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BAYESIAN INFERENCE AND THE PARAMETRIC BOOTSTRAP

BY BRADLEY EFRON1

Stanford University

The parametric bootstrap can be used for the efficient computation of
Bayes posterior distributions. Importance sampling formulas take on an easy
form relating to the deviance in exponential families and are particularly sim-
ple starting from Jeffreys invariant prior. Because of the i.i.d. nature of boot-
strap sampling, familiar formulas describe the computational accuracy of the
Bayes estimates. Besides computational methods, the theory provides a con-
nection between Bayesian and frequentist analysis. Efficient algorithms for
the frequentist accuracy of Bayesian inferences are developed and demon-
strated in a model selection example.

1. Introduction. This article concerns the use of the parametric bootstrap to
carry out Bayesian inference calculations. Two main points are made: that in the
comparatively limited set of cases where bootstrap methods apply, they offer an
efficient and computationally straightforward way to compute posterior distribu-
tions and estimates, enjoying some advantages over Markov chain techniques; and,
more importantly, that the parametric bootstrap helps connect Bayes and frequen-
tist points of view.

The basic idea is simple and not unfamiliar: that the bootstrap is useful for im-
portance sampling computation of Bayes posterior distributions. An important pa-
per by Newton and Raftery (1994) suggested a version of nonparametric bootstrap-
ping for this purpose. By “going parametric” we can make the Bayes/bootstrap
relationship more transparent. This line of thought has the advantage of linking
rather than separating frequentist and Bayesian practices.

Section 2 introduces the main ideas in terms of an elementary one-parameter
example and illustrates a connection between Jeffreys invariant prior density and
second-order accurate bootstrap confidence limits. Both methods are carried out
via reweighting of the original “raw” bootstrap replications. The calculation of
posterior distributions by bootstrap reweighting is a main theme here, in constrast
to Markov chain methods, which strive to directly produce correctly distributed
posterior realizations.

Multidimensional exponential families, discussed in Section 3, allow the
Bayes/bootstrap conversion process to be explicitly characterized. Two important
families, multivariate normal and generalized linear models, are investigated in
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Sections 4 and 5. Jeffreys-type priors can yield unsatisfactory results in multipa-
rameter problems [Ghosh (2011)], as shown here by comparison with bootstrap
confidence limits.

An advantage of bootstrap reweighting schemes is the straightforward analy-
sis of their accuracy. Section 6 develops accuracy estimates for our methodology,
both internal (How many bootstrap replications are necessary?) and external (How
much would the results vary in future data sets?). The latter concerns the frequen-
tist analysis of Bayesian estimates, an important question in “objective Bayes” ap-
plications; see, for instance, Gelman, Meng and Stern (1996) and Berger (2006).

Bootstrap reweighting can apply to any choice of prior (not favoring conve-
nience priors such as the conjugates, e.g.), but here we will be most interested in
the objective-type Bayes analyses that dominate current practice. Jeffreys priors
are featured in the examples, more for easy presentation than necessity. The paper
ends with a brief summary in Section 7. Some technical details are deferred to the
Appendix.

Connections between nonparametric bootstrapping and Bayesian inference
emerged early, with the “Bayesian bootstrap,” Rubin (1981) and Efron (1982).
Bootstrap reweighting is deployed differently in Smith and Gelfand (1992), with
a nice example given in their Section 5. Sections 4 and 6 of Efron and Tibshirani
(1998) develop bootstrap reweighting along the lines used in this paper.

2. Conversion and reweighting. Our methodology is introduced here in
terms of a simple one-parameter problem. Table 1 shows scores for n = 22 stu-
dents on two tests, “mechanics” and “vectors,” having sample correlation

θ̂ = 0.498.(2.1)

We wish to calculate some measure of posterior distribution for the true underlying
parameter value

θ0 = correlation (mechanics score, vectors score).(2.2)

As in Mardia, Kent and Bibby (1979), we assume that the individual student
scores yi = (meci ,veci ) are a random sample from a bivariate normal distribution

TABLE 1
Scores of 22 students on two tests, “mechanics” and “vectors” [from Mardia, Kent and Bibby

(1979), a randomly chosen subset of the 88 students in their Table 1.2.1].
The sample correlation is θ̂ = 0.498

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

mech 7 44 49 59 34 46 0 32 49 52 44 36 42 5 22 18 41 48 31 42 46 63
vec 51 69 41 70 42 40 40 45 57 64 61 59 60 30 58 51 63 38 42 69 49 63
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having unknown mean vector μ and covariance matrix �,

y :yi
ind∼ N2(μ,�) for i = 1,2, . . . ,22(2.3)

with y = (y1, y2, . . . , y22) representing the full data set. Let (μ̂, �̂) denote the
usual maximum likelihood estimate (MLE). Then a parametric bootstrap sample
y∗ follows (2.3), with (μ̂, �̂) replacing (μ,�),

y∗ :y∗
i

ind∼ N2(μ̂, �̂) for i = 1,2, . . . ,22.(2.4)

The sample correlation of y∗ is a parametric bootstrap replication of θ̂ , say, θ̂∗.
A total of B = 10,000 parametric bootstrap samples y∗ were independently gener-
ated according to (2.4), and the corresponding θ̂∗ values calculated. We will denote
them simply as

θ1, θ2, . . . , θi, . . . , θB(2.5)

with θi short for θ̂∗
i .

The histogram in Figure 1 compares the distribution of the 10,000 θi ’s with
Fisher’s theoretical density function fθ (θ̂),

fθ (θ̂) = (n − 2)(1 − θ2)(n−1)/2(1 − θ̂2)(n−4)/2

π

∫ ∞
0

dw

(coshw − θ θ̂)n−1
,(2.6)

FIG. 1. Histogram of B = 10,000 bootstrap replications for the student score correlation coeffi-
cient (2.4)–(2.5) scaled to integrate to 1. Solid curve is Fisher’s density formula (2.6) for θ = 0.498.
Triangles indicate the exact 95% confidence interval θ ∈ (0.093,0.741).
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where θ has been set equal to its MLE value 0.498. In this sense f0.498(·) is the
ideal parametric bootstrap density we would obtain if the number of replications
B approached infinity. Chapter 32 of Johnson and Kotz (1970) gives formula (2.6)
and other representations of fθ (θ̂).

Figure 1 also indicates the exact 95% confidence limits

θ0 ∈ (0.093,0.741),(2.7)

21
2 % noncoverage in each tail, obtained from fθ (θ̂) by the usual construction,∫ 1

0.498
f0.093(θ) dθ = 0.025(2.8)

and similarly at the upper endpoint.
Suppose now2 we have a prior density π(θ) for the parameter θ and wish to

calculate the posterior density π(θ |θ̂ ). For any subset A of the parameter space
� = [−1,1],

Pr{θ ∈ A|θ̂} =
∫

A
π(θ)fθ (θ̂) dθ

/∫
�

π(θ)fθ (θ̂) dθ(2.9)

according to Bayes rule.
Define the conversion factor R(θ) to be the ratio of the likelihood function to

the bootstrap density,

R(θ) = fθ(θ̂)/f
θ̂
(θ).(2.10)

Here θ̂ is fixed at its observed value 0.498 while θ represents any point in �. We
can rewrite (2.9) as

Pr{θ ∈ A|θ̂} =
∫

A π(θ)R(θ)f
θ̂
(θ) dθ∫

� π(θ)R(θ)f
θ̂
(θ) dθ

.(2.11)

More generally, if t (θ) is any function θ , its posterior expectation is

E
{
t (θ)|θ̂} =

∫
� t(θ)π(θ)R(θ)f

θ̂
(θ) dθ∫

� π(θ)R(θ)f
θ̂
(θ) dθ

.(2.12)

The integrals in (2.11) and (2.12) are now being taken with respect to the
parametric bootstrap density f

θ̂
(·). Since θ1, θ2, . . . , θB (2.5) is a random sam-

ple from f
θ̂
(·), the integrals can be estimated by sample averages in the usual way,

yielding the familiar importance sampling estimate of E{t (θ)|θ̂},

Ê
{
t (θ)|θ̂} =

B∑
i=1

tiπiRi

/ B∑
i=1

πiRi,(2.13)

2For this example we reduce the problem to finding the posterior distribution of θ given θ̂ , ignoring

any information about θ in the part of (μ̂, �̂) orthogonal to θ̂ . Our subsequent examples do not make
such reductions.
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FIG. 2. Heavy curve is the posterior density π(θ |θ̂ ) for the correlation (2.2), starting from Jef-
freys prior (2.14), obtained by reweighting the B = 10,000 bootstrap replications (2.5); triangles
show 95% credible limits θ0 ∈ (0.095,0.748). Light dashed curve is raw unweighted bootstrap dis-
tribution. Beaded curve is BCa weighted bootstrap density (2.17), nearly the same as π(θ̂ |θ) in this
case.

where ti = t (θi), πi = π(θi), and Ri = R(θi). Under mild regularity conditions,
the law of large numbers implies that Ê{t (θ)|θ̂} approaches E{t (θ)|θ} as B → ∞.
(The accuracy calculations of Section 6 will show that in this case B = 10,000 was
larger than necessary for most purposes.)

The heavy curve in Figure 2 describes π̂(θ |θ̂ ), the estimated posterior density
starting from Jeffreys prior

π(θ) = 1/
(
1 − θ2)

(2.14)

(see Section 3). The raw bootstrap distribution puts weight 1/B on each of the
B replications θi . By reweighting these points proportionately to wi = πiRi , we
obtain the estimated posterior distribution of θ given θ̂ , with

P̂r{θ ∈ A|θ̂} = ∑
θi∈A

wi

/ B∑
i=1

wi;(2.15)

π̂(θ |θ̂ ) represents the density of this distribution—essentially a smoothed his-
togram of the 10,000 θi’s, weighted proportionally to wi .

Integrating π̂ (θ |θ̂ ) yields the 95% credible limits (21
2% posterior probability in

each tail)

θ0 ∈ (0.095,0.748),(2.16)
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close to the exact limits (2.7). Prior (2.14) is known to yield accurate frequentist
coverage probabilities, being a member of the Welch–Peers family discussed in
Section 4.

In this case, the weights wi = πiRi can be thought of as correcting the raw
unweighted (wi ≡ 1) bootstrap density. Figure 2 shows the correction as a small
shift leftward. BCa, standing for bias-corrected and accelerated, is another set of
corrective weights, obtained from purely frequentist considerations. Letting Ĝ(θ)

denote the usual empirical cumulative distribution function (c.d.f.) of the bootstrap
replications θ1, θ2, . . . , θB , the BCa weight on θi is

wBCa
i = ϕ(zθi/(1 + azθi) − z0)

(1 + azθi)2ϕ(zθi + z0)

[
zθi = �−1Ĝ(θi) − z0

]
,(2.17)

where ϕ and � are the standard normal density and c.d.f., while z0 and a are
the bias-correction and acceleration constants developed in Efron (1987) and
DiCiccio and Efron (1992), further discussed in Section 4 and the Appendix. Their
estimated values are z0 = −0.068 and a = 0 for the student score correlation prob-
lem.

The BCa density πBCa(θ̂ |θ), obtained by reweighting as in (2.15), is seen in
Figure 2 to nicely agree with the Jeffreys posterior density, being slightly heav-
ier in the left tail, with 95% central interval θ0 ∈ (0.074,0.748). This agreement
is misleadingly soothing, as will be seen in the multidimensional context of Sec-
tion 4.

3. Exponential families. The Bayes/bootstrap conversion process takes on a
simplified form in exponential families. This facilitates its application to multipa-
rameter problems, as discussed here and in the next two sections.

The density functions for a p-parameter exponential family F can be expressed
as

fβ(β̂) = eα′β̂−ψ(α)f0(β̂),(3.1)

where the p-vector α is the canonical parameter, β̂ is the p-dimensional sufficient
statistic vector, and where ψ(α), the cumulant generating function, provides the
multipliers necessary for fβ(β̂) integrating to 1. Here we have indexed the family
by its expectation parameter vector β ,

β = Eα{β̂}(3.2)

for the sake of subsequent notation, but α and β are one-to-one functions and we
could just as well write fα(β̂).

The deviance between any two members of F is

D(β1, β2) = 2Eβ1

{
log

(
fβ1(β̂)/fβ2(β̂)

)}
(3.3)
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[denoted equivalently D(α1, α2) since deviance does not depend on the parame-
terization of F ]. Taking logs in (3.1) shows that

D(β1, β2)/2 = (α1 − α2)
′β1 − (

ψ(α1) − ψ(α2)
)
.(3.4)

Then family (3.1) can be re-expressed in “Hoeffding’s form” as

fβ(β̂) = f
β̂
(β̂)e−D(β̂,β)/2.(3.5)

Since D(β̂,β) is equal to or greater than zero, (3.5) shows that β = β̂ is the MLE,
maximizing fβ(β̂) over all choices of β in B, the space of possible expectation
vectors.

Parametric bootstrap replications of β̂ are independent draws from f
β̂
(·),

f
β̂
(·) −→ β1, β2, . . . , βi, . . . , βB,(3.6)

where βi is shorthand notation for β̂∗
i . Starting from a prior density π(β) on B, the

posterior expectation of any function t (β) given β̂ is estimated by

Ê
{
t (β)|β̂} =

B∑
i=1

t (βi)π(βi)R(βi)
/ B∑

i=1

π(βi)R(βi)(3.7)

as in (2.13), with R(β) the conversion factor

R(β) = fβ(β̂)/f
β̂
(β).(3.8)

Note: π(β)R(β) is transformation invariant, so formula (3.7) produces the same
numerical result if we bootstrap α1, α2, . . . , αB instead of (3.6), or for that matter
bootstrap any other sufficient vector. See Section 4.

Hoeffding’s form (3.5) allows a convenient expression for R(β):

LEMMA 1. Conversion factor (3.8) equals

R(β) = ξ(β)e�(β),(3.9)

where

ξ(β) = f
β̂
(β̂)/fβ(β)(3.10)

and

�(β) = [
D(β, β̂) − D(β̂,β)

]
/2.(3.11)

Letting α̂ be the canonical parameter vector corresponding to β̂ , (3.4) gives

�(β) = (α − α̂)′(β + β̂) − 2
[
ψ(α) − ψ(α̂)

]
,(3.12)

which is useful for both theoretical and numerical computations.
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The derivatives of ψ with respect to components of α yield the moments of β̂ ,

ψ̇(α) ≡ (∂ψ/∂αj ) = β, ψ̈(α) ≡ (
∂2ψ/∂αj∂αk

) = V (α) = covα{β̂}(3.13)

and

˙ψ̈(α) ≡ (
∂3ψ/∂αj ∂αk ∂αl

) = U(α),(3.14)

Ujkl(α) = Eα(β̂j −βj )(β̂k −βk)(β̂l −βl). In repeated sampling situations, where
β̂ is obtained from n independent observations, the entries of V (α) and U(α) are
typically of order O(n−1) and O(n−2), respectively; see Section 5 of Efron (1987).

The normal approximation

β̂ ∼̇ Np

(
β,V (α)

)
(3.15)

yields

fβ(β)
.= (2π)−p/2∣∣V (α)

∣∣−1/2 and f
β̂
(β̂)

.= (2π)−p/2∣∣V (α̂)
∣∣−1/2

,(3.16)

so

ξ(β)
.= ∣∣V (α)

∣∣1/2
/
∣∣V (α̂)

∣∣1/2
.(3.17)

Because (3.16) applies the central limit theorem where it is most accurate, at the
center, (3.17) typically errs by a factor of only 1 + O(1/n) in repeated sampling
situations; see Tierney and Kadane (1986). In fact, for discrete families like the
Poisson, where fβ(β) is discontinuous, approximation (3.17) yields superior per-
formance in applications of (3.9) to (3.7). In what follows we will treat (3.17) as
exact rather than approximate.

Jeffreys invariant prior density, as described in Kass and Wasserman (1996),
takes the form

π Jeff(β) = c
∣∣V (α)

∣∣−1/2(3.18)

in family (3.1), with c an arbitrary positive constant that does not affect estimates
such as (3.7). Ignoring c, we can use (3.17) and (3.18) to rewrite the conversion
factor R(β) (3.9) as

R(β) = e�(β)/π Jeff(β).(3.19)

Jeffreys prior is intended to be “uninformative.” Like other objective priors dis-
cussed in Kass and Wasserman, it is designed for Bayesian use in situations lacking
prior experience. Its use amounts to choosing

π(β)R(β) = e�(β)(3.20)

in which case (3.7) takes on a particularly simple form:
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LEMMA 2. If π(β) is Jeffreys prior (3.18), then (3.7) equals

Ê
{
t (β)|β̂} =

B∑
i=1

t (βi)e
�(βi)

/ B∑
i=1

e�(βi)(3.21)

with �(β) as in (3.11) and (3.12).

The normal translation model β̂ ∼ Np(β,�), with � fixed, has �(β) = 0, so
that the Bayes estimate t̂ in (3.21) equals the unweighted bootstrap estimate t̄ ,

t̂ = Ê
{
t (β)|β̂} =

B∑
i=1

ti

/
B = t̄ .(3.22)

Usually though, t̂ will not equal t̄ , the difference relating to the variability of �(β)

in (3.21).
A simple but informative result concerns the relative Bayesian difference (RBD)

of t (β) defined to be

RBD(t) = (t̂ − t̄ )/sd(t),(3.23)

sd(t) = [∑B
1 (ti − t̄ )2/B]1/2:

LEMMA 3. Letting ri = πiRi , the relative Bayesian difference of t (β) is

RBD(t) = cor(t, r) · cv(r)(3.24)

and if π(β) = π Jeff(β),

RBD(t)
.= cor(t, r) · sd(�);(3.25)

here cor(t, r) is the empirical correlation between ti and ri for the B bootstrap
replications, cv(r) the empirical coefficient of variation of the ri values, and sd(�)

the empirical standard deviation of the �i values.

PROOF. Equation (3.24) follows immediately from (3.7),

RBD(t) =
∑B

1 (ti − t̄ )ri/B

sd(t)
∑B

1 ri/B
= cor(t, r)

sd(r)

r̄
.(3.26)

If π(β) is the Jeffreys prior (3.18), then r(β) = exp(�(β)) (3.19) and the usual
delta-method argument gives cv(r)

.= sd(�). �

The student score example of Figure 2 (which is not in exponential family form)
has, directly from definition (3.23),

RBD(t) = 0.473 − 0.490

0.169
= −0.101,(3.27)



1980 B. EFRON

which is also obtained from (3.24) with cor(t, r) = −0.945 and cv(r) = 0.108.
Notice that the cv(r) factor in (3.24), and likewise sd(�) in (3.25), apply to any
function t (β), only the cor(t, r) factor being particular. The multiparameter ex-
amples of Sections 3 and 4 have larger cv(r) but smaller cor(t, r), again yielding
rather small values of RBD(t). All of the Jeffreys prior examples in this paper
show substantial agreement between the Bayes and unweighted bootstrap results.

Asymptotically, the deviance difference �(β) depends on the skewness of the
exponential family. A normal translation family has zero skewness, with �(β) = 0
and R(β) = 1, so the unweighted parametric bootstrap distribution is the same as
the flat-prior Bayes posterior distribution. In a repeated sampling situation, skew-
ness goes to zero as n−1/2, making the Bayes and bootstrap distributions converge
at this rate. We can provide a simple statement in one-parameter families:

THEOREM 1. In a one-parameter exponential family, �(β) has the Taylor
series approximation

�(β)
.= 1

6 γ̂ Z3 [
Z = V̂ −1/2(β − β̂)

]
,(3.28)

where V̂ and γ̂ are the variance and skewness of β ∼ f
β̂
(·). In large-sample situ-

ations, Z ∼̇ N (0,1) and γ̂ is O(n−1/2), making �(β) of order Op(n−1/2).

(The proof appears in the Appendix, along with the theorem’s multiparameter
version.)

As a simple example, suppose

β̂ ∼ βGamman/n
[
β ∈ (0,∞)

]
,(3.29)

so β̂ is a scaled version of a standard Gamma variate having n degrees of freedom.
In this case,

�(β)
.= 1

3
√

n
Z3 with Z = √

n

(
β

β̂
− 1

)
,(3.30)

making �(β) an increasing cubic function of β . The cubic nature of (3.28) and
(3.30) makes reweighting of the parametric bootstrap replications βi by exp(�i)

more extreme in the tails of the distribution than near β̂ .
Stating things in terms of conditional expectations Ê{t (β)|β̂} as in (3.7) is con-

venient, but partially obscures the basic idea: that the distribution putting weight
proportional to wi = πiRi on βi approximates the posterior distribution π(β|β̂).

As an example of more general Bayesian calculations, consider the “posterior
predictive distribution,”

g(y) =
∫

π(β|β̂)gβ(y) dβ,(3.31)

where y is the original data set yielding β̂; by sufficiency as in (2.3), it has density
functions gβ(y) = fβ(β̂)h(y|β̂). For each βi we sample y∗∗

i from gβi
(·). Then the

discrete distribution putting weight proportional to wi on y∗∗
i , for i = 1,2, . . . ,B ,

approximates g(y). See Gelman, Meng and Stern (1996).
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4. The multivariate normal family. This section and the next illustrate
Bayes/bootstrap relationships in two important exponential families: the multivari-
ate normal and generalized linear models. A multivariate normal sample y com-
prises n independent d-dimensional normal vector observations

y :yi
ind∼ Nd(μ,�), i = 1,2, . . . , n.(4.1)

This involves p = d · (d + 3)/2 unknown parameters, d for the mean vector μ and
d · (d + 1)/2 for the covariance matrix �. We will use γ to denote the vector of
all p parameters; γ is not the expectation vector β (3.2), but rather a one-to-one
quadratic function γ = m(β) described in formula (3.5) of DiCiccio and Efron
(1992).

The results of Section 3 continue to hold under smooth one-to-one transforma-
tions γ = m(β). Let f̃γ (γ̂ ) denote the density of the MLE γ̂ = m(β̂), and like-
wise R̃(γ ) = f̃γ (γ̂ )/f̃γ̂ (γ ) for the conversion factor, D̃(γ1, γ2) for the deviance,
�̃(γ ) = [D̃(γ, γ̂ ) − D̃(γ̂ , γ )]/2 for the deviance difference, and π̃ Jeff(γ ) for Jef-
freys prior. Then Lemma 1 continues to apply in the transformed coordinates:

R̃(γ ) = ξ̃ (γ )e�̃(γ ) [
ξ̃ (γ ) = f̃γ̂ (γ̂ )/f̃γ (γ )

]
.(4.2)

(See the Appendix.)
A parametric bootstrap sample

f̃γ (·) −→ γ1, γ2, . . . , γB(4.3)

approximates the conditional expectation of a function t̃ (γ ), starting from prior
π̃(γ ), by

Ê
{
t̃ (γ )|γ̂ } =

B∑
i=1

t̃i π̃i R̃i

/ B∑
i=1

π̃iR̃i(4.4)

as in (2.14), and if π̃(γ ) is Jeffreys prior,

Ê
{
t̃ (γ )|γ̂ } =

B∑
i=1

t̃ie
�̃i

/ B∑
i=1

e�̃i(4.5)

as in (3.21). This can be particularly handy since � is tranformation invariant and
can be evaluated in any convenient set of coordinates, while π̃ Jeff(γ ) need not be
calculated at all.

The following theorem provides ξ̃ (γ ) and R̃(γ ) for a multivariate normal sam-
ple (4.1), working with γ the p = d · (d + 3)/2 coordinates consisting of μ and
the elements of � on or above its main diagonal:

THEOREM 2. In (μ,�) coordinates,

ξ̃ (μ,�) = (|�|/|�̂|)(d+2)/2(4.6)
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and

�̃(μ,�) = n

{
(μ − μ̂)′ �̂

−1 − �−1

2
(μ − μ̂)

(4.7)

+ tr(��n−1 − �̂�−1)

2
+ log

|�̂|
|�|

}
.

(Proof in the Appendix.)
Here 1/ξ̃ (μ,�) turns out to be exactly proportional to |Ṽ (γ )|−1/2, and ei-

ther expression gives π̃ Jeff(μ,�). Expression (4.7) equals the deviance difference
(3.11), no matter what the choice of coordinates.

Theorem 2 makes it easy to carry out parametric bootstrapping: having calcu-
lated the usual MLE estimates (μ̂, �̂), each bootstrap data set y∗ is generated as
in (4.1),

y∗ :y∗
i ∼ Nd(μ̂, �̂), i = 1,2, . . . , n,(4.8)

from which we calculate the bootstrap MLE estimate (μ̂∗, �̂∗), denoted simply
(μ,�) as before. To each of B such replicates

(μ,�)1, (μ,�)2, . . . , (μ,�)i, . . . , (μ,�)B(4.9)

is attached the weight

wi = π̃i ξ̃ie
�̃i(4.10)

using Theorem 2 (or more exactly wi/
∑B

1 wj ); this distribution, supported on
the B points (4.9), estimates the posterior distribution of (μ,�) given (μ̂, �̂).
Expectations are then obtained as in (4.4), and similarly for more general posterior
parameters such as percentiles and credible limits.

Figure 3 applies this methodology to the student score data of Table 1, assuming
the bivariate normal model (2.3). We take the parameter of interest θ to be the
eigenratio

θ = t (μ,�) = λ1/(λ1 + λ2),(4.11)

where λ1 and λ2 are the ordered eigenvalues of �; θ has MLE θ̂ = t (μ̂, �̂) =
0.793.

B = 10,000 bootstrap replications were generated as in (4.9), and ti = t ((μ,

�)i) calculated for each. Total computation time was about 30 seconds. The heavy
curve shows the estimated posterior density of θ given (μ̂, �̂), starting from Jef-
freys prior. The 95% credible region, 21

2 % probability excluded in each tail, was

Bayes: θ ∈ (0.650,0.908).(4.12)
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FIG. 3. Heavy curve is Bayes posterior density for the eigenratio (4.11), starting from Jeffreys prior
for a bivariate normal model; solid triangles show 95% credible limits (0.650,0.908). Beaded curve
is BCa confidence density based on weights (2.17) with z0 = −0.222, a = 0; BCa 95% interval
(0.598,0.890), open triangles, is shifted far leftward. Light dashed curve is unweighted bootstrap
density.

That is, ∑
ti≤0.650

e�̃i

/ B∑
1

e�̃i = 0.025(4.13)

and similarly for the upper endpoint.
In this case the BCa 95% confidence limits are shifted sharply leftward com-

pared to (4.12),

BCa: θ ∈ (0.598,0.890).(4.14)

The beaded curve in Figure 3 shows the full BCa confidence density, that is, the es-
timated density based on the BCa weights (2.17). For the eigenratio, z0 = −0.222
and a = 0 are the bias correction and acceleration constants. See the Appendix for
a brief discussion of the z0 and a calculations.

Figure 4 helps explain the difference between the Bayes and BCa results.
The heavy curve shows the BCa weights (2.17) increasing sharply to the left as
a function of θi = t ((μ,�)i), the bootstrap eigenratio values. In other words,
smaller values of θi are weighted more heavily, pulling the weighted percentile
points of the BCa distribution downward. On the other hand, the Bayes weights
π̃ Jeff

i R̃i = exp(�̃i) (represented in Figure 4 by their regression on θi ) are nearly
flat, so that the Bayes posterior density is almost the same as the unweighted boot-
strap density shown in Figure 3.
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FIG. 4. Solid curve: BCa weights (2.17), with (z0, a) = (−0.222,0), plotted versus bootstrap
eigenratio replications θi . Dashed curve: regression of Jeffreys prior Bayes weights exp(�̃i ) on θλ.

The BCa limits are known to yield highly accurate coverage probabilities; see
DiCiccio and Efron (1996). Moreover, in the eigenratio case, the MLE θ̂ is strongly
biased upward, suggesting a downward shift for the confidence limits. This brings
up a familiar complaint against Jeffreys priors, extensively discussed in Ghosh
(2011): that in multiparameter settings they can give inaccurate inferences for in-
dividual parameters of interest.

This is likely to be the case for any general-purpose recipe for choosing objec-
tive prior distributions in several dimensions. For instance, repeating the eigenratio
analysis with a standard inverse Wishart prior on � (covariance matrix I , degrees
of freedom 2) and a flat prior on μ gave essentially the same results as in Fig-
ure 3. Specific parameters of interest require specifically tailored priors, as with
the Bernardo–Berger reference priors, again nicely reviewed by Ghosh (2011).

In fact, the BCa weights can be thought of as providing such tailoring: define
the BCa prior (relative to the unweighted bootstrap distribution) to be

πBCa
i = wBCa

i /Ri(4.15)

with wBCa
i as in (2.17). This makes the posterior weights πBCa

i Ri appearing in
expressions like (3.7) equal the BCa weights wBCa

i , and makes posterior credible
limits based on the πBCa prior equal BCa limits. Formula (4.15) can be thought
of as an automatic device for constructing Welch and Peers’ (1963) “probability
matching priors;” see Tibshirani (1989).
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Importance sampling methods such as (4.5) can suffer from excessive variability
due to occasional large values of the weights. The “internal accuracy” formula
(6.2) will provide a warning of numerical problems. A variety of helpful counter-
tactics are available, beginning with a simple truncation of the largest weight.

Variations in the parametric bootstrap sampling scheme can be employed. In-
stead of (3.6), for instance, we might obtain β1, β2, . . . , βB from

βi
ind∼ Np

(
μ̂β, h(�̂β)

)
,(4.16)

where μ̂β and �̂β are the observed mean and covariance of β’s from a prelimi-
nary f

β̂
(·) sample. Here h(�̂β) indicates an expansion of �̂β designed to broaden

the range of the bootstrap distribution, hence reducing the importance sampling
weights. If a regression analysis of the preliminary sample showed the weights
increasing in direction v in the β space, for example, then h(�̂β) might expand
�̂β in the v direction. Devices such as this become more necessary in higher-
dimensional situations, where extreme variability of the conversion factor R(βi)

may destabilize our importance sampling computations.
Replacing (3.6) with (4.16) changes the conversion factor R(β) (3.8), but in an

easily computable way. In fact, replacing (3.6) with βi ∼ Np(μ̂β, �̂β) makes the
calculation of R(β) easier in situations where there is no simple formula for the
bootstrap density f

β̂
(β).

5. Generalized linear models. The Bayes/bootstrap conversion theory of
Section 3 applies directly to generalized linear models (GLM). A GLM begins
with a one-parameter exponential family

gη(y) = eηy−φ(η)g0(y),(5.1)

where η = α,y = β̂ , and φ(η) = ψ(α) in notation (3.1). An n×p structure matrix
X and a p-dimensional parameter vector α then yield an n-vector η = Xα, with
each entry ηj governing an independent observation yj ,

yj
ind∼ gηj

(·) for j = 1,2, . . . , n.(5.2)

All of this results in a p-parameter exponential family (3.1), with α the canoni-
cal parameter vector. Letting μ be the expectation vector of y = (y1, . . . , yn)

′,

μ = Eα{y},(5.3)

the other entries of (3.1) are

β̂ = X′y, β = X′μ and ψ(α) =
n∑

i=1

φ(xjα),(5.4)



1986 B. EFRON

where xj is the j th row of X. The deviance difference �(β) (3.11) has a simple
form,

�(β) = (α − α̂)′(β + β̂) − 2
n∑

j=1

[
φ(xjα) − φ(xj α̂)

]
(5.5)

= (η − η̂)′(μ + μ̂) − 2
n∑

j=1

[
φ(ηj ) − φ(η̂j )

]
[α̂ the MLE of α, η̂ = Xα̂, and μ̂ the expectation vector (5.3) corresponding to
α = α̂] according to (3.12).

As an extended example we now consider a microarray experiment discussed
in Efron (2010), Section 2.1: 102 men, 50 healthy controls and 52 prostate cancer
patients, having each had the activity of N = 6033 genes measured [Singh et al.
(2002)]. A two-sample test comparing patients with controls has been performed
for each gene, yielding a z-value zk , that is, a test statistic having a standard nor-
mal distribution under H0k , the null hypothesis of no patient/control difference for
gene k,

H0k : zk ∼ N (0,1).(5.6)

The experimenters, of course, are interested in identifying nonnull genes.
Figure 5 shows a histogram of the N z-values. The standard normal curve is too

high in the center and too low in the tails, suggesting that at least some of the genes

FIG. 5. Histogram of the N = 6033 z-values from the prostate cancer study, Singh et al. (2002).
Standard normal curve (dashed) is too high at center and too low in the tails. “Model 4,” solid curve,
is the fit from a fourth-degree polynomial Poisson regression.
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are nonnull. The better-fitting curve “model 4” is a fit from the Poisson regression
family discussed next.

There are J = 49 bins for the histogram, each of width 0.2, with centers xj

ranging from −4.4 to 5.2. Let yj be the number of zk values in the j th bin,

yj = #{zk ∈ bin j}, j = 1,2, . . . , J = 49.(5.7)

We will assume that the yj ’s are independent Poisson observations, each having
its own expectation μj ,

yj
ind∼ Poi(μj ), j = 1,2, . . . , J,(5.8)

and then fit curves to the histogram using Poisson regression. Why this might be
appropriate is discussed at length in Efron (2008, 2010), but here we will just take
it as a helpful example of the Bayes/bootstrap GLM modeling theory.

We consider Poisson regression models where the canonical parameters ηj =
log(μj ) are mth-degree polynomial functions of the bin centers xj , evaluated by
glm(y∼poly(x,m),Poisson) in the language R. This is a GLM with the
Poisson family, ηj = logμj , where X is a J × (m + 1) matrix having rows xj =
(1, xj , x

2
j , . . . , xm

j ) for j = 1,2, . . . , J . For the Poisson distribution, φ(η) = μ in
(5.1). The deviance difference function (5.5) becomes

�(β) = (η − η̂)′(μ + μ̂) − 2 · 1′(μ − μ̂)(5.9)

with 1 a vector of J ones.
Let “Mm” indicate the Poisson polynomial regression model of degree m. M2,

with log(μj ) quadratic in xj , amounts to a normal location-scale model for the
marginal density of the zk’s. Higher-order models are more flexible. M4, the quar-
tic model, provided the heavy fitted curve in Figure 5. Table 2 shows the Poisson

TABLE 2
Deviance from Poisson polynomial regression models for counts (5.7), prostate data; AIC criterion
(5.10) is minimized for the quartic model M4. Boot % shows the proportion of each model selected

in B = 4000 bootstrap replications of the AIC criterion, bootstrapping from M8. Bayes % are
weighted Bayes posterior proportions, assuming Jeffreys prior. The St Error column is obtained

from the bootstrap-after-bootstrap calculations of Section 6

Model Deviance AIC Boot % Bayes % (St Error)

M2 138.6 144.6 0% 0% (0%)
M3 137.1 145.1 0% 0% (0%)
M4 65.3 75.3 32% 36% (20%)
M5 64.3 76.3 10% 12% (14%)
M6 63.8 77.8 5% 5% (8%)
M7 63.8 79.8 1% 2% (6%)
M8 59.6 77.6 51% 45% (27%)
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deviance for the fitted models M2 through M8. A dramatic decrease occurs be-
tween M3 and M4, but only slow change occurs after that. The AIC criterion for
model m,

AIC(m) = Deviance + 2 · (m + 1)(5.10)

is minimized at M4, though none of the subsequent models do much worse. The
fit from M4 provided the “model 4” curve in Figure 5.

Parametric bootstrap samples y∗ were generated from M4, as in (5.8),

y∗
j

ind∼ Poi(μ̂j ) for j = 1,2, . . . , J(5.11)

with μ̂j the MLE values from M4. B = 4000 such samples were generated, and
for each one the MLE α̂∗, and also β̂∗ (5.4), were obtained from the R call
glm(y∗ ∼poly(x,4),Poisson). Using the simplified notation α = α̂∗ gives
bootstrap vectors η = Xα,μ = exp(η) = (exp(ηj )), β = X′μ, where X is the
49 × 5 matrix poly(x,4), and finally �(β) as in (5.9). [Notice that β repre-
sents β̂∗ here, not the “true value” β of (5.4).]

The reweighted bootstrap distribution, with weights proportional to

wi = e�i on βi for i = 1,2, . . . ,B = 4000,(5.12)

estimates the posterior distribution of β given βi , starting from Jeffreys prior. The
posterior expectation of any parameter θ = t (β) is estimated by

∑
witi/

∑
wi as

in (3.21).
We will focus attention on a false discovery rate (Fdr) parameter θ ,

θ(z) = Fdr(z) = [
1 − �(z)

]
/
[
1 − F(z)

]
,(5.13)

where � is the standard normal c.d.f. and F(z) is the c.d.f. of the Poisson regres-
sion model: in terms of the discretized situation (5.8),

F(z) = ∑
xj≤z

μj

/ J∑
1

μj(5.14)

(with a “half count” correction at z = xj ). Fdr(z) estimates the probability that a
gene having its zk exceeding the fixed value z is nonnull, as discussed, for example,
in Efron (2008).

Figure 6 concerns the choice z = 3. Using quartic model M4 to estimate the
μj ’s in (5.14) yields point estimate

θ̂ = F̂dr(3) = 0.192.(5.15)

Fdr values near 0.2 are in the “interesting” range where the gene might be reported
as nonnull, making it important to know the accuracy of (5.15).

The B = 4000 bootstrap samples for M4 (5.11) yielded bootstrap replications
θ1, θ2, . . . , θB . Their standard deviation is a bootstrap estimate of standard error
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FIG. 6. Posterior densities for θ = Fdr(3) (5.13), prostate data, based on B = 4000 parametric
bootstrap replications (5.11) from the fourth-degree Poisson regression model M4. Solid curve Jef-
freys Bayes posterior density, using (5.12); heavy dashed curve BCa confidence density (2.17). Both
give 95% interval θ ∈ (−0.154,−0.241). Light dashed curve is unweighted bootstrap density. Total
computation time was about 30 seconds.

for θ̂ , ŝe = 0.024, so a typical empirical Bayes analysis might report F̂dr(3) =
0.0192 ± 0.024. A Jeffreys Bayes analysis gives the full posterior density of θ

shown by the solid curve in Figure 6, with 95% credible interval

M4: θ ∈ (0.154,0.241).(5.16)

In this case the BCa density (2.17) [(z0, a) = (−0.047,−0.026)] is nearly the same
as the Bayes estimate, both of them lying just slightly to the left of the unweighted
bootstrap density.

The choice of philosophy, Jeffreys Bayes or BCa frequentist, does not make
much difference here, but the choice of model does. Repeating the analysis using
M8 instead of M4 to generate the bootstrap samples (5.11) sharply decreased the
estimate. Figure 7 compares the bootstrap histograms; the 95% credible interval
for Fdr(3) is now

M8: θ ∈ (0.141,0.239).(5.17)

AIC calculations were carried out for each of the 4000 M8 bootstrap samples.
Of these, 32% selected M4 as the minimizer, compared with 51% for M8, as shown
in the Boot % column of Table 2. Weighting each sample proportionally to exp(�i)

(5.12) narrowed the difference to 36% versus 45%, but still with a strong tendency
toward M8.
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FIG. 7. B = 4000 parametric bootstrap replications of Fdr(3) from M8 (solid histogram) com-
pared with those from M4 (line histogram). Closed triangles indicate 95% M8 credible limits
(0.141,0.239); open triangles M4 limits (0.154,0.241).

It might be feared that M8 is simply justifying itself. However, standard non-
parametric bootstrapping (resampling the N zk values) gave slightly more extreme
Boot percentages,

30%(M4), 9%(M5), 4%(M6), 2%(M7), 54%(M8).(5.18)

The fact is that data-based model selection is quite unstable here, as the accuracy
calculations of Section 6 will verify.

6. Accuracy. Two aspects of our methodology’s Bayesian estimation accu-
racy are considered in this section: internal accuracy, the bootstrap sampling error
in estimates such as (3.7) (i.e., how many bootstrap replications B need we take?),
and external accuracy, statistical sampling error, for instance, how much would
the results in Figure 3 change for a new sample of 22 students? The i.i.d. (in-
dependent and identically distributed) nature of bootstrap sampling makes both
questions easy to answer.

Internal accuracy is particularly straightforward. The estimate (3.7) for Ê{t (β)|
β̂} can be expressed in terms of si = tiπiRi and ri = πiRi as

Ê = s̄/r̄

(
s̄ =

B∑
1

si/B, r̄ =
B∑
1

ri/B

)
.(6.1)

Let cov be the 2 × 2 empirical covariance matrix of the B vectors (si, ri). Then
standard delta-method calculations yield a familiar approximation for the bootstrap
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coefficient of variation of Ê,

ĉv2 = 1

B

(
c̄ss

s̄2 − 2
c̄sr

s̄r̄
+ c̄rr

r̄2

)
,(6.2)

where c̄ss , c̄sr and c̄rr are the elements of cov.
The Jeffreys Bayes estimate for eigenratio (4.11) was Ê = 0.799 (nearly the

same as the MLE 0.793). Formula (6.2) gave ĉv = 0.002, indicating that Ê nearly
equaled the exact Bayes estimate E{t (β)|β̂}. B = 10,000 was definitely exces-
sive. Posterior parameters other than expectations are handled by other well-known
delta-method approximations. Note: Discontinuous parameters, such as the indica-
tor of a parameter θ being less than some value θ0, tend to have higher values of ĉv.

As far as external accuracy is concerned, the parametric bootstrap can be em-
ployed to assess its own sampling error, a “bootstrap-after-bootstrap” technique in
the terminology of Efron (1992). Suppose we have calculated some Bayes poste-
rior estimate Q̂ = Q(β̂), for example, Ê or a credible limit, and wonder about its
sampling standard error, that is, its frequentist variability. As an answer, we sample
K more times from f

β̂
(·),

f
β̂
(·) −→ γ̂1, γ̂2, . . . , γ̂K,(6.3)

where the γ notation emphasizes that these replications are distinct from β1, β2,

. . . , βB in (3.6), the original replications used to compute Q̂. Letting Q̂k = Q(γ̂k),
the usual bootstrap estimate of standard error for Q̂ is

ŝe(Q̂) =
[

K∑
k=1

(Q̂k − Q̂·)2/(K − 1)

]1/2

,(6.4)

Q̂· = ∑
Q̂k/K . K = 200 is usually plenty for reasonable estimation of se(Q̂); see

Table 6.2 of Efron and Tibshirani (1993).
This recipe looks arduous since each Q̂k requires B bootstrap replications for

its evaluation. Happily, a simple reweighting scheme on the original B replications
finesses all that computation. Define

Wki = fβi
(γ̂k)/fβi

(β̂).(6.5)

LEMMA 4. If Q̂ is a posterior expectation Ê = ∑
tiπiRi/

∑
πiRi , then the

importance sampling estimate of Q̂k is

Q̂k =
B∑

i=1

tiπiRiWki

/ B∑
i=1

πiRiWki(6.6)

for general quantities Q̂, reweighting βi proportionately to πiRiWi gives Q̂k .



1992 B. EFRON

The proof of Lemma 4 follows immediately from

RiWki = fβi
(γ̂k)/fβ̂

(βi),(6.7)

which is the correct importance sampling factor for converting an f
β̂
(β) sample

into an fβ(γ̂k) likelihood. Note: Formula (6.6) puts additional strain on our im-
portance sampling methodology and should be checked for internal accuracy, as
in (6.2).

Formula (6.6) requires no new computations of t (β),π(β) or R(β), and in ex-
ponential families the factor Wki is easily calculated:

Wki = e(αi−α̂)′(γ̂k−β̂),(6.8)

where αi is the canonical vector in (3.1) corresponding to βi . This usually makes
the computation for the bootstrap-after-bootstrap standard error (6.4) much less
than that needed originally for Q̂. [Formula (6.5) is invariant under smooth trans-
formations of β , and so Wki can be calculated directly in other coordinate systems
as a ratio of densities.]

A striking use of (6.4) appears in the last two columns of Table 2, Section 5.
Let t4(βi) be the indicator function of whether or not model 4 minimized AIC
for the ith bootstrap replication: Ê{t4(β)|β̂} = 0.36 according to the Bayes % col-
umn. However, its bootstrap-after-bootstrap standard error estimate was ŝe = 0.20,
with similarly enormous standard errors for the other model selection probabilities.
From a frequentist viewpoint, data-based model selection will be a highly uncer-
tain enterprise here.

Frequentist assessment of objective Bayes procedures has been advocated in
the literature, for example, in Berger (2006) and Gelman, Meng and Stern (1996),
but seems to be followed most often in the breach. The methodology here can be
useful for injecting a note of frequentist caution into Bayesian data analysis based
on priors of convenience.

If our original data set y consists of n i.i.d. vectors yi , as in Table 1, we can
jackknife instead of bootstrapping the γ̂k’s. Now γ̂k is β̂ recomputed from the
data set y(i) having yi removed for k = 1,2, . . . , n. Formulas (6.5)–(6.8) still hold,
yielding

ŝejack =
[

n − 1

n

n∑
k=1

(Q̂k − Q̂·)2

]1/2

.(6.9)

An advantage of jackknife resampling is that the γ̂k values lie closer to β̂ , making
Wki closer to 1 and putting less strain on the importance sampling formula (6.6).

7. Summary. The main points made by the theory and examples of the pre-
ceding sections are as follows:
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• The parametric bootstrap distribution is a favorable starting point for importance
sampling computation of Bayes posterior distributions (as in Figure 2).

• This computation is implemented by reweighting the bootstrap replications
rather than by drawing observations directly from the posterior distribution as
with MCMC [formulas (3.7), (3.8)].

• The necessary weights are easily computed in exponential families for any prior,
but are particularly simple starting from Jeffreys invariant prior, in which case
they depend only on the deviance difference �(β) [(3.9)–(3.12), (3.21), (4.7),
(5.5)].

• The deviance difference depends asymptotically on the skewness of the family,
having a cubic normal form (3.29).

• In our examples, Jeffreys prior yielded posterior distributions not much different
than the unweighted bootstrap distribution. This may be unsatisfactory for single
parameters of interest in multiparameter families (Figure 3).

• Better uninformative priors, such as the Welch–Peers family or reference priors,
are closely related to the frequentist BCa reweighting formula [(2.17), Figures
2 and 6].

• Because of the i.i.d. nature of bootstrap resampling, simple formulas exist for the
accuracy of posterior computations as a function of the number B of bootstrap
replications. [Importance sampling methods can be unstable, so internal accu-
racy calculations, as suggested following (6.2), are urged.] Even with excessive
choices of B , computation time was measured in seconds for our examples (6.2).

• An efficient second-level bootstrap algorithm (“bootstrap-after-bootstrap”) pro-
vides estimates for the frequentist accuracy of Bayesian inferences [(6.3)–(6.6)].

• This can be important in assessing inferences based on formulaic priors, such as
those of Jeffreys, rather than on genuine prior experience (last column, Table 2
of Section 5).

APPENDIX

Transformation of coordinates: Let J (β) be the Jacobian of the transformation
γ = m(β), that is, the absolute value of the determinant of the Hessian matrix
(∂βi/∂γj ). Then f̃γ (γ̂ ) = fβ(β̂)J (β̂) gives

ξ̃ (γ ) = f
β̂
(β̂)J (β̂)

fβ(β)J (β)
= ξ(β)

J (β̂)

J (β)
(A.1)

in (4.2), and

R̃(γ ) = f̃γ (γ̂ )

f̃γ̂ (γ )
= fβ(β̂)

f
β̂
(β)

J (β̂)

J (β)
= R(β)

J (β̂)

J (β)
(A.2)

= ξ(β)e�(β) J (β̂)

J (β)
= ξ̃ (γ )e�̃(γ ),
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since �̃(γ ) = �(β) by the transformation invariance of the deviance.
For any prior density π(β) we have π̃(γ ) = π(β)J (β) and

π̃(γ )R̃(γ ) = π(β)J (β)R(β)J (β̂)/J (β)
(A.3)

= J (β̂)π(β)R(β).

J (β̂) acts as a constant in (A.3), showing that (4.4) is identical to (3.7). This also
applies to Jeffreys prior, π̃ Jeff(γ ), which by design is transformation invariant,
yielding (4.5).

PROOF OF THEOREM 1. In a one-parameter exponential family, (3.13) and
(3.14) give

ψ(α) − ψ(α̂)
.= β̂ dα + V̂ (dα)2/2 + Û (dα)3/6(A.4)

and

β − β̂
.= V̂ dα + Û (dα)2/2,(A.5)

where dα = α − α̂, V̂ = V (α̂), and Û = U(α̂). Expression (3.12) for � can be
written as

� = (β − β̂) dα + 2
[
β̂ dα − (ψ − ψ̂)

]
.(A.6)

Applying (A.4) and (A.5) reduces (A.6) to

�
.= 1

6 Û (dα)3 = 1
6 γ̂

[
V̂ 1/2(α − α̂)

]3

(A.7)
.= 1

6 γ̂
[
V̂ −1/2(β − β̂)

]3 = 1
6 γ̂ Z3

with γ̂ = Û/V̂ 3/2 the skewness, the last line following from Z ≡ V̂ −1/2(β − β̂)
.=

V̂ 1/2(α − α̂) (A.5). Standard exponential family theory shows that Z → N (0,1)

under repeated sampling, verifying the theorem [remembering that the asymptotics
here are for β ∼ f

β̂
(·), with β̂ fixed]. The skewness γ̂ is then O(n−1/2), making

� of order Op(n−1/2). The first missing term in the Taylor expansion (A.7) for �

is δ̂Z4/12, δ̂ the kurtosis, and is of order Op(n−1).
The multiparameter version of Theorem 1 begins by considering a one-

parameter subfamily of (3.1) now indexed by α rather than β ,

f (v)
a (β̂) = fα̂+av(β̂) = e(α̂+av)′β̂−ψ(α̂+av)f0(β̂),(A.8)

where v is some fixed vector in R
p; a here is not connected with that in (2.17).

The deviance difference within f
(v)
a is

�(v)(a) = �(α̂ + av)(A.9)

since deviance is entirely determined by the two densities involved.
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The exponential family terms (3.1) for family f
(v)
a (·) are

α(v) = a, β̂(v) = v′β̂, β(v) = v′β,
(A.10)

V̂ (v) = v′V̂ v and Û (v) =
p∑

j=1

p∑
k=1

p∑
l=1

Ûjklvj vkvl,

giving skewness γ̂ (v) = Û (v)/V̂ (v)3/2. Applying the one-dimensional result gives

�(α̂ + av)
.= 1

6
γ̂ (v)Z(v)3 with Z(v) = v′(β − β̂)

(v′V̂ v)1/2
.(A.11)

Since v can be any vector, (A.11) describes the asymptotic form of �(·) in the
neighborhood of α̂. �

PROOF OF THEOREM 2. For a single observation y ∼ Nd(μ,�), let f1 and
f2 represent its density under (μ1,�1) and (μ2,�2), respectively. Then

2 log
f1(y)

f2(y)
= log

|�1|
|�2| + (y − μ2)

′�2(y − μ2)

(A.12)
− (y − μ1)

′�1(y − μ1).

But if y ∼ Nd(μ1,�1),

Ef1

{
(y − μ2)

′�−1
2 (y − μ2)

}
(A.13)

= (μ2 − μ1)
′�−1

2 (μ2 − μ1) + tr�1�
−1
2

while Ef1{(y − μ1)
′�−1

1 (y − μ1)} = d . Taking the f1 expectation of (A.12) gives
the deviance

D
(
(μ1,�1), (μ2,�2)

)
(A.14)

= log |�2|/|�1| + (μ2 − μ1)
′�−1

2 (μ2 − μ1) + tr�1�
−1
2 − d

for sample size n = 1. The deviance difference for sample size n

� = n

2

{
D

(
(μ,�), (μ̂, �̂)

) − D
(
(μ̂, �̂), (μ,�)

)}
(A.15)

is then seen to equal (4.7).
The density of (μ̂, �̂) from a Np(μ,�) sample of size n is proportional to{|�|−1/2e−n(μ̂−μ)′�−1(μ̂−μ)/2}{|�̂|(n−d−2)/2e−n tr�−1�̂/2/|�|(n−1)/2}

(A.16)

yielding (4.6). �

The BCa weights: The BCa system of second-order accurate bootstrap confi-
dence intervals was introduced in Efron (1987) (Section 2 giving an overview
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TABLE 3
BCa constants z0 and a for our three examples

θ̂ z0 a

Student correlation 0.498 −0.069 0
Student eigenratio 0.793 −0.222 0
Prostate data Fdr(3) 0.192 −0.047 −0.026

of the basic idea) and restated in weighting form (2.17) in Efron and Tibshirani
(1998). The bias correction constant z0 is obtained directly from the MLE θ̂ and
the bootstrap replication θ1, θ2, . . . , θB according to

z0 = �−1(
#{θi ≤ θ̂}/B}

.(A.17)

DiCiccio and Efron (1992) discuss “ABC” algorithms for computing a, the accel-
eration constant. The program abc2 is available in the supplement to this article.
It is very fast and accurate, but requires individual programming for each exponen-
tial family. A more computer-intensive R program, accel, which works directly
from the bootstrap replications (βi, ti) [as in (3.6) and (3.7)], is also available in
the supplement.

Table 3 shows z0 and a for our three main examples. Notice the especially large
bias correction needed for the eigenratio.
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