mm) · I (E = B)
(5)

+ [
βC1,ij + βC2,ij · I (site j is DLMM)

] · I (E = C) + γijk,

where I (·) is a binary indicator for the stated condition (DLMM = distolingual
mandibular molar), βB,ij = −0.5, βC1,ij = 0.25, and βC2,ij = −1. The examiner-
specific effects expressed in equation (5) indicate that, relative to the standard:
(1) examiner A does not exhibit biased measuring behavior; (2) examiner B’s mea-
surements on pockets of 4 mm or more are too shallow by 0.5 mm on average; and
(3) overall, examiner C’s measures are too deep by 0.25 mm with the exception
of distolingual mandibular molar sites, for which measures are negatively biased
by 0.75 mm. We further simulated observed probing depths with σA = 0.1, σB =
0.25, σC = 0.15 and σS = 0.07. We then constructed recorded probing depths as
described by equation (3). A total of 3024 (1512 pocket depths × 2 recorded prob-
ing depths per site) simulated recorded probing depths comprised the final simula-
tion data set. Of the sites examined by B, 82 had true depths of 4 mm or more. Of
those examined by C, 28 were from distolingual mandibular molars.

We conducted a sensitivity analysis to tune our selection of the concentration
parameter, αE . Specifically, we considered values of αE equal to 0.5, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10 and 20, and conducted posterior clustering inference using the method of
least-squares clustering introduced by Dahl (2006) and described in Section 2.4.2.
For each value of αE we assessed both the number of clusters identified as well
as the strength of association between class membership and factors known to
be associated with biased measurement (e.g., deep pockets for examiner B and
distolingual mandibular molars for examiner C). We selected αE = 8 based on
the resulting model’s ability to recover the correct number of clusters for each
examiner (1 for A and 2 for B and C), maximum sensitivity and specificity of the
recovered cluster assignments, and statistical significance of association of class
membership with characteristics inducing bias.

Using the simulated recorded measures as data, we fit Model 3 as described by
equations (1), (2) and (4), with examiner-specific variances and site-level examiner
biases modeled as described in Section 2.2.3.

3.2. Simulation results. We summarize first our assessment of inter- and intra-
examiner agreement, as this was the primary objective of our analysis. For each
agreement index, we report three values: the true value, derived from true joint
and marginal probabilities of recorded probing depths based on the model de-
scribed in Section 3.1; the observed value, calculated from the estimated joint and
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marginal probabilities of recorded probing depths based on the single simulated
set of recorded probing depths derived from the model described in Section 3.1;
and the median and 95% predictive interval obtained from 10,000 estimates of
each agreement measure based on the same number of data realizations derived
from the posterior predictive distribution using the analysis model described in
Section 3.1. We begin with a detailed description of our approach to agreement
evaluation in Sections 3.2.1 through 3.2.4.

3.2.1. True agreement measures. We derived true agreement values based on
theoretical joint and marginal probabilities of recorded probing depths. Consider
the following example based on examiners B and S. Let TB and TS be observed
probing depth duplicates measured by examiners B and S, respectively, for a given
periodontal site with corresponding pocket depth θ . From equation (2), the joint
distribution of TB and TS is given by(

log(TB), log(TS)
)′ ∼ N(μ,�),(6)

where μ = (μ − 0.5,μ)′ if θ ≥ 4 mm, μ = (μ,μ)′ if θ < 4 mm, �11 = σ 2
b +

σ 2
ε + σ 2

B , �22 = σ 2
b + σ 2

ε + σ 2
S , and �12 = �21 = σ 2

b + σ 2
ε . Defining η = Pr(θ ≥

4 mm) = 1 − 
{(log 4 − μ)/
√

�12}, the respective marginal distributions of ob-
served probing depths are

log(TB) ∼ N(μ − 0.5,�11)η + N(μ,�11)(1 − η)(7)

and

log(TS) ∼ N(μ,�22).(8)

Based on the compound symmetry induced by equation (1), distributions of ob-
served probing depths for other sites within the same mouth are equivalent. Joint
and marginal probabilities of recorded probing depths for other examiner pairs are
similarly derived.

Weighted kappa, κw , is a chance-corrected agreement measure that weights dis-
agreements based on the measures’ relative distance [Cohen (1968); Fleiss (2001),
pages 223–225]. Continuing with our example, let UB and US be recorded prob-
ing depths corresponding to observed values TB and TS . Define pu1,u2 = Pr(UB =
u1,US = u2), pu1 = Pr(UB = u1), and pu2 = Pr(US = u2). Then κw is defined
as κw = (po(w) − pe(w))/(1 − pe(w)), where po(w) = ∑15

u1=0
∑15

u2=0 wu1,u2pu1,u2 ,

and pe(w) = ∑15
u1=0

∑15
u2=0 wu1,u2pu1pu2 . We use the common weighting scheme

wu1,u2 = 1 − {(u1 − u2)
2/(N − 1)2}, where N is the total number of categories

(16 in this case).
We also constructed measures of percent exact agreement, Pexact, and percent

agreement within 1 mm, P±1, where Pexact = ∑15
u=0 Pr(UB = US = u) and

P±1 = Pexact +
15∑

u=1

{
Pr(UB = u,US = u − 1) + Pr(UB = u − 1,US = u)

}
.
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We constructed the true value of κw for each examiner pair using the true values
of pu1 , pu2 and pu1,u2 obtained from the joint and marginal distributions shown in
(6)–(8) (or analagous distributions for other examiners), and the relationship be-
tween observed and recorded probing depths described by equation (3). In a similar
manner, we constructed true values of Pexact and P±1. The resulting agreement val-
ues for each examiner pair are reported in the column labeled “Truth” in Table 1.

TABLE 1
Simulation agreement results. A, B, C and S are the three examiners and standard. PD = pocket

depth. AS, BS and CS results are based on 210 site-level measures from 5 subjects. Results for all
other pairings are based on 126 measures from 3 subjects. Observed results are point estimates

obtained from the simulated data set, and results obtained from the posterior predictive distribution
are medians and 95% predictive intervals

Truth Observed Post pred

% % %
Pair κw agree % ±1 κw agree % ±1 κw agree % ±1

AS 0.890 72.2 99.5 0.902 66.7 100.0 0.846 66.2 99.1
(0.765, 0.927) (55.7, 76.7) (95.7, 100.0)

BS 0.693 44.9 89.3 0.454 51.0 83.3 0.669 45.2 90.0
(0.550, 0.819) (34.8, 57.1) (80.5, 96.2)

CS 0.664 31.4 81.3 0.591 31.0 79.0 0.613 31.4 79.1
(0.498, 0.770) (22.4, 43.3) (66.7, 90.0)

AB 0.683 44.0 88.5 0.429 48.4 88.9 0.633 43.7 88.9
(0.474, 0.801) (31.8, 57.1) (77.0, 96.8)

AC 0.659 31.7 80.8 0.709 28.6 77.8 0.586 31.0 78.6
(0.449, 0.762) (19.8, 45.2) (62.7, 91.3)

BC 0.547 26.5 70.5 0.454 34.1 81.7 0.497 26.2 70.6
(0.332, 0.694) (16.7, 38.9) (54.8, 85.7)

AA 0.872 68.1 99.0 0.825 64.3 98.4 0.835 65.1 98.4
(0.730, 0.923) (50.8, 77.8) (93.7, 100.0)

BB 0.559 35.8 79.8 0.344 33.3 83.3 0.619 42.1 85.7
(0.441, 0.789) (29.4, 55.6) (73.0, 95.2)

CC 0.719 43.1 84.5 0.845 54.0 88.9 0.819 48.4 91.3
(0.712, 0.907) (35.7, 63.5) (81.0, 98.4)

SS 0.911 77.2 99.8 0.884 70.6 100.0 0.872 72.2 100.0
(0.776, 0.947) (59.5, 84.1) (96.8, 100.0)

A/PD 0.910 77.0 99.8 0.873 71.8 99.3
(0.815, 0.939) (63.6, 79.6) (97.6, 100.0)

B/PD 0.703 45.9 90.1 0.696 46.8 91.2
(0.611, 0.830) (38.6, 56.8) (84.0, 95.9)

C/PD 0.669 30.9 81.9 0.629 31.3 80.1
(0.545, 0.779) (23.5, 42.0) (69.6, 89.5)

S/PD 0.936 83.8 100.0 0.917 80.3 100.0
(0.875, 0.963) (72.9, 86.5) (99.5, 100.0)
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3.2.2. Observed agreement. Additionally, for each examiner pair we con-
structed empirical estimates of κw , Pexact and P±1 based on estimated joint and
marginal probabilities of recorded probing depths from the simulated data set de-
scribed in Section 3.1. These values are reported in the column labeled “Observed”
in Table 1, and are obtained by using sample proportions to estimate the probabil-
ities required to construct the agreement measures.

3.2.3. Posterior predictive agreement estimates. We also obtained point and
interval estimates of agreement for each examiner pair from 10,000 data realiza-
tions obtained from the posterior predictive distribution based on the Bayesian
analysis model described in Section 3.1. Specifically, for each data set simulated
from the posterior predictive distribution, we estimated joint and marginal proba-
bilities of recorded probing depths based on sample proportions, and subsequently
constructed estimates of κw , Pexact and P±1 for each examiner pair. These values
are reported in the column labeled “Post pred” in Table 1.

3.2.4. Examiner agreement with pocket depth. We define examiner agreement
with true pocket depth as the value of the agreement measure achieved when the
collection of recorded probing depths associated with a given examiner, {Uijk}, are
compared to the corresponding values of true pocket depths censored according to
the rule described in equation (3). We derived both true measures of agreement
based on theoretical joint and marginal probabilities as well as point and interval
estimates of agreement resulting from the 10,000 data realizations from the poste-
rior predictive distribution and summarize these results in Table 1. Because truth
is not observable, we omit a measure of “Observed” agreement with true pocket
depth.

3.2.5. Simulation agreement summary. Although results based on a single
simulated data set preclude generalizability, the observations summarized herein
are meant to provide a “first look” at model performance. Agreement measures for
the simulated data are summarized in Table 1. We observe that estimates based
on the posterior predictive distribution recover agreement indices’ true values with
all 95% predictive intervals containing the truth, although we can make no claims
pertaining to coverage. Still, there are advantages in using repeated draws from
the posterior predictive distribution to construct these indices. The ability to obtain
interval estimates correctly accounting for the correlation of pocket depths in the
same mouth and between duplicate readings is a strength. Furthermore, only the
model-based approach provides an estimate of agreement between each examiner
and true pocket depth. Finally, since the posterior predictive draws are sampled
from a distribution derived from a model utilizing the complete data, the pooling
of information yields improved power to make inferential statements about indi-
vidual examiners.
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TABLE 2
Simulation model posterior parameter estimates (median and

95% predictive interval). For each examiner, we report the true
and estimated number of classes as determined by the method

of least-squares clustering

Parameter Truth Posterior estimate

μ 1 1.03 (0.80,1.18)

σb 0.2 0.19 (0.11,0.40)

σε 0.3 0.29 (0.28,0.30)

σA 0.1 0.11 (0.09,0.13)

σB 0.25 0.24 (0.22,0.28)

σC 0.15 0.15 (0.12,0.17)

σS 0.07 0.08 (0.07,0.10)

A classes 1 1∗
B classes 2 2
C classes 2 2

∗Two additional classes included a single site each.

3.2.6. Model parameters. Table 2 shows posterior estimates of all model pa-
rameters (except the βE,ij ’s). Supplementary Figure 1 [Hill and Slate (2014)]
shows posterior density estimates of the βE,ij ’s for examiners A, B and C. The
posteriors for A effects are strongly unimodal and centered at zero, indicating no
bias. In contrast, posterior densities for examiner B effects indicate two modes,
one at 0 and another at −0.5. Similarly, posterior densities for examiner C effects
identify two modes, one at 0.25 and the second at −0.75. The locations of these
modes are consistent with the data simulation model described by equation (5).

A number of the βE,ij ’s posterior density estimates are bimodal, suggesting,
perhaps, that examiner effects sometimes suffer from nonidentifiability. This is
most pronounced for examiner pairings without the standard, situations in which
there is less information to “anchor” true pocket depth (θij ). Still, the modes and
their relative heights inform on rating behavior: examiner A’s measures are unbi-
ased; examiner B’s measures are most often unbiased but sometimes negatively
biased; and examiner C’s measures are most often positively biased but sometimes
negatively biased. This information together with the least-squares cluster assign-
ment of the examiner effects provides a picture of both the magnitude of bias as
well as those factors influencing bias.

In our simulation, the least-squares clustering for examiner A effects identified
a single dominant class consistent with our simulation of no bias for examiner A
measures. Two additional classes were identified for examiner A, each comprising
a single site. On closer inspection, these correspond to the only cases in which A
records a probing depth of 0. In these situations, log(Tijk) will take on large neg-
ative values when the Markov chain for Tijk samples small positive values. The
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Markov chain for the corresponding examiner effect will likewise sample large
negative values and the posterior density estimate is subsequently diffuse and neg-
atively skewed with a single mode at 0. Because these posterior distributions are so
markedly different from the norm, the examiner effects for these sites are assigned
to singleton classes.

The least-squares clusterings for examiners B and C both identified two
classes—a single dominant class corresponding to the highest mode of the pos-
terior density estimates and a second class corresponding to the subordinate mode.
Specifically, examiner B’s classes comprised 539 and 49 site-specific examiner
effects. Recalling examiner B’s biased measures for deep pockets, 10% (54 of
539) of sites associated with the larger class were deep versus 57% (28 of 49) in
the smaller class (p < 0.0001), although the corresponding sensitivity was weak
[Sens = Prob(subordinate class assignment|deep site) .= 28/82 = 34%]. For ex-
aminer C, the classes comprised 547 and 41 site-specific examiner effects. One-
half percent (3 of 547) of sites associated with the larger class were distolingual
mandibular molars versus 61% (25 of 41) in the smaller class (p < 0.0001), and the
sensitivity was excellent [Sens = Prob(subordinate class assignment|DLMM) .=
25/28 = 89%].

4. Application to calibration training data. We fit the reference model,
Model 0, and Models 1, 2 and 3 (described in Sections 2.2.1 through 2.2.3)
to the calibration training data. We compared model fit using DIC3 =
−4Eϑ [logf (U|ϑ)|U] + 2 log f̂ (U), as described by Celeux et al. (2006), where
ϑ is a vector of model parameters,

f̂ (U) =
n∏

i=1

mi∏
j=1

2∏
k=1

f̂ (Uijk)

and f̂ (Uijk) approximates Eϑ [f (Uijk|ϑ)|U], the predictive density averaged over
the MCMC run. The fit was dramatically improved for Model 3 (DIC3 for Mod-
els 0 through 3 were 4560.11, 4402.13, 4129.07 and 3381.83).

Table 3 shows agreement results for the calibration training data. Italicized val-
ues are those reported by Hill et al. (2006) and are constructed as described in
Section 3.2.2. Nonitalicized values are medians and 95% predictive intervals con-
structed from 10,000 draws from the posterior predictive distribution as described
in Sections 3.2.3 and 3.2.4. Evaluation of the precision with which quantiles of
agreement indices were estimated from the MCMC yielded posterior standard er-
rors no larger than 0.008 [Jones et al. (2006)]. We observe reductions in the widths
of nearly all agreement interval estimates, likely due to the pooling of information
across examiners and subjects in a single model. Furthermore, interval estimates
were available for all agreement indices despite the small number of subjects (clus-
ters) examined by examiner pairs, a major limitation for interval estimation based
on traditional asymptotics.
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TABLE 3
Examiner calibration training agreement results. A, B, C and S are the three examiners and

standard. PD = pocket depth. Italicized estimates and 95% confidence intervals (CIs) are obtained
from the observed data as described in Section 3.2.2. Nonitalicized estimates (medians and 95%

predictive intervals) are obtained as described in Sections 3.2.3 and 3.2.4. The number of subjects
and sites examined by examiners E and E′ is given by nEE′ and LEE′ , respectively

Pair nEE′ LEE′ κw % agree % ±1

AS 5 180 0.713 62.2 (36.1,88.4) 94.4 (83.3,100.0)∗
0.793 (0.687, 0.893) 58.9 (47.2, 69.4) 95.0 (89.4, 98.9)

BS 5 156 0.666 48.7 (24.6,72.8) 87.8 (70.6,100.0)∗
0.641 (0.485, 0.796) 43.6 (32.1, 55.1) 88.5 (78.2, 94.9)

CS 5 180 0.691 42.8 (34.2,51.4) 92.2 (82.4,100.0)∗
0.709 (0.586, 0.836) 47.2 (35.6, 58.9) 92.2 (83.3, 97.2)

AB 3 108 0.629 45.4 (28.0,62.7) 81.5 (49.6,100.0)∗
0.601 (0.420, 0.772) 40.7 (28.7, 54.6) 85.2 (73.2, 94.4)

AC 3 96 0.585 43.8 (0.0,88.5)† 87.5 (63.7,100.0)∗
0.622 (0.443, 0.793) 43.8 (30.2, 58.3) 87.5 (76.0, 95.8)

BC 3 120 0.615 46.7 (13.2,80.2) 80.8 (59.0,100.0)∗
0.602 (0.433, 0.768) 45.0 (32.5, 57.5) 88.3 (76.7, 95.8)

AA 2 60 0.896 73.3‡ 98.3 (77.2,100.0)∗
0.839 (0.685, 0.930) 61.7 (43.3, 78.3) 98.3 (88.3, 100.0)

BB 2 72 0.581 55.6 (43.8,67.3) 94.4 (35.6,100.0)∗
0.644 (0.409, 0.829) 45.8 (30.6, 63.9) 88.9 (73.6, 98.6)

CC 2 78 0.728 79.5 (59.4,99.5) 97.4 (67.4,100.0)∗
0.792 (0.616, 0.904) 61.5 (43.6, 76.9) 97.4 (88.5, 100.0)

SS 1 30 0.971 80.0§ 100.0§

0.866 (0.664, 0.966) 73.3 (46.7, 93.3) 100.0 (93.3, 100.0)
A/PD 8 444 0.811 (0.734, 0.896) 61.9 (52.5, 70.5) 95.5 (91.2, 98.4)
B/PD 8 456 0.689 (0.593, 0.811) 45.6 (36.0, 55.7) 90.8 (82.9, 95.6)
C/PD 8 474 0.738 (0.650, 0.844) 48.3 (38.2, 58.7) 94.1 (87.3, 97.7)
S/PD 7 546 0.931 (0.869, 0.974) 81.3 (69.2, 91.2) 100.0 (98.9, 100.0)

∗Upper bound truncated at 100.
†Lower bound truncated at 0.
‡95% CI not estimable because cluster-specific point estimates were equal.
§95% CI not estimable with a single cluster.

Figure 1 shows posterior density estimates of the βE,ij ’s for each examiner
across classes identified by the least-squares clustering algorithm. An additional
class comprising a single site was identified for each examiner. (The posterior den-
sity estimates of the corresponding examiner effects for these sites are not shown
in Figure 1.) These singleton classes were all cases in which the examiner recorded
a probing depth of 0. The associated bias parameters’ posterior density estimates
are diffuse and negatively skewed, a behavior we observed in our simulation for
similar data.
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FIG. 1. Examiner-specific posterior density estimates of bias parameters (β’s) for least-squares
clusters based on examiner calibration training data.
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Based on similarities among posterior density estimates, we collapsed into a
single group those sites in classes: 2 and 4 for examiner A; 2 and 3 for examiner B;
and 1 and 3 for examiner C. This resulted in posterior clustering inference based
on three classes for examiner A, two for examiner B, and two for examiner C
(excluding singleton classes). Examiner A’s measures are predominantly unbiased
(class 1), but with some evidence of both negative (class 2) and positive (class 3)
bias. Examiner B’s measures are overall mildly negatively biased (class 1), but 14
sites in class 2 are cases in which examiner B’s recorded probing depth is 0. In
contrast, only 12 of the 441 sites in class 1 are associated with a recording of 0 by
examiner B. Examiner C’s measures are overall mildly negatively biased (class 1),
but a number of sites are measured with positive bias (class 2).

Figure 2 shows the distribution of class membership across the mouth for sites
examined by examiner A [Slate and Hill (2012)]. Using the approach described
in Section 2.4.3, for examiner A we observed a significantly larger proportion of:
mid-tooth sites in class 2 versus class 1 (64% versus 31%, p = 0.030); buccal sites
in class 2 versus class 1 (68% versus 49%, p = 0.016); and sites associated with
anterior teeth in class 3 versus class 1 (75% versus 49%, p = 0.028). Recalling for
examiner A that class 1 reflects no bias, class 2 reflects negative bias, and class 3
positive bias, we conclude that examiner A is significantly more likely to be nega-
tively biased for mid-tooth and buccal sites and more likely to be positively biased
for anterior teeth. Based on similar analyses for examiner B comparing class 2
to class 1, we observe a greater proportion of mid-tooth sites (100% versus 31%)
and sites located on mandibular teeth (93% versus 70%, p = 0.052). Again, recall-
ing for examiner B that class 1 sites are negatively biased, and class 2 sites have
recorded depths of 0, we conclude examiner B displays an overall negative bias in
measuring behavior relative to the standard, and is more likely to measure a depth
of 0 mm for mid-tooth and mandibular sites. For examiner C, there is marginal ev-
idence of a larger proportion of anterior teeth in class 2 versus class 1 (49% versus
24%, p = 0.052). Recall examiner C’s class 1 and class 2 sites are positively and
negatively biased, respectively, relative to the standard. We conclude examiner C’s
measures are overall negatively biased, but tend to be positively biased on anterior
teeth.

We also examined the relationship between class membership and pocket depth.
Specifically, we calculated the median of the posterior distribution of θij and as-
sessed the significance of its association with class membership. Examiner B is
significantly more likely to record a probing depth of zero for more shallow sites
(p = 0.012), and examiner C is significantly positively biased for deeper sites
(p = 0.0007).

5. Discussion. In this manuscript we develop a novel approach to inter- and
intra-examiner agreement using a semi-parametric Bayesian model with a Dirich-
let process prior on model parameters capturing examiner biases, accommodating
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FIG. 2. Examiner calibration training exercise examiner A posterior class structure.
White = class 1; Red = class 2; Blue = class 3; Black = Singleton class; Gray = not observed by
examiner. Anterior versus posterior teeth are indicated by the vertical dashed line. For each tooth,
the mesial and distal sites are those closest to and furthest from the midline of the dental arch, indi-
cated by the solid vertical line. Abbreviations: Max = Maxillary; Mand = Mandibular; B = Buccal;
L = Lingual.
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dependence among measures obtained from the same unit, as well as the depen-
dence between duplicate measures made on the same experimental subunit. At the
suggestion of a referee, we fit an alternative model for pocket depth [equation (1)]
with an additional tooth-level random effect. We observed modest improvement in
fit relative to Model 3 with a reduction in DIC3 (�DIC3 = 13.29), but there was no
meaningful change in posterior inference (results not shown). Recently, a number
of authors have demonstrated spatial correlation among measures obtained from
periodontal sites within the same mouth, with higher correlation among measures
obtained from sites closer together than from those further apart [Reich, Hodges
and Carlin (2007)]; we speculate the tooth-level random effect captures some of
this spatial heterogeneity. An interesting extension of our approach would investi-
gate improvements in model fit and subsequent inference by specifically modeling
spatial correlation among sites in equation (1).

Our analysis has several implications with respect to the design of experi-
ments intended to measure examiner agreement. First, the discovery of sample
items where examiners demonstrate greater difficulty with agreement suggests
over-sampling within these discovered classes in follow-up calibration studies.
Furthermore, it may be possible to reduce the sample sizes needed to determine
agreement within specified precision bounds because the model borrows strength
across examiner pairs. Finally, we observed in our simulated data set that agree-
ment indices (in particular, κw) tend to be smoothed in the direction of the truth.
Although our simulation does not permit generalization, this observation is consis-
tent with conclusions made by Guggenmoos-Holzmann and Vonk [Guggenmoos-
Holzmann and Vonk (1998)] who show that Cohen’s kappa may be biased when
examiners disagree systematically. To mitigate this bias, they suggest using more
informative study designs incorporating simultaneous assessment of intra- and
inter-examiner variation, a characteristic of the design used in our examiner cali-
bration exercise.

Our approach is not limited to periodontal data applications. For example,
a common measure of anti-tumor activity in cancer clinical trials is tumor response,
measured on an ordinal scale but derived from a continuous measure of the per-
centage of tumor shrinkage from baseline in (potentially) multiple target lesions
in the same subject [Eisenhauer et al. (2009)]. This endpoint is typically measured
by expert reading of CT or MRI scans by trained radiologists. One can envision a
calibration exercise in which radiologists are trained to measure response, but scan
assessments may be biased based on (for example) tumor location or scan quality.
When pooling across examiner pairs is appropriate, our hierarchical model pro-
vides refined inference for calibration data that yields greater precision and identi-
fication of classes of units measured with similar bias, contributions that enhance
the knowledge gained and enable subsequent targeted examiner training.
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SUPPLEMENTARY MATERIAL

A semi-parametric Bayesian model of inter- and intra-examiner agree-
ment for periodontal probing depth: Supplementary Figure (DOI: 10.1214/13-
AOAS688SUPP; .pdf). Posterior density estimates of bias parameters (βE,ij ’s) for
examiners A, B and C based on the simulation model described in Section 3.1.
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