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Evaluating the overall ability of players in the National Hockey League
(NHL) is a difficult task. Existing methods such as the famous “plus/minus”
statistic have many shortcomings. Standard linear regression methods work
well when player substitutions are relatively uncommon and scoring events
are relatively common, such as in basketball, but as neither of these condi-
tions exists for hockey, we use an approach that embraces the unique char-
acteristics of the sport. We model the scoring rate for each team as its own
semi-Markov process, with hazard functions for each process that depend on
the players on the ice. This method yields offensive and defensive player abil-
ity ratings which take into account quality of teammates and opponents, the
game situation, and other desired factors, that themselves have a meaningful
interpretation in terms of game outcomes. Additionally, since the number of
parameters in this model can be quite large, we make use of two different
shrinkage methods depending on the question of interest: full Bayesian hier-
archical models that partially pool parameters according to player position,
and penalized maximum likelihood estimation to select a smaller number of
parameters that stand out as being substantially different from average. We
apply the model to all five-on-five (full-strength) situations for games in five
NHL seasons.

1. Introduction. In many situations where a desired outcome depends on the
performance of a group, it can be difficult to evaluate the individual contributions
of its members. The study of sports provides a number of examples; the easier
decomposition of baseball into what are essentially head-to-head match-ups makes
it comparatively easy to tell whether one batter is superior to another, given enough
observations.

The study of goal-based team sports—ice hockey, field hockey, basketball, soc-
cer and lacrosse, among others—is considerably more difficult, as the separation
of roles is much more difficult to measure with modern game statistics, especially
when player efforts do not directly lead to goals. In ice hockey, player abilities are
historically quantified by citing offensive statistics, such as goals and assists, de-
fensive statistics such as blocked shots and a goaltender’s saves, and combinations
such as the plus/minus statistic (+/—), or the net goals scored for a player’s team

Received October 2012; revised March 2013.
Key words and phrases. Competing process models, Cox model, ice hockey, Bayesian inference,
hierarchical models, player ratings.

1497


http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/13-AOAS646
http://www.imstat.org

1498 THOMAS, VENTURA, JENSEN AND MA

when that player was on the ice. However, these are measured across many dif-
ferent combinations of players on the ice who contribute to the play, so an overall
assessment of individual ability is not as obvious. Even if we assume that goal-
tenders have no role in team offense, there is surely a defensive assessment that
can be made for other players, which is not as easily captured by these count-based
statistical measures.

The nature of ice hockey means that scoring events are often quite rare. Even
if we divide an hour-long game into segments of a minute each, the fact that most
hockey games have fewer than ten total goals means that the majority of these
will be empty of scoring events, requiring a treatment that is considerate of this
imbalance; segments of unequal length must also be handled appropriately. This
rarity may also mean that the data could be insufficient to adequately separate
players from each other in their ratings, or have minimal predictive value, either
for a player’s own future performance or for in-game outcomes. Properly assessing
uncertainty in all parameters, and in the stochastic process of the game itself, is
essential to the process.

To manage these factors and generate meaningful player ratings, we propose to
measure the abilities of players in ice hockey according to goal-scoring rates when
they are on the ice, much as in the plus/minus approach. However, we have two
particular features of our approach that improve upon plus/minus. First, we con-
sider goal-scoring to be the combination of at least two semi-Markov processes,
modulated by the players on the ice for each team, so that each player on the ice
contributes to both their team offense and team defense. Second, we regularize
these estimates to ensure better predictive performance, which may also have the
benefit of selecting a subset of players to have nonzero (i.e., nonaverage) ratings.

Ideally, our method for obtaining meaningful player ratings will have several
important properties. We want ratings that can be interpreted in terms of game
outcomes—namely, goals scored or prevented. In that spirit, we want to distinguish
the offensive and defensive capabilities of each player separately, allowing for a
superior assessment of ability, as well as the quality of a player’s team, teammates
and opposition by factoring their abilities into each observed event. In some cases,
we would also like to distinguish a subset of players as “exceptional” at offense or
defense (in either direction).

We continue by describing previous methods for rating the offensive and defen-
sive skill for players in hockey and other sports in Section 2, as well as describing
the data available for this work. In Section 3 we describe our methodological ap-
proach to the problem, demonstrating many of its applications in Sections 4 and 5.
We conclude in Section 6 by discussing potential extensions to our approach.

2. Previous approaches for player ratings.

2.1. Count-based measures: Simple plus/minus. The notion of tracking the
number of goals scored, both for and against, for each player on the ice is decades
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old, but its full application took years to reach its current state. In the National
Hockey League (NHL), the world’s premier professional ice hockey organization,
its initial use was said to be pioneered by the Montreal Canadiens hockey club in
the 1950s, though only for their own purposes and in secret [Klein and Reif (2001),
Chapter 1]. The system was popularized by NHL coach Emile Francis during the
1960s, though the existing weaknesses of this approach were obvious even then: it
does not take into account each player’s quality of teammates, quality of opponents
and position. Good players on bad teams often have similar plus/minus statistics
as bad players on good teams [Klein and Reif (2001), Chapter 3].

Without changing the basic structure of the statistic, the most obvious weakness
one can address is the effective rarity of goals, an average of roughly three per team
per game. By adding other events that can lead to goals, more information can be
attributed to the efforts of players on the ice. These typically include shots on goal,
either unweighted or adjusted for the distance from the net, possibly including
those that are blocked by the opposing team’s skaters or miss the net entirely;
these include the Fenwick- and Corsi-weighted plus/minus; Macdonald (2012a)
lists these and others that have been adapted to the general approach.

Lock and Schuckers (2009) and Schuckers et al. (2011) extend this idea by
accounting for all events that are recorded in a modern NHL game, including face-
offs, turnovers and hits, all of which are thought to change the likelihood of the
scoring of goals, either due to changes in puck possession or location on the ice.
Each of these has an effective “weight” in terms of the expected number of goals
scored or prevented because that event did or did not occur; for example, a team
that wins a face-off near their opponent’s goal is more likely to score in the fol-
lowing seconds than they are to be scored upon, and have a higher probability of
scoring than if their opponent had won the face-off instead. For a player in a game,
the sum of the weights of events in which they are involved can then inform us
about that player’s overall contribution to the game.

2.2. Regression-adjusted measures. 'The other most notable weakness of the
standard plus/minus measure, or any of its derivatives, is coincident play: if two
or more players are on the ice together for much of their shared time, it can be
difficult to distinguish the abilities of each player from each other when so many
of the outcomes to which they contribute are common to both. This problem is
common to all goal-based team sports.

To handle this issue in basketball, Rosenbaum (2004) proposed to divide a Na-
tional Basketball Association (NBA) game into intervals marked by the substi-
tution of players onto the court. From this, he derived a number of independent
events, each containing a number of scoring opportunities for each team. The out-
come of each event is the difference in points scored between the two teams di-
vided by the time elapsed during the interval; the predictors are indicators of the
players on the court for each team—positive for the home team, negative for the
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away team. Using a linear regression model of these player-predictors on the scor-
ing outcome, each player’s associated coefficient represents their contribution to
the change in score in favor of their team; this is their “adjusted plus/minus” rat-
ing. Ideally, this measure will isolate a player’s contribution to their own rating
and remove it from others, as the quality of their teammates and their opponents is
accounted for.

Ilardi and Barzilai (2008) modify this approach by taking every interval as not
one but two events—home scoring and away scoring—and treating them as inde-
pendent, conditional on the length of the event. Each player on the court appears
in each of these two events, as an offensive and defense player respectively, and
therefore has a distinct rating for each of these “skills;” the combination of the two
can then be taken as the total adjusted player rating.

Each of these procedures was conducted by Macdonald (2011) on NHL data by
noting player substitutions from official game logs and using these to construct a
table of events. Gramacy, Jensen and Taddy (2013) considers a logistic regression
model that focuses only on those events where one team scores a goal, which has
the benefit of considering a much smaller set of events. Neither of these models
allows for a user to simulate an entire game; the outcomes do not correspond to
goal scoring processes, but to scoring rates in the former case and relative ability
in the latter.

These methods have also been used with regularization methods to improve
parameter estimates; ridge regression [Hoerl and Kennard (1970)] is used by Sill
(2010) for the NBA, and Macdonald (2012b) for the NHL, to account for these
difficulties. Other Gaussian-derived models such as James-Stein estimation [James
and Stein (1961)] are compared for the case of batting averages in Brown (2008).

2.3. Process models. The nature of substitution and scoring data from the
NBA is vastly different from that of the NHL. In the NBA, there are typically
several scoring events for either team per rotation (the equivalent of a “shift” in
hockey), and there are relatively few substitutions per game. In the NHL, scoring
events are much rarer, on the order of 10 minutes between goals, while players
typically only spend about 30—-60 seconds on the ice before returning to the bench
for a substitution. As we show in Section 2.4, roughly 98% of these intervals have
a total of zero goals scored. Using this linear regression approach, the event du-
rations will not factor in, and significant information will be lost. Additionally,
since the data are clearly non-Gaussian, methods based on Gaussian convergence
properties may not be reliable, as the error terms and the prediction terms must be
highly dependent to produce the majority-zero data.

The rarity of scoring events relative to the number of observable intervals sug-
gests the use of a Poisson-type process model. Each event represents an observa-
tion of the same players on the ice, and any event that does not end in a goal is
essentially censored by the change in players. This directly incorporates the ob-
served duration of the event as well as accounting for the relatively sparse number
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of goals. Simple Poisson models have been used for making strategic decisions in
hockey [Morrison (1976), Beaudoin and Swartz (2010)]; these methods can be im-
proved to account for heterogeneity in the scoring rate over time [Thomas (2007)].

Moreover, the game can often be divided into a number of discrete states that
give additional information about the game. Hirotsu and Wright (2002) examine
soccer as a continuous-time Markov process with 6 states: 2 teams can possess the
ball on either half of the field, plus the state of having a goal scored in either net.
Thomas (2006) considers a larger state space for hockey with a semi-Markov pro-
cess instead. Only when a team has possession of the ball/puck in their opponent’s
territory can they score a goal, so that this underlying state will then directly influ-
ence the scoring rate for each team. This method can be applied if data on location
and possession is available, but this is not currently available to the public.

We expect that players in the game will similarly affect the scoring rates for each
team. The Cox process model [Cox (1972)] decomposes the rate of this process,
described by the hazard function A (z, X) = A(¢, X), into a time-varying component
Ao(#) and a time-independent term for the inclusion of covariates A, (X). Just as in
the linear model case, these models can also be regularized, such as with the Lasso
[Tibshirani (1997)].

2.4. Source of data. Records of many National Hockey League (NHL) games
are available to varying levels of detail. For the sake of dividing the game into
discrete intervals, we use the interpretation of Rosenbaum (2004) and Macdonald
(2011) that an interval should end either when a player substitution is made by ei-
ther team or when an event occurs (e.g., when a goal is scored). This level of detail
is available with ease in game records from the 2007-2008 season until the 2011-
2012 season. We select those shifts in which both teams are at full strength—each
team has five skaters and one goaltender on the ice—and note the duration of the
event in seconds. The outcome is one of three possibilities: the home team scores,
the away team scores, or neither team scores and at least one player substitution
occurs. As Table 1 shows, over 98% of the observations are nongoal outcomes,
which is highly disproportionate compared to basketball.

For this analysis, we consider a process whose only events are goals scored by
each team. We have additional information on shots on goal that did not result
in goals, on penalties called that result in man-advantage situations, and on time-
outs called (extremely rarely) by coaches. We do not include these at this stage

TABLE 1
A count of the events of each type in the database. A home team advantage is apparent

Seasons: 2007-2012 Away goal No goal (Changes) Home goal

Total events 10,935 1,301,799 11,981
Percent of total events 0.83 98.27 0.90
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to keep the analysis on events that directly influence the final result of winning
or losing the game, since shots on goal only lead to goals a fraction of the time,
and the relationship between shots on goal and goals is not as simple as a fixed
fraction of events. Any processes that lead to shots must also lead to goals, and to
add additional competing processes to the model would add an additional level of
complexity that is beyond the scope of this investigation. [See Macdonald (2012a)
for how shots can be used in a standard regression scheme. ]

For each season, we divide the games into two groups, uniformly at random—
one for in-sample training (all observations from 80% of the games) and one for
out-of-sample validation (the remaining 20% of games). When we perform any
tuning parameter selection, we further subdivide the in-sample training set for
cross-validation.

3. Model specification. We model the stochastic nature of the game as a
model of two competing processes for the scoring of a goal, censored by player
substitutions. Each process has parameters for offensive and defensive character-
istics, and these parameters are regularized by partial pooling. We use penalized
maximum likelihood and full hierarchical Bayesian models to infer parameters of
interest.

3.1. Events obey a competing processes model. There are, at a minimum, two
opposing processes in a hockey game: the home team tries to score on the away
team, and vice versa. Both of these events are relatively rare compared to the num-
ber of observed event intervals, so that it is natural to model these as competing
stochastic processes. Predictors that modulate these processes can be the teams in
the game, the score of the game, the players on the ice or some other combination,
and the same predictors appear in each process.

We choose a Cox proportional hazards model for each process, so that the
hazard function has separate components for time dependence and predictors, as
h(X,t) = ho(t)h1(X), where X can represent various factors such as the players
and/or team on the ice. For this investigation we begin with hg(¢) = 1, so that the
time until the next event is exponentially distributed with rate /1 (X); the baseline
rate is established with a corresponding intercept term in X. More information
on the location of the puck at each + = 0 may allow us to refine the time-based
component in future investigations.

From this, each team’s scoring rate is modeled as a log-linear Poisson process.
The intercept terms, labeled r* and r“, represent the baseline scoring rates for the
home and away teams, since, as we see in Table 1, the overall scoring rate for the
home team is greater than for the away team; in this way, we explicitly detect a
home-ice advantage. For each predictor indexed by p, let (wp, §,) be a measure
of the offensive and defensive contribution for that predictor, so that a rating of
zero corresponds to an “average” contribution; the corresponding indicators are
X ﬁ and X7.
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The scoring rates for each process are

Al = exp(rh + Z(Xga)p + X;ép)>;
p

A= exp(ra +) (XS0, + Xg8p)>
p

for this combination. For each instance of this process, 7" and T¢ are the times to
each event for these processes, and let ¢ be the first time at which any players on
the ice are substituted, thereby censoring the scoring process. We assume that the
(unmodeled) censoring time is independent of these event times and that, condi-
tional on the predictors, these events are independent of each other. The outcome
can then be registered as

1, ifTh <19 Th <,
Y=1 -1, ifTe <Th, 79 <1,
0, otherwise

so that (1, 0, —1) represents a home goal, no goal and away goal, respectively. Let
T = min{z, Ty, T,} be the observed time of the event.

Because of the independence condition, the likelihood for this event is then the
product of the individual likelihoods, noting if either or each of the events was
censored. With the survival function form S(x) = P(T > x), we have

S X n, 2a, T) = fh(T|)"h)H(Y:1)Sh(T|)\,h)H(Y7él)
X fa(T|Aa)H(Y:—l)Sa(TMG)H(Y;E—I)‘

Using this approach, each predictor’s offensive parameter coefficient represents
the change in the team goal-scoring rate with respect to a baseline rate (in particu-
lar, if they are replaced by another player of typical ability), and likewise for their
defensive parameter and the opposing goal rate.

This method has several advantages for this class of data. Rather than trying to
model a single outcome, such as goal differential, we can simultaneously calcu-
late both the offensive and the defensive player ability parameters for each player,
which are known to be distinct. The parameters we calculate have a meaningful
interpretation in terms of game outcomes, since it reflects an increase or decrease
in scoring rate. We can assess a player’s marginal goal fraction over data in ques-
tion by comparing the expected number of goals scored and allowed by their team
given their ratings against the same data with ratings set to zero.

In addition to the offensive and defensive abilities of each player, we can ac-
count for several other possible influences. We can fit parameters to a whole team
to capture their average ability, rather than simply including all the players inde-
pendently. If we include both teams and players as predictors, this would change
the interpretation of a “player effect” to be relative to the performance of one’s
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team. We can also model an effect for the in-game score differential, since many
teams may change their offensive and defensive strategies depending on how far
ahead or behind they are in the game. This may best be accomplished by selecting
a different intercept term depending on the score.

3.2. Regularization of parameter estimates. Even though we observe hun-
dreds of thousands of discrete shift intervals in a season, the potential number
of parameters in this model is also very large, and many of the player ability mea-
sures will be made with only a small number of observations, such as players who
appear in only one game. Worse yet are those players who are not on the ice for
any goal by one team and therefore have a maximum likelihood estimate of mi-
nus infinity for each of their parameters. To account for this, we use a hierarchical
model to shrink parameter estimates toward a common mean (namely, zero), with
the possibility that different positions (center, goaltender, winger and defenseman)
have different shrinkage behavior. We have a number of choices for how to carry
out this regularization: the choice of prior distribution or penalty term, the degree
of hierarchical structure we impose, and whether we choose to minimize a function
or integrate over a distribution.

The two standard choices for a prior/penalty distribution are the Gaussian and
the Laplace, which penalize the mean squared error and absolute error, respec-
tively; the latter case corresponds to the Lasso method [Tibshirani (1996, 1997)].
We can also consider a third class that joins the two, in the spirit of the Elastic Net
method [Zou and Hastie (2005)], the Laplace—Gaussian distribution:

Prior type PDF
Lasso/L1 f(x|x) =% exp(—Ailx|)
Ridge/L2 f(x]o?) =exp(—x2/(202))/+/2n 02

: 2y _ exp(=0?4%/2—|x|—x?/(2x0?))
Elastic Net/L1 +L2  f(x|A,0%) = JBrold(—on)

While each of these regularization options act to stabilize parameter estimates,
both in cases with few observations and in those pairs or multiples with high
collinearity, each family gives a different interpretation for the shrinkage behav-
ior of the covariates. There are fully Bayesian interpretations for the Lasso which
have been explored for standard linear models [Park and Casella (2008)], as well
as those for the Elastic Net [Li and Lin (2010), Hans (2011)].

If we choose the L1 method and set each A to a constant, then we have a (rel-
atively standard) Lasso implementation, in which the penalized MLE or MAP es-
timates for the parameter may be exactly zero with nonzero probability, which
yields a smaller subset of predictors for which the scoring rate change is distin-
guishable from zero. The L2 method with constant o terms yields a result in
which the penalized MLE or MAP estimates for each parameter are brought closer
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but not exactly to zero. Compromising with the L1 4+ L2 method allows for some
of the benefits of both properties, but may sacrifice the ease of implementation
that can be found in the simpler cases. In the case of simple optimization, the L1
and L2 cases are suited to using cross-validation to choose the penalty weights A
and o2. If we are considering multiple partially pooled groups, cross-validation
may no longer be computationally feasible, since searching the space of possible
parameters becomes more difficult the more dimensions we add.

3.3. Implementation. We have two types of problems that we consider: those
in which the total distribution of predictors and their group-level variance terms is
of direct interest, and those in which we are only interested in selecting a subset of
relevant predictors. The former case requires simultaneous estimation of a number
of shrinkage parameters, and this dimensionality makes a search of the space dif-
ficult to accomplish with cross-validated methods, so we use the full hierarchical
Bayesian approach. In the latter case, there is typically only one dimension of in-
terest, as we wish to select from only one relevant subset of predictors, and so here
we can use penalized maximum likelihood estimation much more easily.

3.3.1. Optimization of penalized likelihood. We use maximization of a penal-
ized likelihood to get rough parameter estimates, with modest levels of L1 and/or
L2 shrinkage to handle parameters with minimal information in the data, such
as players who played in only one game. We can use this as a starting point for
Markov Chain Monte Carlo to obtain estimates for the pooled variance/shrinkage
parameters. For each MCMC routine, we discard a sufficient number of initial
samples as burn-in and thin the chain sufficiently so that the thinned chain has
negligible autocorrelation for all parameters and a sufficient number of uncorre-
lated samples (in each of our cases, a minimum of 500) for use in inference.

We can also simply scan through a series of values for each shrinkage parameter,
selecting the optimal value through out-of-sample validation. This is easiest when
there is only one shrinkage parameter to estimate.

3.3.2. Full posterior estimation with MCMC. The full hierarchical model has
three levels: from the data, to the predictor coefficients, and finally to their partial
pooling prior distributions. We use a Gibbs sampler blocked on pairs of variables
to estimate model parameters.

e Level 1: Each outcome (Y| X h, X% w,$,t); is distributed as the competing pro-
cess model. Each predictor block (X f’, X{) is stored as a sparse vector, given
that there are typically no more than 16 total nonzero terms in each row.

e Level 2: Each coefficient pair (w, ), is distributed according to its prior distri-
bution. In the Laplace—Gaussian case, this has four terms corresponding to the
group g(p) that has predictor p as a member: the Laplace terms (A, ¢, As5,¢) and

: 2 2
the Gaussian terms (o 2205 g).
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As the intercept terms 7 and r¢ effectively correspond to their own (w, 8)
pair and belong to their own group, each acts as their own group mean; weak
hyperpriors on their own prior terms act marginally as weak prior distributions.

Each pair (wp, 8,) is updated using a Metropolis sampler with a bivariate
Gaussian proposal distribution. Indexing each observed shift with i, the target
distribution

F(@p, 8plY, X, 00 5(p)> 98,8(p)> 2o,8(p)> 28,8(p))
equals the product

h
F(@p,8plow,g(p), 08,8(p)> Aw,g(p)> 28,2(p)) l_[ FYIX", X o,8, t),'-
ipe(Xh x9)

We initialize all (w, §) terms with a penalized maximum likelihood estimate
using relatively loose shrinkage parameters.

e Level 3: Each Laplace A term has a weak Gamma conjugate prior; each Gaussian
o2 term has a weak Inverse Gamma conjugate prior. If the Laplace—Gaussian is
used, these priors are no longer conjugate to their respective parameter forms.

Each pair (A, ¢, oaz)’ ) 1s updated through a pair of univariate grid approx-
imation samplers. The first samples according to the density along the sum of
approximate total shrinkage, 1/0 ¢ +Aw ¢/ V2, while keeping the relative frac-

Mg /2

hog/V2H1 /0w g
ond samples the relative fraction while keeping the approximate total constant.

This is repeated for each pair (A5 g, (78% ¢)- (One can always sample directly from
the bivariate grid approximation as well, though this is less computationally ef-
ficient.)

tion of shrinkage constant;! after updating these values, the sec-

We constructed the sampler using the R programming language with supporting
back-end code in C++. Execution time varies with the total number of covariates,
with the simplest cases (200,000 outcomes and 60 covariates) taking 30 processor-
minutes, to the more complicated runs (200,000 outcomes and 2600 covariates)
requiring roughly 60 processor-hours. We used multiple parallel chains with suf-
ficient burn-in periods to collect a sufficient number of uncorrelated samples. We
validated the sampler using the method of posterior quantiles [Cook, Gelman and
Rubin (2006)].

In each of these cases, we can judge the performance of each selected model
initially using in-sample measures, then confirming goodness of fit by checking
against our held-out data. For MCMC, we use the Deviance Information Criterion,
calculated using the individual samples and the average overall samples, applied
to the likelihood of the original (fitted) data for in-sample fit, as well as to our
withheld data for out-of-sample validation.

IThe «/E factor is added to reflect the fact that a Laplace distribution with scale 1 has a variance
of 2.
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F1G. 1. The scoring rates per 60 minutes for generic home and away teams in each individual
season, divided by game score. Points are posterior means, lines are central 95% credible intervals.
The home team consistently outscores the away team in all five seasons and overall within each
game situation; scoring rates for both sides are elevated when the game is not tied, whichever team
is winning.

4. Analysis of full posterior distribution. Since all analyses in this investi-
gation are conducted on events where both teams are at full strength, we refer to
any particular coefficient pair (w,, 6,) as the Mean Even Strength Hazard (MESH)
rating for the corresponding predictor, such as the team (as in Section 4.2), a partic-
ular player (Section 4.3) or the extra contribution of a pair of players (Section 5.2).
We estimate the net MESH rating as offensive ability minus defensive liability,
wp —8p.

4.1. Home-ice advantage and game score. The simplest version of this pro-
cess model has only two coefficients, the intercepts for the home team and away
team processes:

A =exp(r"), A =exp(r?).

We can extend this by specifying different intercepts for different game score
situations. For this analysis we choose three: when the home team is winning, tied
or trailing.> Figure 1 shows the estimates of these intercepts in each of the five
seasons under consideration, for home and away teams, by taking each exp(r")
and exp(r?), the per-second rates, and multiplying up to a full (hypothetical) 60-
minute game.

It is clear that the home team has a consistent advantage. Whether or not the
effective home scoring rate is actually identical in each of the five seasons, they

2While we can extend this more generally to all combinations of game score, the results of this
division are quite robust.
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are so close as to be indistinguishable from each other; this is similar for the away
scoring rate. The year-to-year variability in home and away mean rates is consis-
tent with a common goal-scoring rate across all five seasons; simulations verify
that the change in estimated means is consistent with the spread in estimation
based on the generation of a season’s worth (1230 games) of goals for each team
from the Poisson model.

It is also clear that there is a change in scoring rates by game score. Interestingly,
the scoring rates for each team are raised by the same amount when a team is
leading or trailing, compared to when the score is tied. This suggests that teams
are more cautious during tie scores, and that efforts by the trailing team to increase
their own scoring rate, or by the leading team to increase their margin, result in a
corresponding and roughly equal increase in their opponents’ rate.

4.2. Overall team performance, per season. Because each of the 30 teams in
the data is present in roughly one-fifteenth of the total events, we do not expect
the degree of sparsity as when we model the impact of individual players. This
does not mean, however, that the model cannot benefit from partial pooling on
team parameters, both to reduce the effective dimensionality of the model and to
improve predictive accuracy. This model is then specified as

)‘h = exp(rh ~+ Whome + 5away); A= exp(ra + Waway + (Shome)a

with partial pooling under one of our chosen schemes; in general, this is of the
form

Wteam ~ Laplace-Gaussian (Aeam, 02 m)»

where the shrinkage behavior depends on the prior specification for the parameters
(Ateam, o*tzeam). We include three sets of intercepts for game score situation, though
additional analysis shows that our parameter estimates are insensitive to this model
choice.

We estimate these parameters within each season using MCMC for each of
the three submodels for pooling. For each shrinkage mode, two variance compo-
nents are estimated, for total offensive and defensive ability, respectively. For the
Laplace—Gaussian prior form, there are four total parameters, rather than two, and
this mode has the lowest Deviance Information Criterion for all five seasons, both
in- and out-sample, as shown in Table 2. From this point on, we focus on results
using only the full Laplace—Gaussian prior.

Figure 2 shows the posterior distributions for each team’s net MESH rating
within each season, using the Laplace—Gaussian prior. As expected, these track
well with the number of goals scored and allowed by each team during these sea-
sons, since the correlation of parameters across teams is minimal; teams play each
other no more than eight times per season out of a total of 82 games. There are
also several significant deviations for some teams for one season compared to the
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TABLE 2
DIC for the Laplace, Gaussian and Laplace—Gaussian pooling priors for the model with teams as
explanatory variables. The Laplace—Gaussian performs the best in each season and overall in both
the in-sample and out-of-sample cases

Insample Outsample
Season L1 L2 L1+L2 L1 L2 L1+L2
2007-2008 57701 57703 57691 14088 14088 14085
2008-2009 59996 59966 59962 15071 15064 15064
2009-2010 61415 61359 61348 15710 15704 15702
2010-2011 62552 62521 62515 15541 15538 15537
2011-2012 62398 62398 62377 15983 15983 15982

rest, such as St. Louis in 2012 (very positive) and Minnesota in 2012 (very neg-
ative), that are not statistically distinguishable from their other performances but
still illuminating nonetheless.

It is worth noting that very few of these parameters have 95% credible intervals
that do not contain zero, suggesting that the amount of information to distinguish a
team from being truly “average” is quite small; however, it is clear that some teams
are highly probable to be better (or worse) than other teams in the league, so that
distinguishing a statistically significant ordering is within the reach of this model.
In particular, the overall rating for the Boston Bruins over these five seasons is

Team Ability, Total
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FI1G. 2. Total team ability estimates for each team in the NHL, grouped by team for each season;
order is by overall team rating. Points are posterior means, lines are central 95% credible intervals.
A rating of 0.1 corresponds to a differential of roughly 0.3 goals per game scored or prevented. Note
that only two team-years, the 2012 Boston Bruins and 2010 Washington Capitals, have effects that
are significantly different than average.
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greater than 12 of their 29 opponents with at least 95% probability; the rating for
the Detroit Red Wings is greater than 11 of theirs with 95% probability or greater.
Similarly, the New York Islanders and Minnesota Wild are worse than 12 and 10
of their opponents, respectively.

Given the limited amount of information, the question arises as to whether we
can reliably distinguish player abilities from average when the information on a
single player is much less than that for a single team. We address this question in
the following section.

4.3. Distribution of player abilities, across all seasons. The estimation proce-
dure for team effects is relatively straightforward, given the relative balance of the
design matrix. Once we consider individual players, more questions arise since the
design matrix can be far more unbalanced; for example, a player’s defensive rating
may be trickier to estimate because they share the majority of their shifts with a
single goaltender. Arguably, it gets worse if both players are great players, since
they may both be retained by a single team for much of their careers.

This is made easier when dealing with data from multiple seasons, as the more
players change teams, the more the players in the league will mix. We therefore
model player abilities as constant over all five seasons, which we refer to as the
“grand model,” specified with the following terms:

e Overall home and away effects with score differential effects.

e Offensive and defensive parameters for all skaters (centers, wingers and de-
fensemen).

e Defensive parameters only for goaltenders.

e Laplace—Gaussian pooling for each type of ability and each position parameter
(center, left wing, right wing, defenseman, goaltender).

We do not include team effects at this stage specifically because we are trying to
compare players across teams, and their collinearity with goaltenders is needlessly
complicating. We are still resigned to the degree of confounding in defensive es-
timates, since the goaltender not only plays a large role, but also is not typically
replaced throughout the game, most often only relieved during a poor outing. We
use the standard MCMC implementation to estimate parameters.

There is only a small subset of players whose ratings can be considered statis-
tically significant. Of 1592 total players over five seasons, 37 have player ratings
whose effective total (offensive skill minus defensive liability) have 95% central
credible intervals that do not contain zero. Of these, 36 are positive; only one
player, Stephane Veilleux, had a negative total rating with statistical significance,
suggesting that he is a good enough player to log regular ice time with a ma-
jor league team, but not so good that his contributions in even strength are less
than the league average. (This is not necessarily the same as a “replacement”-level
player.) The top five players at each position group are given in Table 3.
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TABLE 3
Top five players at each position, by overall rating, over five NHL seasons (2007-2012). Listed are
mean ratings, 95% credible intervals and posterior probabilities that the player is the best at his

position

Total MESH 95% credible % probability
Player rating interval best player
Center
Pavel Datsyuk 0.463 (0.262, 0.668) 39.5
Sidney Crosby 0.388 (0.155, 0.598) 18.1
Henrik Sedin 0.355 (0.096, 0.606) 13.3
Patrice Bergeron 0.280 (0.075, 0.535) 8.7
Evgeni Malkin 0.266 (0.048, 0.429) 4.5
Winger
Alexander Semin 0.321 (0.167, 0.459) 3.9
Alex Ovechkin 0.318 (0.160, 0.478) 6.6
Marian Gaborik 0.308 (0.128, 0.478) 7.6
Loui Eriksson 0.258 (0.097, 0.407) 6.0
Alexander Radulov 0.249 (0.003, 0.490) 5.5
Defense
Zdeno Chara 0.077 (—0.015, 0.244) 11.7
Mark Streit 0.0427 (—0.038, 0.207) 6.1
Jaroslav Spacek 0.0373 (—0.033, 0.163) 4.5
Mike Green 0.036 (—0.031, 0.185) 2.6
Matt Carle 0.034 (—0.026, 0.161) 32
Goaltender
Henrik Lundqvist 0.186 (0.076, 0.292) 36.0
Tim Thomas 0.120 (0.005, 0.233) 20.6
Jonathan Quick 0.102 (—=0.012, 0.221) 14.2
Martin Brodeur 0.101 (—0.009, 0.209) 7.0
Roberto Luongo 0.100 (—=0.010, 0.211) 5.3

4.3.1. Overall variability of rating by position. Figure 3 shows the variability
of player abilities at each position according to their respective Laplace—Gaussian
distributions. The first graph shows us an approximate proportion of the fraction
of variability best explained by the Laplace term, as an indicator of the degree
to which a distribution of players has heavier tails; the higher this is, the higher
the number of “extreme” players. The second graph shows the total variability of
player abilities as the standard deviation of player estimates at each iteration of the
MCMC.

Several matters are apparent. There is considerable variability in offensive abil-
ity for forwards (centers and wingers) but far less for defensemen. This is consis-
tent with the notion that defensemen have less impact on offensive output during
even-strength situations.
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Fraction of Coefficient Variability in Laplace, By Position
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F1G. 3. Variability properties of coefficient estimates by position. Thick and thin lines represent
50% and 95% credible intervals; points represent estimated means. Top, the approximate fraction of
the variability that can be attributed to the Laplace component of the Laplace—Gaussian error dis-
tribution, for each position and for offense and defense. For most positions there is a strong tendency
toward the Laplacian distribution, with heavier tails and more outliers; this is less pronounced for
winger offense. Bottom, the offensive, defensive and total variability by position. Goaltenders have
only defensive variability, which is considerably more variable than defense for any skating position.
Offensive players (centers and wingers) have more variability in offense, and every skating position
has minimal variability in defence.

For all positions other than goaltender, defensive variability is far smaller than it
is for offense. Two explanations are immediate. First, it may be that the collinearity
between skaters and goaltenders is causing our estimates of goaltender ability to
be more variable than they are in reality, and less variable for the skaters. Second,
since the total defensive burden is shared by six players (five skaters plus one
goaltender) rather than the five for offense, and the bulk of defensive skill is taken
up by the goaltender, the total amount of “defensive skill” available to be shared by
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skaters is considerably smaller, and therefore there is less total variability between
players.

How valuable is an individual position to a team? A typical starting goaltender
plays about 60 full games a season for their team, while first-line offensive and
defensive players will have the equivalent of roughly 30 and 35 full games, re-
spectively. On average, a good goaltender is worth roughly what a good offensive
player is to a team’s total output with respect to “average” players, while a good
defensive player appears to be worth considerably less.

The center position has, on the whole, more effect on defensive performance
than a defenseman does, and wingers seem to have roughly equal defensive vari-
ability as the defense position has total variability. This would seem to confirm the
case that when forwards have control of the puck, particularly in their offensive
zone, they deny the likelihood of their opponents being able to score. As we show
soon, this does not mean that a player with a high w rating must therefore have a
high & rating.

From these overall results, we move on to describe the individual performances
of players over the five-season period, as organized by position. Table 3 lists the
top five players in each position group under the grand model; we provide a more
complete list of players at each position in the supporting material, including sev-
eral of the worst players at each position.

4.3.2. Assessing model fit. 'We compare the models with basic intercepts, team
parameters and player parameters by calculating the likelihood of points withheld
from the original model fit, in each of the five seasons and altogether, with respect
to the posterior mean for each parameter. As we show in Table 4, the likelihood is
highest in all five seasons for the player parameter model, even with a much higher
number of parameters.

The adequacy of the fit of the model to data is harder to assess. The process
is inherently noisy—the number of goals in a game for any team varies wildly—

TABLE 4
Comparing the out-of-sample doubled negative log likelihood for the models for game score only,
team parameters and player parameters, respectively. Even with a large number of extra
parameters, the model with player effects yields considerably better fit for the withheld data than
the alternatives

Group Score Team Player
2007-2008 14096.1 14088.7 14002.5
2008-2009 15077.2 15072.1 15012.1
2009-2010 15704.7 15702.1 15643.1
20102011 15543.7 15542.1 15488.5
2011-2012 15994.8 15992.3 15940.1

Total 76416 76397 76087
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and so our ability to predict the behavior of any one game is minimally improved
when adding player parameters. To check the adequacy of our estimates for player
parameters, we simulate data for each game in the withheld set using the posterior
mean and check the sum of the goals scored by the home and away teams in each
simulated season against the truth; we find that the true data lies within the 95%
simulated confidence interval each time, and with every model (score alone, teams
and players, resp.).

4.3.3. Players that make the greatest total difference. Since the ratings rep-
resent multipliers to the default scoring rate, we can quickly estimate the total
contribution of a player over the observation period as the difference in expected
goals, scored and allowed by any average team, relative to an average player,

Gret = [(CXP(rbase + wp) - eXP(’”base)) - (exp(rbase - Sp) - exp(rbase))] X Ttotal,p-

A mean intercept parameter rpase = —7.3 corresponds to roughly 2.4 goals per
60 minutes. Table 5 lists the top 25 total goal producers and preventers over the
five season period. Five goaltenders make the top 25 list; despite the fact that de-
fensemen typically log more ice time than forwards, only one defencemen make
the top 25. If necessary, we can adjust these ratings to reflect teammates and op-
ponents by using the expected goals in each shift given all other player ratings, to
handle nonlinearity in the rate relationship.

G et compares directly to plus/minus in terms of a player’s overall impact. We
plot all player’s total G against Plus-Minus in Figure 4.

5. Applications with variable selection. Many problems of interest have to
do with selecting a relevant subset of predictors from a much larger set. There are
several such examples we can carry out with our method that we present here.
These methods tend to be considerably faster than operations with Markov Chain
Monte Carlo, since we’re more concerned with the selection of a subset than in
the evaluation of its stochastic properties. A negative consequence of this is that
this estimation approach is nonregular, making assessment of uncertainty difficult
[Dawid (1994)]. Our primary purpose here is identification rather than quantifica-
tion (which is handled well by the full hierarchical Bayesian treatment) and our
numerical estimates are presented so that we can compare their magnitudes with
effects from the full model.

5.1. “Most valuable player” awards, per team, per season. The term Most
Valuable Player has many interpretations throughout the sports world. One that
appeals to us is the notion that a player is most valuable to their team if their
team’s performance suffers the most compared to a “replacement” player in their
stead. In the context of this model, we propose that each player should be judged
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TABLE 5
The top 25 even-strength players in the NHL over 5 seasons (2007-2012) according to the net
number of goals scored or prevented Gyet, assuming a baseline scoring rate of roughly 2.4 goals
per team per 60 minutes. At position 20, Zdeno Chara is the highest-ranked defenseman in this time

period
Rank Player Pos Time(s) +Scored  +Scored Gpet % Pr(Best)
1 Henrik Lundqvist G 928100 0 139.5 139.5 39
2 Pavel Datsyuk C 320200 109.7 18.74 138 19
3 Henrik Sedin C 350300 114.5 2.471 118.2 18
4 Joe Thornton C 360000 62.63 8.347 73.13 2
5 Sidney Crosby C 240400 98.85 —17.74 70.3 2
6 Tim Thomas G 732300 0 70.18 70.18 4
7 Alexander Semin L 271100 68.57 —1.287 66.8 <1
8 Loui Eriksson L 330900 66.54 —0.1943 66.29 3
9 Alex Ovechkin L 373500 66.96 —1.125 65.53 <1
10 Evgeni Malkin C 309400 86.38  —15.62 64.31 <1
11 Marian Gaborik R 276700 64.16 —0.05811 64.08 <1
12 Martin Brodeur G 814100 0 60.95 60.95 <1
13 Patrice Bergeron C 239400 51.14 4.423 56.97 <1
14 Jonathan Toews C 306800 56.69 0.1341 56.86 <1
15 Ilya Kovalchuk L 376500 74.55 —14.78 55.44 <1
16 Jarome Iginla R 393100 71.55 —13.66 54.21 <1
17 Jason Spezza C 318400 7331 —14.84 53.4 <1
18 Stephen Weiss C 327900 58.86 —4.605 53.03 <1
19 Roberto Luongo G 799600 0 52.55 52.55 <1
20 Zdeno Chara D 436700 40.35 8.899 50.47 <1
21 Patrick Sharp R 300200 51.78 —1.818 49.5 <1
22 Thomas Vanek L 290400 51.92 —3.624 47.33 <1
23 Henrik Zetterberg L 339700 47.79 —1.238 46.29 <1
24 Alex Tanguay L 278000 46.85 —0.6684 46.02 <1
25 Jonathan Quick G 661600 0 45.5 45.5 <1

with respect to the rest of their team. Since selecting an exceptional player can
be treated as a special case of variable selection, we propose a scheme to pick
exceptional players on each team.

We use a model with teams and individual players as predictors. (We omit goal-
tenders for this ranking due to the confounding with team ratings.) We fix the
estimates for team ability and the grand means to be those obtained in Section 4.2.
This is to ensure that all subsequent player ratings obtained will roughly sum to
zero, since all ratings are relative to their team rating for each of offense and de-
fense.

We use a single shrinkage penalty for player ratings. Here we choose a single
Lasso penalty of A = 8, as it produces the highest likelihood for the out-of-sample
data in three of five seasons; in the other two, the optimal penalty was such that
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F1G. 4. Comparing estimated mean Guet against measured plus/minus for all players. Many player
ratings are shrunk toward zero, particularly players with lower ice time, but also defensemen (red
squares); goaltender ratings tend to be unaffected (green triangles). In the upper-right corner, Pavel
Datsyuk and Henrik Sedin (players ranked 2 and 3 in Gpet) are comparatively unshrunk; goaltender
Henrik Lundqvist has a considerable boost compared to his observed plus/minus when accounting
for his teammates and his opposition. Also highlighted are forward Ilya Kovalchuk, whose ratings
difference is the largest of all players, and Tomas Holmstrom, whose negative Gnet contrasts with his
modestly positive plus/minus.

no player had a nonzero relative rating. In each case, the fit to out-of-sample data
was virtually identical for penalties greater than 5. For each team, we select players
with the highest and lowest offensive, defensive and overall ratings, and place them
in the appropriate MVP and LVP tables. When there are empty cells in the table,
we steadily decrease the penalty, filling in empty cells in the MVP and LVP table
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Most/Least Valuable Player via L1 Cascade
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F1G. 5. The Lasso Cascade method for picking team Most/Least Valuable Players for the
2011-2012 season. Team-level effects are fixed, and player effects are subjected to a steadily de-
creasing penalty beginning with . = 8 as chosen by out-of-sample validation. Points indicate where
MVPs (in blue) and LVPs (in red) are first declared for overall ability.

as new players emerge, and stopping when all cells in the table are filled. (This
occurs in the case of 2 to 5 teams.)?

Figure 5 shows a demonstration of the method for the 2011-2012 season, and
Table 6 lists the top 10 MVPs and bottom 10 LVPs for that year; a full list of named
MVPs and LVPs, for offense, defense and overall, is provided in the supplementary
material. Most of the results are consistent with expectations, though we can spot

TABLE 6
The top 10 MVPs and bottom 10 LVPs for the 2011-2012 season, calculated as the rating of a
player relative to their team’s average and selected by the Lasso method

Team MVP Rel. rating Team LVP Rel. rating
EDM Jordan Eberle 0.407 NJ Ryan Carter —0.338
T.B Steven Stamkos 0.334 NYI Nino Niederreiter —-0.315
PIT Sidney Crosby 0.332 DET Tomas Holmstrom —0.266
NYI John Tavares 0.295 BOS Shawn Thornton —0.252
FLA Stephen Weiss 0.276 CHI Michael Frolik —0.238
PHX Adrian Aucoin 0.221 MTL Alexei Emelin —0.229
OTT Marcus Foligno 0.203 T.B Dominic Moore —0.202
WSH Alexander Semin 0.200 WSH Michael Knuble —0.200
STL David Perron 0.200 BUF Robyn Regehr —0.178
DAL Jamie Benn 0.184 CGY Tim Jackman —0.173

3We can perform a full Bayesian analysis with this model and these selected shrinkage parameters
to determine uncertainties on each player selected. We demonstrate the Lasso method here due to its
relative speed in identifying the correct shrinkage factor for this variable selection.
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FI1G. 6. Scatterplots of player ability estimates by position. There is little if any correlation between
a player’s estimates of offensive and defensive ability.

some interesting trends. First, quite often, the most valuable player for offense will
be the least valuable player for defense, such as Joffrey Lupul with the 2011-2012
Maple Leafs, or vice versa. In many ways this is not surprising; since the best
players have the most ice time, they would be more likely to have ratings that are
not shrunk completely to zero on that basis alone, and because these ratings tend
to not be correlated (see Figure 6 for ratings in the five-season grand model), it is
not surprising that this rating will sometimes be negative.

Second, some of the more surprising Least Valuable Players are centers who
specialize in taking face-offs, often at critical times, such as David Steckel of the
Washington Capitals in 2009-2010 and again with the Toronto Maple Leafs in
2011-2012. These players are often brought into the game specifically to take face-
offs, often in their team’s defensive zone, before switching off for another player at
their next opportunity. Because they are given fewer opportunities to score goals,
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merely to help prevent them, their offensive ratings will suffer accordingly; their
defensive ratings can be insignificant by comparison. Taking puck location into
account has been the subject of previous research [Thomas (2006)] and its role in
this model will be the subject of a future investigation.

5.2. Identifying exceptional player pair interactions. If we can select a
smaller subset of predictors from a much larger collection, we allow for the pos-
sibility of including a substantially large number of extra predictors to any of our
models. One compelling inclusion is player interactions; in this context, this would
allow us to see whether two players have an additional, detectable “chemistry” that
yields a higher or lower total in their offensive or defensive abilities. If this is the
case, we must see whether there are any corresponding changes to the individual
player abilities as well.

Since the MCMC procedure gets considerably slower with the addition of a
large number of predictors and coefficients, we use the Lasso method of penalized
maximum likelihood to detect a number of nonzero coefficients for the new group.

We begin by specifying the grand model in Section 4.3, and we use the mean
value of each o and A, as Laplace-Gaussian penalty terms that we will keep fixed
for the individual player effects, to allow for and moderate adjustments due to the
pair terms.

We then select a subset of player pairs from the database. For this analysis, we
took the top 1000 pairs of players in terms of the number of shifts they played
together over the five-year period. We use the condition that both players played
forward positions or both players played defense, since these groups tend to coor-
dinate their play among themselves. We add these pairs as predictors to the model.
We then estimate the model parameters for a series of Lasso penalty values, labeled
Apair, On the player-pair terms, in order from strictest to loosest for computational
ease.* The choice of penalty term depends on the goal in question; if the goal is to
increase predictive accuracy, a penalty term that minimizes out-of-sample error is
appropriate.”

In this case, we find that the penalty Ap,ir = 8.5 minimizes the test-set likelihood
under cross-validation for these events. Of the 2000 possible parameters to select
from (1000 each for w and §), this routine selects 247 nonzero parameters for
player pairs for 221 unique player pairs.

Table 7 shows the top and bottom five player pair ratings from the analysis;
a more complete list is available in the supporting material. Of particular note
is the most extreme case, the pairing of Ilya Kovalchuk and Todd White, whose
mutual rating is so low that they effectively wiped out their positive total individual

4We maintain the previously obtained penalty values for player effects.
SIf the goal is to select a fixed number of significant partnerships, we would choose the penalty
term that yields that count.
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TABLE 7
The top and bottom five player-pair interactions over 5 NHL seasons. These effects represent the
additional total rate beyond the abilities of the players themselves

Rank Player 1 Player 2 Team Time (s) Rating
1 Brad Boyes R Jay McClement C STL 35466 0.393
2 Matt Carle D Andrej Meszaros D PHI 41011 0.314
3 Patrice Bergeron C Brad Marchand C BOS 85678 0.31
4 Jussi Jokinen L Jeff Skinner C CAR 46196 0.287
5 Kris Letang D Paul Martin D PIT 40034 0.275
217 Zach Bogosian D John Oduya D WPG 57215 —0.235
218 David Booth L Michael Santorelli C FLA 34158 —0.241
219 Alex Frolov L Anze Kopitar C LA 45982 —0.269
220 Sidney Crosby C Evgeni Malkin C PIT 69217 —0.283
221 Ilya Kovalchuk L Todd White C ATL 70421 —0.545

ratings during their time together. Both recorded very high-scoring seasons when
they played together, but this accolade effectively masks their mutual liability on
defense. The next-lowest pair of Sidney Crosby and Evgeni Malkin is similar; their
presence together does not increase their (considerable) offensive prowess beyond
their individual levels, but does lead to a substantial increase in the rate of goals
scored against their team while they are both on the ice.

Interestingly, the pair of Henrik and Daniel Sedin, twin brothers who play most
of their even-strength shifts together, does not appear in the selected group. Indeed,
the most total ice time in the top/bottom five is the 135th-most coincident pair of
Patrice Bergeron and Brad Marchand from Boston. This suggests that the levels
of shrinkage are appropriate for obtaining a reasonable subset of player pairs that
have reasonable deviations.

As a final check, the positions of players in the grand rating table are mostly
unchanged, so that the original player ratings are reasonably robust to these new
additions. Worth noting is that the top two positions in the grand ratings reverse;
Sidney Crosby now has the highest player rating over Pavel Datsyuk, due to the
removal of the poorer outcomes when he plays with Evgeni Malkin, as opposed to
other potential linemates.

6. Discussion and extensions We have presented a model-based method for
assessing player ability in ice hockey by treating the game as a competing stochas-
tic process. Given the sheer number of predictors, and the relatively weak explana-
tory power of each, we use shrinkage methods to improve our estimation of model
parameters. We also allow for the possibility of expanding the model specifica-
tion from a simple flat hazard model to a more general Cox proportional hazards
semi-Markov process, to account for other phenomena. In terms of comparisons
between players, our method produces similar results for player effects as other
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approaches [Macdonald (2011), Gramacy, Jensen and Taddy (2013)], suggesting
that there is sufficient information in the data to distinguish player ability at a
grand level, despite different models. Our method has a key advantage in that it
has a specific mechanism for generating hypothetical games, as long as a mecha-
nism for player substitutions is known, and that the physical units of our coefficient
estimates correspond directly to a change in the scoring rate.

Here we address potential ways to better extend the model as a useful interpre-
tation of the game. One obvious issue is that the methods for estimating parame-
ters in this model are considerably slower than simple regression, whether we use
Monte Carlo methods or functional maximization, especially when more parame-
ters or data points are added. If this method is to ever see conventional and public
use, the computation must either be considerably faster or a new method of esti-
mation must be used. Because this is a highly nonstandard likelihood function, it is
a complicated matter to improve parameter estimates in a general way. Sequential
updating may prove to be the easiest method to improve both methods, particularly
with regard to particle filtering for hierarchical Bayesian methods.

We have also assumed that player ability is constant over the period considered,
whether this is one season or five. There is considerable reason to expect that player
abilities change from year to year in a meaningful way, such as a “career curve”
[Berry, Reese and Larkey (1999)] or as simple deviations from a career mean. In
this analysis, we chose to use the constant approach for several reasons, mainly
that it would grossly magnify the number of parameters in a model where the data
is already information-poor. We leave the introduction of single-player variability
into this model as a subject of future research.

As a practical matter, there are several factors that can be explored immediately.
Many have to do with the use of the time-dependent component of the Cox model,
which we have kept as constant and unit-valued to this point.

Knowing location affects the short-term scoring rate. A game of hockey be-
gins with a face-off at center ice, immediately after which neither team is very
likely to score in the next few seconds. A distribution for the goal hazard after
face-off was proposed by Thomas (2007), which begins at 0 for both teams and
rises to a plateau with an exponential decay. If a team has the puck in their offen-
sive zone, they are more likely to score a goal in the immediate future than the
mean rate, and their opponents far less likely.

One approach is to include known puck possession and location terms as co-
variates in a general model; Macdonald (2012a), in particular, uses the zone in
which the play starts as a mean-altering covariate. In our case, the natural point
to include this is in the time-varying component to the Cox model, by choosing a
relative hazard that starts at a rate given the state of play and returns to the over-
all mean. We expect that this will alleviate the issues highlighted in Section 5.1,
wherein some players are frequently substituted in for defensive zone face-offs,
a choice that unfairly penalizes their offensive ratings.
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One benign side effect of this is that “garbage goals”—those scored after a
longer scrum in an offensive zone, taking advantage of continued pressure rather
than pure skill—would be down-weighted, since we would expect a goal to be
much more likely in that scenario.

Including more events as outcomes. Since a goal is preceded by a shot on goal
in the vast majority of cases, one method to improve the modeling framework is
to consider shots to be a noncensored terminating state of a model instead of a
goal. Since this would lead to a roughly tenfold count in the number of uncensored
events, it would represent a great increase in the precision of estimates, especially
if there was no individual variability on what fraction of shots on goal became
goals. But this is certainly not the case, since there is significant variety on the
fraction of shots that become goals (let alone shots on net) depending on the player;
a defenseman’s slap shot is considerably less likely than a forward’s wrist shot.
How we can include this feature in this model framework is an open problem, but
may include information on the success rate of shots based on location and type as
a post-processing step.

Censoring may be slightly informative. Shift lengths are either obtained di-
rectly or censored by player changes. One assumption we make is that the censor-
ing mechanism is roughly exogenous and does not depend on or influence the state
of the game in progress. While this assumption is clearly incorrect, the distribu-
tions of shift time are quite similar, as shown in Figure 7. Two immediate reasons
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FIG. 7. The lengths of shifts, conditioned on whether or not a goal was scored to terminate the
observation. Shifts that end in goals are slightly longer.
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for this are clear. First, a goal is often scored following a longer scrum in the of-
fensive zone, during which players have no opportunity to change off. Second, the
changing process can be sequential; three players change, then shortly after, the
other two change off, leading to a bias in short shifts. We expect that this factor
can be accounted for, either through modeling or stratification, once we take puck
possession and location into account.

Does the power play look like the process model? When a team has a man-
advantage over their opponents, the game tends to look very different than a
smooth stochastic process: the team on the power play sets up shop in their of-
fensive zone, plays keep-away from their opponents and maneuvers to make a shot
on goal. The short-handed team’s prime goal in this period is not to score, but to
remove the danger by clearing the puck from their own zone. (Scoring a short-
handed goal is often seen as a bonus rather than the main objective while killing a
penalty.)

To extend this model to the power-play situation, we would need to account
for this in a principled manner. It may be sufficient to simply change the baseline
scoring rates or to replace the penalized player with an indicator for the power play
state, but this is subject to a future investigation and not at all obvious given the
apparent differences in game play.
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