
The Annals of Applied Statistics
2013, Vol. 7, No. 1, 51–80
DOI: 10.1214/12-AOAS590
© Institute of Mathematical Statistics, 2013

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING
DYNAMIC TREES, WITH AN APPLICATION TO COMPUTER

CODE PERFORMANCE TUNING

BY ROBERT B. GRAMACY1, MATT TADDY2 AND STEFAN M. WILD3

University of Chicago Booth School of Business, University of Chicago Booth
School of Business and Argonne National Laboratory

We investigate an application in the automatic tuning of computer codes,
an area of research that has come to prominence alongside the recent rise of
distributed scientific processing and heterogeneity in high-performance com-
puting environments. Here, the response function is nonlinear and noisy and
may not be smooth or stationary. Clearly needed are variable selection, de-
composition of influence, and analysis of main and secondary effects for both
real-valued and binary inputs and outputs. Our contribution is a novel set
of tools for variable selection and sensitivity analysis based on the recently
proposed dynamic tree model. We argue that this approach is uniquely well
suited to the demands of our motivating example. In illustrations on bench-
mark data sets, we show that the new techniques are faster and offer richer
feature sets than do similar approaches in the static tree and computer experi-
ment literature. We apply the methods in code-tuning optimization, examina-
tion of a cold-cache effect, and detection of transformation errors.

1. Introduction. The optimization of machine instructions derived from
source codes has long been of interest to compiler designers, processor archi-
tects, and code developers. Compilers such as gcc, for example, provide a myriad
of flags, each allowing the programmer to choose the “level” of optimization. As
codes and their optimization become more complex, however, it can be harder to
know a priori what modifications will benefit or hinder performance in execution.

Recent advances in the area have demonstrated that higher performance of a
given code can be achieved through annotation scripts (e.g., Orio [Hartono, Norris
and Sadayappan (2009)]), which directly apply code transformations such as loop
reordering to the original source to generate a modified, but semantically equiva-
lent, version of the code. The output code can then be compiled in various ways
(e.g., by setting compiler optimization flags or by choosing different compilers),

Received April 2012; revised August 2012.
1Kemper Foundation Faculty Scholar, Econometrics and Statistics group at the University of

Chicago Booth School of Business.
2Neubauer Family Faculty Fellow, Econometrics and Statistics group at the University of Chicago

Booth School of Business.
3Supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S.

Department of Energy, Contract DE-AC02-06CH11357.
Key words and phrases. Sensitivity analysis, variable selection, Bayesian methods, Bayesian re-

gression trees, CART, exploratory data analysis, particle filtering, computer experiments.

51

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/12-AOAS590
http://www.imstat.org

52 R. B. GRAMACY, M. TADDY AND S. M. WILD

resulting in an executable that runs on a particular machine more or less quickly
depending on the nature of the transformation, compilation, machine architecture,
and original source code. Given detailed knowledge of each aspect of the process,
from original source to final executable, one can obtain significant speedups in
execution. But missteps can result in significant slowdowns.

Modern high-performance computing facilities are increasingly complex, mak-
ing it difficult and/or time-consuming for a scientific programmer to intimately
understand or control the environment in which the source code is executed, and
thereby affect its performance. For example, commercial cloud-computing ser-
vices such as the Amazon Elastic Compute Cloud (EC2) provide only a limited
description of the available hardware and accompanying resources; and scientific
and governmental computing facilities are diverse. Thus, the need arises to tune
codes automatically.

In this paper we report on aspects of a performance-tuning effort being under-
taken at Argonne National Laboratory to meet needs in scientific computing. Our
aim, given a target machine and source code, is to study how a suite of given trans-
formations, together with compiler options (e.g., gcc flags), can be used to mini-
mize code execution times under the constraint that it yields correct output. As ev-
idenced by the success of the ATLAS project (http://math-atlas.sourceforge.net/),
involving a similar but more limited search set, even minor performance gains for
basic computational kernels can be significant when called repeatedly.

1.1. A performance-tuning computer experiment. We focus on data arising
from a set of exploratory benchmarking experiments described by Balaprakash,
Wild and Hovland (2011). In the design of each experiment (the input source
code), a subset of the possible transformation and compilation options (inputs)
was thought to yield correct numerical outputs, and these were varied in full enu-
meration over the input space to obtain execution times. Some of the inputs are
ordinal and some categorical. Such full enumerations therefore result in combina-
torially huge design spaces—too big to explore in a time that is reasonable to wait
for a compiled executable. We investigate the extent to which a statistical model
can be used to measure the relative importance of each input for predicting exe-
cution times, to explore how each relevant input contributes to the execution time
marginally and (to the extent possible) conditionally, and to check for any pre-
dictable patterns of constraint violations arising from unsuccessful compilation or
runtime errors in the executed code.

Our results in Section 5 show that we can dramatically reduce the space of
options in the search for fast executables: one of the five inputs is completely
removed, and each of the other four has its range decreased by roughly a factor
of 2. We perform this analysis on a dramatically reduced design that, together with
a thrifty inferential technique, means that such information can be gleaned in an
amount of time that most programmers would deem acceptable to produce a final
executable. We then provide a final iterative optimization, primed with the results

http://math-atlas.sourceforge.net/

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 53

of that analysis, to obtain a fast executable. The remainder of the fully enumerated
design is then used for validation purposes, wherein we show that our solution is
preferable to alternatives out-of-sample.

Several aspects of this type of data make it unique in the realm of computer
experiments, therefore justifying a noncanonical approach. The first is size. Even
when using reduced designs, these experiments are large by conventional stan-
dards. Second, although some of the transformation options (i.e., inputs) are ordi-
nal (e.g., a loop unrolling factor), there is no reason to expect an a priori smooth
or stationary relationship between that input and the response: for some architec-
tures it may be reasonably smooth, and for others it may have regime changes due
to, for example, being memory-bound versus being compute-bound. Third, high-
order interactions between the inputs are expected, a priori, which may prohibit
the use of additive models. Fourth, checking for valid outputs requires a classifi-
cation surrogate. Fifth, since (valid) responses are execution times, the experiment
being modeled is inherently stochastic, whereas many authors define a computer
experiment as one where the response is deterministic.

This last point is perhaps more nuanced than it may seem at first. In actuality,
many of the sources that can contribute to the “randomness” of an executable are
known. For example, processor loads can be controlled; interruptions from op-
erating system maintenance threads follow schedules; and locations in memory,
which affect data movement, can be controlled. But these may more usefully, and
practically, be modeled as random. However, one contributor to the nature of the
“noise” in the experiment is of particular interest to the Argonne researchers: the
cold-cache effect.

This effect, due to compulsory cache misses sometimes arising from initial ac-
cesses to a cache block, is also referred to as cold-start misses Patterson and Hen-
nessy (2007) and can cause the first execution instance to run slower than subse-
quent instances. It would be useful to know whether acknowledging and control-
ling for this effect are necessary when searching for an optimal executable. The
degree of the cold-cache effect varies greatly from problem to problem, and deter-
mining its significance is vital for designing an experimental setup (e.g., whether
the cache needs to be warmed before each execution of a code configuration). Al-
though recent works [e.g., Balaprakash, Wild and Norris (2012)] have focused on
defining input spaces for performance tuning problems, formulating appropriate
objectives in the presence of the cache effects and other operating system noise
remains an unresolved issue, which application of our techniques can help inform.
In Section 5 we show that the cold-cache effect is present but negligible for the
particular problem examined. One can optimize the executable without acknowl-
edging its effect because it is very small and does not vary as a function of the
input parameters.

1.2. Roadmap. The remainder of the paper is organized as follows. Given the
unique demands of our motivating problem set, we make the case in Section 2 that
a new, thrifty approach to modeling computer experiments and decomposing the

54 R. B. GRAMACY, M. TADDY AND S. M. WILD

influence of inputs is needed. We maintain that, without using such an analysis
to first significantly narrow the search space, searches for optimal transformations
and compilation settings cannot be performed in a time that is acceptable to prac-
titioners. We propose that these needs are addressed by dynamic tree (DT) models,
which (along with previous approaches to model-based decomposition of influ-
ence) are reviewed below and in the Appendix. In Sections 3 and 4 we improve
upon standard methodology for variable selection and input sensitivity analysis
by leveraging the unique aspects of DTs. Compared with previous tree model-
ing approaches, our new methodology offers sequential decision making and fully
Bayesian evidence not previously enjoyed in these contexts. Compared with the
canonical Gaussian process (GP) model for computer experiments, which serves
as a straw man for many of our comparisons, our methods facilitate decompo-
sitions of input variable influence on problems that are several orders of magni-
tude larger than previously possible, while simultaneously avoiding assumptions
of smoothness and stationarity and allowing for higher-order interactions. Both
sections conclude with an illustration of the methods, in both classification and
regression applications, and a brief comparison study in support of these observa-
tions. Section 5 contains a detailed analysis of our motivating performance-tuning
example using such methods. We conclude in Section 6 with a brief discussion.

2. Background. We begin with a review of previous approaches to the anal-
ysis of input influence as relevant to applications in computer experiments, moti-
vating our dynamic trees approach. These models and accompanying inferential
techniques are then discussed in some detail.

2.1. Decomposition of influence. In any regression analysis, one must quan-
tify the influences on the response by individual candidate explanatory vari-
ables. This assessment should cover an array of information, attributing direction,
strength, and evidence to covariate effects, both when acting independently and
when interacting. For linear statistical models, various well-known tools are avail-
able for the task. In ordinary least-squares, for example, there are t and F tests for
the effect of predictor(s), ANOVA to decompose variance contributions, and lever-
ages to measure influence in the input space. Such tools are fundamental to applied
linear regression analysis and are widely available in modern statistical software
packages.

In contrast, analogous techniques for more complicated nonparametric regres-
sion methods, such as neural networks, other basis expansions, or GPs and other
stochastic models, are far less well established. Many related techniques exist,
and we provide a detailed review in our Appendix. However, they are not part
of the conventional arsenal applied to the broad engineering problems that moti-
vate this work—optimization under uncertainty and emulation of noisy computer
simulators—where modeling is further complicated by nonstationarities manifest-
ing in varying degrees of smoothness. A lack of fast, easy-to-apply tools (and read-
ily available software) means that one typically treats the response surface model

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 55

as a black-box prediction machine and neglects analyses essential for tackling the
application motivating this paper.

To resolve the tension between flexibility and interpretability, we present a
framework that provides both. We argue that dynamic trees (DTs), introduced in
Taddy, Gramacy and Polson (2011) and summarized below, are a uniquely ap-
propriate platform for predictive modeling and analysis of covariance in com-
plex regression and classification settings. Although aspects of DT modeling are
just as opaque as, say, neural networks, they inherit many advantages from the
well-understood features of classic trees. They take a fast and flexible divide-and-
conquer approach to regression and classification by fitting piecewise constant,
linear models, and multinomial models. Besides employing a prior that regularizes
the nature of the patchwork fits that result, they make few assumptions about the
nature of the data-generating mechanism. This approach is in contrast to GP mod-
els, which may disappoint when stationary modeling is inappropriate and which
are burdened by daunting computational hurdles for large data sets.

Part of our argument holds for tree models in general, of which DTs are just one
modern example: partitioning of the covariate space, the same quality that is key
to model flexibility, acts as an interpretable foundation for attribution of variable
influence. Distinct from most other tree methods, however, DTs are accompanied
by an efficient particle sequential Monte Carlo (SMC) method for posterior infer-
ence and can provide full uncertainty quantification for each metric of covariance
analysis, hence allowing for proper consideration of statistical evidence. DT in-
ference is also inherently on-line and naturally suited to the analysis of sequential
data. This aspect is exploited in our final optimization of the motivating computer
experiment.

Our methodological contributions comprise two complementary analyses: vari-
able selection and input sensitivity analysis. The first focuses on selecting the sub-
set of covariates to be included in the model, in that they lead to predictions of low
variance and high accuracy. The second characterizes how elements of this subset
influence the response. As discussed in more detail in the Appendix, it is most
common to focus on only one of these two analyses: variable selection is com-
mon in additive models, where the structure for covariance is assumed rather than
estimated, whereas in more complicated functional sensitivity analysis settings,
the set of covariates is taken as given. This methodological split is unfortunate,
because variable selection and sensitivity analysis work best together, with sensi-
tivities providing a higher-fidelity analysis that follows in-or-out decisions made
after preselecting variables. Hence, we have found that the use of DTs as a plat-
form for both analyses is a powerful tool in applied statistics and is ideal for our
motivating performance-tuning application.

2.2. Dynamic tree models. The dynamic tree (DT) framework was introduced
in Taddy, Gramacy and Polson (2011) to provide Bayesian inference for regression
trees that change in time with the arrival of new observations. It builds directly on

56 R. B. GRAMACY, M. TADDY AND S. M. WILD

FIG. 1. Prior possibilities for tree change Tt → Tt+1 upon arrival of a new data point at xt+1.

work by Chipman, George and McCulloch (1998, 2002), wherein prior models
over the space of various decision trees are first developed. Since the Taddy et
al. paper contains a survey of Bayesian tree models and full explanation of the
DT framework, we focus here on communicating an intuitive understanding of
DTs and refer the reader elsewhere for details. For those interested in using these
techniques, software is available in the dynaTree [Gramacy and Taddy (2011)]
package for R, which also includes all the methods of this paper.

Consider covariates xt = {xs}ts=1 paired with response yt = {ys}ts=1, as ob-
served up to time t (the data need not be ordered, but it is helpful to think sequen-
tially). A corresponding tree Tt consists of a hierarchy of nodes η ∈ Tt associated
with different disjoint subsets of xt . This structure is built through a series of re-
cursive split rules on the support of xt , as illustrated in the top row of Figure 1:
the left plot shows top-down sorting of observations into nodes according to vari-
able constraints, and the right plot shows the partitioning at the bottom of the tree
implied by such split rules. These terminal nodes are called leaves, and, in a regres-
sion tree, they are associated with a prediction rule for any new covariate vector.
That is, new xt+1 will fall within a single leaf node η(xt+1), and this provides a
distribution for yt+1. For example, a constant tree has simple leaf response func-
tions E[yt+1|xt+1] = μη(xt+1), a linear tree fits the plane y = αη(xt+1) + x�βη(xt+1)

through the observations in each leaf, and a classification tree uses within-leaf
response proportions as the basis for classification.

Bayesian inference relies on prior and likelihood elements to obtain a tree poste-
rior, p(Tt |[x, y]t) ∝ p(yt |Tt ,xt)π(Tt). Given independence across partitions, tree
likelihood is available as the product of likelihoods for each terminal node; con-
stant and linear leaves use normal additive error around the mean, while classi-
fication trees assume a multinomial distribution for each leaf’s response. This is
combined with a product of conjugate or reference priors for each leaf node’s pa-
rameters to obtain a conditional model for leaves given the tree. Chipman et al.
define the probability of splitting node η, with node depth Dη, as psplit(Tt , η) =
α(1 +Dη)

−β . Hence, the full tree prior is π(Tt) ∝ ∏
η∈ITt

psplit(Tt , η)
∏

η∈LTt
[1 −

psplit(Tt , η)], where I Tt is the set of internal nodes and LTt are the leaves. They
show how a taxonomy of choices of α and β map to prior distributions over trees
via their depth.

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 57

The DT model of Taddy et al. adopts this basic framework but combines it
with rules for how a given tree can change upon the observation of new data. In
particular, π(Tt+1) for a new tree is replaced with p(Tt+1|Tt ,xt+1), where this
conditional prior is proportional to Chipman et al.’s π(Tt+1) but restricted to trees
that result from three possible changes to the neighborhood of the leaf containing
xt+1: stay and keep the existing partitions, prune and remove the partition above
η(xt+1), or grow a new partition by splitting on this leaf. This evolution from Tt

to Tt+1 via xt+1 is illustrated in Figure 1. The original DT paper contains much
discussion of tree dynamics, but the founding idea is that this process leverages
the assumed independence structure of trees to introduce stability in estimation:
a new observation at xt+1 will change our beliefs only about the local area of the
tree around η(xt+1).

While the moves from Tt to Tt+1 are designed to be local to new observations,
inference for these models must account for global uncertainty about Tt . This is
achieved through use of a filtering algorithm that follows a general particle learn-
ing recipe set out by Carvalho et al. (2010). In such methods, the posterior for Tt is
approximated with a finite sample of potential tree particles T (i)

t ∈ {T (1)
t · · · T (N)

t },
each of which contain the set of tree-defining partition rules. This posterior is up-
dated to account for [xt+1, yt] by first resampling particles proportional to the pre-
dictive probability p(yt |T (i)

t ,xt+1) and then propagating these particles by sam-
pling from the conditional posterior p(Tt+1|T (i)

t , [x, y]t+1) (i.e., drawing from the
three moves illustrated in Figure 1, proportional to each resulting tree’s prior mul-
tiplied by its likelihood). Hence, tree propagation is local, but resampling accounts
for global uncertainty about tree structure.

Although DTs’ inferential mechanics are tailored to sequential applications,
such as sequential design or optimization, they can also provide a powerful tool
for batch analysis. Since the data ordering can be arbitrary, it can be helpful to
run several independent repetitions of the SMC method each with a different ran-
dom pass through the data. This approach allows one to study the Monte Carlo
error of the method, which can be mitigated by averaging inferences across repe-
titions. Such averaging is especially important for Bayes factor estimation [Taddy,
Gramacy and Polson (2011)].

3. Variable selection. Tree models engender basic variable selection through
the estimation of split locations: any variable not split on has been deselected.
However, this binary determination does not provide any spectrum of variable im-
portance, and the unavailable null distribution for tree splits can lead to inclusion of
spurious variables. Hence, we need measures of covariate influence that are based
on analysis of response variance. Combining these with the full probability model
provided by DTs, one can obtain a probabilistic measure of variable importance
and evidence for inclusion.

58 R. B. GRAMACY, M. TADDY AND S. M. WILD

3.1. Measuring the importance of predictors. Following the basic logic of
tree-based variable selection, variables contribute to reduction in predictive vari-
ance through each split location. We label the leaf model-dependent uncertainty
reduction for each node η as �(η). Grouping these by variable, we obtain the
importance index for each covariate k ∈ {1, . . . , p} as

Jk(T) = ∑
η∈IT

�(η)1[v(η)=k],(1)

where v(η) ∈ {1, . . . , p} is the splitting dimension of η and I T is the set of all
internal tree nodes (i.e., split locations). Through efficient storage of data and split
rules, these indices are inexpensive to calculate for any given tree. Given a filtered
set of trees, as described in Section 2.2, the implied sample of Jk indices provides
a full posterior distribution of importance for each variable; this can form a basis
for model-based selection.

For �(η) we consider the decrease in predictive uncertainty associated with the
split in η. In regression, the natural choice is the average reduction in predictive
variance,

�(η) =
∫
Aη

σ 2
η (x) dx −

∫
Aη�

σ 2
η�

(x) dx −
∫
Aηr

σ 2
ηr

(x) dx,(2)

where η� and ηr are η’s children, σ 2
η (x) is the predictive variance at x in the node η,

and Aη is the bounding covariate rectangle for that node. Rectangles on the bound-
ary of the tree are constrained to the observed variable support, and, from recursive
partitioning, Aη = Aη�

∪ Aηr .
For constant leaf-node models, each integral in (2) is simply the area of the

appropriate rectangle multiplied by that node’s predictive variance. For classifica-
tion, we replace the predictive variance at each node with the predictive entropy
based on p̂c, the posterior predicted probability of each class c in node η. This
leads to the entropy reduction �(η) = |Aη|Hη − |Aη�

|H� − |Aηr |Hr , where Hη =
−∑

c p̂c log p̂c. Since the rectangle area calculations involve high-dimensional re-
cursive partitioning and can be both computationally expensive and numerically
unstable, a Monte Carlo alternative is to replace |Aη| with n, the number of data
points in η. We find that this provides a fast and accurate approximation.

A regression tree with linear leaves presents a more complex setting, since the
reduction in predictive variance is not constant over each partition. In Appendix B,
we show that the calculations in (2) remain available in closed form. However,
since in this case covariates also affect the response through the linear leaf model,
(1) provides only a partial measure of variable importance. In Section 4 we de-
scribe other sensitivity metrics whose interpretations do not depend on leaf model
specification.

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 59

FIG. 2. Prior splitting frequencies (light) and probabilities of at least one split (dark) for a 10-di-
mensional input space plotted by sample size. Since all inputs feature equally in the random design,
the results for just one input are shown.

3.2. Selecting variables. An N -particle posterior sample {Jk(T (i)
t)Ni=1} can

be used to assess the importance of each predictor k = 1, . . . , p, through both
graphical visualization and ranking of summary statistics. As a basis for dese-
lecting variables, we advocate estimated relevance probability, P(Jk(T) > 0) ≈
1
N

∑N
i=1 I{Jk(T (i)

t)>0}.
4 A backward selection procedure based on this criterion, il-

lustrated in the examples below, is to repeatedly refit the trees after deselecting
variables whose relevance probability is less than a certain threshold.

We use a default relevance threshold of 0.5, such that a variable’s relevance
posterior must be less than 50% negative to entertain deselection. However, as we
comment in Section 5.1, this can be problematic for some designs, for example,
with many categorical predictors. A more conservative 0.95 threshold has analogy
to the familiar 5% level for evidence in hypothesis testing, and can be appropriate
in such settings. For guidance and intuition, one can refer to the prior distribution
on the probability that the tree splits on a particular input. Note that this is not
the same as a prior distribution on relevance, which does not exist under our im-
proper leaf-model priors; rather, the probability of splitting on a given variable is
its probability of having a nonzero relevance. Figure 2 plots the average number
of splits (lighter) and the probability of at least one split (darker) using the four
pairs of (α,β) values explored by Chipman, George and McCulloch (2002), plus
the dynaTree default values (0.95,2), as a function of the sample size obtained
uniformly in [0,1]10. These quantities stabilize after about t = 10 samples and
indicate that, for this uniform design, there is about a 12% prior probability of
splitting.

Ultimately, the backstop for a proposed deselection is the Bayes factor of the
old (larger) model over the proposed (smaller) one, terminating the full proce-

4Note that �(η), and thus Jk(T (i)
t) for particle i, may be negative for some η ∈ IT (i)

t
because of

the uncertainty inherent in a Monte Carlo posterior sample.

60 R. B. GRAMACY, M. TADDY AND S. M. WILD

dure when proposals longer indicate a strong preference for the simpler model.
Reliable marginal likelihoods are available through the sequential factorization
p(yT |xT) ≈ 1

N

∑N
i=1

∑T
t=1 logp(yt |xt , T (i)

t−1) and lead to useful Bayes factor es-
timates [see Taddy, Gramacy and Polson (2011)], as we shall demonstrate.

3.3. Examples.

Simple synthetic data. We consider data first used by Friedman (1991) to il-
lustrate multivariate adaptive regression splines (MARS) and then used by Taddy,
Gramacy and Polson (2011) to demonstrate the competitiveness of DTs relative to
modern (batch) nonparametric models. The input space is ten-dimensional, how-
ever, the response, given by 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 with
N(0,1) additive error, depends only on five of the predictors. Although the true
function is additive in a certain transformation of the inputs, we do not presume to
know that a priori in this illustration. A particle set of size N = 10,000 was used
to fit the DT model to T = 1000 input-output pairs sampled uniformly in [0,1]10.
Following Taddy, Gramacy and Polson (2011), we repeated the process ten times
to understand the nature of the Monte Carlo error on our selection procedure.

The results are summarized in Figure 3. The boxplots on the left show the cu-
mulative 100,000 samples of the tallied relevance statistics for each variable. The
first five all have relevances above zero with at least 99% posterior probability.
The latter five useless variables are easily identified, since their relevance statis-
tics tightly straddle zero. They average about 35% relevance above zero, cleanly
falling below 95% or 50% thresholds. (Figure 2 is matched to this input domain.)
After removing these variables we reran the fitting procedure and calculated (log)
Bayes factors, treating the smaller model as the null (i.e., in the denominator). All
ten (log) paths (center panel) eventually indicate that the larger model is not sup-
ported by the data. In fact, a decreasing trend in the Bayes factor suggests that the
smaller model is actually a better fit. Thus, while deselecting irrelevant variables
is not technically necessary, doing so becomes increasingly important as the data

FIG. 3. Variable selection in the Friedman data. The boxplots on the left show the posterior rel-
evance. The right two plots show (log) Bayes factors, first for the full predictor set versus the set
reduced to the five relevant variables, and then with a relevant variable removed.

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 61

length grows relative to a fixed-sized (N) particle cloud (i.e., in order to ward off
particle depletion). The right panel in the figure shows the (log) Bayes factor cal-
culation that would have resulted if we had further considered the first input for
deselection (i.e., suggesting only inputs 2–5 were important). Clearly, the larger
model (in the numerator) is strongly preferred.

Spam data. We turn now to the Spambase data set from the UCI Machine
Learning Repository [Asuncion and Newman (2007)]. The aim is not only to il-
lustrate our selection procedure in a classification context but also to scale up to
larger n and p with significant interaction effects. The data contains binary clas-
sifications of 4601 emails based on 57 attributes (predictors). The left panel of
Figure 4 shows the results of a Monte Carlo experiment based on misclassifi-
cation rates obtained using random fivefold cross-validation training/testing sets.
This was repeated twenty times for 100 training/testing sets total producing 100
rates. The comparators are modern, regularized logistic regression models, in-
cluding fully Bayesian (“b”) and maximum a posteriori (“map”) estimators via
Gibbs sampling [Gramacy and Polson (2012)], an estimator from the glmnet
package [“glmn”; Friedman, Hastie and Tibshirani (2010)], and the EM-based
method [“krish”; Krishnapuram et al. (2005)]. Results for these comparators on
an interaction-expanded set of approximately 1700 predictors are also provided.
Expansion is crucial to realize good performance from the logistic models.

Our DT contributions are dt and dt2, each using N = 1000 particles and 30
replicates, which took about half the execution time of the interaction-expanded
logistic comparators. The dt2 estimator is the result of a single iteration of the se-
lection procedure outlined above using a 50% threshold (explained below), lever-
aging the {Jk} obtained from the initial dt run. This usually resulted in 25 (of 57)
deselections. The subsequent Bayes factor calculation(s) indicated a preference for
the small model in every case considered. Notable results include the following.
The DT-based estimators perform as well as the interaction-expanded linear model

FIG. 4. (Left panel) Boxplots of misclassification rates divided into two sections, depending on
absence or presence of interaction terms in the design matrix. (Right panels) Posterior samples of
relevance statistics and their means.

62 R. B. GRAMACY, M. TADDY AND S. M. WILD

estimators, without explicitly using the expanded predictor set. Trees benefit from
a natural ability to exploit interaction—even a few three-way interactions were
found that, for the other comparators in the study, would have required an enor-
mous expansion of the predictor space. Without modification, our new selection
procedure simultaneously allows variables not helpful for main effects or interac-
tions to be culled. Hence, the estimator obtained after deselection (dt2) is just as
good as the former (dt, using the entire set of predictors) but with lower Monte
Carlo error. In fact, based on the worst cases in the experiment, dt2 is the best
estimator in this study. We found that marginal reductions in Monte Carlo error
can be obtained with further deselection stages.

The right panels of Figure 4 show the posterior samples of the entropy difference
tallies for predictors whose median relevance was greater than zero; also shown
is the corresponding posterior means by which the samples have been ordered.
A similar plot is given for random forests in HTF (Figure 10.6). Our ordering of
importance is similar, but importance drops off quickly because our single-tree
model is more parsimonious than are the additive trees of random forests. As an
advantage of our approach, the middle figure shows posterior uncertainty around
these means: there is a large amount of variability, and evidence of multicollinear-
ity shows in any given parameter’s potential effect ranging from zero to very large.
This observation and an effort to match the size of the predictor set selected by
HTF both contributed to our choice of the 50% threshold.

4. Sensitivity analysis. The importance indices of Section 3 provide a com-
putationally efficient measure of a covariate’s first-order effect—variance reduc-
tion directly attributed to splits on that variable. These indices are not, however,
appropriate for all applications of sensitivity analysis. First, with nonconstant leaf
prediction models, such as for linear trees, focusing only on variance reduction
through splits ignores potential influence in the leaf model; for example, a covari-
ate effect that is perfectly linear will lead to Jk near zero if fit with linear trees.
Second, the importance indices depend on the entire sample and cannot easily be
focused on local input regions, say, for optimization. Third, the importance indices
provide a measure that is clearly interpretable in the context of tree models but
does not correspond to any of the generic covariance decompositions in standard
input sensitivity analysis. In this section we describe a technique for Monte Carlo
estimation of these decompositions, referred to as sensitivity indices in the litera-
ture, that is model-free and can be constrained to subsets of the input space.

4.1. Sensitivity indices. The classic paradigm of input sensitivity analysis in-
volves analysis of response variability in terms of its conditional and marginal
variance. This occurs in relation to a given uncertainty distribution on the inputs,
labeled U(x). It can represent uncertainty about future values of x or the rela-
tive amount of research interest in various areas of the input space [see Taddy
et al. (2009)]. In applications, U is commonly set as a uniform distribution over

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 63

a bounded input region. Although one can adapt the type of sampling described
here to account for correlated inputs in U [e.g., Saltelli and Tarantola (2002)], we
treat only the standard and computationally convenient independent specification,
U(x) = ∏p

k=1 uk(xk).
The sensitivity index for a set of covariates measures the variance, with respect

to U , in conditional expectation given those variables. For example, the two most
commonly reported indices concern first-order and total sensitivity:

Sj = Var{E{y|xj }}
Var{y} and Tj = E{Var{y|x−j }}

Var{y} , j = 1, . . . , p,(3)

respectively. The first-order index represents response sensitivity to variable main
effects and is closest in spirit to the importance metrics of Section 3. From the iden-
tity E{Var{y|x−j }} = Var{y} − Var{E{y|x−j }}, Tj measures residual variance in
conditional expectation and thus represents all influence connected to a given vari-
able. Hence, Tj − Sj measures the variability in y due to the interaction between
input j and the other inputs, and a large difference Tj − Sj can trigger additional
local analysis to determine its functional form. Note that all moments in (3) are
with respect to U ; additional modeling uncertainty about y|x is accounted for in
posterior simulation of the indices.

We propose a scheme based on integral approximations presented by Saltelli
(2002). Extra steps are taken to account for an unknown response surface: “known”
responses are replaced with predicted values. Subsequent integration is repeated
across each tree in a particle representation of the posterior and then averaged over
all particles. Although we focus on first-order and total sensitivity, full posterior
indices for any covariate subset are available through analogous adaptation of the
appropriate routines of Saltelli (2002).

In the remainder of this section calculations are presented for a given individ-
ual tree; we suppress particle set indexing. Everything is conditional on a given
posterior realization for y(x). We begin to integrate the common E2{y} terms by
recognizing that

Sj = E{E2{y|xj }} − E2{y}
Var{y} and Tj = 1 − E{E2{y|x−j }} − E2{y}

Var{y} .(4)

Assuming uncorrelated inputs, an approximation can be facilitated by taking two
equal-sized random samples with respect to U . Although any sampling method
respecting U may be used, we follow Taddy et al. (2009) and use a Latin hypercube
design for the noncategorical inputs to obtain a cheap space-filling sample on the
margins, thereby reducing the variance of the resulting indices. Specifically, we
create designs M and M ′ each of size m, assembled as matrices comprising p-
length row-vectors sk and s′

k , for k = 1, . . . ,m, respectively. The unconditional
quantities use M :

Ê{y} = 1

m

m∑
k=1

E{y|sk} and V̂ar{y} = 1

m
E{y|M}�E{y|M} − Ê2{y},(5)

64 R. B. GRAMACY, M. TADDY AND S. M. WILD

where E{y|M} is the column vector [E{y|s1}, . . . ,E{y|sm}]� and Ê2{y} =
Ê{y}Ê{y}.

Approximating the remaining components in (4) involves mixing columns of
M ′ and M , which is where the independence assumption is crucial. Let M ′

j be M ′
with the j th column replaced by the j th column of M , and likewise let Mj be M

with the j th column of M ′. The conditional second moments are then

̂E
{
E2{y|xj }} = 1

m − 1
E{y|M}�E

{
y|M ′

j

}
,

(6)
̂E

{
E2{y|x−j }} = 1

m − 1
E

{
y|M ′}�

E{y|Mj } ≈ 1

m − 1
E{y|M}�E

{
y|M ′

j

}
,

the latter approximation saving us the effort of predicting at the locations in Mj .
In total, the set of input locations requiring evaluation under the predictive equa-

tions is the union of M , M ′, and {M ′
j }pj=1. For designs of size m this is m(p + 2)

locations for each of N particles. Together m and N determine the accuracy of
the approximation. Usually N is fixed by other, more computationally expensive,
particle updating considerations. Particle-wide application of the above provides a
sample from the posterior distribution for S and T.

4.2. Visualization of main effects. A byproduct of the above procedure is in-
formation that can be used to estimate main effects. For each particle and input
direction j , we apply a simple one-dimensional smoothing of the scatterplot of
[s1j , . . . , smj , s

′
1j , . . . , s

′
mj] versus [E{y|M},E{y|M ′}]. This provides a realization

of E{y|xj } over a grid of xj values and therefore a draw from the posterior of the
main effect curve. Note that we use here the posterior means E[y|s], as opposed
to the posterior realizations for y|s used in calculating sensitivity indices. Average
and quantile curves from each particle can then be used to visualize the posterior
mean uncertainty for the effect of each input direction as a function of its value.
One-dimensional curve estimation is robust to smoother choice in such a large
sample size (2m); we use a simple moving average.

4.3. Examples. Consider again the Friedman data from Section 3.3, using the
first six inputs. Ordinarily we would recommend an initial selection procedure
before undertaking further sensitivity analysis to eliminate all irrelevant variables,
but we keep one irrelevant input for illustrative purposes.

Figure 5 summarizes the analysis under constant and linear DTs (DTC and DTL,
resp.), and under a GP (fit using tgp) for comparison. In all three cases the number
of particles (or MCMC samples for the GP) and samples from U were the same:
N = 10,000 and m = 1000, without replicates. The main effects for DTL and GP
are essentially identical. As evidenced in the plots, DTC struggles to capture the
marginal behavior of every input; x3 is particularly off. These observations carry
over to the S and T indices. DTL displays the same average values as does the

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 65

FIG. 5. Main effects (first row) and S (second row) and T (third row) indices for the Friedman data
using dynamic trees and GPs.

GP, but with greater uncertainty. DTC again shows less agreement and greater
uncertainty. Whereas DTC works well for variable selection, DTL seems better
for decomposing the nature of variable influence.

With DTL and GP providing such similar sensitivity indices, why should one
bother with DTL? The answer rests in the computational expense of the two pro-
cedures. The DT fit and sensitivity calculation stages each take a few minutes. The
GP version, even using a multithreaded version of tgp, takes about six hours on
the same machine and requires that the two stages occur simultaneously. Hence,
if new x − y pairs are added or a new U is specified, the entire analysis must be
rerun from scratch. With DTs, the fit can be updated in a matter of seconds, and

66 R. B. GRAMACY, M. TADDY AND S. M. WILD

FIG. 6. (Left panel) Posterior predictive mean and entropy; misclassified points are shown as red
dots. (Right panels) Sensitivity main effects and S and T indices for each class. The black lines and
boxplots correspond to input x1, and the red ones to x2.

only the sensitivity stage must be rerun, leading to even greater savings. In sum,
the DT analysis can give similar results to GPs but is hundreds of times faster.

GPs also are good (but even slower) at classification (GPC). Perhaps this is why
we could not find GPC software providing input sensitivity indices for comparison.
Figure 6 shows the results of a sensitivity analysis for a three-class/2D data set [see
Gramacy and Polson (2011) for details and GPC references]. Fitting a GPC model
from 200 x − y pairs takes about an hour, for example, with the plgp package.
By contrast, fitting a DT with multinomial leaves using N = 10,000 particles takes
a few seconds; and the sensitivity postprocessing steps, which must proceed sepa-
rately for each class, take a couple of minutes. The MAP class labels and predictive
entropy shown on the left panel indicate the nature of the surface. Notice that the
entropy is high near the misclassified points (red dots). The smooth transitions are
difficult to capture with axis-aligned splits.

The plots in the right panels show the main effects and S and T indices for each
class. All three sets of plots indicate a dominant x1 influence, which conforms to
intuition because that axis spans three labels whereas x2 spans only two. Lower S

and T values for x2 provide further evidence that its contribution to the variance is
partly coupled with that of x1.

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 67

5. A computer experiment: Optimizing linear algebra kernels. We now
examine the data generated by linear algebra kernels from Balaprakash, Wild and
Hovland (2011). The execution times for these experiments were obtained on Fu-
sion, a 320-node cluster at Argonne National Laboratory. Each compute node con-
tained a 2.6 GHz Pentium Xeon 8-core processor with 36 GB of RAM. We focus
here on the GESUMMV experiment. The results obtained for the other two ker-
nels (MATMUL and TENSOR) we examined are similar and are therefore omit-
ted because of space constraints. GESUMMV, from the updated BLAS library
[Blackford et al. (2002)], carries out a sum of dense matrix-vector multiplies. The
tuning design variables considered consist of two loop-unrolling parameters taking
integer values in {1, . . . ,30} and three binary parameters associated with perform-
ing scalar replacement, loop parallelization, and loop vectorization, respectively.

Argonne allowed an exceptional amount of computing resources to be assigned
to these and a suite of similar performance-tuning examples in order to study as-
pects of the tuning apparatus and to enable initial explorations into elements of the
online optimization of executables such as the one we describe below. In partic-
ular, resources were allocated for transformation, compilation, and obtaining the
timings of 35 repeated (on the same dedicated node) execution trials at each design
point in a full enumeration of the GESUMMV design space. These tests incurred
over 30 CPU-hours (roughly half of which were devoted to transformation or com-
pilation and half to execution). Although well beyond an acceptable budget for a
one-off optimized compilation procedure, results from exhaustive enumerations
are vital for performance benchmarking of analyses such as ours. They allow us to
compare our automated procedures, made on the basis of much smaller searches,
with out-of-sample quantities. They also help build a library of “rules of thumb”
and functional and design parameter characteristics that can be useful for priming
future searches whose tuning variables and input source codes are similar to those
of the fully enumerated experiments. The fully enumerated GESUMMV problem
(as well as MATMUL and TENSOR) is relatively small from a performance-tuning
perspective, and hence is a prime candidate for our validation and benchmarking
purposes. In [Balaprakash, Wild and Norris (2012)], problems with up to 1053 de-
sign points are posed, clearly indicating that practical tuning will require sampling
of only a very small portion of the total design space.

The GESUMMV experiment is summarized as follows. Of the 23302 = 7200
total design points, 199 resulted in a compilation error or an improper memory
access and thus were deemed to violate a constraint on correctness. The resulting
245,035 (successful) runtimes were between 0.15 and 0.68 seconds, the mean and
median both being 0.22 seconds. Our focus here is on a carefully chosen subset
of this data, described below, comprising about 1% of the full set of runs. The
intention is to simulate a realistic scenario wherein variable selection and sensitiv-
ity analysis techniques can reasonably be expected to add value to an automated
tuning and compilation optimization.

68 R. B. GRAMACY, M. TADDY AND S. M. WILD

FIG. 7. (Left) Histograms for 4 particular trials with respect to the order statistics on decreasing
runtimes. (Right) Frequency of trial number that yielded the maximum of the 35 runtimes.

We begin by examining the extent of the cold-cache effect by using selection
techniques. We then turn to a full analysis of the sensitivity to inputs, leading to
a localization and subsequent optimization. Next we explore the extent to which
one can learn about, and avoid, constraint violations. We conclude with an out-of-
sample comparison between DTs and GPs.

5.1. Cold-cache effect and variable selection. Figure 7 illustrates the cold-
cache effect over the fully enumerated data. The left plot shows four histograms
counting the number (out of the 7001 input locations that did not result in a con-
straint violation) of times the first, second, seventeenth, and last of the trials re-
sulted in the κ th largest runtime of the 35 trials performed. While the first trial
stands out as the slowest, results for the three other trials indicate that this effect
does not persist for later trials. That is, the second (17th or 35th) does not tend to
have the second (17th or 35th) largest runtime. However, the right histogram in the
figure clearly shows that lower trial numbers tend to yield the maximum execution
time more frequently than do higher ones.

These results make clear the existence of a marginal cold-cache effect; indeed,
a paired t-test squarely rejects the null hypothesis that no marginal effect occurs.
However, our interest lies in determining whether the effect is influential enough
to warrant inclusion in a model for predicting runtimes. In particular, the abso-
lute average distance from the maximum to median runtime (among 35 trials for
each of the 7001 input configurations) is about 0.01, compared with the full differ-
ence between the maximum and minimum execution in the entire data set at 0.53.
Given the effect’s low magnitude and our limited available degrees of freedom,
it is not clear whether estimating the cold-cache effect is worthwhile in statistical
prediction.

The remainder of this subsection and Section 5.2 work with a maxmin space-
filling subsampled design of size 500 from the 7001, and just the first 5 of the 35
replicates (together a 99% reduction in the size of the data). First, we consider the
following experiment on a further subset of the data comprising the first trial and
the last (fifth) trial for every input in the space-filling design (1000 runs in total).
The five inputs were augmented with a sixth indicator, which is zero for those from

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 69

FIG. 8. (Top-Left) Relevance for the five inputs, plus the cold-cache indicator (sixth input).
(Top-Right) Sequential Bayes factors comparing the model with the sixth input to the one without.
(Bottom) Prior splitting frequencies (light) and probabilities of at least one split (dark) for the real–
valued inputs (left) and categorical ones (right).

the first trial and one for those from the fifth. If the cold-cache effect is statistically
significant, then this experiment should reveal so.

Figure 8 summarizes our results, based on a constant leaf model with 1000 par-
ticles and 30 replicates. The top-left panel shows the posterior relevance samples;
the focus, for now, is on the relevance of the sixth input, which is small. The scale
of the y-axis is, however, somewhat deceiving: the posterior probability that rele-
vance is greater than zero is 0.58, with mean relevance of 2.6 × 10−6, indicating
that the cold-cache may have a tiny but possibly significant effect. It is helpful
to consult the prior inclusion probabilities for further guidance here. The bottom-
right figure shows the Boolean predictor’s relevance to be approaching 20% as the
sample size gets large, nearly twice that of our earlier regression example. The
Bayes factor in the the right panel shows a gradually decreasing trend, signaling
that the cold-cache predictor is not helpful.

Before turning to SA, having decided to ignore the cold-cache effect based on
the above analysis, we observe that input three also shows low—in fact, negative—
relevance. A similar Bayes factor calculation (not shown) strongly indicated that

70 R. B. GRAMACY, M. TADDY AND S. M. WILD

FIG. 9. Main effects (first row) and S (second row) and T (third row) indices for GESUMMV.

it too could be dropped from the model. The remaining four inputs have much
greater, and entirely positive, posterior relevance; Bayes factors (also not shown)
reinforce that these predictors are important to obtain a good fit.

5.2. Sensitivity analysis. To further inform an optimization of the automatic
code tuning process, we perform a SA. Figure 9 summarizes main effects and S
and T indices for the four remaining variables. The full reduced design (all five
trials) was used—25,000 input-output pairs total, ignoring the cold-cache effect.
Results for both constant and linear leaf models are shown. In contrast to our earlier
results for the Friedman data, the differences between linear and constant leaves
are negligible. Perhaps this is not surprising since both treat binary predictors iden-
tically.5

The S and T indices on the remaining predictors tell a similar, but richer, story
compared with the relevance statistics. Input two has the largest effect, and input
four the smallest, but we also see that the effect of the inputs, marginally, is small
(since the Ss are low and the T s are high). This result would lead us to doubt that

5It is important to flag the two remaining binary inputs as categorical in the dynaTree software
when using the linear leaf model. This allows splitting on the binary input as usual but removes such
inputs from the within-leaf calculations so that the resulting Gram matrices are nonsingular.

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 71

FIG. 10. Close-up of (constrained) main effects. S and T are similar to Figure 9.

a rule of thumb for optimizing the codes based on the main effects alone would
bear fruit, namely, that inputs close to 〈x1 = 5, x2 = 12, x3 = 0〉 are most promis-
ing. Although this may be a sensible place to start, intricate interactions among
the variables, as suggested by the T indices in particular, mean that a search for
optimal tuning parameters may benefit from a methodical iterative approach, say,
with an expected improvement (EI) criterion [Jones, Schonlau and Welch (1998)]
or another optimization routine. Before launching headlong in that direction, how-
ever, we first illustrate how a more localized sensitivity analysis may be performed
without revisiting the computations used in the fitting procedure. The result can
either be cached to prime future code optimizations having similar inputs or to
initialize an iterative EI-like search on a dramatically reduced search space.

Figure 10 shows the main effects from a new sensitivity analysis (using DTC)
whose uncertainty distribution U ′(x) is constrained so that the first input is ≤ 15,
the second is ≥ 5, and the third is fixed to zero (representing a tenfold reduction
in the number of possible design points). The relevance indices indicated impor-
tance of the fourth input, so we allowed it to vary unrestricted in U ′, suspecting
that localizing the first three inputs might yield a more pronounced effect for the
fourth. Note that only U ′(x) is restricted, not the actual input-output pairs, and that
the model fitting does not need to be rerun. In contrast to the conclusion drawn
from Figure 9, the localized analysis strongly indicates that x4 = 0 is required for
a locally optimal solution. The other two inputs have a smaller marginal effect,
locally.

A finer iterative search may be useful for choosing among the ≥ 2 local minima
in the first two inputs. Many optimization methods are viable at this stage. We
prefer to stay within the SMC framework, allowing thrifty DT updates to pick up
where the size 500 space-filling design left off. Each subsequent design point is
chosen by using a tree-based EI criterion [Taddy, Gramacy and Polson (2011)]
evaluated on all remaining candidates that meet criteria suggested by our final,
zoomed-in, analysis, namely, all unevaluated locations from the fully-enumerated
set having 〈x3, x4〉 = 〈0,0〉 and 〈x1, x2〉 ∈ [2,12]×[11,24]. Ignoring the irrelevant
third input, this results in 98% reduction in the search space compared with the
original, fully enumerated design. After 100 such updates, an evaluation of the

72 R. B. GRAMACY, M. TADDY AND S. M. WILD

FIG. 11. Histograms (same on left and right but with different y-axes) of the median of the 35
runs of each of 7001 non-NA evaluations, shown with the predicted execution time of x∗ found via
localized EI (red dot). The right panel includes a kernel density estimate of the predicted responses
at the localized design, 〈x3, x4〉 = 〈0,0〉 and 〈x1, x2〉 ∈ [2,12] × [11,24].

predictive distribution on the full 7001 design led to selecting x∗ = 〈4,22,0,0〉,
giving a mean execution time of 17.9.

Figure 11 shows how this solution is better than 98% of the median of the 35
runs from the fully enumerated set. Both panels show the same histogram of those
times, with a red dot indicating ŷ(x∗). The right panel augments with the ker-
nel density of the predicted responses at the reduced/zoomed-in design, indicating
the value of our variable selection and sensitivity pre-analysis. Even choosing x∗
uniformly at random in this region provides an output that is better than 88% of
the total options. The final EI-based optimization ices the cake. Since it takes just
seconds to perform, it represents an operation that, when more complete optimiza-
tion is desired, can be bolted on at compile time for slight variations of the input
source: say, for differently-sized matrices. The “compiler” could call up our re-
duced GESUMMV design and perform a quick search on the new input matrices.

5.3. Constraint violation patterns and out-of-sample accuracy. We return to
the original, fully enumerated design to check two possibilities: (1) whether Ar-
gonne engineers unknowingly created an inefficient timing experiment (i.e., with
predictable regions of code failure); and (2) whether a GP-based analysis would
have led to more accurate predictions, and subsequently a better variable selection,
sensitivity analysis, and optimization, if a vastly greater computational resource
had been available.

For (1), the original 7200 design points, with (two) classification labels indicat-
ing NA values or positive real numbers (times), were used to fit a DT model with
multinomial leaves. Otherwise the setup was similar to our earlier examples. The
data has the feature that if one of the 35 trials was NA, then they all were. The rea-
son is that failures were due to the transformed code failing to compile (precluding
the code from running at all) or resulting in a segmentation fault upon execution.
Other failures (e.g., due to hardware failures, soft faults, or the computed quanti-
ties differing more than a certain tolerance from reference quantities) are possible
in practice but were not seen in the present data.

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 73

Sequential updating of the DT classification model revealed a posterior distri-
bution of the importance indices that was decidedly null. The importance probabil-
ities (i.e., of having a positive index) were 0.003,0.026,0.000,0.000, and 0.000
for the five inputs, respectively. We interpret these results as meaning that the DT
model detects no spatial pattern in the 2.7% of code failures compared with the
successful runs. This conclusion was backed up by a simple Bayes factor calcula-
tion where the null model disallowed any partitioning. These results are reassuring
because the input space was designed to limit the number of correctness viola-
tions; if relationships between the inputs and these violations were known a priori,
the design space would be adjusted accordingly to prevent failures at compile or
runtime.

For (2), we performed a 100-fold Monte Carlo experiment. In each fold, a DT
constant model and a DT linear model were trained on a random maxmin design
of size 100 subsampled from the fully enumerated 7001 locations using the first
five replicates. Besides the smaller design, the SMC setup is identical to the one
described earlier in this section. Then, a Bayesian GP with a separable correlation
function and nugget was also fit (using the tgp package) by using a number of
MCMC iterations deemed to give good mixing. The resulting computational effort
was about ten times greater than for the DT fit, owing to the 100 × 100 matrices
that required repeated inversion. We originally hoped to do a size 500 design as in
the preceding discussion, but the 2500×2500 inversions were computationally in-
feasible in such nested Monte Carlo repetition. Finally, a BART model was trained
using commensurate MCMC settings. For validation of the models in each fold a
random maxmin testing design of size 100 was subsampled from the remaining
6901 locations. RMSEs were obtained by first calculating the squared deviation
from the posterior mean predictors to actual timings of the 35 execution replicates
associated with each testing location. The square root of the average of the 350
distances was then recorded.

Figure 12 summarizes RMSEs by boxplot and numbers: median and 90% quan-
tiles. The absolute performance of the DT and GP methods are strikingly similar.

RMSE DTC DTL GP BART

5% 0.0398 0.0373 0.0394 0.0462
50% 0.0525 0.0503 0.0527 0.0591
95% 0.0675 0.0661 0.0668 0.0750

FIG. 12. RMSE comparison on GESUMMV Monte Carlo experiment, by boxplot (left) and empir-
ical quantiles (right).

74 R. B. GRAMACY, M. TADDY AND S. M. WILD

In pairwise comparison, however, DTL is better than the DTC and GP compara-
tors 85% and 71% of the time, respectively, emerging as a clear winner. Therefore,
thrifty sequential variable selection, sensitivity analysis, and EI-based optimization
notwithstanding, a DT can be at least as good as the canonical Gaussian process re-
sponse model for computer experiments. This performance may be due to a slight
nonstationarity or heteroskedasticity, which cannot be accommodated by the sta-
tionary GP. BART was included as a comparator to further explore this aspect. As
noted by [Taddy, Gramacy and Polson (2011)], BART will tend to outperform DTs
(and sometimes GPs) when there is nonstationarity or nonsmoothness in the mean,
but not the variance (i.e., under homoskedastic noise). The opposite is true in the
heteroskedastic noise case, and this is what we observe here. DTC and DTL have
lower RMSEs than BART 92% and 98% of the time, respectively. These results
suggest our execution-times data may benefit from methods that can accommodate
input-dependent noise.

6. Discussion. The advent of fast and cheap computers defined a statistical
era in the late 20th century, especially for Bayesian inference. For computer ex-
periments and other spatial data, modestly-sized data sets and clever algorithms
allowed the use of extremely flexible nonparametric models. GP models typify the
state of the art from that era, with many successful applications. In classification
problems, latent variables were key to exploiting computation for modeling flexi-
bility. Today, further technological advance is defining a new era, that of massive
data generation and collection where computer and physical observables are gath-
ered at breakneck pace.

These huge data sets are testing the limits of the popular models and implemen-
tations. GPs are buckling under the weight of enormous matrix inverses, and latent
variable models suffer from mixing (MCMC) problems. Although exciting inroads
have recently been made toward computationally tractable, approximate GP (re-
gression) inference in large data settings [e.g., Haaland and Qian (2011), Sang and
Huang (2012)], their application to canonical computer experiments problems such
as design and optimization remains a topic of future study. In this paper we sug-
gest that the new method of dynamic regression trees, an update of classic partition
tree techniques, has merit as an efficient alternative in nonparametric modeling. In
particular, we perform many of the same experiment-analysis functions as do GP
and latent variable models, at a fraction of the computational cost. By borrowing
relevance statistics from classical trees and sensitivity indices from GPs, the end
product is an exploratory data analysis tool that can facilitate variable selection, di-
mension reduction, and visualization. An open-source implementation is provided
in a recent update of the dynaTree package for R.

Our illustrations included data sets from the recent literature and a new com-
puter experiment on automatic code generation that is likely to be a hot application
area for statistics and other disciplines as heterogeneous computing environments

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 75

become more commonplace. Ultimately, the goal is to optimize code for the ar-
chitecture “just in time,” when it arrives at the computing node. In order to be
realistically achievable, that goal will require rules of thumb, as facilitated by se-
lection and sensitivity procedures like those outlined in this paper, and iterative
optimization steps like the EI approach we illustrated. We note that the input space
for these types of experiments can, in practice, be much larger than the specific
ones we study; indeed, the median size of the problems presented in [Balaprakash,
Wild and Norris (2012)] is more than 1015 input configurations. This makes enu-
meration prohibitively expensive even for academic purposes, irregardless of ac-
ceptable compilation times. In those cases, variable reductions and localizations
on the order of those we provide here will be crucial to enable any study of the
search space, let alone a subsequent optimization.

APPENDIX A: INPUT ANALYSIS

Variable selection is largely equated with setting coefficients to zero. Hence,
the approaches are predicated on a specific, usually additive, form for the influ-
ence of covariates on response. In the analysis of computer experiments, for exam-
ple, Cantoni, Flemming and Ronchetti (2011) and Maity and Lin (2011) use the
nonnegative garrote [NNG, Breiman (1995)] and Huang, Horowitz and Wei (2010)
apply grouped LASSO. An advantage of these approaches is that they can leverage
off-the-shelf software for variable selection. However, because of the complexity
of the modeled processes and a need for high precision, researchers using statisti-
cal emulation for engineering processes are seldom content with a single additive
regression structure for the entire input space. Moreover, the consideration of in-
teraction terms in additive models can require huge, overcomplete bases, typically
leading to burdensome computation. As a result, it is more common to rely on GP
priors or other nonparametric regression techniques [e.g., Bayarri et al. (2009), Lee
et al. (2008)]. However, such modeling significantly complicates the task of select-
ing relevant variables. Although several approaches have been explored in recent
literature [e.g., Linkletter et al. (2006), Bastos and O’Hagan (2009), Yi, Shi and
Choi (2011), and references therein], their complexity seems to have precluded the
release of software for use by practitioners.

An interesting middle ground is considered by Reich, Storlie and Bondell
(2009), who propose an additive model comprising univariate functions of each
predictor and bivariate functions for all interactive pairs. Each is given a GP prior,
and there is a catch-all (higher interactions) remainder term. This extends previ-
ous work wherein B-splines were proposed for a similar task [e.g., Gu (2002)].
Stochastic-search variable selection [SSVS, George and McCulloch (1993)] is
used for selecting main effects and interactions. Although perhaps more straight-
forward than performing SSVS directly on the lengthscale parameters of a GP
[Linkletter et al. (2006)], this approach has the added computational complexity
of inverting many (O(m2))n × n covariance matrices.

76 R. B. GRAMACY, M. TADDY AND S. M. WILD

Instead of a dedicated variable selection procedure, engineering simulators typ-
ically employ some form of input sensitivity analysis. Classically, as in examples
from Saltelli, Chan and Scott (2000), Saltelli et al. (2008), running the computer
code to obtain a response is presumed to be cheap. When it is expensive, one
must emulate the code with an estimated probability model [see Santner, Williams
and Notz (2003) for an overview]. In turn, researchers have proposed a variety of
schemes for extension of classic sensitivity analysis to account for response sur-
face uncertainty. GPs, because of their role as the canonical choice for modeling
computer experiments, are combined with sensitivity analysis in applications [e.g.,
Marrel et al. (2009), Ziehn and Tomlin (2009)]. However, the associated methodol-
ogy is usually based on restrictive stationarity and homoskedasticity assumptions
needed to derive either empirical Bayes [Oakley and O’Hagan (2004)] or fully
Bayesian [Farah and Kottas (2011), Morris et al. (2008)] estimates of sensitivity
indices. Notable exceptions are presented by Storlie et al. (2009) and Taddy et al.
(2009). In the former, approximate bootstrap confidence intervals are derived for
sensitivity indices based on a nonparametrically modeled response surface. In the
latter, variability integration embedded within MCMC simulation yields samples
from sensitivity indices’ full posterior distribution; a similar idea forms the basis
for our framework in Section 4.

Partition trees [e.g., CART: Breiman et al. (1984)] provide a basis for regres-
sion that has both a simplicity amenable to selecting variables and the flexibility
required for modeling computer experiments. Furthermore, partition trees over-
come some well-known drawbacks of the more commonly applied GP computer
emulators: expensive O(n3) matrix inversion, involving special consideration for
categorical predictors and responses and allowing for the possibility of nonstation-
arity in the response or heteroskedastic errors. Taddy, Gramacy and Polson (2011)
provide extensive background on general tree-based regression and argue for its
wider adoption in engineering applications. In the context of this paper’s goals,
trees present a unique, nonadditive foundation for determining variable relevance.
In their simplest form, with constant mean response at the tree leaves, variable
selection is automatic: if a variable is never used to define a tree partition, it has
been effectively removed from the regression. Indeed, this idea motivated some of
the earliest work on the use of trees, as presented by Morgan and Sonquist (1963),
for automatic interaction detection. In a more nuanced approach, Breiman et al.
(1984) introduce indices of variable importance that measure squared error reduc-
tion due to tree-splits defined on each covariate. Hastie, Tibshirani and Friedman
[HTF; (2009), Chapter 10] promote these indices for sensitivity analysis and de-
scribe how the approach can be extended for their boosted trees.

However, these techniques are purely algorithmic and lack a full probability
model, hence, their use is especially problematic in analysis of computer exper-
iments, where uncertainty quantification is often a primary objective. Moreover,
the HTF importance indices are only point estimates of the underlying sensitivity

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 77

metrics, thus, they preclude basing the variable selection criteria on posterior evi-
dence and make it difficult to properly deduce and interpret just how each variable
is contributing. Researchers have attempted to overcome some of these shortcom-
ings through the use of Bayesian inference, most recently in schemes that augment
the tree model to allow for better control or flexibility. Chipman, George and Mc-
Culloch (2010) describe a Bayesian additive regression tree (BART) model, and
their BayesTree software includes a direct analogue of the HTF importance in-
dices; and the method of Taddy et al. (2009) is implemented in tgp [see Gramacy
and Taddy (2010), Section 3].

APPENDIX B: VARIANCE INTEGRAL FOR LINEAR LEAVES

Here, we derive the variance integrals from (2) for a model with linear leaves.
Dropping the node subscript (η, η�, or ηr), we have∫

A
σ 2(x) dx =

∫
A

s2 − R
n − p − 1

(
1 + 1

n
+ x�G−1x

)
dx

(7)

= s2 − R
n − p − 1

(
|A|

(
1 + 1

n

)
+

∫
A

x�G−1xdx
)
,

where s2 is the sum of squares, R is the regression sum of squares, n ≡ |η| is the
number of (x, y) pairs, G is the Gram matrix, and |A| is the area of the rectangle.
The remaining integral is just a sum of polynomials: with the intervals outlining
the rectangle given by (a1, b1), . . . , (ap, bp) and (gij) the components of G−1,∫

A
x�G−1xdx =

∫ b1

a1

· · ·
∫ bp

ap

p∑
i=1

p∑
j=1

xixjgij dxi

=
p∑

i=1

gii

3

(
b3
i − a3

i

) ∏
k �=i

(bk − ak)

(8)

+ 2
p∑

i=1

∑
j>i

gij

4

(
b2
i − a2

i

)(
b2
j − a2

j

) ∏
k �=i,j

(bk − ak)

= |A|
(p∑

i=1

gii(b
3
i − a3

i)

3(bi − ai)
+

p∑
i=1

∑
j>i

gij (bi + ai)(bj + aj)

2

)
.

Acknowledgments. We are grateful to Prasanna Balaprakash for providing
the data from [Balaprakash, Wild and Hovland (2011)]. Many thanks to the Editor,
Associate Editor, and two referees for their valuable comments, which led to many
improvements.

78 R. B. GRAMACY, M. TADDY AND S. M. WILD

REFERENCES

ASUNCION, A. and NEWMAN, D. J. (2007). UCI machine learning repository. Available at
http://www.ics.uci.edu/~mlearn/MLRepository.html.

BALAPRAKASH, P., WILD, S. M. and HOVLAND, P. D. (2011). Can search algorithms save large-
scale automatic performance tuning? Procedia Computer Science 4 2136–2145.

BALAPRAKASH, P., WILD, S. M. and NORRIS, B. (2012). SPAPT: Search problems in automatic
performance tuning. Procedia Computer Science 9 1959–1968.

BASTOS, L. S. and O’HAGAN, A. (2009). Diagnostics for Gaussian process emulators. Technomet-
rics 51 425–438. MR2756478

BAYARRI, M. J., BERGER, J. O., KENNEDY, M. C., KOTTAS, A., PAULO, R., SACKS, J.,
CAFEO, J. A., LIN, C.-H. and TU, J. (2009). Predicting vehicle crashworthiness: Validation
of computer models for functional and hierarchical data. J. Amer. Statist. Assoc. 104 929–943.
MR2750226

BLACKFORD, L. S., DEMMEL, J., DONGARRA, J., DUFF, I., HAMMARLING, S., HENRY, G.,
HEROUX, M., KAUFMAN, L., LUMSDAINE, A., PETITET, A., POZO, R., REMINGTON, K. and
WHALEY, R. C. (2002). An updated set of basic linear algebra subprograms (BLAS). ACM Trans.
Math. Software 28 135–151. MR1928065

BREIMAN, L. (1995). Better subset regression using the nonnegative garrote. Technometrics 37 373–
384. MR1365720

BREIMAN, L., FRIEDMAN, J. H., OLSHEN, R. and STONE, C. (1984). Classification and Regres-
sion Trees. Wadsworth, Belmont, CA.

CANTONI, E., FLEMMING, J. M. and RONCHETTI, E. (2011). Variable selection in additive models
by non-negative garrote. Stat. Model. 11 237–252. MR2857594

CARVALHO, C. M., JOHANNES, M. S., LOPES, H. F. and POLSON, N. G. (2010). Particle learning
and smoothing. Statist. Sci. 25 88–106. MR2741816

CHIPMAN, H. A., GEORGE, E. I. and MCCULLOCH, R. E. (1998). Bayesian CART model search
(with discussion). J. Amer. Statist. Assoc. 93 935–960.

CHIPMAN, H. A., GEORGE, E. I. and MCCULLOCH, R. E. (2002). Bayesian treed models. Machine
Learning 48 303–324.

CHIPMAN, H. A., GEORGE, E. I. and MCCULLOCH, R. E. (2010). BART: Bayesian additive re-
gression trees. Ann. Appl. Stat. 4 266–298. MR2758172

FARAH, M. and KOTTAS, A. (2011). Bayesian inference for sensitivity analysis of computer simula-
tors, with an application to radiative transfer models. Technical Report UCSC-SOE-10-15, Univ.
California, Santa Cruz.

FRIEDMAN, J. H. (1991). Multivariate adaptive regression splines. Ann. Statist. 19 1–141.
MR1091842

FRIEDMAN, J. H., HASTIE, T. and TIBSHIRANI, R. (2010). Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software 33 1–22.

GEORGE, E. I. and MCCULLOCH, R. E. (1993). Variable selection via Gibbs sampling. J. Amer.
Statist. Assoc. 88 881–889.

GRAMACY, R. B. and POLSON, N. G. (2011). Particle learning of Gaussian process models for
sequential design and optimization. J. Comput. Graph. Statist. 20 102–118. MR2816540

GRAMACY, R. B. and POLSON, N. G. (2012). Simulation-based regularized logistic regression.
Bayesian Anal. 7 1–24.

GRAMACY, R. B. and TADDY, M. A. (2010). Categorical inputs, sensitivity analysis, optimization
and importance tempering with tgp version 2, an R package for treed Gaussian process models.
Journal of Statistical Software 33 1–48.

GRAMACY, R. B. and TADDY, M. A. (2011). dynaTree: Dynamic trees for learning and design.
R package version 2.0.

GU, C. (2002). Smoothing Spline ANOVA Models. Springer, New York. MR1876599

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ams.org/mathscinet-getitem?mr=2756478
http://www.ams.org/mathscinet-getitem?mr=2750226
http://www.ams.org/mathscinet-getitem?mr=1928065
http://www.ams.org/mathscinet-getitem?mr=1365720
http://www.ams.org/mathscinet-getitem?mr=2857594
http://www.ams.org/mathscinet-getitem?mr=2741816
http://www.ams.org/mathscinet-getitem?mr=2758172
http://www.ams.org/mathscinet-getitem?mr=1091842
http://www.ams.org/mathscinet-getitem?mr=2816540
http://www.ams.org/mathscinet-getitem?mr=1876599

VARIABLE SELECTION AND SENSITIVITY ANALYSIS USING DYNAMIC TREES 79

HAALAND, B. and QIAN, P. Z. G. (2011). Accurate emulators for large-scale computer experiments.
Ann. Statist. 39 2974–3002.

HARTONO, A., NORRIS, B. and SADAYAPPAN, P. (2009). Annotation-based empirical performance
tuning using orio. In Proceedings of the IEEE International Symposium on Parallel Distributed
Processing, 2009 (IPDPS 2009) 1–11. IEEE, New York.

HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd ed. Springer, New York. MR2722294

HUANG, J., HOROWITZ, J. L. and WEI, F. (2010). Variable selection in nonparametric additive
models. Ann. Statist. 38 2282–2313. MR2676890

JONES, D. R., SCHONLAU, M. and WELCH, W. J. (1998). Efficient global optimization of expen-
sive black-box functions. J. Global Optim. 13 455–492. MR1673460

KRISHNAPURAM, B., CARIN, L., FIGUEIREDO, M. and HARTEMINK, A. (2005). Sparse multino-
mial logistic regression: Fast algorithms and generalization bounds. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27 957–969.

LEE, H. K. H., SANSÓ, B., ZHOU, W. and HIGDON, D. M. (2008). Inference for a proton acceler-
ator using convolution models. J. Amer. Statist. Assoc. 103 604–613. MR2523997

LINKLETTER, C., BINGHAM, D., HENGARTNER, N., HIGDON, D. and YE, K. Q. (2006). Vari-
able selection for Gaussian process models in computer experiments. Technometrics 48 478–490.
MR2328617

MAITY, A. and LIN, X. (2011). Powerful tests for detecting a gene effect in the presence of possible
gene-gene interactions using garrote kernel machines. Biometrics 67 1271–1284. MR2872377

MARREL, A., IOOSS, B., LAURENT, B. and ROUSTANT, O. (2009). Calculations of Sobol indices
for the Gaussian process metamodel. Reliability Engineering and System Safety 94 742–751.

MORGAN, J. N. and SONQUIST, J. A. (1963). Problems in the analysis of survey data, and a pro-
posal. J. Amer. Statist. Assoc. 58 415–434.

MORRIS, R. D., KOTTAS, A., TADDY, M., FURFARO, R. and GANAPOL, B. (2008). A statistical
framework for the sensitivity analysis of radiative transfer models. IEEE Transactions on Geo-
science and Remote Sensing 12 4062–4074.

OAKLEY, J. E. and O’HAGAN, A. (2004). Probabilistic sensitivity analysis of complex models:
A Bayesian approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 751–769. MR2088780

PATTERSON, D. A. and HENNESSY, J. L. (2007). Computer Organization and Design—the Hard-
ware / Software Interface, 3rd ed. Morgan Kaufmann, Boston.

REICH, B. J., STORLIE, C. B. and BONDELL, H. D. (2009). Variable selection in Bayesian smooth-
ing spline ANOVA models: Application to deterministic computer codes. Technometrics 51 110–
120. MR2668168

SALTELLI, A. (2002). Making best use of model evaluations to compute sensitivity indices. Comput.
Phys. Comm. 145 280–297.

SALTELLI, A., CHAN., K. and SCOTT, E. M., eds. (2000). Sensitivity Analysis. Wiley, Chichester.
MR1886391

SALTELLI, A. and TARANTOLA, S. (2002). On the relative importance of input factors in mathemat-
ical models: Safety assessment for nuclear waste disposal. J. Amer. Statist. Assoc. 97 702–709.
MR1973688

SALTELLI, A., RATTO, M., ANDRES, T., CAMPOLONGO, F., CARIBONI, J., GATELLI, D.,
SAISANA, M. and TARANTOLA, S. (2008). Global Sensitivity Analysis. The Primer. Wiley,
Chichester. MR2382923

SANG, H. and HUANG, J. Z. (2012). A full scale approximation of covariance functions for large
spatial data sets. J. R. Stat. Soc. Ser. B Stat. Methodol. 74 111–132. MR2885842

SANTNER, T. J., WILLIAMS, B. J. and NOTZ, W. I. (2003). The Design and Analysis of Computer
Experiments. Springer, New York. MR2160708

http://www.ams.org/mathscinet-getitem?mr=2722294
http://www.ams.org/mathscinet-getitem?mr=2676890
http://www.ams.org/mathscinet-getitem?mr=1673460
http://www.ams.org/mathscinet-getitem?mr=2523997
http://www.ams.org/mathscinet-getitem?mr=2328617
http://www.ams.org/mathscinet-getitem?mr=2872377
http://www.ams.org/mathscinet-getitem?mr=2088780
http://www.ams.org/mathscinet-getitem?mr=2668168
http://www.ams.org/mathscinet-getitem?mr=1886391
http://www.ams.org/mathscinet-getitem?mr=1973688
http://www.ams.org/mathscinet-getitem?mr=2382923
http://www.ams.org/mathscinet-getitem?mr=2885842
http://www.ams.org/mathscinet-getitem?mr=2160708

80 R. B. GRAMACY, M. TADDY AND S. M. WILD

STORLIE, C. B., SWILER, L. P., HELTON, J. C. and SALLABERRY, C. J. (2009). Implementation
and evaluation of nonparametric regression procedures for sensitivity analysis of computationally
demanding models. Reliability Engineering & System Safety 94 1735–1763.

TADDY, M. A., GRAMACY, R. B. and POLSON, N. G. (2011). Dynamic trees for learning and
design. J. Amer. Statist. Assoc. 106 109–123. MR2816706

TADDY, M. A., LEE, H. K. H., GRAY, G. A. and GRIFFIN, J. D. (2009). Bayesian guided pattern
search for robust local optimization. Technometrics 51 389–401. MR2756475

YI, G., SHI, J. Q. and CHOI, T. (2011). Penalized Gaussian process regression and classification
for high-dimensional nonlinear data. Biometrics 67 1285–1294. MR2872378

ZIEHN, T. and TOMLIN, A. S. (2009). GUI-HDMR—a software tool for global sensitivity analysis
of complex models. Environmental Modelling and Software 24 775–785.

R. B. GRAMACY

M. TADDY

UNIVERSITY OF CHICAGO BOOTH SCHOOL

OF BUSINESS

5807 S. WOODLAWN AVENUE

CHICAGO, ILLINOIS 60637
USA
E-MAIL: rbgramacy@chicagobooth.edu

taddy@chicagobooth.edu
URL: http://faculty.chicagobooth.edu/

S. M. WILD

MATHEMATICS AND COMPUTER SCIENCE DIVISION

AT ARGONNE NATIONAL LABORATORY

9700 S. CASS AVENUE, BLDG. 240-1154
ARGONNE, ILLINOIS 60439
USA
AND

COMPUTATION INSTITUTE

UNIVERSITY OF CHICAGO

USA
E-MAIL: wild@mcs.anl.gov
URL: http://www.mcs.anl.gov/~wild

http://www.ams.org/mathscinet-getitem?mr=2816706
http://www.ams.org/mathscinet-getitem?mr=2756475
http://www.ams.org/mathscinet-getitem?mr=2872378
mailto:rbgramacy@chicagobooth.edu
mailto:taddy@chicagobooth.edu
http://faculty.chicagobooth.edu/
mailto:wild@mcs.anl.gov
http://www.mcs.anl.gov/~wild

	Introduction
	A performance-tuning computer experiment
	Roadmap

	Background
	Decomposition of influence
	Dynamic tree models

	Variable selection
	Measuring the importance of predictors
	Selecting variables
	Examples
	Simple synthetic data
	Spam data

	Sensitivity analysis
	Sensitivity indices
	Visualization of main effects
	Examples

	A computer experiment: Optimizing linear algebra kernels
	Cold-cache effect and variable selection
	Sensitivity analysis
	Constraint violation patterns and out-of-sample accuracy

	Discussion
	Appendix A: Input analysis
	Appendix B: Variance integral for linear leaves
	Acknowledgments
	References
	Author's Addresses

