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ROBUST PARTIAL LIKELIHOOD APPROACH FOR DETECTING
IMPRINTING AND MATERNAL EFFECTS USING

CASE-CONTROL FAMILIES1

BY JINGYUAN YANG AND SHILI LIN

Ohio State University

Genomic imprinting and maternal effects are two epigenetic factors that
have been increasingly explored for their roles in the etiology of complex
diseases. This is part of a concerted effort to find the “missing heritability.”
Accordingly, statistical methods have been proposed to detect imprinting and
maternal effects simultaneously based on either a case-parent triads design
or a case-mother/control-mother pairs design. However, existing methods are
full-likelihood based and have to make strong assumptions concerning mat-
ing type probabilities (nuisance parameters) to avoid overparametrization. In
this paper we propose to augment the two popular study designs by combin-
ing them and including control-parent triads, so that our sample may contain a
mixture of case-parent/control-parent triads and case-mother/control-mother
pairs. By matching the case families with control families of the same struc-
ture and stratifying according to the familial genotypes, we are able to derive
a partial likelihood that is free of the nuisance parameters. This renders un-
necessary any unrealistic assumptions and leads to a robust procedure without
sacrificing power. Our simulation study demonstrates that our partial likeli-
hood method has correct type I error rate, little bias and reasonable power
under a variety of settings.

1. Introduction. Genomic imprinting and maternal effects are two epigenetic
factors that have been increasingly explored for their roles in the etiology of com-
plex diseases. This is part of a concerted effort to find the “missing heritability”
[Manolio et al. (2009)]. Genomic imprinting (maternal or paternal) is an epige-
netic process involving methylation and histone modifications in order to silence
the expression of a gene inherited from a particular parent (mother or father) with-
out altering the genetic sequence. This process leads to unequal expression of a
heterozygous genotype depending on whether the imprinted variant is inherited
from the mother or the father. Maternal effect, on the other hand, refers to a sit-
uation where the phenotype of an individual is influenced by the genotype of the
mother. Maternal effects usually occur due to the additional mRNAs or proteins
passed from mother to fetus during pregnancy, which may result in an individual
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showing the phenotype due to the genotype of the mother regardless of one’s own
genotype.

The first imprinted gene in humans was found almost 20 years ago [Gian-
noukakis et al. (1993)]. Since then, a number of genetic disorders have been
found to be associated with imprinting defects. The most well known include
Beckwith–Wiedemann syndrome, Silver–Russell syndrome, Angelman syndrome
and Prader–Willi syndrome [Falls et al. (1999)]. Although it has been estimated
that about 1% of all mammalian genes are imprinted [Morison, Paton and Clev-
erley (2001)], only a limited number have been identified thus far. With the avail-
ability of the massively parallel sequencing technology, scientists are now able
to carry out direct studies of imprinting genomewide in mouse efficiently [Gregg
et al. (2010), Wang et al. (2008)]. Nevertheless, the controlled mating setup that
was successful in mouse studies is not feasible in humans. Therefore, there is still
a pressing need for the development of robust and powerful statistical methods for
detecting imprinting effects based on single nucleotide polymorphism data.

A variety of diseases, especially those that are related to pregnancy outcomes,
such as childhood diseases and birth defects, have been hypothesized to be influ-
enced by maternal effects. Well-known examples of diseases in which maternal
effects play a role include childhood cancer and spina bifida [Haig (1993, 2004),
Jensen et al. (2006)]. Maternal effects are also suspected to be involved in other dis-
eases such as schizophrenia [Palmer et al. (2006)] and high blood pressure [Yang
and Lin (2009)]. Although imprinting and maternal effects arise from two differ-
ent biological processes, their effects as expressed in the phenotypes can mask one
another [Hager, Cheverud and Wolf (2008)]. Thus, it is important that these two
confounding effects be studied jointly to avoid false positives/negatives.

Two popular designs for studying genomic imprinting and/or maternal effects
are case-parent triads and case-mother pairs, the latter may be supplemented by
control-mother pairs [Weinberg, Wilcox and Lie (1998), Weinberg and Umbach
(2005), Shi et al. (2008), Ainsworth et al. (2011)]. The use of triads is attractive,
as both imprinting and maternal effects can be studied jointly to handle the issue
of confounding. However, it is well known that fathers are usually much harder
to recruit than mothers for a genetic study, and thus a study design with case-
mother/control-mother pairs may be easier to meeting its target sample size. Nev-
ertheless, the pair design will lead to reduction in the number of familial genotype
categories, and thus only maternal effect is usually studied even with the assump-
tion of mating symmetry [Shi et al. (2008)]. The hybrid design of Vermeulen et al.
(2009) proposed to use control-mother pairs to enrich the sample of case-parent tri-
ads, leading to a case-parent triad/control-mother design. Such a design increases
the number of family genotype categories so that mating frequencies can be esti-
mated without the mating symmetry assumption.

Both nonparametric and parametric statistical methods have been proposed
in the literature for analyzing triads and pairs data. Nonparametric methods are
mainly for detecting the imprinting effect under the assumption of no maternal ef-



LIME FOR CASE-CONTROL FAMILY 251

fect [Weinberg (1999), Zhou et al. (2009)]. Such methods are very attractive, as
they are simple, elegant and powerful, but they may suffer from severely inflated
type I error rate or power loss if the assumption is violated. On the other hand,
existing parametric methods can usually study both imprinting and maternal ef-
fects (with triad data), but they usually need to make rather strong assumptions
to avoid overparametrization. The typical assumptions made are regarding mating
type probabilities, the most extreme of which is random mating, leading to the
Hardy–Weinberg equilibrium (HWE). More mild assumptions include parental al-
lelic changeability and mating symmetry. It is well accepted that the assumption
of HWE is unlikely to hold, however, even the validity of the least stringent one,
mating symmetry, may still be in doubt in reality. Mating selections are usually
guided by cultural values and social rules in general, and, further, mating sym-
metry is easily violated if there is any gender-specific assortative mating in the
population.

Many complex diseases, such as cancers and hypertension, are rather common.
However, rare diseases are sometimes assumed in existing methods so that the
probabilities of child-mother pair genotype combinations can be treated as approx-
imately the same in the control and in the general populations [Shi et al. (2008)].
Although the rationale seems rather intuitive, analytical as well as simulation re-
sults indicate that the rare disease assumption is in fact only a necessary, but not a
sufficient condition, for the frequencies to be roughly equal. It is the interplay of
allele frequency and the underlying genetic model, not the rare disease assumption
alone, that determines whether the pair frequencies are roughly equal.

In this paper, we propose a partial Likelihood approach for detecting Imprinting
and Maternal Effects (LIME) simultaneously using a family-based case-control
design. Specifically, our sampled data is a mixture of case-parent/control-parent
triads and case-mother/control-mother pairs. By including control families in our
design, we can match case families with control families of the same structure
(i.e., triads vs. triads and pairs vs. pairs) and factor out common terms involving
mating type probabilities, the nuisance parameters. This design makes it possible
to formulate a novel partial likelihood approach, wherein the likelihood compo-
nent of interest is free of the nuisance parameters. This circumvents the problem
of overparametrization and unrealistic assumptions that plague existing methods.
Further, LIME can make use of all available data information (complete triads and
those with missing fathers). It does not rely on any assumption about mating type
probabilities or rarity of the disease, which makes it robust to departure from the
usual assumptions without sacrificing much power.

2. Method. The genotype scores (the number of the variant alleles carried
by an individual) of the mother, father and child in a triad are denoted by M ,
F and C, respectively, which takes values in {0,1,2}. In case-mother or control-
mother pairs, the paternal genotype score F is missing. The disease status D = 1
indicates that the child is affected and 0 otherwise. We use the following multi-
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plicative relative risk model of disease penetrance:

P(D = 1|M,F,C)
(1)

= δR
I (C=1)
1 R

I(C=2)
2 R

I(C=1 and origin=M)
im S

I (M=1)
1 S

I (M=2)
2 ,

where δ is the phenocopy rate of the disease; R1 and R2 are the variant al-
lele effect of 1 and 2 copies carried by the child, respectively; Rim is the ef-
fect when the single copy of the variant allele carried by the child is inherited
from the mother; S1 and S2 are the maternal effect when the mother carries
1 and 2 copies of the variant allele, respectively; and I (·) is the usual indica-
tor function that is equal to 1 or 0 depending on whether the condition within
the parentheses is met or not. Likelihood ratio tests can be conducted to test:
(1) for association, H0 :R1 = R2 = Rim = S1 = S2 = 1 vs. Ha : at least one of
these parameters is not 1; (2) for (maternal/paternal) imprinting, H0 :Rim = 1 vs.
Ha :Rim(< / >) �= 1; (3) for maternal effect, H0 :S1 = S2 = 1 vs. Ha :S1 or S2 is
not 1. Note that this model was used by Weinberg, Wilcox and Lie (1998), which
was adopted by Shi et al. (2008) but without the term for the imprinting effect for
their pair sampling design. This model is also equivalent to one of the models used
recently by Ainsworth et al. (2011).

Denote the numbers of case-parent triads, control-parent triads, case-mother
pairs and control-mother pairs in the sample by N1

t , N0
t , N1

p and N0
p , respectively.

Two special cases of this general setup are as follows: (1) N0
p = N1

p = 0, if there
are no missing fathers and thus all the families are triads; and (2) N0

t = N1
t = 0, if

all fathers are missing, and thus all the families are child-mother pairs. Therefore,
our method represents a unified approach as it is applicable to triad only data as in
Weinberg, Wilcox and Lie (1998), or pairs only data as in Shi et al. (2008), or a
mixture of the two.

There are 15 possible combinations of (M,F,C) for triads; their enumeration
and labeling (type) are listed in the top segment of Table 1. The joint probability of
the disease status of the child (D) and the triad genotype combination (M,F,C)

can be decomposed as

P(D,M,F,C) = P(M,F)P (C|M,F)P (D|M,F,C),

where P(M,F) is the population probability of a particular parental pair (also
called mating type), which is denoted by μmf for M = m and F = f . Note that we
do not make any assumption about the mating type probabilities such as HWE or
even mating symmetry, and thus μmf is not necessarily equal to μf m. On the other
hand, P(C|M,F) is the transmission probability, which follows the Mendelian
law of segregation. For the penetrance probability, P(D|M,F,C), we use the
multiplicative relative risk model as given in equation (1). For all types other
than type 8 (Table 1), if a child has one copy of the variant allele, the parental
origin can be unambiguously ascertained, and hence the relevant factors can be
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TABLE 1
Joint probabilities of disease status and triad genotypesa

Type M F C P(D = 1,M,F,C) P (D = 0,M,F,C)

1 0 0 0 μ00 · 1 · δ μ00 · 1 · [1 − δ]
2 0 1 0 μ01 · 1

2 · δ μ01 · 1
2 · [1 − δ]

3 0 1 1 μ01 · 1
2 · δR1 μ01 · 1

2 · [1 − δR1]
4 0 2 1 μ02 · 1 · δR1 μ02 · 1 · [1 − δR1]
5 1 0 0 μ10 · 1

2 · δS1 μ10 · 1
2 · [1 − δS1]

6 1 0 1 μ10 · 1
2 · δS1R1Rim μ10 · 1

2 · [1 − δS1R1Rim]
7 1 1 0 μ11 · 1

4 · δS1 μ11 · 1
4 · [1 − δS1]

8 1 1 1 μ11 · 1
4 · δS1R1(1 + Rim) μ11 · 1

4 · [2 − δS1R1(1 + Rim)]
9 1 1 2 μ11 · 1

4 · δS1R2 μ11 · 1
4 · [1 − δS1R2]

10 1 2 1 μ12 · 1
2 · δS1R1 μ12 · 1

2 · [1 − δS1R1]
11 1 2 2 μ12 · 1

2 · δS1R2 μ12 · 1
2 · [1 − δS1R2]

12 2 0 1 μ20 · 1 · δS2R1Rim μ20 · 1 · [1 − δS2R1Rim]
13 2 1 1 μ21 · 1

2 · δS2R1Rim μ21 · 1
2 · [1 − δS2R1Rim]

14 2 1 2 μ21 · 1
2 · δS2R2 μ21 · 1

2 · [1 − δS2R2]
15 2 2 2 μ22 · 1 · δS2R2 μ22 · 1 · [1 − δS2R2]

P(D = 1,M,C) P (D = 0,M,C)

1, 2 0 − 0 (μ00 + 1
2μ01) · δ (μ00 + 1

2μ01) · [1 − δ]
3, 4 0 − 1 ( 1

2μ01 + μ02) · δR1 ( 1
2μ01 + μ02) · [1 − δR1]

5, 7 1 − 0 ( 1
2μ10 + 1

4μ11) · δS1 ( 1
2μ10 + 1

4μ11) · [1 − δS1]
6, 8, 10 1 − 1 1

2μ10 · δS1R1Rim
1
2μ10 · [1 − δS1R1Rim]

+ 1
4μ11 · δS1R1(1 + Rim) + 1

4μ11 · [2 − δS1R1(1 + Rim)]
+ 1

2μ12 · δS1R1 + 1
2μ12 · [1 − δS1R1]

9, 11 1 − 2 ( 1
4μ11 + 1

2μ12) · δS1R2 ( 1
4μ11 + 1

2μ12) · [1 − δS1R2]
12, 13 2 − 1 (μ20 + 1

2μ21) · δS2R1Rim (μ20 + 1
2μ21) · [1 − δS2R1Rim]

14, 15 2 − 2 ( 1
2μ21 + μ22) · δS2R2 ( 1

2μ21 + μ22) · [1 − δS2R2]
aM , F and C are the number of variant allele(s) carried by the mother, the father and the child in
a family, which are equal to 0, 1 or 2; F = − indicates paternal genotype is missing in case-mother
and control-mother pairs; μmf denotes the probability of parental pairs in which the mothers carry
m copies and the fathers carry f copies of the variant allele, that is, mating type probability of
(M,F ) = (m,f ); δ is the phenocopy rate of the disease in the population; R1 and R2 are relative
risks due to 1 and 2 two copies of the variant allele carried by the offspring, respectively; Rim is the
relative risk due to the single copy of the variant allele being inherited from the mother; S1 and S2
are the maternal effect of 1 and 2 copies of the variant allele carried by the mother, respectively.
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easily extracted from (1) and multiplied to the joint probability. For type 8, in
which (M,F,C) = (1,1,1), the variant allele carried by the child can be inher-
ited either from the mother or the father with equal probabilities and, as such,
both possibilities need to be considered, leading to the summation of two proba-
bilities weighted equally. For all 15 types, the specific joint probabilities for the
case-parent and control-parent triads are given in the last two columns of the top
segment of Table 1. We can see from the table that the parameters concerning the
mating type probabilities (μmf ) are factored out nicely from the parameters of the
disease model, both for the case and the control families.

For pairs, because the father’s genotype is missing, the 15 (M,F,C) combina-
tions for triads collapse into 7 (M,C) types, as indicated in the bottom segment
of Table 1. In other words, each (M,C) type is the combination of potential triad
types had the paternal genotype been observed for those child-mother pairs. For
example, for (M,C) = (0,0), the father’s genotype can be either 0 or 1 and, there-
fore, the first type for (M,C) is the combinations of types 1 and 2 for triads.
Accordingly, the joint distribution of disease status and genotype is the sum of the
probabilities of the collapsing triads types. That is,

P(D,M,C) = ∑
F=0,1,2

P(D,M,F,C) = ∑
F=0,1,2

P(M,F,C)P (D|M,F,C),

where P(M,F,C) may be 0 if F is not compatible with the observed geno-
types. For example, for (M,C) = (0,0), F = 2 is incompatible and, therefore, the
summation is only over 0 and 1. For most (M,C) combinations, the penetrance
P(D|M,F,C) can be factorized out of the summation over F = 0,1,2, since
the penetrance is the same for the potential types of triad regardless of the pater-
nal genotype under our model. The only exception is (M,C) = (1,1), in which
case the penetrance term is different for the three potential types of triad unless
the imprinting effect is absent (i.e., Rim = 1). The specific joint probabilities for
the case-mother and control-mother pairs are given in the last two columns of
the bottom segment of Table 1. We can see from the table that, other than when
(M,C) = (1,1), the parameters concerning the mating type probabilities (μmf )

are factored out nicely from the parameters of the disease model, both for the case
and the control families.

Denote the counts of case-parent and control-parent triads with M = m, F = f

and C = c by n1
mf c and n0

mf c, respectively. Similarly, the counts of case-mother

and control-mother pairs with M = m and C = c are denoted by n1
mc and n0

mc.
With the fixed totals N1

t , N0
t , N1

p and N0
p , the distributions of the 15 observed

triad counts for the cases ({n1
mf c}) and the controls ({n0

mf c}), and those of the 7

observed pair counts for the cases ({n1
mc}) and the controls ({n1

mc}), are as follows:

n1
mf c ∼ Multinomial

(
N1

t , P (M = m,F = f,C = c|D = 1)
)
,

n0
mf c ∼ Multinomial

(
N0

t , P (M = m,F = f,C = c|D = 0)
)
,
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n1
mc ∼ Multinomial

(
N1

p,P (M = m,C = c|D = 1)
)
,

n0
mc ∼ Multinomial

(
N0

p,P (M = m,C = c|D = 0)
)
.

The cell probabilities P(M,F,C|D) = P(D,M,F,C)/P (D) and P(M,C|D) =
P(D,M,C)/P (D), where the probabilities in the numerators are as given in Ta-
ble 1 and we assume the disease prevalence, P(D = 1), in the source population is
known. Such information for most known diseases can be retrieved from the Inci-
dence and Prevalence Database (IPD) (http://www.tdrdata.com/IPD/ipd_init.aspx)
or other sources.

The likelihood function of our observed data is as follows:

P
(
n1

mf c, n
0
mf c, n

1
mc,n

0
mc|μmf , δ,R1,R2,Rim,S1, S2

)

∝ ∏
(m,f,c)

P (M = m,F = f,C = c|D = 1)
n1

mf c

× P(M = m,F = f,C = c|D = 0)
n0

mf c

× ∏
(m,c) �=(1,1)

P (M = m,C = c|D = 1)n
1
mcP (M = m,C = c|D = 0)n

0
mc

∝
{ ∏

(m,f,c)

(pmf c)
n1

mf c(1 − pmf c)
nmf c−n1

mf c

× ∏
(m,c) �=(1,1)

(pmc)
n1

mc(1 − pmc)
nmc−n1

mc

}

×
{ ∏

(m,f,c)

[
smf cP (M = m,F = f,C = c)

]nmf c

× ∏
(m,c) �=(1,1)

[
smcP (M = m,C = c)

]nmc

}
,

where nmf c = n0
mf c + n1

mf c and nmc = n0
mc + n1

mc. Further,

smf c = N1
t P (D = 1|m,f, c)/P (D = 1) + N0

t P (D = 0|m,f, c)/P (D = 0),

smc = N1
pP (D = 1|m,c)/P (D = 1) + N0

pP (D = 0|m,c)/P (D = 0),

pmf c = N1
t P (D = 1|m,f, c)/P (D = 1)

smf c

,

pmc = N1
pP (D = 1|m,c)/P (D = 1)

smc

.

Note that the above expressions are independent of the nuisance parameters (mat-
ing type probabilities μmf ), as we will see more clearly, from the derivation of the

http://www.tdrdata.com/IPD/ipd_init.aspx
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formula below, the nuisance parameters in the numerator and denominator cancel
out.

In our likelihood formulation, note that the pair type (1,1) is not included since
the nuisance parameters and the risk parameters cannot be nicely separated as dis-
cussed above. The potential effects of excluding this data type will be addressed in
the discussion section. With this exclusion, one can see from the above factoriza-
tion that only the second component of the likelihood (factors within the second
set of curly brackets in the last formula) contains the nuisance parameters μmf ’s.
Therefore, the first component is our partial likelihood, which can be maximized
instead of the full likelihood to avoid estimating the nuisance parameters [Cox
(1975)]. In fact, the partial likelihood component can be regarded as the likelihood
of the reorganized data conditional on each possible triad (M,F,C) or pair (M,C)

type. Within each type, counts of the cases and controls follow a “renormalized”
binomial distribution with the appropriate probabilities. For example, for a triad
type (m,f, c), the probabilities of observing a case are

pmf c = E(n1
mf c)

E(n1
mf c + n0

mf c)
= N1

t P (m,f, c|D = 1)

N1
t P (m,f, c|D = 1) + N0

t P (m,f, c|D = 0)

= N1
t P (D = 1|m,f, c)/P (D = 1)

N1
t P (D = 1|m,f, c)/P (D = 1) + N0

t P (D = 0|m,f, c)/P (D = 0)
.

This manipulation turns data from a retrospective design into a “prospective”
likelihood stratified according to each type. That is, the partial likelihood is the
kernel of Binomial(nmf c, pmf c) and Binomial(nmc, pmc), and nmf c and nmc may
be viewed as “fixed” as in a binomial distribution. Thus, although the second com-
ponent of the likelihood contains the parameters of interest, it does not depend on
the data. It is also worth reemphasizing that, by modeling the counts using partial
likelihood instead of the full likelihood, the dimensionality of the parameter space
is greatly reduced. Only phenocopy rate and genotype relative risks are estimated
from the partial likelihood. Consequently, no assumption is needed regarding the
underlying mating type probabilities in the population.

3. Two existing methods for comparison.

3.1. Constrained log-linear model. A special case of our family case-control
design, in which N1

t = N0
t = 0, was considered in a recent study [Shi et al. (2008)]

to detect maternal effects. They used the log-linear relative risk model for the case-
mother and control-mother pairs, but assuming the absence of imprinting. Thus,
their model is a special case of our model as specified in (1) by setting Rim = 1.
However, since their full likelihood approach requires the estimation of mating
type probabilities, they propose to explore three levels of assumptions regarding
these probabilities, namely, Mendelian inheritance, mating symmetry and parental
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allelic exchangeability, leading to what they call a constrained log-linear model
(CLL).

In addition to the assumption about mating type probabilities, the expected fre-
quencies of control-mother pairs were assumed to be the same as the expected
frequencies of any child-mother pairs for each type regardless of whether the child
is affected or not. Considering the retrospective nature of the case-mother/control-
mother design, the fact that the child in a control-mother pair is unaffected should
be taken into account by multiplying the unaffected probability by the expected
frequency of each (M,C) combination. Unless the conditional probability of be-
ing unaffected given every (M,C) combination is close to 1, approximating the
frequencies of control-mother pairs using the frequencies of child-mother pairs in
the general population would be inaccurate. Shi et al. (2008) justified the use of
this approximation under the rare disease assumption. This assumption only im-
plies that the marginal unaffected probability in the whole population is close to
1, but the conditional unaffected probability given some of the (M,C) type may
not be close to 1 at all. In particular, when (M,C) = (2,2), the conditional prob-
ability that the child is unaffected, 1 − δS2R2, might be much smaller than 1 for
reasonably large relative risks S2 and R2. For example, suppose the phenocopy
rate δ = 0.05, and the relative risks are S2 = 2 and R2 = 3 as in one of the settings
in Shi et al. (2008), then 1 − δS2R2 is only 0.7. Thus, although the rare disease
assumption is necessary, it is certainly not sufficient in justifying the frequency
approximation used in CLL.

A careful dissection of CLL reveals that the control-mother expected frequen-
cies approximation was also needed for the mating type probability assumption
under Mendelian inheritance. It is indeed true that, under Mendelian inheritance,
the sum of the expected frequencies of child-mother pairs with (M,C) = (1,0)

and with (M,C) = (1,2) equals the expected frequency with (M,C) = (1,1) if
the pair is randomly sampled from the population. However, this does not hold
for control-mother pairs due to the involvement of unaffected probabilities as dis-
cussed above, which complicates the simple relationship in the constraint.

3.2. Log-linear likelihood ratio test. The log-linear likelihood ratio test (LL-
LRT) was the first method proposed for detecting imprinting and maternal effects
simultaneously using case-parent triad data [Weinberg, Wilcox and Lie (1998)]. It
assumes multiplicative relative risks and models the counts of the 15 case-parent
triads using a log-linear model as in (1). It is necessary to make the assumption
of mating symmetry when using LL-LRT; otherwise, the number of parameters in
the model would exceed the degrees of freedom of the count data.

4. Simulation. To evaluate the performance of the proposed method and to
compare it with the existing methods, we create 8 simulation settings of the rela-
tive risks due to variant allele, imprinting and maternal effects (Table 2). The first 4
settings with the imprinting relative risk being equal to 1 (i.e., no imprinting effect)
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TABLE 2
Simulation settings of the relative risks

Settings

Parameter 1 2 3 4 5 6 7 8

R1 1 2 1 1 1 3 1 3
R2 1 3 3 3 3 3 3 3
Rim 1 1 1 1 3 1/3 3 1/3
S1 1 1 1 2 1 1 2 2
S2 1 1 1 2 1 1 2 2

are the same as the simulation settings in Shi et al. (2008). Settings 5 and 6 have
paternal and maternal imprinting effects, respectively, but no maternal effect. Set-
tings 7 and 8 have paternal and maternal imprinting effects, respectively, and also
maternal effect. Prevalence of the disease is set to be 0.05 (rare) or 0.15 (common).
Note that the summation over the 15 joint probabilities P(D = 1,M,F,C) equals
the disease prevalence P(D = 1), and thus the phenocopy rate can be solved from
the equation since relative risks and prevalence are set in our simulation and the
phenocopy rate is the only unknown quantity.

We consider three variant allele frequencies (VAF), 0.1, 0.3 and 0.7, and sim-
ulate the parental genotypes under two scenarios. Under the first scenario, the
population is in HWE and the probabilities of a paternal or maternal genotype
score being 0, 1 and 2 are (1 − p)2, 2(1 − p)p and p2, respectively, where
p is the variant allele frequency, p ∈ {0.1,0.3,0,7}. Since the population is in
HWE, allelic exchangeability (AE) and mating symmetry (MS) are implied. In
the other scenario, the probabilities of a genotype score being 0, 1 and 2 are
(1 − p)2(1 − ζ ) + (1 − p)ζ , 2p(1 − p)(1 − ζ ) and p2(1 − ζ ) + pζ , respectively,
where ζ is the inbreeding parameter [Weir (1996)], which is set to be 0.1 and
0.3 for males and females, respectively. As such, neither AE nor MS holds in the
population under the second scenario.

For each triad, the genotype of the child is sampled according to the transmis-
sion probability given the previously simulated parental genotypes, and then the
disease status is generated as a Bernoulli trial with the success probability being
equal to the phenocopy rate multiplied by the relevant relative risks. This process
is repeated until 150 case-parent triads and 150 control-parent triads are obtained.
This sample size was chosen to be the same as in Shi et al. (2008) to facilitate
comparison. We then count the 15 types of child-parent triads among case families
and control families. Ignoring all the fathers, we also count the 7 types of child-
mother pairs among case families and control families. Finally, we also create a
mixture sample of triads and pairs by randomly setting the father’s genotype to
be missing with probability 0.5 in each triad. This last setting allowing for miss-
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ing paternal genotype is the most realistic in genetic epidemiology studies. The
number of replication for each simulation setting is set to be 1000.

LIME is applied to the pair/triad mixture counts (LIME-mix). CLL is applied
to the pairs (150 case-mother pairs and 150 control-mother pairs) with the con-
straint arising from AE. Since CLL models pair counts and does not consider the
imprinting effect, LIME is also applied to pair counts without the imprinting effect
(LIME-pair) purely for the purpose of comparison with CLL. On the other hand,
LL-LRT is applied to the case-parent triads (150 complete case-parent triads). The
simulation results are summarized in the following three subsections.

4.1. Bias. Relative bias of a parameter estimate is defined as (θ̂ −θ)/θ , where
θ̂ is the estimate of θ and θ ∈ {R1,R2,Rim,S1, S2} as given in the multiplicative
relative risk model. The scatterplots shown in Figure 1(a) are relative biases of
LIME-pair versus relative biases of CLL. Since neither CLL nor LIME-pair mod-
els imprinting effect, it is only appropriate to compare their biases under the set-
tings in which the imprinting effect is absent. Hence, each panel in Figure 1(a)
plots the biases of R̂1, R̂2, Ŝ1 and Ŝ2 under the first 4 simulation settings of the
relative risks. The columns of panels in Figure 1(a) correspond to the three variant
allele frequencies, while the rows correspond to the four combinations of the two
prevalence settings (0.05 and 0.15) and whether AE holds. Recall that AE is the
constraint imposed in CLL.

The scatterplots shown in Figure 1(b) are relative biases of LIME-mix versus
relative biases of LL-LRT. Since both LIME-mix and LL-LRT model variant al-
lele, imprinting and maternal effects simultaneously, each panel plots the biases
of R̂1, R̂2, R̂im, Ŝ1 and Ŝ2 under all 8 simulation settings. Thus, there are more
points in Figure 1(b) than in Figure 1(a). The rows of Figure 1(b) correspond to
the four combinations of the prevalence settings and whether AE holds. Note that
AE implies MS, an assumption made in LL-LRT.

The intersecting dotted diagonal lines in each panel divide the square into 4
triangular regions. Scattering points in the left and right triangles correspond to
the relative biases on the y-axis (LIME-pair/LIME-mix) being smaller than the
relative biases on the x-axis (CLL/LL-LRT) in absolute magnitude. In both Figures
1(a) and (b), almost all the points are scattering in the left/right triangle in each
panel, which indicates the smaller relative biases of LIME-pair and LIME-mix
under all circumstances simulated. When the AE/MS does not hold [3rd and 4th
rows of both Figures 1(a) and (b)], the relative biases of CLL/LL-LRT become
larger, a phenomenon also noted in Sinsheimer, Palmer and Woodward (2003). In
contrast, the relative biases of LIME-pair/Lime-mix remain at around the same
level, which is close to zero.

When AE actually holds, the relative biases of CLL become a bit larger when
the prevalence changes from 0.05 to 0.15, which reflects the rare disease assump-
tion being necessary (though not sufficient) for CLL to be valid. When both the
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FIG. 1. Relative estimation biases of (a) LIME-pair versus CLL and (b) LIME-mix versus
LL-LRT. In both figures (a) and (b), three variant allele frequencies (VAF) are considered and
plotted in the three columns. Further, population 1 is in HWE, such that both AE and MS hold,
whereas neither AE nor MS holds in population 2. The four rows in the figures correspond to
the four combinations of population (1 or 2) and disease prevalence (rare: 0.05 or common:
0.15): row 1: population = 1, prevalence = 0.05; row 2: population = 1, prevalence = 0.15; row 3:
population = 2, prevalence = 0.05; row 4: population = 2, prevalence = 0.15.

rare disease (prevalence = 0.05) and AE assumptions hold but the variant allele
frequency is small (VAF = 0.1), CLL still has some large relative biases, which
mainly correspond to the estimates of R2 and S2. When the VAF is small, it is
likely that there is no child-mother pairs with (M,C) = (2,2) in the sample. The
zero cell count due to small VAF leads to large estimation variability for these two
parameters. This can also be observed from the large relative biases of LL-LRT
in estimating R2 and S2 when VAF is small, which are due to the zero counts for
(M,F,C) = (2,1,2) and (2,2,2).

4.2. Type I error rate and power. Figure 2 presents the type I error rates
and power of CLL, LIME-pair, LIME-mix and LL-LRT under the 8 simulation
settings of relative risks. The vertical dotted lines divide each panel into 4 re-
gions, from left to right, corresponding to (1) prevalence = 0.05 and AE hold;
(2) prevalence = 0.15 and AE hold; (3) prevalence = 0.05 but neither AE nor MS
holds; (4) prevalence = 0.15 but neither AE nor MS holds. Type I error rates are
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FIG. 2. Type I error rates and power of CLL, LIME-pair, LIME-mix and LL-LRT. Panels with gray
background give type I error rates, whereas the rest show power. The vertical dotted lines divide
each panel into 4 regions corresponding to, from left to right: (1) prevalence = 0.05, AE and MS
holds; (2) prevalence = 0.15, MS and AE hold; (3) prevalence = 0.05, neither AE nor MS holds;
(4) prevalence = 0.15, neither AE nor MS holds. Columns 1–8 correspond to the 8 simulation settings
of relative risks in Table 2.

shown in the gray panels with a horizontal dashed line marking the nominal level
of 0.05, while other panels show power. Type I error rates and power of CLL and
LIME-pair are absent in the middle rows of the panels, since neither CLL nor
LIME-pair includes the imprinting effect.

4.2.1. Settings 1–4. The imprinting effect is absent in simulation settings 1–4.
Type I error rates for detecting the imprinting effect using LIME-mix and LL-LRT
are all around the nominal level of 0.05. For detecting association and maternal
effect, CLL and LL-LRT have inflated type I error rates in regions (3) and (4), in
which neither AE nor MS holds, whereas LIME-pair and LIME-mix have correct
type I error rates under all circumstances. The powers of CLL and LIME-pair are
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higher than LIME-mix and LL-LRT, not surprisingly, since CLL and LIME-pair
do not attempt to estimate the nonexisting imprinting effect and thus are more
efficient. The power of CLL is higher than or about the same as LIME-pair in
regions (1) and (2), in which AE holds and is correctly incorporated into CLL as
a parameter constraint. However, the power of CLL is lower than that of LIME-
pair in regions (3) and (4) under setting 3, a case in which the power for CLL is
reduced because the constraint is wrongly imposed when the assumption does not
hold. CLL has higher power than LIME-pair in setting 4 for detecting maternal
effect. The power of LIME-mix is always higher than that of LL-LRT in detecting
association and maternal effect in these four settings.

4.2.2. Settings 5–8. The imprinting effect is present in the simulation settings
5–8, and maternal effect is present in the latter two settings. Under settings 5 and 6,
CLL and LIME-pair have a lot of false positives for maternal effects that are ac-
tually due to the imprinting effect because of confounding [Hager, Cheverud and
Wolf (2008)]. LL-LRT also has inflated type I error rates in regions (3) and (4)
due to its MS assumption being violated, whereas LIME-mix has correct type I
error rates in all regions. Due to the strong association signal in these four settings,
all four methods have about the same power in detecting association. LL-LRT has
higher power in detecting the imprinting effect than LIME-mix, but LIME-mix has
higher power in detecting maternal effect than LL-LRT. Due to the confounding
between imprinting and maternal effect, the paternal imprinting in setting 7 “mag-
nifies” the signal of maternal effect if imprinting effect is not properly accounted
for. As such, CLL and LIME-pair have a higher power for detecting the maternal
effect, but they miss the imprinting effect completely. On the other hand, setting 8
depicts maternal imprinting, and thus CLL and LIME-pair have a lower power for
detecting the “reduced” maternal effect. This represents the worse case scenario;
not only is the imprinting effect missed completely but there is also reduced power
for detecting maternal effect.

4.3. Sensitivity analysis. Since the proposed method LIME-mix needs the dis-
ease prevalence in the population as a known constant, we conduct a sensitivity
analysis to investigate the impact of using a misspecified prevalence in our model.
A constant that is 5% higher, 5% lower, 20% higher or 20% lower than the true
prevalence in the simulation setting is used as the prevalence in LIME-mix. The
mixtures of triads/pairs simulated under the 8 settings of relative risks are ana-
lyzed again using LIME-mix with these inaccurate prevalences. Relative biases of
LIME-mix using inaccurate prevalence are plotted versus relative biases of LIME-
mix using the true prevalence in Figure 3.

When the disease is rare (with a true prevalence of 0.05), we can see from Fig-
ure 3(a) that all points fall almost exactly on the dashed line with slope 1, indicating
that the estimates of the relative risks using the inaccurately specified prevalence
are actually very close to those using the true prevalence. That is, the results are
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FIG. 3. Sensitivity analysis of the bias with a misspecified prevalence when (a) the true
prevalence = 0.05 (rare disease) and (b) the true prevalence = 0.15 (common disease). In both
figures (a) and (b), three variant allele frequencies (VAF) are considered and plotted in the three
columns. The four rows correspond to four different misspecified prevalences. Row 1: prevalence is
5% higher than the true value; row 2: prevalence is 5% lower than the true value; row 3: prevalence
is 20% higher than the true value; row 4: prevalence is 20% lower than the true value.

rather insensitive to the misspecification of population prevalence. On the other
hand, when the disease is more common (true prevalence being 0.15), the points
still scatter around the dashed line with slope 1, as we can see from Figure 3(b),
although there is more scattering when the prevalence is incorrectly specified to
be 20% higher/lower than the true value. Overall, the results are reasonably in-
sensitive to the specification of population prevalence. Estimated prevalences are
often obtained through large scale population studies and would, in those cases,
not deviate greatly from their true values. As such, our results seem to suggest that
LIME would give reasonably accurate estimates by using population prevalences
estimated from external sources when the same population and diagnostic criteria
have been studied.

5. Discussion. In this paper we propose a partial likelihood approach for de-
tecting imprinting and maternal effects simultaneously using case-control families.
The crucial role played by imprinting and maternal effects in complex human dis-
eases has been increasingly explored in the last few years, as simply focusing on
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sequence variation has been proven to be insufficient for studying disease etiology.
As such, there is an immediate need for robust and efficient statistical methods for
detecting imprinting and maternal effects, and our contribution is one step in this
direction. Our proposed method possesses a number of novel features compared
to existing ones in the literature. We augment the traditional case-parent triads de-
sign to a family-based case-control design by recruiting control-parent triads as
well. This differs from Weinberg and Umbach (2005) in that they only genotype
the parents of the controls, leading to a case-parent triad/control-parent design.
Further, we allow for missing fathers considering the fact that fathers are often
harder to recruit in family-based studies. Thus, this design also differs from that
of Vermeulen et al. (2009), as the current design also recruits control-parent tri-
ads and case-mother pairs. By recruiting control families of the same structure as
case families, we create “internal matches” stratified by the familial genotypes. As
such, we can extract from the full likelihood of the retrospective design a partial
likelihood component that can be thought of as the products of likelihoods from
stratified prospective designs. Through this conditional on the familial genotypes,
the nuisance parameters with respect to the population mating type probabilities
(i.e., probabilities of parental genotype combinations) are no longer involved in the
partial likelihood. As such, it is no longer necessary to make any assumption about
mating type probabilities; such assumptions are strong and usually unrealistic but
are made in the literature in an effort to reduce the number of parameters for the
full likelihood approach. This alleviates the problem of over-parametrization that
often plagues existing methods. Furthermore, our formulation takes into account
the fact that control families have unaffected children, making it applicable to both
rare and common diseases as opposed to just rare diseases in some existing meth-
ods. However, we note that the mother-child data type in which both the mother
and the child are heterozygotes cannot be included in the analysis, an issue that
will be discussed further below.

Through simulation with a variety of settings, including some adopted from the
literature, we demonstrate the robustness of LIME to violation of assumptions on
absence of imprinting effects, rarity of disease and mating type probabilities. First,
by utilizing a mixture of case/control triad families and case/control pair families,
imprinting and maternal effects can be studied jointly to address the confounding
issue faced by approaches that assume the absence of imprinting effect when de-
tecting maternal effects. As such, LIME has correct type I error rate compared to
those approaches. If, however, there is a priori and unequivocal information that
imprinting effect is indeed absent, then a method that assumes the absence of im-
printing effect will usually lead to gain in power for detecting maternal effect. In
this situation, a version of LIME that assumes the absence of imprinting (by setting
Rim = 1) is recommendable given its robust and efficient features.

Second, regardless of whether the disease is common or rare, LIME has very lit-
tle bias in the estimates of the model parameters. In contrast, CLL, which assumes
the disease being rare, has much larger biases, even when the disease is indeed
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rare, since rare disease is a necessary but not a sufficient condition for CLL to be
valid.

Finally, mating symmetry is commonly assumed for many imprinting and/or
maternal effects detection methods [Ainsworth et al. (2011), Shi et al. (2008),
Weinberg, Wilcox and Lie (1998), Weinberg (1999), Zhou et al. (2009)]. How-
ever, when this assumption is violated, there can be large biases and greatly inflated
type I error rates, whereas LIME is not affected at all by departure from such as-
sumptions (Figures 1 and 2). In particular, when there is population substructure,
the assumption of HWE is violated even if there is HWE in each of the subpopula-
tions. Therefore, population substructure will likely exert a large effect on methods
that assume some mating frequency distributions. In contrast, because the partial
likelihood is independent of the mating type parameters, LIME may not be as sen-
sitive to such population substructure. The non-HWE scenario considered in our
simulation may be viewed as a mixture of two subpopulations, one is in HWE and
the other is inbred. Indeed, CLL and LL-LRT are highly sensitive, whereas LIME
is robust to this type of population stratification. However, will LIME still be ro-
bust if the disease prevalences also differ in the subpopulations? To investigate
this, we consider the following three scenarios of population substructure in which
a population consists of two distinct subpopulations each in HWE: (a) the two
populations differ in their allele frequencies (VAF = 0.1 or 0.3) but with the same
disease prevalence of 0.05; (b) the two populations have the same allele frequency
(VAF = 0.3) but different prevalences (0.05 or 0.15); (c) the two populations have
different allele frequency (VAF = 0.1 or 0.3) and also different prevalences (0.05
or 0.15). Under disease risk settings 1–4 (Table 2; imprinting absence), LIME has
smaller relative biases in all parameter estimates and smaller type I error rates un-
der all scenarios, and they are smaller (some are much smaller) than those from
CLL. For disease settings 5–8 (Table 2; imprinting present), LIMEs estimates have
larger biases, especially for scenario (b), but they are, in the majority of cases,
much smaller than those from CLL. This indicates that LIME is sensitive to popu-
lation stratification when there is imprinting effect, but it is certainly more robust
than the alternative method even under the situation where the disease prevalences
are different in addition to different frequencies in the subpopulations.

To compare with the performance of CLL, we consider LIME-pair in addition
to LIME-mix. In real data applications, only LIME-mix will be used unless there
are no triads in the sample (i.e., all the fathers are missing in all the families). This
is an unlikely scenario, but if this does happen, then LIME-pair is recommendable
over CLL due to its robust feature, although we note that LIME-pair, like CLL,
also assumes the absence of imprinting effect.

The need to specify disease prevalence deserves further discussion. Since the
prevalence is in fact a function of the disease model parameters and mating type
probabilities, it would be attractive if one can make use of this fact without the need
to specify this parameter. However, in order to use the current argument, the partial
likelihood needs to be free of the mating type probabilities, which will no longer be
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true if we express P(D) in terms of the other parameters. Fortunately, as we have
pointed our earlier, estimated prevalences are often obtained through large scale
population studies and would usually not deviate greatly from their true values.
Overall, even if the prevalence is misspecified as much as 20% away from the true
value, the estimates are still quite close to those had the prevalence been specified
correctly, reaffirming the robustness of the proposed procedure. However, for rarer
diseases, the deviations between the true and estimated prevalences may be larger.
Thus, we further investigate the effect of greater prevalence misspecification for
a disease with a prevalence of 1%. We use a prevalence of 0.2%, 5% (represent-
ing 500% decrease or increase) and 0.8%, 1.2% (20% decrease or increase). Our
results show that LIME remains robust with a 20% increase/decrease misspecifica-
tion. Even with a 500% decrease, the parameter estimates closely track those using
the true prevalence. A 500% increase leads to more sensitivity, but the procedure
is still quite robust if the variant allele frequency is moderate.

In LIME, the mother-child data type in which both the mother and the child are
heterozygous—the (1,1) data type—is not included in the analysis since the nui-
sance parameters are tangled up with the risk parameters of interest (Table 1), and
therefore its inclusion will render it impossible to adopt the partial likelihood ap-
proach. This exclusion, however, will lead to loss of information. Since we cannot
evaluate its effect on LIME directly, we use CLL as a surrogate by analyzing the
data without the (1,1) data type and compare the results with those from the ear-
lier analysis where (1,1) is included. The power is slightly lower for most of the
tests, although power actually increases for some; overall, the average power drop
is 0.056, small but appreciable. This amount may be viewed as an upper bound;
the effect on LIME is expected to be much smaller unless most of the data are
from pairs, not triads. This finding of small effect is not surprising considering the
parent asymmetry test (PAT) of Weinberg (1999). Therein, five triad categories,
including (1,1,1) (all three people in the family are heterozygous), were omitted
from the model, but PAT is competitive in power for imprinting test compared to
methods that use all categories.

Although fathers are usually harder to recruit than mothers, this does not imply
100% participation rate from mothers. As such, there will likely be child-father
pairs in a study as well, but such data cannot be utilized in our partial likelihood
approach since the model parameters and nuisance parameters cannot be factored
as in child-mother pairs.

Finally, in this paper we assume a single affected child for each case family. In
genetic diseases, there may be familial aggregation and, therefore, it is not unlikely
that there may be multiple affected siblings in a family. If each family is being
recruited through single ascertainment (i.e., through an affected/unaffected child),
then additional information from the siblings (even from the control families) may
be used in the partial likelihood formulation. This may lead to substantial power
gain, and thus warrants further investigation.
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