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Recent technological advances coupled with large sample sets have un-
covered many factors underlying the genetic basis of traits and the predis-
position to complex disease, but much is left to discover. A common thread
to most genetic investigations is familial relationships. Close relatives can be
identified from family records, and more distant relatives can be inferred from
large panels of genetic markers. Unfortunately these empirical estimates can
be noisy, especially regarding distant relatives. We propose a new method
for denoising genetically—inferred relationship matrices by exploiting the
underlying structure due to hierarchical groupings of correlated individuals.
The approach, which we call Treelet Covariance Smoothing, employs a multi-
scale decomposition of covariance matrices to improve estimates of pairwise
relationships. On both simulated and real data, we show that smoothing leads
to better estimates of the relatedness amongst distantly related individuals.
We illustrate our method with a large genome-wide association study and es-
timate the “heritability” of body mass index quite accurately. Traditionally
heritability, defined as the fraction of the total trait variance attributable to
additive genetic effects, is estimated from samples of closely related individ-
uals using random effects models. We show that by using smoothed relation-
ship matrices we can estimate heritability using population-based samples.
Finally, while our methods have been developed for refining genetic relation-
ship matrices and improving estimates of heritability, they have much broader
potential application in statistics. Most notably, for error-in-variables random
effects models and settings that require regularization of matrices with block
or hierarchical structure.
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Introduction. In the past decade tremendous progress has been made to-
ward understanding the genetic basis of disease. This challenging endeavor has
given rise to numerous study designs with a vast arsenal of statistical machinery.
A common theme, however, is the pivotal role played by familial relationships.
Traditionally relationships are encoded in pedigrees of known relatives [Thomp-
son (1974, 1975), Boehnke and Cox (1997), Epstein, Duren and Boehnke (2000),
McPeek and Sun (2000)], but for more distantly related individuals, pedigree in-
formation can sometimes be erroneous or difficult to obtain. Relatedness can also
be calculated from large panels of genetic markers [Milligan (2003), Albers et al.
(2008), Anderson and Weir (2007), Browning (2008), Browning and Browning
(2010), Purcell et al. (2007), Day-Williams et al. (2011), Yang et al. (2010a)].
While this approach has greatly expanded the scope of inference for relationships,
empirical estimates are noisy, especially regarding distant relatives.

The search for a disease gene begins with finding unusual sharing of genetic ma-
terial among individuals who share a trait (phenotype). Linkage analysis involves
the study of joint inheritance of genetic material and phenotypes within relatives
[Hopper and Mathews (1982), Almasy and Blangero (1998)]. Typically, these stud-
ies are restricted to relatives within a pedigree, but more recently the approach has
been extended to samples of people who are more distantly related and without
known pedigree structure [Day-Williams et al. (2011)]. Alternatively, genetic as-
sociations can be discovered from population samples, which are usually based on
case–control studies. In these studies the sample is assumed to be unrelated, but
the presence of distant relatives (i.e., cryptic relatedness) can reduce power or gen-
erate spurious associations [Lander and Schork (1994), Astle and Balding (2009)].
Numerous methods have been proposed to deal with familial structure in genetic
association studies [Choi, Wijsman and Weir (2009), Bravo et al. (2009), Thornton
and McPeek (2010), Kang et al. (2010)], all of which require an estimate of family
relationships among individuals within the study.

Relationships are also critical for quantitative genetics. A common problem for
quantitative genetics is to estimate the fraction of variance of a continuous trait,
such as height, due to genetic variation amongst individuals in a population. This
feature, known as heritability, delineates the relative contributions of genetic and
nongenetic factors to the total phenotypic variance in a population. Heritability
is a fundamental concept in genetic epidemiology and disease mapping. Using a
variety of close relatives, the heritability of quantitative and qualitative traits can
be estimated directly [Fisher (1918), Devlin, Daniels and Roeder (1997)]. With
complex pedigrees, applying the same principles, heritability can be estimated us-
ing random effects models [Henderson (1950)]. Heritability of height, weight, IQ
and many other quantitative traits have been investigated for nearly a century and
continue to generate interest [Deary et al. (2012)].

Interest in the genetic basis of disease is high because greater understanding
of disease etiology will in principle lead to better treatments. Large population-
based samples are enhancing our ability to identify DNA variants affecting risk
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for disease and it has become the standard to search for genetic variants associ-
ated with common disease using genome-wide association studies (GWAS). Thou-
sands of associations for common diseases/phenotypes have already been validated
[Visscher et al. (2012)]. Nevertheless, even in the most successful cases, such as
Inflammatory Bowel Disease studied in McGovern et al. (2010) and Imielinski
et al. (2009), discoveries account for only a fraction of the heritability.

Given the relatively limited discoveries thus far, a reasonable question is
whether the heritability of a trait estimated from relatives truly does trace to ge-
netic variation. Yang et al. (2010a) offer a novel approach to genetic analysis that
shows that indeed much of it does. They propose to analyze population samples,
rather than pedigrees, for the heritability of the trait. To do so they first estimate
the correlation between all pairs of individuals in the population sample using a
dense set of common genetic variants, such as those typically used for a GWAS.
They then take this matrix and relate it to the covariance matrix of phenotypes for
these subjects to derive an estimate of heritability. Thus, in their application, where
essentially all relatives are removed from the sample, heritability refers to the pro-
portion of variance in the trait explained by the measured genetic markers. They
provide a fascinating example of how this approach works in the case of human
height and they and others applied these techniques to many other traits [reviewed
by Visscher et al. (2012)].

The work of Yang et al. (2010a) inspired us to consider applying a related ap-
proach to answer a different question. Could estimates of relatedness obtained
from a population sample be improved by using smoothing techniques on the
variance–covariance matrix? If so, population samples could be used to estimate
heritability—in the traditional sense—without requiring close relatives. This ap-
proach has application to phenotypes for which extended pedigrees are difficult
to obtain. For instance, there is controversy in the literature concerning the heri-
tability of autism, which is typically estimated from twin studies [Hallmayer et al.
(2011)]. Smoothing techniques could also be used to estimate relatedness in sam-
ples of distantly related individuals for many other genetic analyses. For example,
a version of linkage analysis could be applied to distant relatives.

We propose Treelet Covariance Smoothing—a novel method for smoothing and
multiscale decomposition of covariance matrices—as a means to improving esti-
mates of relationships. Treelets were first introduced in Lee and Nadler (2007) and
Lee, Nadler and Wasserman (2008) as a multi-scale basis that extends wavelets to
unordered data. The method is fully adaptive. It returns orthonormal basis func-
tions supported on nested clusters in a hierarchical tree. Unlike other hierarchical
methods, the basis and the tree structure are computed simultaneously, and both
reflect the internal structure of the data.

In this work, we extend the original treelet framework for smoothing of one-
dimensional signals to smoothing and denoising of variance–covariance matrices
with hierarchical block structure and unstructured noise. Smoothing is achieved
by a nonlinear approximation scheme in which one discards small elements in a
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multi-scale matrix decomposition. The basic idea is that if the data have underlying
structure in the form of groupings of correlated variables, then we can enforce
sparsity by first transforming the data into a treelet representation by a series of
rotations of pairs of correlated variables, and then thresholding covariances. We
refer to this new regularization approach for covariance matrices with groupings
on multiple scales as Treelet Covariance Smoothing (TCS).

We apply TCS to genetically inferred relationship matrices, with the goal of im-
proving estimates of pairwise relationships from large pedigrees and population-
based samples. On both simulated and real data, we show that TCS leads to better
estimates of the relatedness between individuals. Using these estimates allows us
to estimate the heritability from population-based samples provided they include
some distantly related individuals, a property that is almost inevitable in practice.
Finally, we discuss how estimating heritability is simply a case of variance com-
ponent estimation for an error-in-variables random effects model. Therefore, our
method can be applied to a whole family of more general models of similar struc-
ture.

Models.

GWAS panels. The human genome contains many millions of single nu-
cleotide polymorphisms (SNPs) and other genetic variation distributed across the
genome. In a GWAS it is now typical to measure a panel of at least 500,000 SNPs
from each subject. SNPs typically have only two forms or alleles within a popula-
tion. Whichever allele is less frequent is called the minor allele. The genotype of
an individual at a SNP can then be coded as 0, 1 or 2 depending on the number
of minor alleles the individual has at that SNP. Alleles at SNPs in close physi-
cal proximity are often highly correlated (i.e., in linkage disequilibrium). When
multiple SNPs are in linkage disequilibrium, we say one of these SNPs “tags,” or
represents, the others. Although estimates vary, well-designed panels of 500,000
SNPs do not tag all of the common SNPs in the genome and they tag very few
of the SNPs with rare minor alleles [Yang et al. (2010a)]. Nevertheless, GWAS
provide considerable information about familial relationships.

Estimating genetic relationships. The relatedness between a pair of individu-
als is defined by the frequency by which they share alleles identical by descent
(IBD). Formally, two alleles are considered IBD if they descended from a com-
mon ancestor without an intermediate mutation. Within a pedigree relatives share
very recent common ancestors, hence, many alleles are IBD. For a more detailed
exposition of genetic relationships, see Astle and Balding (2009).

The quantity of interest in this investigation is the Additive Genetic Relationship
which is defined as the expected proportion of alleles IBD for a pair of individuals.
For individuals i and j we use Aij to denote this quantity, which is more familiar
when viewed as the degree of relationship, where Rij = − log2(Aij ). For example,
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for siblings, first cousins and second cousins, who are 1st, 3rd and 5th degree
relatives, A is 1/2, 1/8 and 1/32, respectively. Within a noninbred pedigree A

can be computed using a recursive algorithm [Thompson (1986)]. For example, if
individual i has parents k and l, then Aij = Aji = 1/2(Ajk + Ajl).

For distantly related individuals, detailed pedigree information is not often
available; however, with GWAS data one can calculate genome-average related-
ness directly [Astle and Balding (2009)]. Even with complete information regard-
ing IBD status of the chromosomes, the fraction of genetic material shared by rel-
atives will differ slightly from the expectation calculated from the pedigree due to
the stochastic nature of the meiotic process [Weir, Anderson and Hepler (2006)].
For the purpose of genetic investigations, one could argue that genome-average
relatedness is a truer measure of relatedness. For example, while two distantly re-
lated individuals are expected to share a small fraction of their genetic material, if
they do not inherit anything from their common ancestor, it seems appropriate to
consider them unrelated.

Under many population genetic models Aij can also be interpreted as a corre-
lation coefficient. Let zik denote the scaled minor allele count for individual i at
SNP k: zik = (z∗

ik − 2pk)/(2pk(1 − pk))
1/2, where z∗

ik is the minor allele count
and pk is the minor allele frequency. For individuals i and j at genetic variant k,
it follows from our model that

Cov[zik, zjk] = Aij .(1)

Exploiting this feature leads to a method of moments estimate of A from a panel
of m genetic markers. To see this, let zk denote a column vector of observed scaled
allele counts for all individuals at the kth SNP, then let

Â = 1

m

m∑
k=1

zkzt
k = ZZt

m
,(2)

where Z = (z1, . . . , zm). The Genome-wide Complex Trait Analysis (GCTA) soft-
ware from Yang et al. (2010b) computes this estimator.

The method of moments estimator is unbiased if the population allele frequen-
cies are known [Milligan (2003)]. In practice, the pk’s are estimated from the
sample data. A criticism of this estimator is that some off-diagonal elements are
negative, which does not conform to the interpretation of Aij as a probability.
Viewed as a correlation coefficient, however, negative quantities suggest the pair
of individuals share fewer alleles than expected given the allele frequencies. Al-
ternatively, maximum likelihood estimators of A have been developed [Thompson
(1975), Milligan (2003)], but these estimators are quite computationally intensive
for GWAS panels. Hence, while method of moments estimators are typically less
precise than maximum likelihood estimators, they are more commonly used when
a large SNP panel is available.
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Estimating heritability. By definition, the heritability of a quantitative trait (y)
such as height is determined by the additive effect of many genes and genetic
variants (g), each of small effect (i.e., the polygenic model). For individuals i =
1, . . . , n, suppose that the genetic effects are explained by J causal SNPs, and we
can express the genetic effect as

gi =
J∑

j=1

zijuj ,(3)

where uj is the additive random effect of the j th causal variant, weighted by the
scaled number zij of minor alleles at this variant. Let g = (g1, . . . , gn)

t be the vec-
tor of random effects corresponding to the additive genetic effects for individuals
i = 1, . . . , n. For u = (u1, . . . , uJ )t and Zc = [zij ], we write g = Zcu. Define G as
the variance–covariance matrix of g. Assuming Var[u] = Iσ 2

u , it follows that

G = σ 2
g

ZcZ
t
c

J
,(4)

where σ 2
g = Jσ 2

u .
In the traditional model for quantitative traits a continuous phenotype y is mod-

eled as

yi = μ + gi + ei,(5)

where e = (e1, . . . , en)
t is the vector of residual effects, and y = (y1, . . . , yn)

t is
the vector of phenotypes. In matrix notation, y = 1μ + g + e. The residuals are
assumed to be independent with variance–covariance equal to Iσ 2

e and the random
effects and residual error are assumed to be normally distributed. Consequently,

Var[y] = ZcZ
t
c

J
σ 2

g + Iσ 2
e .(6)

The heritability of the phenotype y is defined as

h2 = σ 2
g

σ 2
g + σ 2

e

.

This quantity is more accurately known as the additive or narrow-sense heritabil-
ity, in contrast to the broad-sense heritability, which includes nonadditive genetic
effects such as gene–gene interactions. Our inferences will be confined to narrow-
sense heritability.

If the causal SNPs (or good tag SNPs) and the phenotype were directly mea-
sured, then one could estimate h2 based on equation (5) and the implied random
effects model using maximum likelihood (REML) [Searle, Casella and McCulloch
(1992)]. Notationally, Zc is an n × J matrix that picks out J columns of the full
SNP panel Z. In practice, Zc is not known. Few of the causal SNPs are known for
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any phenotype, and many causal SNPs will be missing from Z (i.e., not tagged by
any measured SNPs).

How then is h2 estimated in practice? Assuming various subsets of individuals
in the sample are related with relationship matrix A (defined previously), heri-
tability can be estimated without any knowledge of causal genetic variants that

constitute g. From equation (1) and the polygenic model it follows that ZcZ
t
c

J
→ A

as J gets large. This inspires an alternative random effects model which has long
been utilized in population genetics:

Var[y] = Aσ 2
g + Iσ 2

e .(7)

Historically, A has been derived from known pedigree structure. However, pro-
vided some subsets of the individuals in the sample are related (even distantly),
one can estimate A from genetic markers using either method of moments or max-
imum likelihood estimation techniques. This approach has been applied frequently
in quantitative genetics, especially in breeding studies [Lynch and Ritland (1999),
Eding et al. (2001), Visscher et al. (2006), Hayes and Goddard (2008)]. We conjec-
ture that by using TCS, we can improve estimates of A and obtain better estimates
of heritability without knowledge of causal variants.

Alternatively, if the sample is completely unrelated, then substituting the result
of equation (2) for (6) does not lead to an estimate of h2 unless all of the causal
SNPs have been recorded. Instead this approach estimates h2

s ≤ h2, the proportion
of the variance in phenotype explained by the SNP panel [Yang et al. (2010a)]. In
this setting, TCS will not improve estimates of h2

s .

Methods.

Treelet covariance smoothing (TCS). The genetic relationship matrix A is a
measure of the additive covariance structure that exists between individuals due to
a common genetic background. We estimate the relationship matrix using geno-
typed SNPs, but this estimate is usually noisy. Hence, we propose a method for
improving upon this estimate using treelets.

Treelets simultaneously return a hierarchical tree and orthonormal basis func-
tions supported on nested clusters in the tree—both reflect the underlying structure
of the data. Here we extend the original treelet framework [Lee and Nadler (2007),
Lee, Nadler and Wasserman (2008)] for smoothing one-dimensional signals and
functions, to a new means of smoothing and denoising variance–covariance ma-
trices with hierarchical block structure and unstructured noise. The main idea is
to first move to a different basis representation through a series of local trans-
formations, and then impose sparsity by thresholding the transformed covariance
matrix. We refer to the approach as Treelet Covariance Smoothing (TCS). The
general setup is as follows. [See Appendix in Lee, Nadler and Wasserman (2008)
for details on how to compute the treelet transformation. The treelet algorithm, as
well as its implementation, is available in R on CRAN as the treelet library.]
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Let z be a random vector in R
N with variance–covariance matrix �. In our

context, z represents the scaled minor allele counts for a set of N individuals at
any SNP, and the covariance � = A, the additive genetic relationship matrix of the
N individuals [equation (1)]. Now at each level of the treelet algorithm, we have
an orthonormal multiscale basis. Let {v1, . . . ,vN } denote the basis at the top of
the tree [corresponding to level � = N − 1 if using the notation in Lee, Nadler and
Wasserman (2008)]. We write

z =
N∑

i=1

civi ,(8)

where ci = 〈z,vi〉 represent the orthogonal projections onto local basis vectors on
different scales. It follows that the covariance of z can be written in terms of a
multi-scale matrix decomposition

� = Var(z) =
N∑

i=1

γi,ivi (vi )
t +

N∑
i �=j

γi,j vi (vj )
t ,(9)

where γi,i = Var(ci) and γi,j = Cov(ci, cj ). The first term in equation (9) describes
the diagonally symmetric block structure of the variance–covariance matrix. These
blocks are organized in a hierarchical tree. The second term describes a more com-
plex structure, including off-diagonal rectangular blocks, which are also hierarchi-
cally related to each other in a multi-scale matrix decomposition.

In practice, the covariance � is unknown, and both the covariance matrix and
the treelet basis need to be estimated from data. For relationship matrices, one
can, for example, derive an estimate �̂ = Â from marker data using method of
moments or maximum likelihood methods. Denote the treelet basis derived from
�̂ by {̂v1, . . . , v̂N }, and write

�̂ =
N∑

i=1

γ̂i,i v̂i (̂vi )
t +

N∑
i �=j

γ̂i,j v̂i (v̂j )
t ,

where γ̂i,i = V̂ar(ci) and γ̂i,j = Ĉov(ci, cj ).
Let T (�̂) be the covariance estimate after a treelet transformation, that is, af-

ter applying a full set of N − 1 Jacobi rotations of pairs of correlated variables.
A calculation shows that

γ̂i,i = V̂ar(ci) = [
T (�̂)

]
ii and γ̂i,j = Ĉov(ci, cj ) = [

T (�̂)
]
ij ,(10)

where ci ≡ 〈z,vi〉 and cj ≡ 〈z,vj 〉. This suggests2 a smoothed estimate of the
covariance by thresholding:

�̃(λ) =
N∑

i=1

fλ[γ̂i,i ]̂vi (̂vi )
t +

N∑
i �=j

fλ[γ̂i,j ]̂vi (̂vj )
t ,(11)

2The special case ci ≡ 〈z, δi〉 and cj ≡ 〈z, δj 〉, where δi denotes the Kronecker delta function, cor-
responds to simple thresholding of the original covariance estimate. Here we consider more general
groupings of correlated variables on different scales.
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with the thresholding function

fλ[a] =
{

a, when |a| ≥ λ,

0, when |a| < λ,
(12)

where λ is a smoothing parameter.
To summarize and in matrix short-hand notation, the smoothed genetic relation-

ship matrix is given by

Ã(λ) = Bfλ

[
T (Â)

]
Bt,(13)

where B = (v̂1, . . . , v̂N) and T (Â), respectively, denote the treelet basis and the
covariance matrix at the top of the tree, and fλ corresponds to element-wise
thresholding [equation (12)]. Note that to compute B we only need to know
the Jacobi rotations at each level of the tree, more precisely, the treelet basis,
B = J (1) · J (2) · · · · · J (N−1), where the Jacobi rotation matrix J (�) is the rota-
tion matrix at level �. The covariance estimate after a treelet transformation and
before smoothing is �̂� ≡ T (Â) = BtÂB .

Choosing a smoothing parameter. The goal is to choose a threshold (λ) that
reduces noise in the estimated relationships. Traditional cross-validation is not an
option because we cannot predict Aij without including persons i and j . Alterna-
tively, we have an abundance of genetic information from which to estimate Â. We
propose a SNP subsampling procedure to estimate the tuning parameter.

We begin by breaking the genome into independent training and test sets by
randomly placing half the chromosomes into each set. To improve the efficiency
of our estimate of A, we utilize a “blackout window” of length b to avoid sampling
SNPs that are highly correlated. This b can be considered either in terms of physi-
cal location along the chromosome or the number of SNPs between any two SNPs
in question. From the set of training chromosomes, select a relatively large sample
of M independent SNPs to get a reliable estimate of Â. We train our algorithm by
smoothing Â using TCS to get Ã(λ), for all λ ∈ �, where � is a grid of reasonable
threshold values.

Once we have Ã(λ), for a given λ, we subsample L SNP sets of size k from
the test set of chromosomes. Here, k � M and the SNPs within each of the L

subsampled sets follow our defined blackout window, b. Then, for all l = 1, . . . ,L,
estimate the relationship matrix, Âl , based on the subset of SNPs. We then compare
our smoothed relationship matrix, Ã(λ), from the training chromosomes to each
of the L nonsmoothed relationship matrices, Âl , via a weighted risk function:

H(λ) = 1

(N − 1)NL

L∑
l=1

N∑
i<j

wij

(
Âij,l − Ãij (λ)

)2
,(14)

where wij is a weight associated with each element in A. Clearly, the optimal
tuning parameter is λ̂ = argminλ∈� H(λ).

The reason for introducing the weighting scheme is because many subjects are
nearly unrelated. Thus, we aim to upweight the loss function so that the preponder-
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ance of near-zero elements in the off-diagonal do not overwhelm the loss function.
We suggest using the learned hierarchical tree to get the weights. More specifically,
wij = |[T (Â)]ij |, corresponding to the absolute value of the correlations between
the final groupings of individuals after N − 1 rotations [equation (10)]. Also, we
set wii = 0 because we are not interested in estimating inbreeding coefficients. It
should be noted that this is a rather general weighting method. Other schemes may
be more appropriate if there is a priori information suggesting the importance of
particular relationships.

Results.

Simulations. To produce realistic simulations, we started with the phased
genomes (haplotypes) of individuals from the HapMap 3 database3, selecting two
populations with European ancestry (CEU and TSI). Utilizing the small sample of
available haplotypes, our first objective was to generate a large sample of haplo-
types, representative of those that might be sampled from unrelated founders of a
population. The challenge was to keep intact the realistic haplotype structure for a
human population, including linkage disequilibrium (LD), without generating un-
usual sharing between the founders. To accomplish this goal, we took the HapMap
data on CEU and Tuscan samples, which were phased quite accurately into haplo-
types, as the initial sample of chromosomes from which to generate founders. Now
each founder haplotype was created by sampling pieces of chromosomes (or hap-
lotypes) from the initial sample. To do so, the number of recombination spots per
chromosome was determined using an overall recombination of θ = 10−6 per Mb,
which is 100 times the normal rate of recombination for humans. The actual loca-
tion of the recombination spots were then determined using the recombination map
provided by HapMap, a procedure that successfully keeps intact the LD structure
of the chromosome. From this pool of generated haplotype pairs, chromosomes
were randomly assigned to each of the 39 founders in each of 100 families. These
founder chromosomes were then dropped through a seven generation pedigree; see
Figure 1 for the pedigree of a single family used for simulations. At each genera-
tion the chromosomes underwent recombination with an overall rate of θ = 10−8

at locations determined by HapMap’s recombination map. Within each pedigree,
the genotype information of twenty individuals was collected (colored yellow). We
then sampled ten individuals of varying relatedness from this group with a random
sampling strategy that favored individuals of distant relatedness within the pedi-
gree. The highest pairwise relatedness within a family is 0.125, corresponding to
R = 3, and the lowest is < 0.001. Individuals from different families are unrelated.
Each simulation produced a total of 1000 individuals made up of 100 ten-member
families of varying levels of relatedness. Finally, the entire process was repeated
fifty times.

3http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_r2/

http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_r2/
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FIG. 1. Pedigree of a single family used for simulations. Genomes were dropped through the entire
pedigree and ten individuals were sampled from the twenty possible highlighted individuals. Individ-
uals 35–39 are unrelated to everyone else in the pedigree.

Because we know the pedigree structure, we can compare the unsmoothed esti-
mate Â to Ã found via TCS. Here, we use the GCTA software [Yang et al. (2010b)]
to estimate Â using 100,000 randomly chosen SNPs with MAF > 0.05. The opti-
mal level of smoothing (λ̂) is chosen via the subsampling scheme described pre-
viously using M = 5000, b = 10, k = 50, L = 50 and repeating everything ten
times. Here, b is in terms of number of SNPs. We choose λ̂ by examining a plot of
H(λ) across a grid of λ values. The optimal smoothing parameter is the one that
minimizes the risk function, H . For one such simulation sample we can see from
Figure 2 that λ̂ ≈ 0.051.

The question then becomes, does TCS improve estimates of relatedness? Fig-
ures 3 and 4 display boxplots comparing the root mean square error (RMSE) of Â

to Ã at varying levels of known pairwise relationship values. For a full comparison,
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FIG. 2. Cross-validation plot showing the weighted risk function at varying levels of the threshold-
ing parameter, λ. The optimal λ is the point where the H(λ) (CV Score) is minimized.

we have included two smoothing methods: TCS, as previously described, as well
as “simple thresholding,” wherein the elements of Â are directly thresholded. [The
latter approach is a degenerate case of TCS models, at level � = 0, for which the
basis is the Dirac basis, i.e., vi = v̂i = δi for i = 1, . . . ,N in equations (8)–(13).]
Moving from left to right in the figures, the true degree of relatedness increases
from R = 4, . . . ,11, to no relatedness. Over the entire matrix of estimates, the
RMSE is 0.0055, 0.0015 and 0.0019 for the unsmoothed (Â), TCS (Ãt) and sim-
ple thresholding (Ãs) methods respectively, demonstrating an overall advantage of
TCS. As with many shrinkage methods, TCS introduces a slight bias that is re-
flected in a higher RMSE for closely related individuals. Consequently, TCS has a
larger RMSE than the unsmoothed estimate for smaller values of R. Where TCS
gains a notable advantage over the unsmoothed estimate is in differentiating be-
tween more distantly related individuals and noise. From Figures 3 and 5 we can
see that simple thresholding incurs a substantially larger RMSE for closer relation-
ships because it thresholds too aggressively. For R = 4, 70% of the pairs are zeroed
out, and for R > 4 virtually all pairs are zeroed out. Naturally, this method has the
smallest RMSE for the sample of unrelated pairs because thresholding zeros out
all of these entries. Notably, TCS does almost as well in this setting. A direct com-
parison of RMSE does not fully reflect the true loss incurred in practice. In most
genetic studies close relatives are often recorded in pedigrees and, hence, estimates



TREELET COVARIANCE SMOOTHING 681

FIG. 3. Boxplots of RMSE for unsmoothed (Â) along with smoothed using TCS (Ãt) and simple
thresholding (Ãs) at increasing degrees of relatedness (R = 4,5,6; see header). Here, TCS is better
than simple thresholding as the latter method thresholds too aggressively.

are not required. Alternatively, considering distant relatives to be unrelated leads
to a substantial loss for estimating heritability and most other genetic applications.

Heritability in health ABC study. Body Mass Index (BMI) is one of several
traits measured as part of the study entitled “Whole Genome Association Study of
Visceral Adiposity” as part of the Health Aging and Body Composition (Health
ABC) Study. These data are archived in the Database for Genotypes and Phe-
notypes (dbGaP)4. We restrict our attention to those 1644 individuals with self-
reported European ancestry. To control for confounding, prior to analysis, we ad-
just BMI scores by regressing out age, gender and collection site. Our objective is
to estimate heritability of BMI from this population sample. Published heritability
estimates range from as low as 0.05 to as high as 0.90 [Allison et al. (1996)]; how-
ever, based on estimates derived from known pedigrees, the heritability of BMI
is estimated to be approximately 50–75% [Kangas-Kontio et al. (2010), Zabaneh
et al. (2009)].

4http://www.ncbi.nlm.nih.gov/gap

http://www.ncbi.nlm.nih.gov/gap
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FIG. 4. Boxplots of RMSE for unsmoothed (Â) along with smoothed using TCS (Ãt) and simple
thresholding (Ãs) at increasing degrees of relatedness (R = 7,8,9–11). Also included is the com-
parison of RMSE values for unrelated pairs (R = Inf) and average RMSE for the entire relationship
matrix (R = Total). We see that both thresholding methods remove noise, but TCS works better than
simple thresholding overall.

From the full sample of SNPs (Illumina 1M platform) we remove those with
missingness greater than 0.1% and MAF < 0.01. From these we select a subpanel
of 90,000 SNPs, chosen to be nearly evenly spaced. Based on these SNPs, we cal-
culated the relationship matrix Â, and find that the individuals are predominately
unrelated. The most highly related pair appear to be third degree relatives, such as
first cousins. And more than half of the pairs appear to be more distantly related
than 10th degree relatives.

To estimate the heritability in this setting, we input the smoothed relationship
matrix in equation (11) into the REML algorithm. The required smoothing param-
eter λ is selected in two ways: (i) minimizing the loss function in equation (14) via
the subsampling approach; and (ii) using a profile likelihood approach. With both
techniques, we get estimates of the heritability that are very close to what is found
in the literature.

For a range of smoothing parameters, 0 ≤ λ ≤ 0.40, we calculate the smoothed
relationship matrix, Ãλ, and plug this value into the REML model to obtain a
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FIG. 5. Barplots of the percentage of relationships that are equal to 0 for no smoothing (A),
smoothing using TCS (T ) and simple thresholding (S). The three cases are compared at increas-
ing degrees of relatedness (R = 3, . . . ,11). Any value below ε = 10−5 is considered to be 0.

profile likelihood (Figure 6). Also plotted in this figure is ĥ2
λ, the heritability that

maximizes REML as a function of λ (or minimizes—2 times the log-likelihood).
Without smoothing (λ = 0), which is not shown in the plot, ĥ2 = 0.23. Smoothing
the relationship matrix results in an increasing estimate of the heritability which
stabilizes at about 70%. Further smoothing beyond the range displayed leads to a
numerically unstable optimization problem and diminished likelihood. Using the
profile likelihood approach, λ is chosen to be the point at which REML is maxi-
mized. This method results in an estimate of λ̂ = 0.20 corresponding to ĥ2 = 0.71.
Smoothing using our SNP subsampling scheme results in λ̂ = 0.18 and ĥ2 = 0.72.

For comparison, we have repeated the above experiments with an orthogonal
basis computed by principal component analysis (PCA) in lieu of a treelet basis.
Such an approach does not improve the estimates of family relationships or her-
itability. When noise is present, PCA is unable to uncover the underlying sparse
structure of the relationship matrix. In fact, the results with PCA are identical to
those without smoothing (with the profile likelihood peaking when the tuning pa-
rameter is set to 0).

Another trait that was measured in this study is the Abdomen Visceral Fat Den-
sity (AVFD). As was the case with BMI, we restricted our attention to individuals
of European descent and regressed out age, sex and collection site. According to
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FIG. 6. Estimating heritability in the Health ABC data set. Solid curve is the estimated heritability
at increasing values of the smoothing parameter λ. The dashed curve is ∝ −2 log(L), where, L is
the maximum profile likelihood obtained from the REML algorithm. The solid vertical line is the
optimally chosen threshold value using our subsampling scheme. The dashed vertical line represents
the optimally chosen threshold value when minimizing the likelihood profile. A: For BMI, h2 = 0.72
when using subsampling to choose an optimal smoothing parameter (λ̂ = 0.18). Similarly, h2 = 0.71
when using the profile likelihood plot (λ̂ = 0.20). With no smoothing (λ = 0), h2 = 0.23. This is not
shown on the plot. B: For AVFD, h2 = 0.29 when using our subsampling approach to choose an
optimal smoothing parameter. However, h2 = 0.36 when using the profile likelihood plot (λ̂ = 0.09).
These are compared to h2 = 0.11, the heritability when there is no smoothing (not shown).

the literature, the heritability of AVFD should be between 45–70% [Katzmarzyk,
Perusse and Bouchard (1999)]. According to Figure 6, one can see that using
the smoothing parameter based on our subsampling scheme (̂λ = 0.18) we get
ĥ2 = 0.29. On the other hand, exploiting the profile likelihood plot results in
λ̂ = 0.09 and ĥ2 = 0.36. When no smoothing was used (not shown in figure),
λ̂ = 0.11. Thus, both methods for choosing the smoothing parameter used in TCS
resulted in estimates of the heritability that are closer to what is established in the
literature than without smoothing.

It is notable that ĥ2 for both traits increased toward the established estimate of
heritability regardless of how we estimate the optimal smoothing parameter, be-
cause only a small fraction of the genome was sampled by the SNP panel. Thus,
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our results underscore the fact that the quantitative trait model given in equation (5)
does not require measurement of the causal SNPs that constitute equation (3).
What is required is a good estimate of A based on relatives.

Our analysis of BMI and AVFD illustrates the difference between estimates of
heritability in the traditional sense and estimates of h2

s , the heritability attributable
to the SNPs in the panel. From equations (6) and (7) it is clear that heritability
derived from the classic quantitative traits model can distinguish between variance
explained by relatives and variance explained by causal SNPs only if either (i)
all causal SNPs are excluded, or (ii) all relatives are excluded. Because a large
number of undiscovered SNPs scattered across the genome are likely to be causal,
and large samples invariably contain distantly related individuals, some ambiguity
will always be present.

Clearly, the 90,000 SNPs in our panel do not explain a substantial fraction of
the variation in BMI and yet we obtain an accurate estimate of heritability using
TCS. The increase in estimated heritability of BMI from 23% to 72% suggests
that smoothing improves the estimate of A and that a substantial fraction of the
correlation in BMI in our sample is due to genetic relatedness. In a similar study
with a larger population sample Yang et al. (2011) estimated h2

S of BMI at 17%
when using the full SNP panel, but excluding all detectable relatives. Assuming
relatives were successfully removed, they conclude that approximately 17% of the
variability in BMI is explained by common variants included or tagged by the SNP
panel.

Discussion. Recently, there has been an upsurge of papers on sparse covari-
ance matrix estimation; see Bickel and Levina (2008), Cai and Liu (2011) and
the references within. Most of this research concerns the problem of estimating
population covariance matrices from samples of multivariate data in the “large
p–small n” regime using banding or thresholding techniques in the original coor-
dinate system. Our setting is slightly different with a more complex data structure:
We want to improve estimates of a large covariance matrix (A) in which we ex-
pect a hierarchical block structure due to clustering of distantly related individuals.
A noisy estimate of covariance is obtained from a large sample of SNPs, each of
which contains very little information. This matrix is interpreted as the additive ge-
netic relationship matrix and it can be used to infer degree of relationship between
pairs of individuals.

We propose a new method, which we call treelet covariance smoothing (TCS),
for regularizing real symmetric matrices with hierarchical block structure and un-
structured noise. We show how a subsampling strategy applied to SNPs can be used
to choose the tuning parameter for the smoothing procedure. For simulated data,
we show that TCS does indeed improve estimates of family relationships. As an
application we show how TCS can be used to estimate heritability of quantitative
traits from a genome-wide sample of SNPs by smoothing relationships estimated
from those SNPs. We then apply TCS to the problem of estimating the heritability
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of body mass index (BMI) and abdomen visceral fat density (AVFD) in the Health
ABC data set. In particular, BMI heritability is usually quoted to be at least 0.50,
but an estimate based on a noisy estimate of A yields a much lower value of 0.23.
By denoising the estimated relationship matrix with treelets, we increase the esti-
mated heritability of BMI from 0.23 to 0.72. AVFD heritability analysis produces
similar results. Thus, a careful examination of heritability estimates using more
distant relatives demonstrates that one may substantially improve relationship es-
timates using TCS.

Other covariance regularization schemes exist in the literature, but systematic
comparison is beyond the scope of this work. Direct application of regularization
methods for a sample covariance matrix (ZcZ

t
c) is sometimes further complicated

if we do not have direct access to the multivariate data matrix Zc. Cai and Liu
(2011), for example, describe a state-of-the-art adaptive thresholding method for
heteroscedastic problems that requires an estimate of the variability of the entries
of a sample covariance matrix. To our knowledge, TCS is the only principled ap-
proach to regularization of general similarity matrices with block structure on mul-
tiple scales. In addition, the computed basis vectors themselves contain informa-
tion of the internal structure of the data—a topic that we will explore in a separate
paper with applications to complex extended pedigrees. One can also easily mod-
ify the TCS algorithm so that positive semi-definiteness is always guaranteed.

Our results are relevant to a recent area of burgeoning interest in genet-
ics, namely, the estimation of heritability from population samples [Yang et al.
(2010a)]. However, our purpose is to estimate heritability, as traditionally defined,
rather than to determine the fraction of variation explained by measured SNPs.
We expect that the TCS-refined genetic relationships will find wide application
to other problems in genetics, such as population-based linkage analysis [Day-
Williams et al. (2011)], along with linear mixed models for testing association
[Kang et al. (2010)].

Furthermore, TCS can be applied to a whole family of mixed effects “error-in-
variables” models of the form

y = Wβ + Zu + e,(15)

where y ∈ R
n is a vector of response variables; β ∈ R

p is a vector of fixed effects;
u ∈ R

q represents random effects; and e ∈ R
n is a vector of residual errors. In the

general case, we assume that there are c random effects, where each random effect
originates from a specific distribution with zero mean and unknown variance. In
vector-matrix notation,

u =
⎛
⎜⎝

u1
...

uc

⎞
⎟⎠ and Z = (Z1, . . . ,Zc),

where ui is a qi × 1 vector whose elements are the levels of the ith random factor,
q = q1 + · · · + qc, and Zi is an n × qi matrix of regressors for the ith random
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factor. Assuming E(u) = E(e) = 0 and

Var
[

u
e

]
=

[
D 0
0 E

]
,

where D = diag(σ 2
1 Iq1, . . . , σ

2
c Iqc), yields E[y] = Wβ and

Var[y] = ZDZt + E =
c∑

i=1

σ 2
i ZiZ

t
i + E,

where the variance components σ 2
1 , . . . , σ 2

c and E are unknown and to be esti-
mated. Now consider an error-in-variables scenario in which the matrix W of
regressors of fixed effects is known, but we only have noisy estimates of some or
all of the positive semi-definite (p.s.d.) matrices ZiZ

t
i associated with the random

effects. If these matrices have block structure and the noise is unstructured, then
one could potentially improve estimates of variance components by first applying
TCS. In our application, for example, we looked at a special case where we first
estimate the p.s.d. matrix ZcZ

t
c in an additive polygenic model using marker-based

data, and then use a denoised estimate of ZcZ
t
c to estimate the variance compo-

nents, σ 2
g and σ 2

e in a random effects model where D = σ 2
g I and E = σ 2

e I .
In summary, we have introduced a new method, called Treelet Covariance

Smoothing (TCS), that regularizes a relationship matrix estimated from a large
panel of genetic markers. In the context of a GWAS study a huge number of SNPs
are measured, each of which provides information about the relationship between
individuals in the sample. We proposed a SNP subsampling procedure that exploits
this rich source of information to choose a tuning parameter for the algorithm. We
illustrated one instance of the utility of such estimates by substituting the resulting
smoothed relationship matrix into a random effects model to estimate the heri-
tability of body mass index. While others have used genetically inferred estimates
of relatedness from samples of close relatives to estimate heritability, we believe
this is the first time such estimates have been applied to population-based samples
when the goal is to estimate heritability in the traditional sense.
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