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LEARNING LOCAL DIRECTED ACYCLIC GRAPHS BASED ON
MULTIVARIATE TIME SERIES DATA1
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Multivariate time series (MTS) data such as time course gene expres-
sion data in genomics are often collected to study the dynamic nature of the
systems. These data provide important information about the causal depen-
dency among a set of random variables. In this paper, we introduce a compu-
tationally efficient algorithm to learn directed acyclic graphs (DAGs) based
on MTS data, focusing on learning the local structure of a given target vari-
able. Our algorithm is based on learning all parents (P), all children (C) and
some descendants (D) (PCD) iteratively, utilizing the time order of the vari-
ables to orient the edges. This time series PCD-PCD algorithm (tsPCD-PCD)
extends the previous PCD-PCD algorithm to dependent observations and uti-
lizes composite likelihood ratio tests (CLRTs) for testing the conditional in-
dependence. We present the asymptotic distribution of the CLRT statistic and
show that the tsPCD-PCD is guaranteed to recover the true DAG structure
when the faithfulness condition holds and the tests correctly reject the null
hypotheses. Simulation studies show that the CLRTs are valid and perform
well even when the sample sizes are small. In addition, the tsPCD-PCD al-
gorithm outperforms the PCD-PCD algorithm in recovering the local graph
structures. We illustrate the algorithm by analyzing a time course gene ex-
pression data related to mouse T-cell activation.

1. Introduction. Inferring causal networks among a set of genes based on
their expression levels is one of the most important problems in genomics. High-
throughput technologies such as microarrays or next generation sequencing have
enabled biologists to measure expression levels of all the genes in large-scale.
Technologies are also available to obtain gene expressions at single-cell level for
inference of single-cell expression dynamics. Time-course gene expression exper-
iments, where the expression levels of the genes are measured over time during
a biological process, are particularly important in providing dynamic information
about gene regulation and networks [Buganim et al. (2012)]. The focus of this pa-
per is on learning the local graphs based on such multivariate time course gene
expression data.
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Graphical models have been applied to study gene networks based on gene
expression data, among which Gaussian graphical models are most commonly
used and studied [Li and Gui (2006), Li et al. (2013), Schäfer and Strimmer
(2005)]. However, the Gaussian graphical models only provide information on
conditional independence and the resulting graphs are undirected. Alternatively,
directed acyclic graphs (DAGs) are frequently used to represent independence,
conditional independence and causal relationships among random variables in a
complex system [Pearl (2000), Spirtes, Glymour and Scheines (2000)]. In such
DAG models, parents of some nodes in the graph are understood as “causes,” and
edges have the meaning of “causal influences.” The causal influences among ran-
dom variables imply conditional independence relations among them. Murphy and
Mian (1999) and Friedman et al. (2000) have suggested using Bayesian network
models of gene expression networks.

Methods for learning the structures of DAGs include the search-and-score based
methods [Chickering (2002), Cooper and Herskovits (1992), Friedman and Koller
(2003), Heckerman (1995)] that require elicitation of all the conditional probabil-
ities and the constraint-based methods [Neapolitan (2003)] that evaluate the pres-
ence or absence of an edge by testing conditional independence among variables.
These constraint-based learning methods often require unreasonable amounts of
data in order to accurately estimate higher order conditional independence rela-
tions from finite samples. Algorithms that combine ideas from constraint-based
and search-and-score techniques have also been developed and have shown ex-
cellent performance [Tsamardinos, Brown and Aliferis (2006)]. Efficient Markov
chain Monte Carlo methods have also been developed for learning the Bayesian
networks [Ellis and Wong (2008), Friedman and Koller (2003)].

Most of the current available methods for structural learning of DAGs assume
that the data are i.i.d. samples from some joint distribution specified by the under-
lying DAG. These methods cannot be directly applied to multivariate time series
(MTS) data. One approach to causal graph learning from the MTS data is based
on the dynamic Bayesian network (DBN) model [Ghahramani (1997)], which is
an extension of the Bayesian network model for time series data. DBN models the
stochastic evolution of a set of random variables over time. In comparison with
the Bayesian network, discrete time is introduced and conditional distributions are
related to the values of parent variables in the previous time point. Moreover, in
DBNs the acyclicity constraint is relaxed. Husmeier (2003) studied the sensitivity
and specificity of inferring genetic regulatory interactions from microarray exper-
iments with DBNs. Grzegorczyk and Husmeier (2011) presented methods for im-
provements in the reconstruction of time-varying gene regulatory networks using
dynamic programming and regularization by information sharing among genes.
Rau et al. (2010) proposed to apply the linear Gaussian state-space models, a sub-
class of DBNs, for estimating biological networks from time course gene expres-
sion data with replications.
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The DAG structural learning algorithms [Heckerman (1995), Pearl (2000),
Spirtes, Glymour and Scheines (2000), Tsamardinos, Brown and Aliferis (2006)]
have mainly focused on constructing the whole directed graph over all the vari-
ables. Such whole directed graphs are often difficult to learn due to small sample
sizes or limited perturbation to the underlying system to infer the causal relation-
ships. In some applications, one might be interested in identifying the causal vari-
ables of a given node and the variables that this node influences, that is, in identify-
ing the local structure of a variable. In genomics, we might be interested in learning
the upstream regulators of a gene and also the downstream genes regulated by this
gene. Methods for learning the local directed graphs have many practical applica-
tions and play a central role in causal discovery and classification because of their
scalability benefits. One key concept in learning local causal graph structure is the
Markov blanket of a variable T , which is a minimal variable subset conditioning
on which all other variables are probabilistically independent of T . Finding the
Markov blanket has been the basis of many of the newly developed methods for
learning DAG structures [Margaritis and Thrun (2000), Tsamardinos, Aliferis and
Statnikov (2003), Tsamardinos, Brown and Aliferis (2006)].

Yin et al. (2008) developed a partial orientation and local structure learning
algorithm based on identifying all parents (P), all children (C) and some descen-
dent (D) of a given node. This algorithm is called the PCD-PCD algorithm. Zhou
et al. (2010) further extended this algorithm by constructing a larger local network
with depth d and using a more efficient stopping rule to reduce the computation
time. Like many other structural learning algorithms, PCD-PCD is based on the
tests of conditional independence among a set of variables. Yin et al. (2008), Zhou
et al. (2010) used the standard likelihood ratio tests (LRTs) for conditional inde-
pendence testing. However, such tests cannot be applied directly to MTS data due
to the dependency of the data observed over time.

In this paper, we propose to extend PCD-PCD to MTS data in order to learn a
local network around a target variable. We consider stationary ergodic MTS with
time-invariant dependence structure. In our approach, the search for separators
of a pair of variables in a large DAG is localized to small subsets and, thus, the
approach can improve the efficiency of searches and the power of statistical tests
for structural learning. Our approach captures the Bayesian dynamic nature of the
dependence by learning the structure of the graphical model based on conditional
independence between the past and future of observations of the time series. The
new method utilizes the time order to orient edges connecting variables at different
time points. Like the PCD-PCD algorithm, we first find parents, children and some
descendants of the target T to obtain a local skeleton with a radius 1, and then
repeatedly find PCDs of the nodes in the previous PCDs until the radius of the
local skeleton is up to the given depth d . By focusing on learning the local DAGs,
the proposed algorithm can handle high-dimensional random variables even when
the sample size is not too large.



1666 W. DENG, Z. GENG AND H. LI

Since the conditional independence test plays a key role in our proposed algo-
rithm, we develop composite likelihood ratio tests (CLRTs) for conditional inde-
pendence for MTS data, taking into account the dependency of the variables over
time. The commonly used likelihood ratio test for conditional independence is in-
valid under the small sample size when the null hypothesis only involves variables
at the same time point. The CLRT statistic enables us to perform valid inference
on conditional independency under the setting of small sample sizes, allowing the
number of independent time series smaller than the number of variables at each
time point.

In Section 2 we present the local structural learning algorithm tsPCD-PCD for
multivariate time series data. In Section 3 we develop the CLRTs for conditional
independence for time series data. We then present simulation results to evaluate
the algorithm and the validity of the CLRTs in Section 4 and application of the
method to analysis of gene expression data related to T-cell activation in Section 5.
Finally, we give a brief discussion of the methods in Section 6. The exact state-
ments of the theorems and their proofs can be found in the supplementary material
[Deng, Geng and Li (2013)].

2. Algorithm for learning a local structure around a target variable.

2.1. Statistical model, data observed and notation. We consider the data from
MTS where the lag of the time series is q and there are p variables at each
time point. Let Xt = (Xt,1, . . . ,Xt,p)′ denote the p-dimensional random vector
at time t , for t = 1,2, . . . , n. We assume that {Xt , t = 1, . . . , n} is stationary and
ergodic. In addition, we assume that the dependency structure of {Xt , t = 1, . . . , n}
is determined by a DAG G with time-order constraint. Here a DAG is defined as
G = (A,E), while A is a finite set of nodes, and E is a set of directed edges on A,
with no directed cycle. These directed edges in G may involve variables at the
same time points or between different time points. We assume that the true DAG
is time-invariant. Based on the stationary assumption, to recover G , we only need
to learn the directed edges among the variables Xt and the edges connecting vari-
ables in {Xt−l,1 ≤ l ≤ q} and variables in Xt for a given time point t . In addition,
we assume that if there is a link between Xtg and Xt−l,g′ , then Xt−l,g′ causes Xtg .
Using the language of a graphical model, we say there is a direct edge between
Xt−l,g′ and Xtg , that is, Xt−l,g′ → Xtg .

Instead of learning the DAG on the variables (X′
t−q, . . . ,X′

t−1,X′
t )

′, which is
of p × (q + 1) dimension, we are interested in learning the variables with direct
edges to and from a target variable T . For the observed data, suppose there are m

i.i.d. MTS data, each of which is a time series with length of nj , j = 1, . . . ,m, and

with the same time lag q . Let X(j)
t = (X

(j)
t,1 , . . . ,X

(j)
t,p)′ be the vector of p variables

for the j th sequence at time t for t = 1, . . . , nj and j = 1, . . . ,m. We can rewrite
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the observed data by piling them up according to the lag q . Specifically, for the j th
time series, we rewrite the data (X′(j)

1 ,X′(j)
2 , . . . ,X′(j)

nj )′ as

X
(j)
1,1 · · · X

(j)
1,p X

(j)
2,1 · · · · · · X

(j)
q+1,j · · · X

(j)
q+1,p,

X
(j)
2,1 · · · X

(j)
2,p X

(j)
3,1 · · · · · · X

(j)
q+2,1 · · · X

(j)
q+2,p,

...

X
(j)
nj−q,1 · · · X

(j)
nj−q,p X

(j)
nj−q+1,1 · · · · · · X

(j)
nj ,1 · · · X

(j)
nj ,p.

Because the series is stationary and ergodic, each row of this piled data set has
p × (q + 1) variables and all rows have the same joint distribution. However, these
rows are not independent and piled data include N = ∑m

j=1 nj − qm dependent
observations. Let T be the target variable, which is one of the p variables. Due to
stationarity and without loss of generality, we view T as a node at the time point t ,
and let A denote the full set of nodes in the set A = (X′

t−q, . . . ,X′
t−1,X′

t )
′. Our

goal is to identify the nodes in A that are linked to T based on the piled data. Since
we assume that the time series are stationary, the local structure around node T

is time-independent, which enables us to utilize the piled data to learn the local
structure.

Before we introduce our proposed algorithm, we give some definition and no-
tation. We say that the probability distribution P and the DAG G are connected by
the Markov condition property if a node is conditionally independent of its non-
descendants given its parents. A DAG G and a joint distribution P are faithful to
one another, if every conditional independence entailed by the graph of G and the
Markov condition is also present in P [Spirtes, Glymour and Scheines (2000)].
For a node u, let PC[u] denote the set of all parents and all children of u, Pa[u]
denote the parent nodes, Ch[u] denote the children, and let PCD[u] denote a set
that contains PC[u] and may contain some descendants of u. For a subset B ⊂ A

of the vertices of G , the induced subgraph on B is G[B] := (B,E[B]), where
E[B] := E ∩ (B × B). A v-structure [also called immorality by, e.g., Lauritzen
(1996)] is an induced subgraph of G of the form a → b ← c. The existence of
a v-structure among a set of three variables can be determined by conditional in-
dependence tests [Lauritzen (1996)]. The skeleton of a DAG G is the undirected
graph Gu := (A,Eu),Eu := {(a, b) ∈ A × A|a → b or b → a ∈ G}. Two DAGs
are called Markov equivalent if they induce the same conditional independence
restrictions. Two DAGs are Markov equivalent if and only if they have the same
global skeleton and the same set of v-structures [Verma and Pearl (1990)]. An
equivalence class of DAGs consists of all DAGs that are Markov equivalent. Fi-
nally, throughout this paper, we use lower case single letters to present the nodes
of the graph unless otherwise specified.

2.2. A brief review of the max–min parents and children algorithm. Our al-
gorithm depends on finding the PCD of a given node u, PCD[u]. The max–min
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parents and children (MMPC) algorithm originally proposed in Tsamardinos, Al-
iferis and Statnikov (2003) presents a computationally feasible algorithm to find
PCD[u] for a given node u and can be efficiently applied to thousands of variables.
The algorithm was further studied and justified by Tsamardinos, Brown and Alif-
eris (2006). MMPC run on target node u provides a way to identify the existence
of edges to and from u (but without being able to identify the orientation of the
edges). It is a two-phase algorithm. In phase I, the forward phase, variables en-
ter the candidate set of PCD[u] sequentially, called CPCD by using the max–min
heuristic: in each iteration, select the variable that maximizes the minimum asso-
ciation with u relative to CPCD, and add it to CPCD; the iteration stops when the
maximum is zero, that is, all remaining variables are independent of the target u

given some subset of CPCD. Here the minimum association between u and v is
the minimum of association between these two variables achieved over all subsets
of CPCD. In phase II, the backward phase, the false positives in CPCD, which
are independent of u given a subset of CPCD, are removed from CPCD. This is
achieved by testing the conditional independence between u and v given some
subset of CPCD; if the null is not rejected, v is removed from CPCD.

2.3. Algorithm for learning local structure around a target T . We extend the
PCD-PCD algorithm of Zhou et al. (2010) for local directed graph learning to
MTS data by assuming that if there is a link between the variables at different time
points, the causal direction is determined and is from the variable measured at the
early time point to the variable measured at the later time point. Like the PCD-PCD
algorithm, we first find parents, children and some descendants of the target T to
obtain a local skeleton with a radius of 1, and then repeatedly find PCDs of nodes
that are in the previous PCDs and also on the same time point as the target node T ,
until the radius of the local skeleton within time point t is up to the given depth d .
In order to orient the edges in the local skeleton, sometimes it is necessary to find
the PCDs further away from the target along some but not all the paths. Note that
some of the undirected edges cannot be oriented from the observational data due to
the existence of equivalent class [Andersson, Madigan and Perlman (1997)]. Zhou
et al. (2010) proposed a stopping rule so that the process of finding PCDs can stop
early even if some edges within the local graph are not oriented. The stopping rule
is based on the fact that when the unoriented edges are surrounded by directed
edges, they cannot be oriented by finding further structures.

Our algorithm is divided into two parts. Part I involves finding the local structure
around the target T to the depth of d − 1 and part II finds the edges at the last layer
d and orients undirected edges within the local structure with depth d . In both
parts of the algorithm, we use the index set 1 :p(q + 1) to denote the node set
(X′

t−q,X′
t−1, . . . ,X′

t )
′, which is ordered according to the time order. Based on this

notation, the nodes in X′
t are denoted as (pq + 1) :p(q + 1) and the target T is

coded with a number in (pq + 1) :p(q + 1). Furthermore, we use V to denote
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a set of variables whose PCDs have been obtained, L[i] to denote the node set
on the ith layer of the local graph, L to denote the set of nodes in all layers. In
addition, we use C[i] to denote an ordinal waiting list for layer i whose PCD is to
be determined and C to denote all the nodes at the current time point. Finally, let
D be the counter of the depth of the graph.

Part I of the algorithm is detailed in Table 1. Part I stops if all nodes with a path
to T have a distance shorter than d or the first d − 1 layers of nodes around T have
been obtained. A detailed explanation of the steps of this part of the algorithm can
be found as part of the proof of Theorem 1 presented below.

When d > 1, part II of the algorithm is required to identify the edges at the last
layer d and to orient the undirected edges within the local structure with depth d .
In part II, we use the notation

struct(“leaf,” v, “length,” l, “path,” u)

to define a set with three different elements, “leaf” (v), “length” (l) and “path” (u),
where a “leaf” is a node v at layer ≥ d , “path” u is a set of variables on the path
from layer d − 1 to the “leaf” v and “length” is the length from layer d − 1 to
“leaf” v. For a given element x in this set, x.leaf , x.path and x.length denote
the three elements of the list, respectively. Details of part II of the tsPCD-PCD
algorithm are given in Table 2. A detailed explanation of the steps of part II can be
found as part of the proof of Theorem 1.

The following theorem shows the effectiveness of the algorithm for recovering
the true directed local graph structure for the Markov equivalence class of the
underlying global DAG.

THEOREM 1. Suppose that a DAG is faithful to the probability distribution P

of the multivariate time series Xt and all conditional independencies can be cor-
rectly inferred based on the data. Then for a given target node T , the tsPCD-PCD
algorithm can correctly recover the edges within a depth d of the local directed
graphical structure around T at the same time point and the edges connecting
T and the variables on previous time points. Furthermore, the algorithm obtains
the same orientations of these edges as a partially directed graph for the Markov
equivalence class of the underlying global DAG.

The proof of this theorem, which is based on detailed explanations of the steps
of the algorithm, is given in the supplementary material [Deng, Geng and Li
(2013)].

2.4. An illustrative example. As a simple illustration of the algorithm, we
consider the ALARM network structure as shown in Figure 1(a) [Beinlich et al.
(1989)] with 37 nodes and 46 edges. This ALARM DAG has been extensively
used in evaluating DAG learning algorithms. We extend this network to a dynamic
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TABLE 1
tsPCD-PCD algorithm, part I: find edges within depth d − 1 from the

target node T

1 Initialization: Find the PCD of T , PCD[T ].
V = {T },
L[0] = {T }, L(i) = ∅ for i = 1, . . . , d,
L = {T },
D = 1,
C[0] = {T },
C[1] = PCD[T ],
C = (p ∗ q + 1) :p ∗ (q + 1),
create directed edges (PCD[T ] \ C → T ),
C(1) = PCD[T ] ∩ C.
Repeat

2 Remove x from the head of list C[D].
3 If x /∈ V , then

Find PCD[x], and set V = V ∪ x.
create directed edges (PCD[x] \ C → x)

PCD[x] = PCD[x] ∩ C

For each y ∈ V , if {x ∈ PCD[y] and y ∈ PCD[x]},
then create an undirected edge (x, y).

Find v-structures for the triple of x, one of Pa[x] on previous
time points and one of nodes on current time point that have
undirected edges with x, if x is not in the separator set
of the last two nodes.

Find v-structures within V including x:
{Within V , find possible v-structures only for the triple of x

and other two variables in V if an intermediate node is not
in the separator set of two nonadjacent nodes.}

Orient undirected edges under Meek’s rules [Meek (1995)]:
{Orient other edges between nodes in V if each opposite of
them creates either a directed cycle or a new v-structure.}

End if
4 If x /∈ L and x /∈ L[D] and x is adjacent to a node in L[D − 1] then

L[D] = L[D] ∪ {x} and add (PCD[x] ∩ C) \ L to the tail of list
C[D + 1].

End if.
5 If C[D] = ∅ then

L = L ∪ L[D] and D = D + 1
End if.

6 Until C[D] = ∅ or D ≥ d.

DAG depicting stationary time series with lag q = 1 by assuming that each vari-
able is also influenced by itself on the previous time point. We aim to identify the
local network of node 20 to depth d = 2. We choose node 20 since it has the largest
degrees among all the nodes. Suppose that the data are large enough to correctly
identify all the required conditional independence. Figure 1(b) shows a a local
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TABLE 2
tsPCD-PCD algorithm, part II: find edges at layer d and orient

undirected edges within the local structure

1 Initialization: Learn the PCDs of nodes at the layer d − 1,
and construct a set W :
W = {struct(“leaf,” v, “length,” 1, “path,” u) :u ∈ L[d − 1],
v ∈ (PCD[u] ∩ C) \ L}
Repeat

2 Remove x from the head of list W .
3 If all edges on path x.path are undirected then

If x.leaf /∈ V then
Find PCD[x.leaf ] and set V = V ∪ {x.leaf }.
Create directed edges (PCD[x.leaf ] \ C → x.leaf )
PCD[x.leaf ] = PCD[x.leaf ] ∩ C

For each y ∈ V , if {x.leaf ∈ PCD(Y ) and y ∈ PCD[x.leaf ]},
create an undirected edge (x.leaf , y).

Find v-structures for the triple of x.leaf , one of Pa[x.leaf ]
on previous time points and one of nodes on current time
point that have undirected edges with x.leaf , if x.leaf
is not in the separator set of the last two nodes.

Find v-structures within V including x.leaf .
Orient undirected edges under the Meek’s rules [Meek (1995)].

End if.
If there is an undirect edge between x.leaf and the last node u

of x.path, then add
{struct(“leaf,” v, “length,” x.length + 1, “path,” [x.path, x.leaf ]):
v ∈ PCD[x.leaf ] ∩ C \ x.path \ L}
to the tail of W .

End if.
End if.

4 Until W = ∅.
Return

network with d = 1 that is determined by part I of the algorithm and Figure 1(c)
shows the final local network with d = 2 after applying part II of the algorithm.
Note that there is no guarantee that all edges can be oriented by the algorithm. If
there are some unoriented edges, we need to extend the network along the undi-
rected paths in order to orient those undirected edges in part II. In this example,
since all edges are oriented after learning the first two layers, the algorithm stops
extending to higher layers.

To illustrate part II, in the initialization step, we construct the set W , which con-
tains the potential undirected edges that may need to be extended to higher layers
for edge orientation within the first d = 2 layers. For a given node xt,18 ∈ L[1],
we have PCD[xt,18] = {xt−1,18, xt,14, xt,15, xt,16, xt,20}. Since xt−1,18 → xt,18 and
{xt,20, xt,16} ∈ L[0] ∪ L[1], these three nodes are not used as leafs in constructing
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FIG. 1. (a) The DAG used in simulations for variables on the same time point; (b) local network
around node 20 learned by part I of the algorithm; (c) local network around node 20 learned by
part II of the algorithm.

the set W . We then add

struct(“leaf,” xt,14, “length,” 1, “path,” xt,18)

and

struct(“leaf,” xt,15, “length,” 1, “path,” xt,18}
to W for node xt,18 ∈ L[1]. Similarly, we add other elements to W for each of the
other nodes in L[1] and finish the initialization of W .

3. Composite likelihood ratio tests for conditional independence. The
tsPCD-PCD algorithm and also the validity of Theorem 1 depend on a valid and
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powerful test for conditional dependency. Specifically, finding the PCD of a node
using the MMPC algorithm and finding the v-structures among a set of three vari-
ables both rely on testing for conditional independence. For the time series data,
since the data across different time points are dependent, the commonly used LRTs
tests cannot be applied directly. We propose to develop composite likelihood ratio
tests for conditional independence and derive their asymptotic distributions.

3.1. The composite likelihood ratio tests for general parametric models.
Consider a model for the joint density of X = (X′

t−q, . . . ,X′
t ), denoted by

P(X′
t−q, . . . ,X′

t ; θ), where θ ∈ H ⊆ R
k is a k-dimensional model parameter,

where H is an open set. The conditional independence test is used in our al-
gorithm for determining the PCDs and v-structures. Depending on the models
assumed, the null model under the conditional independence assumption corre-
sponds to certain constraints on the model parameter θ , that is, h(θ) = 0 for some
multidimensional function h (see Lemma 2 in the supplementary material [Deng,
Geng and Li (2013)]). If the first-order partial derivative of h is continuous, it can
be equivalently expressed as θ = g(ϕ), where ϕ is a parameter vector with dimen-
sion lower than k. As an example, consider a joint multivariate model with four
variables X1,X2,X3 and X4, with a joint density N (0,�), where � = (σij ) is a
4 × 4 matrix. Under this simple model,

H0 :X1 ⊥ X2|X3 ⇔ H0 :�−1
X1,X2,X3

(1,2) = 0 ⇔ H0 :σ12 = σ13 ∗ σ23

σ33
.

Similarly, for categorical variables and log-linear models, the null hypothesis
of conditional independence corresponds to constraints on model parameters
[Lauritzen (1996)]. We therefore consider the conditional independence null hy-
pothesis that can be expressed as

H0 : θ = g(ϕ),(1)

where θ ∈ R
k , ϕ ∈ R

k−r and g : Rk−r → R
k is a function with ∂

∂ϕ
g(ϕ) being of

full rank. Under the conditional independence null hypothesis, the parameter can
be written as H0 = {θ : θ = g(ϕ)}.

For multiple time series {X(j)
t , t = 1, . . . , nj , j = 1, . . . ,m}, we propose the fol-

lowing composite likelihood ratio test statistic G2
CLRT for testing the null hypothe-

sis (1) defined as

G2
CLRT = −2 log

supH0

∏m
j=1

∏nj

t=q+1 P {X(j)
t−q,X(j)

t−q+1, . . . ,X(j)
t ; θ = g(ϕ)}

supH
∏m

j=1
∏nj

t=q+1 P(X(j)
t−q,X(j)

t−q+1, . . . ,X(j)
t ; θ)

,

which is the likelihood ratio statistic based on the piled data treating the data as
independent. Because of the dependency of the data, the null distribution of the
statistic G2

CLRT is not the standard χ2
r distribution.
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Denote θ0 as the true value of θ under the null H0 and ϕ0 as the corresponding φ,
that is, θ0 = g(ϕ0). Define the k-dimensional column vector

Zt = ∂

∂θ
logP(Xt−q,Xt−q+1, . . . ,Xt ; θ)

∣
∣
∣
∣
θ=θ0

,

which is a stationary ergodic sequence. Let Z(j)
t be the corresponding sample value

for j = 1, . . . ,m. Assuming the standard regularity conditions on the joint prob-
ability density function P(X(j)

t−q,X(j)
t−q+1, . . . ,X(j)

t ; θ) as commonly assumed for
the likelihood ratio test statistics [Cox and Hinkley (1979)], Theorem 2 in the sup-
plementary material [Deng, Geng and Li (2013)], for the case of a long time series
and few replications, shows that the asymptotic distribution of the CLRT statis-
tic G2

CLRT follows a mixture of χ2 distributions, not a simple χ2 distribution as
with conventional LRT statistics. Theorem 3 shows a similar result when m → ∞
and nj = n for all j , that is, a short time series with many replications. The exact
statements of both theorems and their proofs can be found in the supplementary
material [Deng, Geng and Li (2013)].

3.2. Conditional independence tests for the Gaussian DAG models. In this
section we consider the Gaussian DAGs for continuous random variables. In the
MTS setting, we assume that (X′

t−q, . . . ,X′
t−1,X′

t )
′ follows a multivariate nor-

mal distribution N(0,�) where the DAG determines the local dependency struc-
tures of the variables and therefore the corresponding covariance matrix �. In
our tsPCD-PCD algorithm, the tests for conditional independence can be written
as H0 :Xt,a ⊥ Xt−l,b|St,q , where {Xt,a,Xt−l,b, St,q} ⊆ A = {X′

t−q, . . . ,X′
t−1,X′

t }
with 0 ≤ l ≤ q and a, b ∈ {1, . . . , p}, and St,q is a separator set. The corresponding
CLRT statistic can be written as

G2
CLRT = −2 log

supH0

∏m
j=1

∏nj

t=q+1 P(X
(j)
t,a ,X

(j)
t−l,b, S

(j)
t,q ; θ = g(φ))

supH
∏m

j=1
∏nj

t=q+1 P(X
(j)
t,a ,X

(j)
t−l,b, S

(j)
t,q ; θ)

.

Corollary 1 in the supplementary material [Deng, Geng and Li (2013)]
shows that under the Gaussian DAG model and the null hypothesis H0 :Xt,a ⊥
Xt−l,b|St,q , G2

CLRT/λ̂ follows a χ2
1 distribution, where the exact expression of λ̂

can also be found.

4. Simulation studies. In this section we evaluate the performance of the
tsPCD-PCD algorithm in learning the local directed graphical structure. We con-
sider the dynamic graph [Figure 1(a)] used in Section 2.4 with time series data
of lag 1. For each simulation, we simulate a training data set from a joint Gaus-
sian distribution using a structural equation model of recursive linear regressions
derived from the assumed DAG structure with residual variances of 1. The regres-
sion coefficients are randomly generated uniformly from (−0.6,−0.2)∪ (0.2,0.6)
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or from (−0.6,−0.4)∪ (0.4,0.6). We consider models with different sample sizes
and both data from one long time series and data from multiple short time series.
These parameters were chosen to give reasonable signal-to-noise ratios for the
given sample sizes. We repeat the simulations 100 times and obtain the average
values of the performance scores for each case.

Similar to the example in Section 2.4, our goal is to obtain the local graph
around the node T = 20 at the depth d = 1. In the true graph, node 20 connects
with many other nodes and has the largest degree.

4.1. Validity of the CLRT statistic. We first demonstrate that the CLRT statis-
tic G2

CLRT does not follow the standard χ2-distribution and instead it follows
a rescaled χ2 distribution. We consider two null hypotheses H ′

0 :Xt,24 ⊥ Xt,2
and H ′′

0 :Xt,4 ⊥ Xt,1|{Xt−1,2,Xt,2} in the model of one single time series of
length n = 500 and the regression coefficients being generated uniformly from
(−0.6,−0.4) ∪ (0.4,0.6). For H ′

0 and H ′′
0 , λ is around 1.8 and 1.2, respectively.

We can see from the Q–Q plots over 1000 simulations in Figure 2 that the CLRT
statistic G2

CLRT greatly deviates from χ2
1 , while the rescaled statistic G2

1/λ̂ → χ2
1 ,

which indicates that the asymptotic result of the CLRT statistic holds.

4.2. Performance in recovering the local directed graph. To evaluate the per-
formance of tsPCD-PCD in recovering the local directed graphical structure, for
each of three subsets, parents (Pa), children (Ch) and all depth 1 variables (PC),
we calculate the score pair (precision, recall), where Precision and Recall or sen-
sitivity are defined as

precision = no. of true positives

no. of edges identified
, recall = no. of true positives

no. of true edges
.

FIG. 2. Distribution of the CLRT statistic under two null hypotheses based on the simulated data,
demonstrating that the CLRT statistic follows a rescaled χ2

1 distribution.
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TABLE 3
Precision and recall of the local DAG graph around node 20 in the DAG shown in Figure 1(a) based
on 100 replications using the tsPCD-PCD or PCD-PCD algorithm. The composite likelihood ratio

tests are used for testing the conditional independence with α = 0.01 with/without including the
rescaling factor λ̂ to adjust for the dependency of the observations

Precision Recall

Statistic Method Pa Ch PC Pa Ch PC

n = 500,M = 1, β ∈ (−0.6,−0.2) ∪ (0.2,0.6)

G2
CLRT tsPCD-PCD 0.50 0.82 0.97 0.44 0.47 0.73

PCD-PCD 0.37 0.60 1.00 0.16 0.64 0.70
G2

CLRT/λ̂ tsPCD-PCD 0.55 0.82 0.98 0.41 0.59 0.72
PCD-PCD 0.35 0.58 1.00 0.16 0.61 0.71

n = 10,M = 50, β ∈ (−0.6,−0.2) ∪ (0.2,0.6)

G2
CLRT tsPCD-PCD 0.50 0.83 0.97 0.43 0.47 0.72

PCD-PCD 0.41 0.62 1.00 0.16 0.69 0.70
G2

CLRT/λ̂ tsPCD-PCD 0.53 0.83 0.97 0.42 0.55 0.71
PCD-PCD 0.41 0.63 1.00 0.19 0.64 0.70

n = 500,M = 1, β ∈ (−0.6,−0.4) ∪ (0.4,0.6)

G2
CLRT tsPCD-PCD 0.42 0.91 0.90 0.27 0.64 0.60

PCD-PCD 0.26 0.69 1.00 0.10 0.60 0.59
G2

CLRT/λ̂ tsPCD-PCD 0.84 0.95 0.99 0.32 0.87 0.61
PCD-PCD 0.32 0.68 1.00 0.14 0.56 0.59

n = 1000,M = 1, β ∈ (−0.6,−0.2) ∪ (0.2,0.6)

G2
CLRT tsPCD-PCD 0.35 0.82 0.82 0.25 0.70 0.64

PCD-PCD 0.29 0.67 0.99 0.12 0.63 0.63
G2

CLRT/λ̂ tsPCD-PCD 0.94 0.88 1.00 0.33 0.95 0.66
PCD-PCD 0.30 0.62 1.00 0.13 0.59 0.64

Table 3 shows the precision and recall results for four different models when
different test statistics with significance level α = 0.01 for the conditional inde-
pendence tests are used. Overall, we observe that the set PC(20) can be identified
very well in all four models. In addition, multiple time series resulted in similar
results as single time series when the total number of observations are compa-
rable. Second, the CLRTs using the correct null distribution (i.e., mixture of χ2-
distributions) gave better performances than that using the wrong null distributions
in both precision and recall, especially when the average cross-time correlations
are high or when the sample sizes are large. Almost identical results are observed
when the significance level is set to α = 0.005.

4.3. Improved performance when time order is used. We finally demonstrate
that by using the time order information to orient the edges, we can substantially
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increase both the precision and recall rates for the parents and children sets. Table 3
also shows the precision and recall results from the standard PCD-PCD algorithm
that ignores the time series nature of the data for the same sets of models. We
observe clear decreases in both precisions and recalls for the parents and children
sets of a node when the time order information is ignored, while the selections
of all depth 1 variables are comparable. The results clearly indicate the tsPCD-
PCD algorithm that utilizes the time order to orient the edges can lead to better
identification of the parents and children nodes of a target variable.

5. Application to a real data set. The central event in the generation of a cel-
lular immune response to stimulants is the activation of T-cells. T-cell activation
is initiated by the interaction between the T-cell receptor complex and the anti-
genic peptide presented on the surface of the cells. Such an activation triggers a
network of proteins, kinases, phosphatases and adaptor proteins that lead to gene
transcription events in the nucleus, including transcription of a number of tran-
scription factors such as c-Fos, c-myc, c-jun and activation of early genes such
as interleukins (e.g., IL2, IL3R etc.). These genes in turn induce the expression
of a number of effector genes. Days after the activation event, various adhesion
molecules begin to be expressed. It is therefore very important to understand the
causal relationships among the genes involved in T-cell activation.

Rangel et al. (2004) measured gene expression levels of p = 58 genes that are
related to T-cell activation over n = 10 time points (0, 2, 4, 6, 8, 18, 24, 32, 48,
72 hours) after treating the T-cells with ionomycin. Expression data over m = 44
biological replications were obtained. Following Rangel et al. (2004), Rau et al.
(2010), we log-transformed the expression data and performed the quantile nor-
malization [Bolstad et al. (2002)] to ensure that all 44 replicates have a similar un-
derlying distribution of gene expression. The normalized expression data and gene
descriptions can be found in the R package GeneNet of Schäfer, Opgen-Rhein and
Strimmer (2006) on CRAN [R Development Core Team (2011)].

Instead of learning the whole gene regulatory network among these 58 genes
related to Jurket T-cell activation, we focused on learning the local directed graphs
of three important genes [Rangel et al. (2004), Rau et al. (2010)], including the
transcription factors JunB, JunD and FYB genes using the proposed tsPCD-PCD
algorithm. JunB and c-Jun, along with JunD and Fos group proteins (c-fos, FosB,
Fra1 and Fra2), comprise the core members of the activator protein 1 (AP1) family
of transcription factors. Since the time series we have are very short with n = 10,
following Rau et al. (2010) and Rangel et al. (2004), we assume a lag q = 1 under
a Gaussian model to learn local networks around these three genes separately.
Choosing q = 1 is partially justified by the boxplots of the auto-correlations for
different lag sizes shown in Figure 3(a). The auto-correlations are small for lags
greater than 1. We used the significance level of α = 0.01 for all the conditional
independence tests based on the CLRTs or LRTs.
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FIG. 3. Analysis of real data set: boxplots and local structures learned around genes JUND, FYB
and JUNB based on time course gene expression data using the significant level α = 0.01 and
depth = 1.
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Figure 3(b) shows the local neighbors identified by the tsPCD-PCD method for
each of the three genes. We first observe that genes JunB and JunD have more
neighbors than the FYB gene, showing the importance of these two genes in T-cell
activation [Boise et al. (1993)]. Out of the five genes that are found to regulate
expression of JunD (CIAPIN, CLU, CASP, PDE4B and JunB), three are related to
apoptosis, including the cytokine-induced inhibitor of apoptosis (CIAPIN) and the
clusterin (CLU) genes that are associated with the clearance of cellular debris and
apoptosis, and apoptosis-related cycteine peptide (CASP). This is very interest-
ing since the T-cells were stimulated by the calcium ionophore ionomucin, which
is known to induce apoptosis [Miyake et al. (1999)] by activating the apoptosis-
related genes. These apoptosis events then lead to activation of JunD, which in
term regulates genes of survival of motor neuron 1 (SMN1), ribosomal protein
kinase S6 (RPS6Kb1), retinoblastoma like protein 2 (RBL2) and linker gene for
activation of T-cells (LAT), all at the next time point. This observation agrees with
the known fact that JunD mediates survival signaling to mount an appropriate bio-
logical response to a specific challenge [Lamb et al. (2003)]. Among these genes,
LAT plays an important role in the activation, homeostasis and regulatory function
of T cells [Shen et al. (2010)] and RBL2 is a key regulator of entry into cell divi-
sion and survival. The ribosomal protein S6 kinase (RPS6K1) is a central regula-
tor of protein synthesis and of cell proliferation, differentiation and survival [Han,
Khuri and Roman (2006)]. This example shows the effectiveness of our methods
in identifying the upstream regulators and downstream regulated genes of JunD
during T-cell activation. This is in contrast to the global network identified by Rau
et al. (2010) using a state-space model, where only Caspase-4 was identified as the
upstream regulator of JunD.

JunB is a cell cycle-regulated transcription factor that is involved in the regula-
tion of a broad spectrum of cellular functions, including the expression of leuko-
cyte early activation antigen CD69 [Castellanos et al. (1997)]. It also interacts with
JunD. tsPCD-PCD identifies these two genes as the downstream targets of JunB.
Cyclin-dependent kinases (CDK4) and their targets have been primarily associ-
ated with regulation of cell-cycle progression. Vanden Bush and Bishop (2011)
recently identified JunB as a newly recognized CDK substrate, supporting the fact
that CDK4 is a upstream regulator of JunB. Our method also identifies CYP19A
as another potential regulator of JunB.

Finally, the early-growth response 1 (EGR-1) transcription regulator was first
identified as an immediate-early response gene transcriptionally activated by mi-
togenic stimulation [Sukhatme et al. (1988)]. It regulates the FYN binding pro-
tein (FYB), which is an important adaptor molecule in the T-cell receptor signal-
ing machinery that in turn influences the expression of the interleukin 3 receptor,
α (IL3RA). These results agree with the current literature. In contrast, in work by
Rangel et al. (2004), FYB was found to occupy a crucial position in the graph and
was involved in the highest number of outward connections. However, our local
DAG does not support this conclusion. It is also interesting to see that FYB tends
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to self-regulate over time as shown by the identified edges FYB(t − 1) → FYB(t)
→ FYB(t + 1).

As a comparison, we also applied the PCD-PCD algorithm that ignores the time
series nature of the data and shows the resulting local networks in Figure 3(b).
Ignoring the time dependency leads to less well-connected graphs compared with
the ones obtained by tsPCD-PCD. For example, important apoptosis related JunD
regulators CLU and CASP were not identified by the PCD-PCD algorithm. This
indicates that our algorithm is able to extract additional information about the in-
teractions among the investigated genes based on the time-course gene expression
data.

6. Discussion. Motivated by analysis of time course gene expression data
with replicates, we have developed a learning algorithm to identify the neighbor-
ing nodes of a given variable by extending the PCD-PCD algorithm of Zhou et al.
(2010) in order to effectively utilize the time-order in orienting the edges. Like
many constraint-based methods, our algorithm depends on valid tests for condi-
tional independence. To account for the dependency among the observations in
time series data, we developed composite likelihood ratio tests that provide valid
tests for conditional independence for general parametric DAG models, including
the log-linear and the Gaussian DAG models. While there are other alternative tests
for continuous variables without assuming a functional form between the variables
as well as the data distributions such as the kernel-based tests [Zhang et al. (2012)],
it is not clear how to extend these tests to the multivariate time series data in the
context of learning the DAGs.

Theorem 1 of this paper shows that the proposed tsPCD-PCD algorithm can re-
cover the true local DAG (up to a Markov equivalent class) if the DAG is faithful
to the joint probability distribution and if all the conditional independence condi-
tions can be correctly checked with the data. Therefore, the power of discovering
the true local network depends on the power and type 1 error of the conditional
independence tests. However, since many such conditional independence tests are
performed in the algorithm, it does not seem to be possible to develop a general
framework to determine the sample sizes needed in order to recover the true DAG
with a high probability. This is an interesting topic for future research.

In our analysis of the gene expression data, the tsPCD-PCD algorithm has iden-
tified several important regulatory relationships among the genes in T-cell activa-
tion pathways; many agree with the our current knowledge on T-cell activation.
The fact that many edges identified by our method can be substantiated by the
literature shows its effectiveness in identifying biologically useful information on
gene regulation. As a necessary simplification, we assume that DAG structure is
time-invariant. When data are collected over many time points and with many
replications such as those measured at single-cell levels, it is possible to extend
our methods for studying time-dependent DAG structures that can reflect the dy-
namic changes of the DAG structures.
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SUPPLEMENTARY MATERIAL

Supplemental materials for “Learning local directed acyclic graphs based
on multivariate time series data” (DOI: 10.1214/13-AOAS635SUPP; .pdf). The
online supplemental materials include detailed statements and their proofs of The-
orems 1–3, Lemma 2 and Corollary 1. Proof of Theorem 1 provides a detailed
explanation of the steps of parts I and II of the tsPCD-PCD algorithm.
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