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BAYESIAN DATA AUGMENTATION DOSE FINDING WITH
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A major practical impediment when implementing adaptive dose-finding
designs is that the toxicity outcome used by the decision rules may not be
observed shortly after the initiation of the treatment. To address this issue, we
propose the data augmentation continual reassessment method (DA-CRM)
for dose finding. By naturally treating the unobserved toxicities as missing
data, we show that such missing data are nonignorable in the sense that the
missingness depends on the unobserved outcomes. The Bayesian data aug-
mentation approach is used to sample both the missing data and model pa-
rameters from their posterior full conditional distributions. We evaluate the
performance of the DA-CRM through extensive simulation studies and also
compare it with other existing methods. The results show that the proposed
design satisfactorily resolves the issues related to late-onset toxicities and
possesses desirable operating characteristics: treating patients more safely
and also selecting the maximum tolerated dose with a higher probability. The
new DA-CRM is illustrated with two phase I cancer clinical trials.

1. Introduction. The continual reassessment method (CRM) proposed by
O’Quigley, Pepe and Fisher (1990) is an influential phase I clinical trial design for
finding the maximum tolerated dose (MTD) of a new drug. The CRM assumes a
single-parameter working dose–toxicity model and continuously updates the esti-
mates of the toxicity probabilities of the considered doses to guide dose escalation.
Under some regularity conditions, the MTD identified by the CRM generally con-
verges to the true MTD, even when the working model is misspecified [Shen and
O’Quigley (1996)]. A variety of extensions of the CRM have been proposed to
improve its practical implementation and operating characteristics [Goodman, Za-
hurak and Piantadosi (1995); Möller (1995); Heyd and Carlin (1999); Leung and
Wang (2002); O’Quigley and Paoletti (2003); Garrett-Mayer (2006); Iasonos and
O’Quigley (2011); among others]. Recently, several robust versions of the CRM
have been proposed by using the Bayesian model averaging and posterior maxi-
mization [Yin and Yuan (2009) and Daimon, Zohar and O’Quigley (2011)], so that
the method is insensitive to the prior specification of the dose–toxicity model.
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In real applications, to achieve its best performance, the CRM requires that the
toxicity outcome be observed quickly such that, by the time of the next dose as-
signment, the toxicity outcomes of the currently treated patients have been com-
pletely observed. However, late-onset toxicities are common in phase I clinical tri-
als, especially in oncology areas. For example, in radiotherapy trials, dose-limiting
toxicities (DLTs) often occur long after the treatment is finished [Coia, Myerson
and Tepper (1995)]. Desai et al. (2007) reported a phase I study to determine the
MTD of oxaliplatin for combination with gemcitabine and the concurrent radia-
tion therapy in pancreatic cancer. In that trial, on average, a new patient arrived
every two weeks, whereas it took nine weeks to assess the toxicity outcomes of
the patients after the treatment is initiated. Consequently, at the moment of dose
assignment for a newly arrived patient, the patients under treatment might not have
yet completed the full assessment period and, thus, their toxicity outcomes might
not be available for making the decision of dose assignment. Late-onset toxicity
has been becoming a more critical issue in the emerging era of the development
of novel molecularly targeted agents, because many of these agents tend to induce
late-onset toxicities. A recent review paper in the Journal of Clinical Oncology
found that among a total of 445 patients involved in 36 trials, 57% of the grade 3
and 4 toxicities were late-onset and, as a result, particular attention has been called
upon the issue of late-onset toxicity [Postel-Vinay et al. (2011)].

Our research is motivated by one of the collaborative projects, which involves
the combination of chemo- and radiation therapy. The trial aims to determine the
MTD of a chemo-treatment, while the radiation therapy is delivered as a simultane-
ous integrated boost in patients with locally advanced esophageal cancer. The DLT
is defined as CTCAE 3.0 (Common Terminology Criteria for Adverse Events ver-
sion 3.0) grade 3 or 4 esophagitis, and the target toxicity rate is 30%. In this trial,
six dose levels are investigated and toxicity is expected to be late-onset. The ac-
crual rate is approximately 3 patients per month, but it generally takes 3 months to
fully assess toxicity for each patient. By the time of dose assignment for a newly
enrolled patient, some patients who have not experienced toxicity thus far may
experience toxicity later during the remaining follow-up. It is worth noting that
whether we view toxicity as late-onset or not is relative to the patient accrual rate.
If patients enter the trial at a fast rate and toxicity evaluation cannot keep up with
the speed of enrollment, this situation is considered as late-onset toxicity. On the
other hand, if the patient accrual is very slow, for example, one patient every three
months, and toxicity evaluation also requires a follow-up of three months, then the
trial conduct may not cause any missing data problem. For broader applications
besides this chemo-radiation trial and to gain more insight into the missing data
issue, we explore several options to design such late-onset toxicity trials, including
the CRM and some other possibilities discussed below.

Operatively, the CRM does not require that toxicity must be immediately ob-
servable, and the update of posterior estimates and dose assignment can be based
on the currently observed toxicity data while ignoring the missing data. However,
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such observed data represent a biased sample of the population because patients
who would experience toxicity are more likely to be included in the sample than
those who do not experience toxicity. In other words, the observed data contain an
excessively higher percentage of toxicity than the complete data. Consequently, the
estimates based on only the observed data tend to overestimate the toxicity proba-
bilities and lead to overly conservative dose escalation. Alternatively, Cheung and
Chappell (2000) proposed the time-to-event CRM (TITE-CRM), in which sub-
jects who have not experienced toxicity thus far are weighted by their follow-up
times. Based on similar weighting methods, Braun (2006) studied both early- and
late-onset toxicities in phase I trials; Mauguen, Le Deley and Zohar (2011) inves-
tigated the EWOC design with incomplete toxicity data; and Wages, Conaway and
O’Quigley (2013) proposed a dose-finding method for drug-combination trials.
Yuan and Yin (2011) proposed an expectation–maximization (EM) CRM approach
to handling late-onset toxicity.

In the Bayesian paradigm, we propose a data augmentation approach to re-
solving the late-onset toxicity problem based upon the missing data methodol-
ogy [Little and Rubin (2002); and Daniels and Hogan (2008)]. By treating the
unobserved toxicity outcomes as missing data, we naturally integrate the missing
data technique and theory into the CRM framework. In particular, we establish
that the missing data due to late-onset toxicities are nonignorable. We propose the
Bayesian data augmentation CRM (DA-CRM) to iteratively impute the missing
data and sample from the posterior distribution of the model parameters based on
the imputed likelihood.

The remainder of the article is organized as follows. In Section 2 we briefly re-
view the original CRM methodology and propose the DA-CRM based on Bayesian
data augmentation to address the missing data issue caused by late-onset toxicity.
In Section 3.1 we present simulation studies to compare the operating characteris-
tics of the new design with other available methods, and in Section 3.2 we conduct
a sensitivity analysis to further investigate the properties of the DA-CRM. We il-
lustrate the proposed DA-CRM design with two cancer clinical trials in Section 4,
and conclude with a brief discussion in Section 5.

2. Dose-finding methods.

2.1. Continual reassessment method. In a phase I dose-finding trial, patients
enter the study sequentially and are followed for a fixed period of time (0, T ) to
assess the toxicity of the drug. During this evaluation window (0, T ), we measure
a binary toxicity outcome for each subject i,

Yi =
{

1, if a drug-related toxicity is observed in (0, T ),
0, if no drug-related toxicity is observed in (0, T ).

Typically, the length of the assessment period T is chosen so that if a drug-related
toxicity occurs, it would occur within (0, T ). Depending on the nature of the dis-
ease and the treatment agent, the assessment period T may vary from days to
months.
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Suppose that a set of J doses of a new drug are under investigation, the CRM
assumes a working dose–toxicity curve, such as

πd = α
exp(a)
d , d = 1, . . . , J,

where πd is the true toxicity probability at dose level d , αd is the prespecified
probability constant, satisfying a monotonic dose–toxicity order α1 < · · · < αJ ,
and a is an unknown parameter. We continuously update this dose–toxicity curve
by re-estimating a based on the observed toxicity outcomes in the trial.

Suppose that n patients have entered the trial, and let yi and di denote the binary
toxicity outcome and the received dose level for the ith subject, respectively. The
likelihood function based on the toxicity outcomes y = {yi, i = 1, . . . , n} is given
by

L(y|a) =
n∏

i=1

{
α

exp(a)
di

}yi
{
1 − α

exp(a)
di

}1−yi .

Assuming a prior distribution f (a) for a, for example, f (a) is a normal distribu-
tion with mean 0 and variance σ 2, a ∼ N(0, σ 2), then the posterior distribution
of a is given by

f (a|y) = L(y|a)f (a)∫
L(y|a)f (a)da

,(2.1)

and the posterior means of the dose–toxicity probabilities are given by

π̂d =
∫

α
exp(a)
d f (a|y)da, d = 1, . . . , J.

Based on the updated estimates of the toxicity probabilities, the CRM assigns a
new cohort of patients to dose level d∗ which has an estimated toxicity probability
closest to the prespecified target φ, that is,

d∗ = argmin
d∈(1,...,J )

|π̂d − φ|.

The trial continues until the exhaustion of the total sample size, and then the dose
with an estimated toxicity probability closest to φ is selected as the MTD.

2.2. Nonignorable missing data. One of the practical limitations of the CRM
is that the DLT needs to be ascertainable quickly after the initiation of the treat-
ment. Figure 1 illustrates the situation where the patient interarrival time τ is
shorter than the assessment period T . By the time a dose is to be assigned to a
newly accrued patient (say, patient 4 at time 3τ ), some of the patients who have
entered the trial (i.e., patients 2 and 3) may have been partially followed and their
toxicity outcomes are still not available. More precisely, for the ith subject, let ti
denote the time to toxicity. For subjects who do not experience toxicity during the
trial, we set ti = ∞. At the moment of decision making for dose assignment, let ui
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FIG. 1. Illustration of missing toxicity outcomes under fast accrual. For each patient, the horizontal
line segment represents the follow-up, on which toxicity is indicated by a cross. At time τ , the toxicity
outcome of patient 1 is missing (i.e., Y1 is missing); at time 2τ , the toxicity outcome of patient 2
is missing (i.e., Y1 = 1, but Y2 is missing); and at time 3τ , the toxicity outcomes of both patients 2
and 3 are missing (i.e., Y1 = 1, but Y2 and Y3 are missing).

(0 ≤ ui ≤ T ) denote the actual follow-up time for subject i, and let Mi(ui) be the
missing data indicator for Yi . Then it follows that

Mi(ui) =
{

1, if ti > ui and ui < T ,
0, if ti ≤ ui or ui = T .

(2.2)

That is, the toxicity outcome is missing with Mi(ui) = 1 for patients who have
not yet experienced toxicity (ti > ui) and have not been fully followed up to T

(ui < T ); and the toxicity outcome is observed with Mi(ui) = 0 when patients
either have experienced toxicity (ti ≤ ui) or have completed the entire follow-up
(ui = T ) without experiencing toxicity. For notational simplicity, we suppress ui

and take Mi ≡ Mi(ui). Due to patients’ staggered entry, it is reasonable to assume
that ui is independent of ti , that is, the time of dose assignment (or the arrival of a
new patient) is independent of the time to toxicity.

Under the missing data mechanism (2.2), the induced missing data are nonig-
norable or informative because the probability of missingness of Yi depends on
the underlying time to toxicity, and thus implicitly depends on the value of Yi it-
self. More specifically, the data from patients who would not experience toxicity
(Yi = 0) in the assessment period are more likely to be missing than data from
patients who would experience toxicity (Yi = 1). The next theorem provides a new
insight to the issue of late-onset toxicity.
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THEOREM 1. Under the missing data mechanism (2.2), the missing data in-
duced by late-onset toxicity are nonignorable with Pr(Mi = 1|Yi = 0) > Pr(Mi =
1|Yi = 1).

The proof of the theorem is briefly sketched in the Appendix. In general, the
missing data are more likely to occur for those patients who would not experi-
ence toxicity in (0, T ). This phenomenon is also illustrated in Figure 1. Patient 2
who will not experience toxicity during the assessment period is more likely to
have a missing toxicity outcome at the decision-making times 2τ and 3τ than
patient 1 who has experienced toxicity between times τ and 2τ . Compared with
other missing data mechanisms, such as missing completely at random or missing
at random, nonignorable missing data are the most difficult to deal with [Little
and Rubin (2002)], which brings a new challenge to clinical trial designs. Because
the missing data are nonignorable, the naive approach by simply discarding the
missing data and making dose-escalation decisions solely based on the observed
toxicity data is problematic. The observed data represent a biased sample of the
complete data and contain more toxicity observations than they should be because
the responses for patients who would experience toxicity are more likely to be ob-
served. As a result, approaches based only on the observed toxicity data typically
overestimate the toxicity probabilities and thus lead to overly conservative dose
escalation.

During the trial conduct, the amount of missing data depends on the ratio of
the assessment period T and the interarrival time τ , denoted as the A/I ratio =
T/τ . The larger the value of the A/I ratio, the greater the amount of missing data
that would be produced, because there would be more patients who may not have
completed the toxicity assessment when a new cohort arrives.

2.3. DA-CRM using Bayesian data augmentation. An intuitive approach to
dealing with the unobserved toxicity outcomes is to impute the missing data so
that the standard complete-data method can be applied. One way to achieve this
goal is to use data augmentation (DA) proposed by Tanner and Wong (1987). The
DA iterates between two steps: the imputation (I) step, in which the missing data
are imputed, and the posterior (P) step, in which the posterior samples of unknown
parameters are simulated based on the imputed data. As the CRM is originally
formulated in the Bayesian framework [O’Quigley, Pepe and Fisher (1990)], the
DA provides a natural and coherent way to address the missing data issue due to
late-onset toxicity. Note that the missing data we consider here is a special case
of nonignorable missing data with a known missing data mechanism as defined
by (2.2). Therefore, the nonidentification problem that often plagues the nonignor-
able missing data can be circumvented as follows.

In order to obtain consistent estimates, we need to model the nonignorable
missing data mechanism in (2.2). Toward this goal, we specify a flexible piece-
wise exponential model for the time to toxicity for patients who would experience
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DLTs, which concerns the conditional distribution of ti given Yi = 1. Specifically,
we consider a partition of the follow-up period [0, T ] into K disjoint intervals
[0, h1), [h1, h2), . . . , [hK−1, hK ≡ T ], and assume a constant hazard λk in the kth
interval. Define the observed time xi = min(ui, ti) and δik = 1 if the ith subject ex-
periences toxicity in the kth interval; and δik = 0 otherwise. Let λ = {λ1, . . . , λK};
when the toxicity data y = {y1, . . . , yn} are completely observed, the likelihood
function of λ based on n enrolled subjects is given by

L(y|λ) =
n∏

i=1

K∏
k=1

λ
δik

k exp{−yiλksik},

where sik = hk −hk−1 if xi > hk ; sik = xi −hk−1 if xi ∈ [hk−1, hk); and otherwise
sik = 0. Similar to the TITE-CRM, we assume that the time-to-DLT distribution is
invariant to the dose level, conditioning on that the patient will experience toxicity
(Yi = 1). This assumption is helpful to pool information across different doses and
obtain more reliable estimates. The sensitivity analysis in Section 3.2 shows that
our method is not sensitive to the violation of this assumption.

In the Bayesian paradigm, we assign each component of λ an independent
gamma prior distribution with the shape parameter ζk and the rate parameter ξk ,
denoted as Ga(ζk, ξk). When there is some prior knowledge available regarding the
shape of the hazard for the time to toxicity, the hyperparameters ζk and ξk can be
calibrated to match the prior information. Here we focus on the common case in
which the prior information is vague and we aim to develop a default and automatic
prior distribution for general use. Specifically, we assume that a priori toxicity oc-
curs uniformly throughout the assessment period (0, T ), which represents a neutral
prior opinion between early-onset and late-onset toxicity. Under this assumption,
the hazard at the middle of the kth partition is λ̃k = K/{T (K − k + 0.5)}. Thus,
we assign λk a gamma prior distribution,

λk = Ga(λ̃k/C,1/C),

where C is a constant determining the size of the variance with respect to the mean,
as the mean for this prior distribution is λ̃k and the variance is Cλ̃k . Based on our
simulations, we found that C = 2 yields a reasonably vague prior and equips the
design with good operating characteristics.

Based on the time-to-toxicity model as above, the DA algorithm can be imple-
mented as follows. At the I step of the DA, we “impute” the missing data by draw-
ing posterior samples from their full conditional distributions. Let y = (yobs,ymis),
where yobs and ymis denote the observed and missing toxicity data, respectively;
and let Dobs = (yobs,M) denote the observed data with missing indicators M =
{Mi, i = 1, . . . , n}. As the missing data are informative, the observed data used for
inference include not only the observed toxicity outcomes yobs, but also the miss-
ing data indicators M. Inference that ignores M (such as the CRM) would lead to



BAYESIAN DATA AUGMENTATION DOSE FINDING 2145

biased estimates. It can be shown that, conditional on the observed data Dobs and
model parameters (a,λ), the full conditional distribution of yi ∈ ymis is given by

yi |(Dobs, a,λ) ∼ Bernoulli
(

α
exp(a)
di

exp(−∑K
k=1 λksik)

1 − α
exp(a)
di

+ α
exp(a)
di

exp(−∑K
k=1 λksik)

)
.

At the P step of the DA, given the imputed data y, we sequentially sample the
unknown model parameters from their full conditional distributions as follows:

(i) Sample a from f (a|y) given by (2.1), where y is the “complete” data after
filling in the missing outcomes.

(ii) Sample λk, k = 1, . . . ,K , from

λk|y ∼ Ga

(
λ̃k/C +

n∑
i=1

δik,1/C +
n∑

i=1

yisik

)
.

The DA procedure iteratively draws a sequence of samples of the missing data and
model parameters through the imputation (I) step and posterior (P) step until the
Markov chain converges. The posterior samples of a can then be used to make
inference on πd to direct dose finding.

2.4. Dose-finding algorithm. Let φ denote the physician-specified toxicity tar-
get, and assume that patients are treated in cohorts, for example, with a cohort size
of three. For safety, we restrict dose escalation or de-escalation by one dose level
of change at a time. The dose-finding algorithm for the DA-CRM is described as
follows:

(1) Patients in the first cohort are treated at the lowest dose level.
(2) At the current dose level dcurr, based on the cumulated data, we obtain the

posterior means for the toxicity probabilities, π̂d (d = 1, . . . , J ). We then find dose
level d∗ that has a toxicity probability closest to φ, that is,

d∗ = argmin
d∈(1,...,J )

|π̂d − φ|.

• If dcurr > d∗, we de-escalate the dose level to dcurr − 1;
• if dcurr < d∗, we escalate the dose level to dcurr + 1;
• otherwise, the dose stays at the same level as dcurr for the next cohort of patients.

(3) Once the maximum sample size is reached, the dose that has the toxicity
probability closest to φ is selected as the MTD.

In addition, we also impose an early stopping rule for safety: if Pr(π1 > φ|Dobs) >

0.96, the trial will be terminated. That is, if the lowest dose is still overly toxic, the
trial should be stopped early.
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3. Numerical studies.

3.1. Simulations. To examine the operating characteristics of the DA-CRM
design, we conducted extensive simulation studies. We considered six dose levels
and assumed that toxicity monotonically increased with respect to the dose. The
target toxicity probability was 30% and a maximum number of 12 cohorts were
treated sequentially in a cohort size of three. The sample size was chosen to match
the maximum sample size required by the conventional “3 + 3” design. The toxi-
city assessment period was T = 3 months and the accrual rate was 6 patients per
month. That is, the interarrival time between every two consecutive cohorts was
τ = 0.5 month with the A/I ratio = 6.

We considered four toxicity scenarios in which the MTD was located at different
dose levels. Due to the limitation of space, we show only scenarios 1 and 2 in
Table 1, and the other scenarios are provided in Table S1 of the supplementary
materials [Liu, Yin and Yuan (2013)]. Under each scenario, we simulated times
to toxicity based on Weibull, log-logistic and uniform distributions, respectively.
For Weibull and log-logistic distributions, we controlled that 70% toxicity events
would occur in the latter half of the assessment period (T /2, T ). Specifically, at
each dose level, the scale and shape parameters of the Weibull distribution were
chosen such that

(1) the cumulative distribution function at the end of the follow-up time T

would be the toxicity probability of that dose; and
(2) among all the toxicities that occurred in (0, T ), 70% of them would occur

in (T /2, T ), the latter half of the assessment period.

Because the toxicity probability varies across different dose levels, the scale and
shape parameters of the Weibull distribution need to be carefully chosen for dif-
ferent dose levels, and similarly for the scale and location parameters of the log-
logistic distribution. For the uniform distribution, we simulated the time to toxic-
ity independently for each dose level and controlled the cumulative distribution
function at the end of the follow-up time T matching the toxicity probability
of each dose. In the proposed DA-CRM, we used K = 9 partitions to construct
the piecewise exponential time-to-toxicity model. We compared the DA-CRM
with the CRMobs, which determined the dose assignment based on only the ob-
served toxicity data as suggested by O’Quigley, Pepe and Fisher (1990), and the
TITE-CRM with the adaptive weighting scheme proposed by Cheung and Chap-
pell (2000). As a benchmark for comparison, we also implemented the complete-
data version of the CRM (denoted by CRMcomp), assuming that all of the tox-
icity outcomes in the trial were completely observed prior to each dose assign-
ment. The CRMcomp required repeatedly suspending the accrual prior to each
dose assignment to wait that all of the toxicity outcomes in the trial were com-
pletely observed. Although the CRMcomp is not feasible in practice when toxi-
cities are late-onset, it provides an optimal upper bound to evaluate the perfor-
mances of other designs. Actually, when all toxicity outcomes are observable (i.e.,



BAYESIAN DATA AUGMENTATION DOSE FINDING 2147

TABLE 1
Simulation study comparing the complete-data CRM (CRMcomp), the CRM based on the observed
toxicity data only (CRMobs), time-to-event CRM (TITE-CRM) and the proposed data augmentation

CRM (DA-CRM) with the sample size 36, the cohort size 3 and the A/I ratio = 6

Recommendation percentage at dose levelTime to
toxicity Design 1 2 3 4 5 6 None NMTD+

Duration
(months)

Scenario 1 Pr(toxicity) 0.1 0.15 0.3 0.45 0.6 0.7
CRMcomp 0.6 13.8 61.9 22.9 0.6 0.0 0.2 9.0 36.4
# patients 4.8 7.2 14.9 7.6 1.3 0.1

Weibull CRMobs 0.4 7.5 48.4 27.4 2.4 0.1 13.7 4.0 8.2
# patients 7.5 8.3 13.2 3.0 0.9 0.1

TITE-CRM 3.4 23.1 55.9 16.5 0.6 0.0 0.5 15.5 9.0
# patients 5.1 6.3 9.0 8.1 4.9 2.5
DA-CRM 0.9 14.7 56.4 25.1 1.5 0.0 1.2 10.4 8.9
# patients 9.4 7.6 8.3 6.0 3.0 1.3

Log-logistic CRMobs 0.3 7.8 48.2 27.4 2.7 0.1 13.6 4.0 8.2
# patients 7.4 8.4 13.2 3.0 0.9 0.1

TITE-CRM 3.6 22.6 56.3 16.5 0.6 0.0 0.4 15.4 9.0
# patients 5.1 6.4 9.1 8.2 4.8 2.4
DA-CRM 0.9 13.9 58.1 23.8 1.9 0.0 1.3 10.3 8.9
# patients 9.5 7.6 8.2 6.0 3.0 1.3

Uniform CRMobs 0.1 4.7 38.0 30.5 2.9 0.1 23.6 2.8 7.5
# patients 8.6 8.2 10.9 2.3 0.5 0.0

TITE-CRM 2.1 20.4 56.6 19.1 1.4 0.0 0.4 13.0 9.0
# patients 6.3 7.0 9.7 8.0 3.7 1.3
DA-CRM 0.6 11.2 56.9 27.6 1.7 0.0 1.9 8.7 8.9
# patients 10.8 7.6 8.5 5.7 2.2 0.7

Scenario 2 Pr(toxicity) 0.08 0.1 0.2 0.3 0.45 0.6
CRMcomp 0.0 1.4 23 55.9 18.8 0.8 0.1 6.6 36.4
# patients 4.1 4.1 9.0 12.2 5.5 1.0

Weibull CRMobs 0.0 1.0 18.9 48.5 22.2 1.8 7.6 2.9 8.5
# patients 5.7 6.7 13.8 5.2 2.3 0.7

TITE-CRM 0.1 2.6 29.2 52.4 14.9 0.8 0.1 11.2 9.0
# patients 4.2 4.7 7.1 8.8 6.8 4.4
DA-CRM 0.0 1.5 24.4 54.0 17.7 1.4 1.1 7.3 8.9
# patients 8.4 6.3 7.0 6.7 4.5 2.8

Log-logistic CRMobs 0.0 0.9 19.0 48.5 22.0 1.9 7.7 2.9 8.5
# patients 5.7 6.7 13.8 5.1 2.3 0.7

TITE-CRM 0.1 2.6 29.0 52.3 15.1 0.8 0.1 11.1 9.0
# patients 4.1 4.7 7.2 8.8 6.8 4.3
DA-CRM 0.0 1.4 23.3 54.0 18.7 1.6 1.0 7.5 8.9
# patients 8.3 6.2 6.9 6.8 4.6 2.9

Uniform CRMobs 0.0 0.7 14.9 45.3 23.3 2.3 13.5 2.0 8.1
# patients 6.9 7.1 12.3 4.5 1.7 0.4

TITE-CRM 0.1 2.2 26.9 54.4 15.4 0.9 0.1 9.6 9.0
# patients 4.9 5.0 7.6 8.8 6.2 3.3
DA-CRM 0.0 1.3 23.7 54.0 18.8 1.1 1.2 6.2 8.9
# patients 9.3 6.3 7.1 6.8 4.2 2.0
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no missing data), the DA-CRM and TITE-CRM are equivalent to the complete-
data CRMcomp. For all methods, we set the probability constants in the CRM
(α1, . . . , α6) = (0.08,0.12,0.20,0.30,0.40,0.50) and used a normal prior distri-
bution N(0,2) for parameter a. Under each scenario, we simulated 5000 trials.

Following each scenario in Tables 1 and S1, the first row is the true toxicity
probabilities; rows 2 and 3 show the dose selection probability (with the percent-
age of inconclusive trials denoted by “None”) and the average number of patients
treated at each dose based on the complete-data design CRMcomp, respectively;
the remaining rows provide the corresponding summary statistics for the CRMobs,
TITE-CRM and DA-CRM under various settings of late-onset toxicity and time-
to-toxicity distributions. The CRMcomp does not depend on the distributions of the
times to toxicity because the design assumes that all toxicity outcomes are com-
pletely observed before each dose assignment.

When evaluating the trial designs with late-onset toxicities, one of the most
important measures of the design performance is patient safety because the main
issue of the late-onset toxicities is that ignoring them will lead to overly aggressive
dose escalation and thus treating too many patients at excessively toxic doses, that
is, the doses higher than the MTD. As a measure of safety, in Tables 1 and S1,
we also report the number of patients treated at doses above the MTD (denoted as
NMTD+) averaged across 5000 simulated trials.

In scenario 1, the MTD (shown in boldface) is at dose level 3, and the complete-
data design CRMcomp yielded an optimal selection probability of 61.9%. The se-
lection probability of the MTD using the DA-CRM was slightly lower than this op-
timal value, but higher than that of using the CRMobs. For instance, when the time
to toxicity followed the log-logistic distribution, the selection probability using the
DA-CRM was 58.1%, whereas that of the CRMobs was 48.2%. The CRMobs ap-
peared to be overly conservative and led to a high percentage (about 13.6%) of in-
conclusive trials. This was because the CRMobs estimated the toxicity probabilities
based solely on the observed toxicity data, which is a biased sample of the com-
plete data with an excessive number of toxicities. Therefore, the CRMobs tended
to overestimate the toxicity probabilities, resulting in conservative dose escalations
and high percentages of early termination of the trial. The TITE-CRM yielded sim-
ilar selection percentages as the DA-CRM, but the DA-CRM was much safer: the
number of patients treated above the MTD (i.e., NMTD+) using the DA-CRM was
notably smaller than that of the TITE-CRM and close to that of the complete-data
design. For example, when the time to toxicity followed the Weibull distribution,
NMTD+ was 9.0 and 10.4 using the complete-data design and the DA-CRM, re-
spectively, while that based on the TITE-CRM was 15.5. As the CRMobs is overly
conservative, NMTD+ = 4.0 is the smallest under the CRMobs.

In scenario 2, the MTD is the fourth dose, and in scenario 3 (see Table S1), the
MTD is the second. Compared to the TITE-CRM, the DA-CRM yielded compara-
ble MTD-selection probabilities but appeared to be safer, which reduced NMTD+
by more than 30% in both scenarios. For example, in scenario 2, when the time
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to toxicity followed the Weibull distribution, NMTD+ using the DA-CRM was 7.3,
approximately 35% less than that using the TITE-CRM (NMTD+ = 11.2). A sim-
ilar extent of decreasing in NMTD+ was observed in scenario 3 when using the
DA-CRM. The CRMobs again led to a high percentage of inconclusive trials (par-
ticularly under the uniform distribution) and a relatively low selection percentage
of the MTD due to the overestimation of the toxicity probabilities. For scenario 4
in Table S1, in which the fifth dose is the MTD, the CRMobs yielded a similar
selection percentage as the TITE-CRM and DA-CRM.

We further investigated the performance of the designs under a smaller sample
size of 27 patients treated in a cohort size of 3, and 21 patients treated in a cohort
size of 1. The pattern of the results is generally similar to those described above
(see Tables S2 and S3 in the supplementary materials [Liu, Yin and Yuan (2013)]).
We also examined the operating characteristics of the DA-CRM under a lower A/I
ratio of 3 with the cohort interarrival time τ = 1 month (see Table S4 in the supple-
mentary materials [Liu, Yin and Yuan (2013)]). In this case, the accrual rate was
relatively slower and, thus, late-onset toxicities became of less concern since the
majority of toxicity outcomes would be observed at the moment of dose assign-
ment. As expected, the performances of the CRMobs, TITE-CRM and DA-CRM
were rather comparable across different scenarios and time-toxicity distributions.
Actually, when the A/I ratio is less than or equal to 1 (i.e., no late-onset toxici-
ties and no missing data), the CRMobs, TITE-CRM and DA-CRM are exactly the
same.

These results suggest that, when the A/I ratio is low (e.g., when the disease
under study is rare and thus the accrual rate is slow), the CRMobs has little bias
and is still a good design option for phase I clinical trials. However, when the
accrual is fast, for example, in multi-center clinical trials for some common type
of cancer (e.g., breast or lung cancer), the A/I ratio can be high (particularly when
radiotherapies or some targeted agents are used), and using the proposed DA-CRM
can lead to better operating characteristics.

3.2. Sensitivity analysis. We investigated the robustness of the proposed DA-
CRM design when (1) the underlying times to toxicity were heterogeneous across
the doses, by simulating the times to toxicity from a Weibull distribution at dose
levels of 1, 3 and 5, and from a log-logistic distribution at dose levels of 2, 4
and 6; (2) the number of partitions used in the piecewise exponential model for
the times to toxicity was K = 5 and 12; and (3) the prior distribution for a was
N(0,0.57), the “least-informative” prior proposed by Lee and Cheung (2011). The
results show that the performance of the DA-CRM (e.g., the selection percentages
and NMTD+) was very similar across different conditions (see Table S5 in the sup-
plementary materials [Liu, Yin and Yuan (2013)]), which suggests the robustness
of the proposed design.
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TABLE 2
Days, doses and DLTs for eighteen evaluable patients enrolled in the pancreatic cancer trial

Patient Day on Day off Dose Patient Day on Day off Dose
No. study∗ study∗ (mg/m2) DLT No. study∗ study∗ (mg/m2) DLT

1 0 67 30 No 10 224 291 50 No
2 43 98 30 No 11 280 303 50 Yes
3 50 116 30 No 12 301 347 50 Yes
4 56 108 30 No 13 322 382 50 No
5 70 133 40 No 14 329 389 50 No
6 147 217 40 No 15 343 372 50 Yes
7 161 224 40 No 16 364 423 40 No
8 182 238 40 No 17 371 408 50 Yes
9 224 284 50 No 18 455 528 30 No

* days since the initiation of the study.

4. Applications.

4.1. Pancreatic cancer trial. Muler et al. (2004) described a phase I trial to
determine the MTD of cisplatin that could be added to the full-dose gemcitabine
and radiation therapy in patients with pancreatic cancer. The protocol treatment
consisted of two 28-day cycles of chemotherapy, with radiation given during the
first cycle of chemotherapy. Radiation and gemcitabine doses were held constant,
while four dose levels of cisplatin (20, 30, 40 and 50 mg/m2) were investigated in
the trial. The DLTs were defined as CTCAE 2.0 grade 4 thrombocytopenia, grade
4 neutropenia lasting more than 7 days or grade 3 toxicity in other organ systems.
Patients were required to be followed for nine weeks in order to fully assess their
toxicity outcomes. The goal of the trial was to determine the dose of cisplatin
associated with a target DLT rate of 20%.

As shown in Table 2, one challenge of designing this trial is that the accrual was
fast, compared to the 9-week assessment period for DLTs (i.e., the toxicity was
late-onset). In the DA-CRM design, we took α = (0.1,0.15,0.2,0.25) as the prior
estimates of the toxicity probabilities for the four dose levels of cisplatin, and used
30 mg/m2 as the starting dose of the trial. For patient safety, we required that at
least two patients must have fully completed their toxicity assessment at the lower
dose before the dose can be escalated to the next higher level.

Figure 2 summarizes how the posterior estimates of the toxicity probabilities of
four doses were updated as more patients were enrolled during the trial conduct.
The first four patients were assigned to the dose of 30 mg/m2. Based on the days
from the initiation of the trial, when patient 5 arrived on day 70, patient 1 had
completed the follow-up, while patients 2, 3 and 4 had finished only 43%, 32%
and 22% of their follow-ups, without experiencing any DLTs. The estimates of
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FIG. 2. Estimates of the toxicity probabilities of four doses with the cumulative number of patients
in the pancreatic cancer trial. Numbers 1–4 in the figure indicate the four dose levels.

toxicity probabilities of four doses were π̂ = (0.113,0.131,0.148,0.165). We es-
calated the dose and subsequently treated patients 5 to 8 at the dose of 40 mg/m2.
Patient 2 died after 63 days on therapy, but was judged to be secondary to the
hypercoaguable state associated with pancreatic cancer. Therefore, that death was
classified as unrelated to therapy (i.e., not a DLT).

Upon the arrival of patient 9 on day 224, patients 1 to 7 had completed their
toxicity assessment and none of them had experienced DLT. These data yielded
the updated toxicity estimates π̂ = (0.005,0.008,0.013,0.019), suggesting that
the doses of 30 mg/m2 and 40 mg/m2 were safe. As a result, we further escalated
the dose and assigned patients 9 to 11 to 50 mg/m2. On day 301 when patient
12 was accrued, patients 1 to 10 had completed their toxicity assessment without
experiencing DLT, yielding the updated estimates of the toxicity probabilities π̂ =
(0.007,0.012,0.019,0.027). Consequently, patients 12 to 15 were also treated at
50 mg/m2.

After patient 12 experienced a DLT (i.e., duodenal ulcer) on day 347, the es-
timates of the toxicity probabilities began to increase, that is, π̂ = (0.085,0.125,

0.165,0.207), but not sufficiently to trigger dose de-escalation. According to the
dose-finding algorithm, the incoming patients 16 and 17 should be treated at
50 mg/m2. However, because the investigators were concerned about a potential
DLT in patient 15, only patient 17 was treated at 50 mg/m2, while patient 16 was
treated at a lower dose 40 mg/m2.



2152 S. LIU, G. YIN AND Y. YUAN

By the time that patient 18, the last enrolled patient, arrived on day 455, 4 out of
8 patients previously treated at 50 mg/m2 had experienced DLTs (i.e., one duodenal
ulcer, one diarrhea resulting in dehydration, and two grade 3 anorexia and nausea
leading to a two-level decline in performance status). This significantly increased
π̂ to (0.126, 0.177, 0.228, 0.275). Therefore, patient 18 was assigned to a lower
dose 30 mg/m2. At the end of the trial, the estimates of the toxicity probabilities
were π̂ = (0.118,0.167,0.215,0.264) and, thus, the dose 40 mg/m2 was selected
as the MTD because its estimated toxicity probability was closest to the target
of 0.2.

4.2. Esophageal cancer trial. In the esophageal cancer clinical trial described
in Introduction, the target toxicity probability was 30% and a total of 30 patients
were treated sequentially in cohorts of size 3. Six doses were investigated and the
trial started by treating the first cohort at dose level 1. Under the DA-CRM design,
the posterior estimates of the dose–toxicity probabilities were updated only when
the first patient of each new cohort (i.e., patient 4, 7, 10, 13, 16, . . . ) was enrolled.

The three patients in cohort 1 were enrolled at days 3, 6 and 18, respectively (see
Table S6 in the supplementary materials [Liu, Yin and Yuan (2013)]). On day 28
when patient 4 (i.e., the first patient of cohort 2) was enrolled, the three patients in
cohort 1 had finished only 28%, 24% and 11% of their 3-month follow-ups without
experiencing toxicity (i.e., DLT). The estimates of the toxicity probabilities of six
dose levels were π̂ = (0.172,0.185,0.209,0.236,0.264,0.294). We escalated the
dose and treated patient 4, and subsequently patients 5 and 6, at dose level 2.

When patient 7 (the first patient of cohort 3) arrived on day 57, we again updated
the estimates of the toxicity probabilities and obtained π̂ = (0.315,0.336,0.369,

0.407,0.445,0.486). Although at that moment we still had not observed any DLTs
yet, the values of π̂ increased compared with the previous estimates of π . This
is because on day 57, more patients (i.e., patients 1 to 6) were under treatment
and none of them had finished their 3-month follow-ups yet. There was greater
uncertainty regarding the toxicity probabilities of the doses and it was preferable
to be conservative. Our algorithm automatically took into account such uncertainty
and de-escalated the dose back to the first level for treating cohort 3.

On day 91 when the first patient of cohort 4 (i.e., patient 10) was accrued, pa-
tients 1, 2 and 3 were very close to completing their 3-month follow-ups without
experiencing toxicity, indicating that the first dose level was safe and dose escala-
tion was needed. The proposed algorithm timely reflected this data information and
escalated the dose to level 2. The dose was further escalated to levels 3 and 4 for
treating cohorts 5 and 6, respectively, as no DLT was observed. By the time patient
19 arrived, the toxicity outcomes of all patients treated in the trial had been ob-
served. In particular, all three patients (i.e., patients 16–18) treated at dose level 4
had experienced DLTs. Our algorithm de-escalated the dose to level 3 to treat co-
hort 7. Thereafter, there were always at least 18 toxicity outcomes (from patients
1–18) fully observed, thus, π̂ became rather stable and consistently indicated that
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FIG. 3. Estimate of the unknown parameter a with cumulative cohorts in the esophageal cancer
trial.

dose 3 was the MTD. The last 3 cohorts were all treated at dose level 3 and, at
the end of the trial, dose 3 was selected as the MTD with the estimated toxicity
probability of 0.259.

Figure 3 displays the estimate of the unknown parameter a during the trial
conduct. At the beginning of the trial, there was much variability for the esti-
mate of a due to sparse data, while the estimate became stabilized after six co-
horts of patients were enrolled. Correspondingly, Table 3 summarizes the esti-
mates of the toxicity probabilities π for the six doses at each decision-making
time.

5. Conclusions. We have proposed the DA-CRM design to address the is-
sues associated with late-onset toxicities in phase I dose-finding trials. In the
new design, unobserved toxicity outcomes are naturally treated as missing data.
We established that such missing data are nonignorable and linked the miss-
ing data mechanism with the time to toxicity based on a flexible piecewise
exponential model. Simulation studies showed that the DA-CRM outperforms
other available methods, particularly when toxicities need a long follow-up time
to be assessed. The selection percentage of the DA-CRM is often close to
the optimal value, and many fewer patients would be treated at overly toxic
doses.
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TABLE 3
Estimates of the toxicity probabilities of six doses with the cumulative number of cohorts in the

esophageal cancer trial

Cumulative number of cohorts

Dose level 1 2 3 4 5 6 7 8 9 10

1 0.172 0.315 0.028 0.021 0.080 0.175 0.186 0.171 0.189 0.125
2 0.185 0.336 0.035 0.026 0.114 0.228 0.240 0.223 0.243 0.172
3 0.209 0.369 0.050 0.037 0.181 0.320 0.333 0.314 0.337 0.259
4 0.236 0.407 0.071 0.053 0.268 0.422 0.435 0.415 0.440 0.361
5 0.264 0.445 0.096 0.071 0.359 0.515 0.528 0.509 0.532 0.458
6 0.294 0.486 0.128 0.093 0.454 0.603 0.615 0.598 0.619 0.553

This paper has focused on the single-agent dose finding using the CRM, but
the proposed methodology provides a general and systematic approach to trans-
forming the late-onset toxicity problem into a standard complete-data problem by
imputing the missing toxicity outcomes. The proposed method can serve as a uni-
versal adaptor to extend existing trial designs to accommodate more complicated
dose-finding problems with late-onset toxicity. For example, by incorporating the
data augmentation procedure into the partial-order CRM [Wages, Conaway and
O’Quigley (2011)], we can address the late-onset toxicity for drug-combination
trials or dose finding with group heterogeneity. It is also worth emphasizing that
although we have focused on the late-onset toxicity, the proposed method can also
be used to handle other kinds of late-onset outcomes, such as delayed efficacy re-
sponses in phase I/II or phase II trials, as well as response-adaptive randomization
designs.

APPENDIX: PROOF OF THEOREM 1

Considering that each subject is fully followed up to T , if ti > T , then Yi = 0;
and if ti ≤ T , then Yi = 1. We demonstrate the nonignorable missingness for the
missing data caused by late-onset toxicity as follows. For a subject who will not
experience toxicity, the probability that his/her toxicity outcome will be missing is
given by

Pr(Mi = 1|Yi = 0) = Pr(ti > ui, ui < T |Yi = 0)

= Pr(ui < T |Yi = 0)Pr(ti > ui |ui < T ,Yi = 0)

= Pr(ui < T |ti > T )Pr(ti > ui |ui < T , ti > T )

= Pr(ui < T ),

where the last equality follows because ti and ui are independent, and Pr(ti >

ui |ui < T , ti > T ) = 1. Similarly, for a subject who will experience toxicity, the
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probability that his/her toxicity outcome will be missing is given by

Pr(Mi = 1|Yi = 1) = Pr(ti > ui, ui < T |Yi = 1)

= Pr(ui < T |Yi = 1)Pr(ti > ui |ui < T ,Yi = 1)

= Pr(ui < T |ti ≤ T )Pr(ti > ui |ui < T , ti ≤ T )

= Pr(ui < T )Pr(ti > ui |ui < T , ti ≤ T ).

Because of Pr(ti > ui |ui < T , ti ≤ T ) < 1, it follows that

Pr(Mi = 1|Yi = 0) > Pr(Mi = 1|Yi = 1).

Therefore, the missing data are more likely to occur for those patients who will not
experience toxicity in (0, T ).
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SUPPLEMENTARY MATERIAL

Additional simulation results (DOI: 10.1214/13-AOAS661SUPP; .pdf). Ad-
ditional simulation results.
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