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Identifying genes underlying cancer development is critical to cancer
biology and has important implications across prevention, diagnosis and
treatment. Cancer sequencing studies aim at discovering genes with high fre-
quencies of somatic mutations in specific types of cancer, as these genes are
potential driving factors (drivers) for cancer development. We introduce a
hierarchical Bayesian methodology to estimate gene-specific mutation rates
and driver probabilities from somatic mutation data and to shed light on the
overall proportion of drivers among sequenced genes. Our methodology ap-
plies to different experimental designs used in practice, including one-stage,
two-stage and candidate gene designs. Also, sample sizes are typically small
relative to the rarity of individual mutations. Via a shrinkage method bor-
rowing strength from the whole genome in assessing individual genes, we
reinforce inference and address the selection effects induced by multistage
designs. Our simulation studies show that the posterior driver probabilities
provide a nearly unbiased false discovery rate estimate. We apply our meth-
ods to pancreatic and breast cancer data, contrast our results to previous es-
timates and provide estimated proportions of drivers for these two types of
cancer.

1. Introduction. We introduce a semiparametric hierarchical Bayesian model
for the analysis of somatic mutations in cancer. Our study is motivated by ex-
periments sequencing comprehensive libraries of coding genes in tumors and
matching normal samples [Cancer Genome Atlas Research Network (2008, 2011),
Greenman et al. (2007), Jones et al. (2008), Kan et al. (2010), Parsons et al. (2008),
Sjöblom et al. (2006), Wood et al. (2007)]. A main goal of these studies has been
to provide lists of candidate cancer genes, for which evidence of a role in driving
carcinogenesis emerged from the the presence of somatically acquired differences
between tumor and normal genomes. These driver genes need to be distinguished
from so-called passenger genes, which present somatic mutations in cancer even
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though these mutations are not directly related with the tumor genesis. Statistical
tools for this task have been based on hypotheses testing theory and, in particu-
lar, on methods for controlling the false discovery rates (FDR) of reported gene
lists [Getz et al. (2007), Greenman et al. (2006), Parmigiani et al. (2009), Trippa
and Parmigiani (2011), Wood et al. (2007)]. Our goal here is to complement this
approach with methodology for deriving the probability that a gene contributes to
carcinogenesis. There are four important reasons for this: to handle multistage de-
signs; to remedy the severe FDR overestimation resulting from one-gene-at-a-time
analyses; to improve ranking and selection of genes for subsequent analyses; and
to address estimation of the total number of cancer drivers.

First, the rarity of mutations and the cost of sequencing comprehensive lists of
genes have motivated the use of multistage designs, to balance between resource
use and power in detecting cancer genes [Kraft (2006), Parmigiani et al. (2009),
Sjöblom et al. (2006), Skol et al. (2006), Wang and Stram (2006)]. In these stud-
ies, genes are selected for later stages based on results of earlier stages as well as
a host of other biological considerations, including membership in key pathways,
potential for drug targeting, reliability of sequencing and findings of previous se-
quencing studies. Kan et al. (2010), for instance, discussed the analysis of 1507
genes selected in part on the basis of previously published results. Methods based
on p-values do not include prediction of the final findings at completion of the first
stage. This limit, in multi-stage problems, compounds with conceptual challenges
when biological judgment is used to refine lists of candidates that are moved along
to the last stages of the study. Also, multiple hypothesis testing methods are not
designed for optimally selecting genes for subsequent stages, while Bayesian anal-
ysis allows one to obtain the probabilities (i) that a gene is a driver and (ii) that it
will be validated in subsequent stages. Posterior driver probabilities provide two
unique advantages. Prior to a new study or stage with a pre-specified hypothetical
sample size, they allow, unlike p-values, to assess the probability, for each gene,
of finding a number of mutations that would provide evidence of an abnormal mu-
tation rate. After a study, they are applicable for summarizing the study findings,
irrespective of the selection criteria used to move genes through stages.

Second, the standard inferential approach for mutation analysis is to compute
false discovery rates based on standard multiple testing correction, following one-
gene-at-a-time analyses such as likelihood ratio tests. This approach can lead to a
severe overestimation of the FDR.

Third, an important goal of somatic mutation analysis is to determine genes’
mutation rates. In a typical genome-wide study, sample sizes are small relative to
the rarity of individual mutations. For example, we expect to observe no mutations
for most of the genes, though estimating a population-level mutation rate of zero
would be biologically implausible. Also, in multi-stage designs, it is important
to account for possible biases arising from selecting genes with high mutation
frequencies in early stages. Both issues can be addressed using a model-based
approach for estimating individual genes’ mutation rates by “borrowing strength”
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from the entire set of mutations across the genome [Efron and Morris (1973)].
Shrinkage affects posterior driver probabilities and mutation rates estimates, as
genes for which less information is available are pulled more strongly toward the
genome-wide average.

Fourth, the change of landscape resulting from early cancer genome projects
has posed the question of the proportion of driver genes across the genome. Wood
et al. (2007) had pointed at this question and proposed conservative estimators
applied for FDR control with empirical Bayes testing procedures. Our methodol-
ogy is designed to also provide an estimate of this proportion with the associated
statement of uncertainty.

The organization of the remaining sections is as follows. Section 2 gives a gen-
eral description of cancer somatic mutation data. Section 3 describes our Bayesian
hierarchical model. Section 4 shows the results of simulated experiments designed
to assess the improvement provided by our approach over standard alternatives.
Section 5 presents a re-analysis of two published sequencing studies. Finally, Sec-
tion 6 provides additional discussion about our method and results.

2. Cancer somatic mutation data. We consider studies providing a collec-
tion of somatic mutations from genome-wide exome sequencing of samples of a
specific tumor type. Somatic mutations can be detected by comparing DNA se-
quences of tumor samples to those of their matching normal samples. Each mu-
tation is labeled as one of a set of possible mutation types, as in the example of
Table 1. Mutations of different types are observed to have varying overall frequen-
cies in tumor samples. Different definitions of mutation types may be used to suit
different data structures or different biological questions. In this paper, as in Wood
et al. (2007) and Jones et al. (2008), each mutation is classified either as a small
insertion/deletion or as one of 24 types of single nucleotide changes, defined in
Table 1. For each gene, mutation type and sample, it is important to consider the
mutation count as well as the number of nucleotides at risk for that type of muta-

TABLE 1
24 point mutation types

Mutated from Mutated to

C in CpG A – G T
G in CpG A C – T
G in GpA A C – T
C in TpC A – G T
A – C G T
Other C A – G T
Other G A C – T
T A C G –
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tion, heretofore called the coverage. The coverage for a gene may be smaller than
the total base count because not all bases may be reliably sequenced.

We analyze data generated in two previous studies. The first [Jones et al. (2008)]
includes 24 tumors with matching normal tissues from patients with pancreatic
malignancies. The study sequenced 20,671 genes and found 1163 nonsynony-
mous somatic mutations harbored in 1007 genes. These mutations were catego-
rized by gene, mutation type and sample. The second study [Wood et al. (2007)]
considered breast cancer, and adopted a two-stage design with 11 samples in the
discovery stage and 24 samples in the subsequent validation stage. During the
discovery stage, 18,190 genes were sequenced and 1112 nonsynonymous muta-
tions were identified in 1026 genes. During the validation stage, these 1026 genes
were sequenced in the additional 24 tumors, and 190 nonsynonymous mutations
were identified in 154 genes. Mutations were categorized by gene, mutation types
and stage. The data, at the gene level, include two mutation counts, one for each
stage. An advantage of performing Bayesian analyses of these data sets is that both
the probability model and the computational procedures can be straightforwardly
adapted to these designs, as well as other multi-stage designs.

3. Model. Somatic mutation counts are modeled using a Bayesian multilevel
semi-parametric model. At the data level, the observed count of somatic mutations
of type m in gene g and sample k, indicated by Xgmk, has distribution

Xgmk ∼ Poisson(λgmkTgmk),
(1)

g = 1, . . . ,G;m = 1, . . . ,M;k = 1, . . . ,K,

where λgmk is the unknown mutation rate and Tgmk is the observed coverage for the
corresponding gene, mutation type and sample, that is, the number of successfully
sequenced bases in gene g and sample k, that are susceptible to a mutation of
type m. The term “coverage,” in the next-generation sequencing literature, has
a different interpretation. Here we use it consistently with earlier studies using
Sanger sequencing technology [e.g., Wood et al. (2007)].

The binomial and multinomial distributions are often used for mutation counts
in somatic mutation analysis [Greenman et al. (2006)]. Here we use a Poisson
distribution because it is a good approximation of both those distributions when the
mutation rates are small and because it simplifies the calculation of the posterior
distributions. Our model assumes that mutations within a single gene and among
different genes occur independently of each other conditional on mutation rates.

At the mutation rate level, we use a multiplicative random effects model

λgmk = λgαmβk,(2)

which includes a gene specific mutation rate λg , a mutation type effect αm and a
sample effect βk . The three multiplicative components have the following inter-
pretation: the λg’s allow to assign each gene its own mutation rate; the αm’s allow
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the rates to vary across mutation types; the βk’s allow different samples to have
different mutation rates, a feature observed in most data sets. We set

∏M
m=1 αm = 1

and
∏K

k=1 βk = 1 to make the model identifiable.
We propose and compare two complementary approaches, one for estimating

gene-specific mutation rates and one for estimating gene-specific driver probabili-
ties. One of the main differences is that the first approach does not require a reliable
estimate of the passenger mutation rate while the second does. The assumption of
known passenger rates has also been used in the previous literature [e.g., Cancer
Genome Atlas Research Network (2008), Jones et al. (2008)] for identifying driver
genes with FDR methods.

To complete the multilevel model, we specify a distribution for mutation rates
across genes. We treat this distribution as unknown and estimate it from the data
with minimal distributional assumptions. Early cancer genome studies, for exam-
ple, Wood et al. (2007), have shown the existence of small subgroups of driver
genes, the so-called “mountains,” with rates of mutations over 100-fold higher than
the assumed passenger rates. In contrast, most of the likely drivers are found to har-
bor mutations only in small proportions of samples and hence are called “hills.”
This motivates the use of nonparametric modeling to mitigate the overall influence
of mountains on the inference. We use a Dirichlet Process [Ferguson (1973)] for
the unknown distribution of the mutation rates across the genome:

F ∼ Dirichlet Process
(
a,Exponential(γ )

)
,

(3)
λg|F i.i.d.∼ F,

where a is the so-called concentration parameter and γ controls the mean of the
random distribution F , chosen to be exponential. The nonparametric Dirichlet
prior is flexible and has proven useful in several applications modeling random
effects distribution, as done here. See Dunson (2010) for an extensive overview.

We can now consider the second case, in which the main interest is to derive
driver probabilities at the gene level. Here we make the additional assumption that
for all passenger genes, λg = λ0, a known mutation rate. If this assumption holds,
the driver genes can be defined statistically as those with mutation rates greater
than λ0, because any gene whose mutations have the ability to provide a fitness
advantage to cancer cells will occur in cancer at adjusted rates higher than λ0
when a large enough population is considered. The word adjusted here refers to
the fact that, because of different coverage and nucleotide composition, different
passengers may still exhibit different mutation rates per nucleotide even though
the baseline mutation rate λ0 is common to all.

To derive driver probabilities, we slightly modify the model above and include
an additional hierarchical level. We use binary variables δg , one for each gene, for
distinguishing the drivers (δg = 1) from the passengers (δg = 0). The λg is now

λg = I(δg = 0)λ0 + I(δg = 1)
(
λd

g + λ0
)
,(4)



888 DING, TRIPPA, ZHONG AND PARMIGIANI

where λd
g is the difference between the mutation rate of a putative driver λg and the

pre-specified underlying passengers rate λ0. Since δg is also unknown, a natural
choice for modeling the binary variables is the conjugate Beta-Bernoulli prior

π ∼ Beta(aπ , bπ),
(5)

δg|π i.i.d.∼ Bernoulli(π),

where π is the unknown overall proportion of drivers among all genes. We use a
Dirichelet prior for the latent λd

g’s:

F ∼ Dirichlet Process
(
a,Exponential(γ )

)
,

(6)
λd

g |F i.i.d.∼ F.

Diffuse flat prior densities are used for random vectors (α1, . . . , αM) and
(β1, . . . , βK). We also use a Gamma hyper-prior for γ . The value of a in the
Dirichlet process is set to 1. In simulations, we considered several values of a and
performed sensitivity analyses. We observed negligible variations in our results
across prior parameterizations.

The posterior distributions of parameters from the hierarchical Bayesian models
are estimated using a Markov Chain Monte Carlo algorithm. See the supplemen-
tary material [Ding et al. (2013)] for details.

4. Simulation study.

4.1. Scenarios. We used simulations for validating our Bayesian procedure.
Simulation scenarios have strong similarities with the pancreatic study in Jones
et al. (2008). We used the same set of genes and their corresponding coverage. We
set the passenger mutation rate to λ0 = 3.68 × 10−7, a realistic rate corresponding
to the geometric mean of the estimated passenger rates across mutation types used
in Jones et al. (2008). A geometric mean was used because of the constraint on
mutation type effects, that is,

∏
αm = 1. Next, αm’s were estimated from the data

and samples effects βk’s were proportional to the numbers of mutations in the 24
samples in the pancreatic cancer data. Their products were set to 1 to satisfy the
constraints. In summary, the sampling model for the passenger genes in our simu-
lation scenario is tailored to the data and assumptions used in Jones et al. (2008).
The mutation rates of a small set of randomly selected genes were inflated to rep-
resent true drivers: 2% of genes were set to have mutation rate 10λ0, 1% of genes
were set to have mutation rate of 30λ0 and 0.05% of genes were set to have muta-
tion rate 200λ0. A 200-fold increase is realistic for the so-called “mountain” genes,
while 10-fold and 30-fold increases correspond to the “hills.” The proportions of
true drivers at different mutation rates were chosen manually to make the overall
distribution of observed mutation counts close to that observed in the pancreatic
cancer data.
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4.2. Results. Figure 1 shows results of mutation rate estimates from the sim-
ulated data. Estimated λg’s of individual genes are shown in Figure 1(a) against
their observed mutation counts. The average estimated mutation rate for genes
with no mutation is 3.83 × 10−7, very close to the true λ0 = 3.68 × 10−7 used in
the simulation, even though λ0 was not known to the estimation procedure. This
suggests that the model captures the underlying passenger mutation rate. Also, for
genes with no mutation, there is no separation among genes with different true mu-
tation rates, which is expected since there is no information to distinguish them.
Estimated mutation rates generally increase as the number of mutations increases,
but there are also large differences in estimated rates among genes with the same
number of mutations, resulting from different sizes and nucleotide compositions
of those genes.

Figure 1(b) shows the estimated λg’s by groups defined by the true λg’s. Each
line is the cumulative distribution of the logarithms of the estimated λg’s for one
of the groups. Even among genes with 200-fold increases over the passenger rate,
two genes are not distinguishable from passengers because they did not have any
mutations in the 24 simulated samples. This illustrates the challenges of learning
gene-specific mutation rates in this type of study.

As an alternative approach to estimating mutation rates we considered the maxi-
mum likelihood estimates (MLE) calculated for each gene separately. We assumed
the same Poisson model for the MLE. For the calculation of the MLEs, the true
parameters αm’s and βk’s were plugged in, a choice that favors the MLEs. Figure 2
compares posterior means of λg’s obtained using our Hierarchical Bayesian model

FIG. 1. (a) Logarithm of estimated mutation rate (λHB) against the observed number of mutations.
(b) Cumulative distribution of the logarithm of λHB with genes grouped by their true λg ’s. In (a),
each point is one gene, and the Y axis levels are slightly shifted to separate the groups. Vertical
dashed lines indicate true λg ’s used in the simulation. The legend in (a) applies to both (a) and (b).
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FIG. 2. Hierarchical Bayesian estimates versus maximum likelihood estimates of mutation rates.
Each point is a gene, labeled according to its number of mutations and colored according to whether
it is a true driver. Drivers are over-plotted or else drivers with a single mutation would be invisible,
given the large number of other genes.

to the MLEs. Only genes with at least one observed mutation are shown. The dif-
ferences between the two approaches are striking. Ranking genes by estimated
rates, and proceeding down the list based on the Bayesian estimates, one does not
encounter a true passenger until position 39. On the other hand, the top two genes
by MLE are both true passengers and among the top 30 genes; only 22 are true
drivers. The behavior of the two approaches is most different for genes with a sin-
gle mutation, as expected. The hierarchical model has pulled these strongly toward
the overall genome mean, so that the genes with one mutation rank below most of
the genes with more than one mutation. For genes with two mutations, the shrink-
age is less pronounced, and for genes with 3 or more mutations, the estimates are
generally close, with the exception of a small number of large genes who are pulled
strongly, and in a nonlinear pattern, toward smaller values.

The main difference between our hierarchical Bayesian approach and the MLE
is shrinkage. By using a mixing distribution representative of the distribution of
the genes’ rates across the genome, the Bayesian approach estimates each mu-
tation rate using data from many other genes with potentially similar rates. This
underlying distribution is not considered by the MLE approach.

Figure 3 shows the posterior driver probabilities from the same simulated data
set. The true passenger mutation rate used in the simulation was used as λ0 in the
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FIG. 3. (a) Estimated driver probability against the observed number of mutations. (b) Cumulative
distribution of the estimated driver probabilities with genes grouped by their true λg ’s. In (a), each
point is one gene, and the Y axis levels are slightly shifted to separate the groups. The legend in (a)
applies to both (a) and (b).

Bayesian model. Overall the results have similar patterns compared to those of the
estimated mutation rates. Figure 3(a) shows estimated driver probabilities of all
genes against their observed mutation counts. Genes with no mutation have esti-
mated driver probabilities close to 0 regardless of their true mutation rates. As the
number of mutations increases, the estimated driver probabilities generally also
increase. Only a small number of genes have estimated probabilities close to 1.
Figure 3(b) groups genes by their true mutation rates to present the differences
among the four groups. For genes with true mutation rates equal to 200λ0, esti-
mated driver probabilities are large, except for the two genes with no observed
mutation. A substantial proportion of the genes with mutation rates equal to 10λ0
and 30λ0 have estimated driver probabilities much larger than 0.

The estimated proportion of driver genes, π , is 0.025 with a 90% credible in-
terval (0.017,0.041), while the true value used in the simulation is 0.0305. We
also used several different Beta distributions as priors for π and they all led to
similar posterior estimates. Using different values as λ0 in the model resulted in
very different estimates of π . Doubling λ0 led to an estimated π of 0.0065 with a
90% credible interval (0.0047,0.0087), while reducing λ0 by half led to an esti-
mated π of 0.48 with a 90% credible interval (0.37,0.59). These results show the
dependence of the estimated π on the input parameter λ0.

We also used likelihood ratio tests (LRT) with Poisson densities to analyze the
simulated data. We used the true αm’s and βk’s for LRTs here. For gene g, under
the null hypothesis, λg = λ0, the total number of mutations Xg = ∑

m,k(Xgmk) fol-
lows a Poisson distribution with parameter

∑
m,k αmβkTgmk. The p-value for the

likelihood ratio test can be calculated using the right-tail probability of Xg under
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FIG. 4. True FDRs and estimated FDRs from hierarchical Bayesian estimates of driver probabili-
ties and likelihood ratio test p-values for all genes.

the null hypothesis. We then used the FDR controlling procedure from Benjamini
and Hochberg (1995) to calculate estimated FDRs from LRT p-values. To com-
pare the results to those from our method, we also calculated estimated FDR from
Hierarchical Bayesian estimates of the driver probabilities. True FDRs were cal-
culated using the true driver indicators used in the simulation. Figure 4 shows
the results from these two methods. The estimated FDRs from our hierarchical
Bayesian method are very close to the true FDRs, showed by the closeness of the
curve to the diagonal line. The estimated rates from likelihood ratio tests are much
smaller than the true rates, suggesting that they are too conservative by as much as
an order of magnitude.

The main reason for the overestimation of FDR here is that the controlling pro-
cedure assumes a uniform distribution of p-values from true null tests. However,
because the distribution of mutation counts for each gene is Poisson and the muta-
tion rate is very small under the null hypothesis, the vast majority of true passenger
genes have mutation counts of 0. The resulting distribution of p-values from true
passenger genes is very different from a uniform distribution. This shows that our
method has substantially better calibration and improved ability to estimate driver
probabilities and the overall proportion of driver genes compared to LRT coupled
with an FDR controlling procedure. This improvement is critical for the appro-
priate interpretation of lists of candidate drivers and for the efficient design of
two-stage studies.
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5. Cancer mutation data analysis.

5.1. Pancreatic cancer data. Figure 5 shows the estimates of mutation rates
with the pancreatic cancer data. Genes are ordered by their estimated mutation
rates and the 50 genes with the largest estimated rates are listed on the top. The
mean of estimated mutation rates for genes with no mutations is 3.93 × 10−7,
closer to the “intermediate” passenger mutation rate λ0 = 3.68 × 10−7 than the
“low” rate 2.07 × 10−7 and the “high” rate 5.30 × 10−7 provided in Jones et al.
(2008). Among the top 50 genes, only a few have 90% credible intervals com-
pletely above the “intermediate” rate. Genes with small sizes, such as CDKN2A,
tend to have large credible intervals.

We also calculated maximum likelihood estimates of the mutation rates λg for
each gene with at least one observed mutation. See supplementary material [Ding
et al. (2013)] for the details of MLE calculation. The comparison between MLEs
and hierarchical Bayesian estimates is shown in Figure 6. The overall shape repro-
duces the pattern seen in the simulation study. The shrinkage effect is evident for
most genes with only 1 mutation, and it is greater for small genes. For example,
the gene OSTN, with only 300 bases sequenced, has a MLE of 5.7 × 10−5, the
11th highest rate, while the Bayesian estimate is only 7.3 × 10−7, much closer to
the whole-genome average rate, and is ranked 117th. On the other end, the gene
PCDHGC4, with more than 52,000 bases sequenced, had a MLE of 2.2 × 10−7

and a Bayesian estimate of 3.8 × 10−7, also closer to the genome average. The
MLEs and Bayesian estimates for genes with 3 or more mutations are similar.

Figure 7 shows the estimated driver probabilities using the “intermediate” rate
from Jones et al. (2008) as the passenger rate λ0 in our model. Genes are ordered
by their estimated driver probabilities and the 50 genes with the highest driver
probabilities are listed on the top. The list of the top 50 genes is very similar,
though not identical, to that generated by the estimated mutation rates. It is inter-
esting to contrast the inferences on genes CDKN2A and MLL3 with very different
gene sizes. CDKN2A is a small gene with 206 bases sequenced, so 2 mutations
are enough to produce a large estimated mutation rate. CDKN2A is ranked higher
than MLL3, which is a much larger gene with 13,908 bases sequenced and 6 ob-
served mutations. However, CDKN2As credible interval is also much larger due
to its small size. As a result, the driver probability of MLL3 is close to one, while
that of CDKN2A is around 0.7, placing it far lower in the ranking.

The estimated proportion of driver genes, π , is 0.038 with 90% credible interval
(0.018,0.066), corresponding to a total number of drivers of 779 with credible in-
terval (381,1359). The large credible interval and the numerous genes with driver
probability around 50% highlight the challenge of classifying individual genes us-
ing only 24 samples. However, the study provides strong evidence that the total
number of drivers in pancreatic cancer is large.
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FIG. 5. Estimated mutation rates from the pancreatic cancer data. Genes are ordered according to
their estimated mutation rates (λHB). The names and 90% credible intervals of the top 50 genes are
shown.
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FIG. 6. Hierarchical Bayesian estimates versus maximum likelihood estimates of mutation rates.
Each point is a gene, labeled according to its number of mutations.

Changing input passenger mutation rate has a large effect on the estimates of
driver probabilities and on the overall proportion of drivers. Using the “high” pas-
senger mutation rate resulted in an estimated π = 0.0041 with 90% credible inter-
val (0.0016,0.0080), while using the “low” rate resulted in an estimated π = 0.28
with 90% credible interval (0.21,0.37). These rates are likely to be conservative
upper and lower bounds. While the posterior driver probabilities are affected by
the choice of passenger mutation rate λ0, their relative orders are much more ro-
bust. For example, using the “high” rate produced a list of top 50 genes which
share 38 genes with the top 50 list using the “low” rate. Also, even when using a
conservative upper bound on the passenger mutation rate, the expected number of
drivers is close to 100.

The original paper analyzing the pancreas cancer data [Jones et al. (2008)] used
an empirical Bayes local FDR method of Efron and Tibshirani (2002), constructed
using the likelihood ratio test proposed in Getz et al. (2007). Figure 8 compares
driver probabilities estimated using the hierarchical Bayesian model in this paper
to the probabilities estimated in Jones et al. (2008). Only genes with 2 or more mu-
tations are plotted in the figure. This is done so the list of genes is roughly the same
as the list of genes in the table S7 in Jones et al. (2008). Note that the table in Jones
et al. (2008) also used amplification and deletion data, which are not used in the
comparison here. The estimates from these two methods are positively correlated.
For most genes shown in the figure, estimated probabilities using our method are
lower than those estimated using the empirical Bayes approach. The granularity
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FIG. 7. Estimated driver probabilities from the pancreatic cancer data. Genes are ordered accord-
ing to their estimated driver probabilities (Pdriver). The names of the top 50 genes are shown.
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FIG. 8. Comparison between estimated driver probabilities from the hierarchical Bayesian method
(HB) and from the likelihood ratio test/empirical Bayes method (LRT/EB) in Jones et al. (2008).

of the estimates from Jones et al. (2008) arises from the conservative steps taken
to overcome statistical and numerical difficulties of estimating a null distribution
when event rates are low, and from monotonization of the FDR estimates. Our
Bayesian approach, through shrinkage, smoothness and other features, provides
a higher resolution. It also provides a different ranking. To illustrate, the genes
TTN and MUC16 are highlighted in Figure 8 on the left. TTN has 6 mutations but
also has more than 100K bases sequenced, the most in this data set. This causes
a greater discounting in the hierarchical Bayes approach than the MLE-based em-
pirical Bayes approach. This is consistent with the shrinkage pattern observed in
Figure 3. The other example is MUC16, which has 2 mutations and 40K bases se-
quenced, the third most in this data set. Another factor that may account for some
of the differences in ranking is the consideration of sample effects, not used in
Jones et al. (2008).

As another summarization of the hierarchical Bayesian results, Figure 9 shows
the posterior distribution of the estimated number of mutated drivers in each tu-
mor sample. All samples except one have at least two mutated drivers among all
posterior simulations. The remaining one has less than 1% posterior probability of
having only one mutated driver. Most samples harbor five or more mutated drivers
with high probabilities; the average number is 12.
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FIG. 9. Posterior distribution of the estimated number of mutated drivers in each tumor sample.

5.2. Breast cancer data. The breast cancer genome project [Wood et al.
(2007)] is presented here to emphasize the flexibility of the Bayesian approach
in dealing with two-stage designs. The sample size was smaller than that of the
pancreatic cancer data. Because of that, the results have more variability. The es-
timated mutation rates λg range from 8.6 × 10−7 to 1.35 × 10−4. The average
mutation rate for genes with no mutation is 1.23 × 10−6, much higher than the
corresponding rate in the pancreatic cancer data. This rate is again closest to the
intermediate, or “SNP-based,” passenger mutation rate among the three estimation
methods in Wood et al. (2007). The estimated overall driver proportion π varies
for different passenger mutation rates used in the model. Using “External,” “SNP-
based” and “NS/S-based” passenger rate estimates resulted in π estimates of 53%,
12% and 0.02%, respectively.

6. Discussion. We developed a hierarchical Bayesian methodology to esti-
mate gene-specific mutation rates and driver probabilities as well as the proportion
of drivers among sequenced genes from somatic mutation data in cancer.

To distinguish driver genes from passenger genes solely based on marginal mu-
tation rates, somewhat strong assumptions are needed. The first is that all pas-
senger genes have the same mutation rate. Biologically, mutation rates can vary
across different regions of genome [Wolfe, Sharp and Li (1989)] from factors such



BAYESIAN ANALYSIS OF SOMATIC MUTATIONS 899

as DNA replication timing [Stamatoyannopoulos et al. (2009), Wolfe, Sharp and
Li (1989)] and chromatin structure [Prendergast et al. (2007), Schuster-Böckler
and Lehner (2012)]. With the sample sizes available in the data sets analyzed in
this paper, it is difficult to consider variation in passenger rates explicitly, though
ongoing sequencing effort may allow a deeper exploration of this issue in the near
future.

Another key assumption is that mutations in different genes occur indepen-
dently. Because of this assumption, we can estimate a gene’s driver probability
using its marginal mutation rate. In practice, it is likely that mutations in one gene
can lead to growth advantage or disadvantage depending on whether certain mu-
tations in some other genes exist or not, especially if these genes are in the same
biological pathway. While modeling of such interactions is possible for selected
pathways [Boca et al. (2010), Ciriello et al. (2012)], estimation of even pairwise
dependencies at the gene level across the entire genome remains challenging.

These assumptions represent a reasonable compromise between the limitations
of available sequencing data and the need to prioritize candidate driver genes for
further research in a model-based way. They were commonly made in other cancer
somatic mutation studies [e.g., Cancer Genome Atlas Research Network (2008),
Jones et al. (2008)]. With the development of new sequencing technologies and the
increasing amount of cancer sequencing data, new methodologies will be needed,
likely with a more flexible set of assumptions.

Our model also assumes that each sample is homogeneous such that if a muta-
tion occurs in a gene in one sample, it occurs in all cells from that sample. This as-
sumption realistically models the data generated by Sanger sequencing with strict
quality control, where only mutations shared by the majority of cells are identified.
In reality, cancer samples are often heterogeneous: the same sample can distinct
subpopulation of cancer cells at different stages of evolution or even following
from different evolutionary paths. So a certain mutation may only present in a
proportion of cells. Such information can be obtained using deep sequencing tech-
nologies available now [Walter et al. (2012)]. To analyze such data, an additional
layer could be incorporated into the hierarchical Bayesian models to account for
the heterogeneity of cells in a sample. A challenge in modeling this information
will arise from the fact that mutations in different genes can have different levels
of heterogeneity.

We designed two models, one for estimating gene-specific mutation rates and
one for estimating gene-specific driver probabilities and the overall proportion of
drivers. Both achieved similar results in terms of separating groups of genes with
different true mutation rates in the simulation study and ordering the top candidate
driver genes in the pancreatic and breast cancer genomes data. While estimating
driver probabilities provides a more direct way to answer the question of distin-
guishing drivers from passengers, the model does depend on the assumption that
there is a single underlying passenger mutation rate common to all passenger genes
and requires this rate as an input parameter.
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So far, most analyses of somatic mutations rely on external estimates of the
mutation rates for passenger genes, obtained, for example, from sequencing data
from noncoding regions or rates of silent mutations [Wood et al. (2007)]. This
input has a large effect on the estimated proportion of driver genes and the overall
magnitude of the driver probabilities. However, the order of top candidates is not
affected substantially either in simulated or real data. We thus recommend the use
of estimated mutation rates for ranking, selection and prediction, as the model
for this estimation does not require any assumption on the passenger mutation
rate, nor does it need an estimate of this rate. In either model, Bayesian modeling
allows us to use these external estimates, when available, for specifying the prior
distribution.

Both models in this paper use a Dirichlet process on the unknown distribution of
the gene-specific mutation rates across the genome. This assumption can be sub-
stituted with other types of distributions, including parametric ones. For example,
we considered a log-normal distribution for mutation rate estimation and a mix-
ture prior with point mass at λ0 and a log-normal distribution truncated at λ0 for
driver probability estimation. When we applied these two choices to the simulated
data, model fit was not as satisfactory as that of the Dirichlet process (see supple-
mentary material [Ding et al. (2013)] for details), likely because there were a few
genes with very high mutation rates (the mountains) together with a much larger
set of genes with moderately increased mutation rates (the hills). The Log-normal
distribution does not fit this situation well, nor would most of the commonly used
parametric distributions, especially if unimodal and controlled by a small num-
ber of parameters. Thus, we strongly recommend the use of a flexible distribution,
which can be estimated reliably even in relatively small studies, if the number of
genes is large.

Results provided here are but examples of many summarizations one can pro-
duce using the MCMC output. For example, for each gene one can easily compute
the predictive probability of observing a mutation in a hypothetical new tumor
sample or new study. Another useful approach is to examine gene sets or pathways.
The model output can be used to compute the probability that a chosen pathway
is altered by one or more driver mutations in each of the patients, as suggested in
Boca et al. (2010).

In an important paper Greenman et al. (2006) provided likelihood-based testing
approaches for distinguishing drivers from passenger mutations. An interesting as-
pect of their work is the modeling of both the mutation process and the selection
pressure on the tumor. They also considered the significance of selection toward
missense, nonsense and splice site mutations, and proposed tests assessing varia-
tion in selection between functional domains. A combination of the approach con-
sidered here with the features introduced by Greenman et al. (2006), while well
beyond the scope of this article, could potentially be very useful.

Our methodology provides estimates of the total number of driver genes. The
early cancer genome project highlighted the importance of “hills,” or genes that are
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drivers in a relatively small proportion of tumors. Increasing independent evidence
is accumulating to support the importance of the hills. Hills are numerous and easy
to miss in small studies, which suggests that many more undiscovered hills may
exist. Our model attempts a quantification of the size of this population based on
mutation rates alone. This quantification is difficult, whence the large credible in-
tervals, and sensitive to assumptions on passenger rates. Nonetheless, our method
leads to the prediction that the population is large, very likely in the hundreds, and
possibly in the thousands.

In conclusion, our models produce posterior inferences on all relevant param-
eters, using data generated from single, multi-stage and multiple studies, poten-
tially sequencing different sets of genes. We expect that these tools will be helpful
in both assessing the evidence provided by existing data and in planning further
experiments to confirm the genes’ role in cancer development.

7. Software. An R package is freely available at http://bcb.dfci.harvard.edu/
%7Egp/software/CancerMutationMCMC/.

SUPPLEMENTARY MATERIAL

Supplementary methods and results (DOI: 10.1214/12-AOAS604SUPP;
.pdf). Additional technical details and simulation results.
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