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In this paper we describe two bootstrap methods for massive data sets.
Naive applications of common resampling methodology are often impracti-
cal for massive data sets due to computational burden and due to complex
patterns of inhomogeneity. In contrast, the proposed methods exploit certain
structural properties of a large class of massive data sets to break up the orig-
inal problem into a set of simpler subproblems, solve each subproblem sep-
arately where the data exhibit approximate uniformity and where computa-
tional complexity can be reduced to a manageable level, and then combine the
results through certain analytical considerations. The validity of the proposed
methods is proved and their finite sample properties are studied through a
moderately large simulation study. The methodology is illustrated with a real
data example from Transportation Engineering, which motivated the devel-
opment of the proposed methods.

1. Introduction. Statistical analysis and inference for massive data sets
present unique challenges. Naive applications of standard statistical methodol-
ogy often become impractical, especially due to increase in computational com-
plexity. While large data size is desirable from a statistical inference perspective,
suitable modification of existing statistical methodology is needed to handle such
challenges associated with massive data sets. In this paper, we propose a novel re-
sampling methodology, called the Gap Bootstrap, for a large class of massive data
sets that possess certain structural properties. The proposed methodology cleverly
exploits the data structure to break up the original inference problem into smaller
parts, use standard resampling methodology to each part to reduce the computa-
tional complexity, and then use some analytical considerations to put the individual
pieces together, thereby alleviating the computational issues associated with large
data sets to a great extent.

The class of problems we consider here is the estimation of standard errors of
estimators of population parameters based on massive multivariate data sets that
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may have heterogeneous distributions. A primary example is the origin-destination
(OD) model in transportation engineering. In an OD model, which motivates this
work and which is described in detail in Section 2 below, the data represent traffic
volumes at a number of origins and destinations collected over short intervals of
time (e.g., 5 minute intervals) daily, over a long period (several months), thereby
leading to a massive data set. Here, the main goals of statistical analysis are (i) un-
certainty quantification associated with the estimation of the parameters in the OD
model and (ii) to improve prediction of traffic volumes at the origins and the des-
tinations over a given stretch of the highway. Other examples of massive data sets
having the required structural property include (i) receptor modeling in environ-
mental monitoring, where spatio-temporal data are collected for many pollution
receptors over a long time, and (ii) toxicological models for dietary intakes and
drugs, where blood levels of a large number of toxins and organic compounds are
monitored in repeated samples for a large number of patients. The key feature of
these data sets is the presence of “gaps” which allow one to partition the original
data set into smaller subsets with nice properties.

The “largeness” and potential inhomogeneity of such data sets present chal-
lenges for estimated model uncertainty evaluation. The standard propagation of
error formula or the delta method relies on assumptions of independence and iden-
tical distributions, stationarity (for space–time data) or other kinds of uniformity
which, in most instances, are not appropriate for such data sets. Alternatively, one
may try to apply the bootstrap and other resampling methods to assess the uncer-
tainty. It is known that the ordinary bootstrap method typically underestimates the
standard error for parameters when the data are dependent (positively correlated).
The block bootstrap has become a popular tool for dealing with dependent data. By
using blocks, the local dependence structure in the data is maintained and, hence,
the resulting estimates from the block bootstrap tend to be less biased than those
from the traditional (i.i.d.) bootstrap. For more details, see Lahiri (1999, 2003).
However, computational complexity of naive block bootstrap methods increases
significantly with the size of the data sets, as the given estimator has to be com-
puted repeatedly based on resamples that have the same size as the original data
set. In this paper, we propose two resampling methods, generally both referred to
as Gap Bootstraps, that exploit the “gap” in the dependence structure of such large-
scale data sets to reduce the computational burden. Specifically, the gap bootstrap
estimator of the standard error is appropriate for data that can be partitioned into
approximately exchangeable or homogeneous subsets. While the distribution of
the entire data set is not exchangeable or homogeneous, it is entirely reasonable
that many multivariate subsets will be exchangeable or homogeneous. If the esti-
mation method that is being used is accurate, then we show that the gap bootstrap
gives a consistent and asymptotically unbiased estimate of standard errors. The
key idea is to employ the bootstrap method to each of the homogeneous subsets
of the data separately and then combine the estimators from different subsets in a
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suitable way to produce a valid estimator of the standard error of a given estima-
tor based on the entire data set. The proposed method is computationally much
simpler than the existing resampling methods that require repeated computation
of the original estimator, which may not be feasible simply due to computational
complexity of the original estimator, at the scale of the whole data set.

The rest of the paper is organized as follows. In Section 2 we describe the OD
model and the data structure that motivate the proposed methodology. In Section 3
we give the descriptions of two variants of the Gap Bootstrap. Section 4 asserts
consistency of the proposed Gap Bootstrap variance estimators. In Section 5 we
report results from a moderately large simulation study, which shows that the pro-
posed methods attain high levels of accuracy for moderately large data sets under
various types of gap-dependence structures. In Section 6 we revisit the OD models
and apply the methodology to a real data set from a study of traffic patterns, con-
ducted by an intelligent traffic management system on a test bed in San Antonio,
TX. Some concluding remarks are made in Section 7. Conditions for the validity
of the theoretical results and outlines of the proofs are given in the Appendix.

2. The OD models and the estimation problem.

2.1. Background. The key component of an origin-destination (OD) model is
an OD trip matrix that reflects the volume of traffic (number of trips, amount of
freight, etc.) between all possible origins and destinations in a transportation net-
work over a given time interval. The OD matrix can be measured directly, albeit
with much effort and at great costs, by conducting individual interviews, license
plate surveys, or by taking aerial photographs [cf. Cramer and Keller (1987)]. Be-
cause of the cost involved in collecting direct measurements to populate a traffic
matrix, there has been considerable effort in recent years to develop synthetic tech-
niques which provide “reasonable” values for the unknown OD matrix entries in
a more indirect way, such as using observed data from link volume counts from
inductive loop detectors. Over the past two decades, numerous approaches to syn-
thetic OD matrix estimation have been proposed [Cascetta (1984), Bell (1991),
Okutani (1987), Dixon and Rilett (2000)]. One common approach for estimating
the OD matrix from link volume counts is based on the least squares regression
where the unknown OD matrix is estimated by minimizing the squared Euclidean
distance between the observed link and the estimated link volumes.

2.2. Data structure. The data are in the form of a time series of link volume
counts measured at several on/off ramp locations on a freeway using an inductive
loop detector, such as in Figure 1.

Here Ok and Dk , respectively, represent the traffic volumes at the kth origin and
the kth destination over a given stretch of a highway. The analysis period is divided
into T time periods of equal duration �t . The time series of link volume counts
is generally periodic and weakly dependent, that is, the dependence dies off as the
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FIG. 1. The transportation network in San Antonio, TX under study.

separation of the time intervals becomes large. For example, daily data over each
given time slot of duration �t are similar, but data over well separated time slots
(e.g., time slots in Monday morning and Monday afternoon) can be different. This
implies that the traffic data have a periodic structure. Further, Monday at 8:00–8:05
am data have nontrivial correlation with Monday at 8:05–8:10 am data, but neither
data set says anything about Tuesday data at 8:00–8:05 am (showing approximate
independence). Accordingly, let Yt , t = 1,2 . . . , be a d-dimensional time series,
representing the link volume counts at a given set of on/off ramp locations over the
t th time interval. Suppose that we are interested in reconstructing the OD matrix
for p-many short intervals during the morning rush hours, such as 36 link volume
counts over �t = 5-minute intervals, extending from 8:00 am through 11:00 am,
at several on/off ramp locations. Thus, the observed data for the OD modeling is a
part of the Yt series,

{X1, . . . ,Xp; . . . ;X(m−1)p+1, . . . ,Xmp},
where the link volume counts are observed over the p-intervals on each day,
for m days, giving a d-dimensional multivariate sample of size n = mp. There are
q = T − p time slots between the last observation on any given day and the first
observation on the next day, which introduces the “gap” structure in the Xt -series.
Specifically, in terms of the Yt -series, the Xt -variables are given by

Xip+j = Yi(p+q)+j , j = 1, . . . , p, i = 0, . . . ,m − 1.

For data collected over a large transportation network and over a long period of
time, d and m are large, leading to a massive data set. Observe that the Xt -variables
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can be arranged in a p × m matrix, where each element of the matrix-array gives
a d-dimensional data value:

X =

⎛⎜⎜⎜⎜⎜⎝
X1 Xp+1 . . . X(m−1)p+1

X2 Xp+2 . . . X(m−1)p+2

· · . . . ·
· · . . . ·

Xp X2p . . . Xmp

⎞⎟⎟⎟⎟⎟⎠ .(2.1)

Due to the arrangement of the p time slots in the j th day along the j th column
in (2.1), the rows in the array (2.1) correspond to a fixed time slot over days and
are expected to exhibit a similar distribution of the link volume counts; although a
day-of-week variation might be present, the standard practice in the Transportation
engineering is to treat the weekdays as similar [cf. Roess, Prassas and McShane
(2004), Mannering, Washburn and Kilareski (2009)]. On the other hand, due to
the “gap” between the last time slot on the j th day and the first time slot of the
(j + 1)st day, the variables in the j th and the (j + 1)st columns are essentially
independent. Hence, this yields a data structure where

(a) the variables within each column have serial correlations
and possibly nonstationary distributions,

(b) the variables in each row are identically distributed, and
(c) the columns are approximately independent arrays

of random vectors.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.2)

In the transportation engineering application, each random vector Xt represents
the link volume counts in a transportation network corresponding to r origin (en-
trance) ramps and s destination (exit) ramps as shown in Figure 1. Let o�t and dkt ,
respectively, denote the link volumes at origin � and at destination k at time t .
Then the components of Xt for each t are given by the d ≡ (r + s)-variables
{o�t :� = 1, . . . , r} ∪ {dkt :k = 1, . . . , s}. Given the link volume counts on all ori-
gin and destination ramps, the fraction pk� (known as the OD split proportion) of
vehicles that exit the system at destination ramp k given that they entered at origin
ramp � can be calculated. This is because the link volume at destination k at time t ,
dkt , is a linear combination of the OD split proportions and the origin volumes at
time t , o�t ’s. In the synthetic OD model, pk�’s are the unknown system parameters
and have to be estimated. Once the split proportions are available, the OD matrix
for each time period can be identified as a linear combination of the split propor-
tion matrix and the vector of origin volumes. The key statistical inference issue
here is to quantify the size of the standard errors of the estimated split proportions
in the synthetic OD model.
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3. Resampling methodology.

3.1. Basic framework. To describe the resampling methodology, we adopt a
framework that mimics the “gap structure” of the OD model in Section 2. Let
{X1, . . . ,Xp; . . . ;X(m−1)p+1, . . . ,Xmp} be a d-dimensional time series with sta-
tionary components {Xip+j : i = 0, . . . ,m − 1} for j = 1, . . . , p such that the cor-
responding array (2.1) satisfies (2.2). For example, such a time series results from a
periodic, multivariate parent time series Yt that is m0-dependent for some m0 ≥ 0
and that is observed with “gaps” of length q > m0. In general, the dependence
structure of the original time series Yt is retained within each complete period
{Xip+j : j = 1, . . . , p}, i = 0, . . . ,m, but the random variables belonging to two
different periods are essentially independent. Let θ be a vector-valued parameter
of interest and let θ̂n be an estimator of θ based on X1, . . .Xn, where n = mp de-
notes the sample size. We now formulate two resampling methods for estimating
the standard error of θ̂n that are suitable for massive data sets with such “gap”
structures. The first method is applicable when the p rows of the array (2.1) are
exchangeable and the second one is applicable where the rows are possibly non-
identically distributed and where the variables within each column have serial de-
pendence.

3.2. Gap Bootstrap I. Let X(j) = (Xip+j : i = 0, . . . ,m − 1) denote the j th
row of the array X in (2.1). For the time being, assume that the rows of X are
exchangeable, that is, for any permutation (j1, . . . , jp) of the integers (1, . . . , p),
{X(j1), . . . ,X(jp)} have the same joint distribution as {X(1), . . . ,X(p)}, although
we do not need the full force of exchangeability for the validity of the method
(cf. Section 4). For notational compactness, set X(0) = X. Next suppose that the
parameter θ can be estimated by using the row variables X(j) as well as using the
complete data set, through estimating equations of the form

�j(X(j); θ) = 0, j = 0,1, . . . , p,

resulting in the estimators θ̂jn, based on the j th row, for j = 1, . . . , p, and the
estimator θ̂n = θ̂0n for j = 0 based on the entire data set, respectively. It is obvious
that for large values of p, the computation of θ̂jn’s can be much simpler than
that of θ̂n, as the estimators θ̂jn’s are based on a fraction (namely, 1

p
) of the total

observations. On the other hand, the individual θ̂jn’s lose efficiency, as they are
based on a subset of the data. However, under some mild conditions on the score
functions, the M-estimators can be asymptotically linearized by using the averages
of the influence functions over the respective data sets X(j) [cf. Chapter 7, Serfling
(1980)]. As a result, under such regularity conditions,

θ̄n ≡ p−1
p∑

j=1

θ̂jn(3.1)
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gives an asymptotically equivalent approximation to θ̂n. Now an estimator of the
variance of the original estimator θ̂n can be obtained by combining the variance
estimators of the θ̂jn’s through the equation

Var(θ̄n) = p−2

[ p∑
j=1

Var(θ̂jn) + ∑
1≤j �=k≤p

Cov(θ̂jn, θ̂kn)

]
.(3.2)

Note that using the i.i.d. assumption on the row variables, an estimator of Var(θ̂jn)

can be found by the ordinary bootstrap method (also referred to as the i.i.d. boot-
strap in here) of Efron (1979) that selects a with replacement sample of size m

from the j th row of data values. We denote this by V̂ar(θ̂jn) (and also by �̂jn),
j = 1, . . . , p. Further, under the exchangeability assumption, all the covariance
terms are equal and, hence, we may estimate the cross-covariance terms by esti-
mating the variance of the pairwise differences as follows:

Ṽar(θ̂j0n − θ̂k0n) =
∑

1≤j �=k≤p(θ̂jn − θ̂kn)(θ̂jn − θ̂kn)
′

p(p − 1)
, 1 ≤ j0 �= k0 ≤ p.

Then, the cross covariance estimator is given by

C̃ov(θ̂j0n, θ̂k0n) = [
�̂j0n + �̂k0n − Ṽar(θ̂j0n − θ̂k0n)

]
/2.

Plugging in these estimators of the variance and the covariance terms in (3.2) yields
the Gap Bootstrap Method I estimator of the variance of θ̂n as

V̂arGB-I(θ̂n) = p−2

[ p∑
j=1

V̂ar(θ̂jn) + ∑
1≤j �=k≤p

C̃ov(θ̂jn, θ̂kn)

]
.(3.3)

Note that the estimator proposed here only requires computation of the param-
eter estimators based on the p subsets, which can cut down on the computational
complexity significantly when p is large.

3.3. Gap Bootstrap II. In this section we describe a Gap Bootstrap method
for the more general case where the rows X(j)’s in (2.1) are not necessarily ex-
changeable and, hence, do not have the same distribution. Further, we allow the
columns of X to have certain serial dependence. This, for example, is the situation
when the Xt -series is obtained from a weakly dependent parent series {Yt } by sys-
tematic deletion of q-components, creating the “gap” structure in the observed Xt -
series as described in Section 2. If the Yt -series is m0-dependent with an m0 < q ,
then {Xt } satisfies the conditions in (2.2). For a mixing sequence Yt , the gapped
segments are never exactly independent, but the effect of the dependence on the
gapped segments are practically negligible for large enough “gaps,” so that approx-
imate independence of the columns holds when q is large. We restrict attention to
the simplified structure (2.2) to motivate the main ideas and to keep the exposition
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simple. Validity of the theoretical results continue to hold under weak dependence
among the columns of the array (2.1); see Section 4 for further details.

As in the case of Gap Bootstrap I, we suppose that the parameter θ can be es-
timated by using the row variables X(j) as well as using the complete data set,
resulting in the estimator θ̂jn, based on the j th row for j = 1, . . . , p and the esti-
mator θ̂n = θ̂0n (for j = 0) based on the entire data set, respectively. The estimation
method can be any standard method, including those based on score functions and
quasi-maximum likelihood methods, such that the following asymptotic linearity
condition holds:

There exist known weights w1n, . . . ,wpn ∈ [0,1] with
∑p

j=1 wjn = 1 such that

θ̂n −
p∑

j=1

wjnθ̂jn = oP

(
n−1/2) as n → ∞.(3.4)

Classes of such estimators are given by (i) L-, M- and R-estimators of location
parameters [cf. Koul and Mukherjee (1993)], (ii) differentiable functionals of the
(weighted) empirical process [cf. Serfling (1980), Koul (2002)], and (iii) estimators
satisfying the smooth function model [cf. Hall (1992), Lahiri (2003)]. An explicit
example of an estimator satisfying (3.4) is given in Remark 3.5 below [cf. (3.9)]
and the details of verification of (3.4) are given in the Appendix.

Note that under (3.4), the asymptotic variance of n1/2(θ̂n − θ) is given by the
asymptotic variance of

∑p
j=1 wjnn

1/2(θ̂jn − θ). The latter involves both variances

and covariances of the row-wise estimators θ̂jn’s. The Gap Bootstrap method II
estimator of the variance of θ̂n is obtained by combining individual variance esti-
mators of the marginal estimators θ̂jn’s with estimators of their cross covariances.
Note that as the row-wise estimators θ̂jn are based on (approximately) i.i.d. data,
as in the case of Gap Bootstrap method I, one can use the i.i.d. bootstrap method
of Efron (1979) within each row X(j) and obtain an estimator of the standard error
of each θ̂jn. We continue to denote these by V̂ar(θ̂jn), 1 ≤ j ≤ p, as in Section 3.2.
However, since we now allow the presence of temporal dependence among the
rows, resampling individual observations is not enough [cf. Singh (1981)] for
cross-covariance estimation and some version of block resampling is needed [cf.
Künsch (1989), Lahiri (2003)]. As explained earlier, repeated computation of the
estimator θ̂n based on replicates of the full sample may not be feasible merely
due to the associated computational costs. Instead, computation of the replicates
on smaller portions of the data may be much faster (as it avoids repeated resam-
pling) and stable. This motivates us to consider the sampling window method of
Politis and Romano (1994) and Hall and Jing (1996) for cross-covariance estima-
tion. Compared to the block bootstrap methods, the sampling window method is
computationally much faster but at the same time, it typically achieves the same
level of accuracy as the block bootstrap covariance estimators, asymptotically [cf.
Lahiri (2003)]. The main steps of the Gap Bootstrap Method II are as follows.
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3.3.1. The univariate parameter case. For simplicity, we first describe the
steps of the Gap Bootstrap Method II for the case where the parameter θ is one-
dimensional:

Steps:

(I) Use i.i.d. resampling of individual observations within each row to construct
a bootstrap estimator V̂ar(θ̂jn) of Var(θ̂jn), j = 1, . . . , p, as in the case of
Gap Bootstrap method I. In the one-dimensional case, we will denote these
by σ̂ 2

jn, j = 1, . . . , p.

(II) The Gap Bootstrap II estimator of the asymptotic variance of θ̂n is given by

τ̄ 2
n =

p∑
j=1

p∑
k=1

wjnwknσ̂jnσ̂knρ̃n(j, k),(3.5)

where σ̂ 2
jn is as in Step I and where ρ̃n(j, k) is the sampling window estimator

of the asymptotic correlation between θ̂jn and θ̂kn, described below.
(III) To estimate the correlation ρn(j, k) between θ̂jn and θ̂kn by the sampling

window method [cf. Politis and Romano (1994) and Hall and Jing (1996)],
first fix an integer � ∈ (1,m). Also, let

X(1) = (X1, . . . ,Xp), X(2) = (Xp+1, . . . ,X2p), . . . ,

X(m) = (X(m−1)p+1, . . . ,Xmp)

denote the columns of the matrix array (2.1). The version of the sampling
window method that we will employ here will be based on (overlapping)
subseries of � columns. The following are the main steps of the sampling
window method:
(IIIa) Define the overlapping subseries of the column-variables X(·) of length

� as

Xi = (
X(i), . . . ,X(i+�−1)), i = 1, . . . , I,

where I = m− �+ 1. Note that each subseries Xi contains � complete
columns or periods and consists of �p-many Xt -variables.

(IIIb) Next, for each i = 1, . . . , I , we employ the given estimation algorithm
to the Xt -variables in Xi to construct the subseries version θ̃

(i)
jn of θ̂jn,

j = 1, . . . , p. (There is a slight abuse of notation here, as the sam-
ple size for the ith subseries of Xt -variables is �p, not n = mp and,
hence, we should be using θ̃

(i)
j (�p) instead of θ̃

(i)
jn , but we drop the more

elaborate notation for simplicity).
(IIIc) For 1 ≤ j < k ≤ p, the sampling window estimator of the correlation

between θ̂jn and θ̂kn is given by

ρ̃n(j, k) = I−1 ∑I
i=1(θ̃

(i)
jn − θ̂n)(θ̃

(i)
kn − θ̂n)

[I−1 ∑I
i=1(θ̃

(i)
jn − θ̂n)2]1/2[I−1 ∑I

i=1(θ̃
(i)
kn − θ̂n)2]1/2

.(3.6)
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3.3.2. The multivariate parameter case. The multivariate version of the Gap
bootstrap estimator of the variance matrix of a vector parameter estimator θ̂n can be
derived using the same arguments, with routine changes in the notation. Let �̂jn

denote the bootstrap estimator of Var(θ̂jn), based on the i.i.d. bootstrap method

of Efron (1979). Next, with the subsampling replicates θ̃
(i)
jn , j = 1, . . . , p, based

on the overlapping blocks {Xi : i = 1, . . . , I } of � columns each (cf. Step [III] of
Section 3.3.1), define the sampling window estimator R̃n(j, k) of the correlation
matrix of θ̂jn and θ̂kn as

R̃n(j, k) =
[
I−1

I∑
i=1

(
θ̃

(i)
jn − θ̂n

)(
θ̃

(i)
jn − θ̂n

)′]−1/2

×
{
I−1

I∑
i=1

(
θ̃

(i)
jn − θ̂n

)(
θ̃

(i)
km − θ̂n

)′}

×
[
I−1

I∑
i=1

(
θ̃

(i)
km − θ̂n

)(
θ̃

(i)
km − θ̂n

)′]−1/2

.

Then the variance estimator based on Gap bootstrap II is given by

V̂arGB-II(θ̂n) =
p∑

j=1

p∑
k=1

wjnwkn�̂
1/2
jn R̃n(j, k)�̂

1/2
kn .(3.7)

3.3.3. Some comments on Method II.

REMARK 3.1. Note that for estimators {θ̃jn : j = 1, . . . , p} with large asymp-
totic variances, estimation of the correlation coefficients by the sampling window
method is more stable, as these are bounded (and have a compact support). On the
other hand, the asymptotic variances of θ̂jn’s have an unbounded range of values
and therefore are more difficult to estimate accurately. Since variance estimation
by Efron (1979)’s bootstrap has a higher level of accuracy [e.g., OP (n−1/2)] com-
pared to the sampling window method variance estimation [with the slower rate
OP ([�/n]1/2 +�−1); see Lahiri (2003)], the proposed approach is expected to lead
to a better overall performance than a direct application of the sampling window
method to estimate the variance of θ̂n.

REMARK 3.2. Note that all estimators computed here (apart from a one-time
computation of θ̂n in the sampling window method) are based on subsamples and
hence are computationally simpler than repeated computation of θ̂n required by
naive applications of the block resampling methods.

REMARK 3.3. For applying Gap Bootstrap II, the user needs to specify
the block length l. Several standard block length selection rules are available
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in the block resampling literature [cf. Chapter 7, Lahiri (2003)] for estimating
the variance–covariance parameters. Any of these are applicable in our problem.
Specifically, we mention the plug-in method of Patton, Politis and White (2009)
that is computationally simple and, hence, is specially suited for large data sets.

REMARK 3.4. The proposed estimator remains valid (i.e., consistent) under
more general conditions than (2.2), where the columns of the array (2.1) are not
necessarily independent. In particular, the proposed estimator in (3.7) remains
consistent even when the Xt variables in the array (2.1) are obtained by creat-
ing “gaps” in a weakly dependent (e.g., strongly mixing) parent time series Yt .
This is because the subsampling window method employed in the construction
of the cross-correlation can effectively capture the residual dependence structure
among the columns of the array (2.1). The use of i.i.d. bootstrap to construct the
variance estimators �̂jn is adequate when the gap is large, as the separation of two
consecutive random variables within a row makes the correlation negligible. See
Theorem 4.2 below and its proof in the Appendix.

REMARK 3.5. An alternative, intuitive approach to estimating the variance
of θ̂n is to consider the data array (2.1) by columns rather than by rows. Let
θ̂ (1), . . . , θ̂ (m) denote the estimates of θ based on the m columns of the data ma-
trix X. Then, assuming that the columns of X are (approximately) independent
and assuming that θ̂ (1), . . . , θ̂ (m) are identically distributed, one may be tempted to
estimate Var(θ̂n) by using the sample variance of the θ̂ (1), . . . , θ̂ (m), based on the
following analog of (3.1):

θ̂n ≈ m−1
m∑

k=1

θ̂ (k).(3.8)

However, when p is small compared to m, such an approximation is sub-
optimal, and this approach may drastically fail if p is fixed. As an illustrating
example, consider the case where the Xi’s are 1-dimensional random variables,
p ≥ 1 is fixed (i.e., it does not depend on the sample size), n = mp, and the
columns X(k), k = 1, . . . ,m, have an “identical distribution” with mean vector
(μ, . . . ,μ)′ ∈ R

p and p × p covariance matrix �. For simplicity, also suppose
that the diagonal elements of � are all equal to σ 2 ∈ (0,∞). Let

θ̂n = n−1
n∑

i=1

(Xi − X̄n)
2,

an estimator of θ = p−1 trace(�) = σ 2. Let θ̂ (k) and θ̂jn, respectively, denote the
sample variance of the Xt ’s in the kth column and the j th row, k = 1, . . . ,m and
j = 1, . . . , p. Then, in Appendix A.1, we show that

θ̂n = p−1
p∑

j=1

θ̂jn + op

(
n−1/2),(3.9)
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while

θ̂n = m−1
m∑

k=1

θ̂ (k) + p−21′�1 + Op

(
n−1/2),(3.10)

where 1 is the p × 1 vector of 1’s. Thus, in this example, (3.4) holds with wjn =
p−1 for 1 ≤ j ≤ p. However, (3.10) shows that the column-wise approach based
on (3.8) results in a very crude approximation which fails to satisfy an analog
of (3.4). For estimating the variance of θ̂n, the deterministic term p−21′�1 has no
effect, but the Op(n−1/2)-term in (3.10) has a nontrivial contribution to the bias of
the resulting column-based variance estimator, which can not be made negligible.
As a result, this alternative approach fails to produce a consistent estimator for
fixed p. In general, caution must be exercised while applying the column-wise
method for small p.

4. Theoretical results.

4.1. Consistency of Gap Bootstrap I estimator. The Gap Bootstrap I esti-
mator V̂arGP-I(θ̂n) of the (asymptotic) variance matrix of θ̂n is consistent under
fairly mild conditions, as stated in Appendix A.2. Briefly, these conditions require
(i) homogeneity of pairwise distributions of the centered and scaled estimators
{m1/2(θ̂jn − θ) : 1 ≤ j ≤ p}, (ii) some moment and weak dependence conditions
on the m1/2(θ̂jn − θ)’s, and (iii) p → ∞ as n → ∞. In particular, the rows of X

need not be exchangeable. Condition (iii) is needed to ensure consistency of the
estimator of the covariance term(s) in (3.3), which is defined in terms of the av-
erage of the p(p − 1) pair-wise differences {θ̂jn − θ̂kn : 1 ≤ j �= k ≤ p}. Thus, for
employing the Gap Bootstrap I method in an application, p(p − 1) should not be
too small,

The following result asserts consistency of the Gap Bootstrap I variance (matrix)
estimator.

THEOREM 4.1. Under conditions (A.1) and (A.2) given in the Appendix, as
n → ∞,

n
[
V̂arGB-I(θ̂n) − Var(θ̄n)

] → 0 in probability.

4.2. Consistency of Gap Bootstrap II estimator. Next consider the Gap Boot-
strap II estimator of the (asymptotic) variance matrix of θ̂n. Consistency of
V̂arGB-II(θ̂n) holds here under suitable regularity conditions on the estimators
{θ̂jn : 1 ≤ j ≤ p} and the length of the “gap” q for a large class of time series
that allows the rows of the array (2.1) to have nonidentical distributions. See the
Appendix for details of the conditions and their implications. It is worth noting
that unlike Gap Bootstrap I, here the column dimension p need not go to infinity
for consistency.
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THEOREM 4.2. Under conditions (C.1)–(C.4), given in the Appendix, as n →
∞,

n
[
V̂arGB-II(θ̂n) − Var(θ̂n)

] → 0 in probability.

5. Simulation results. To investigate finite sample properties of the proposed
methods, we conducted a moderately large simulation study involving different
univariate and multivariate time series models. For the univariate case, we consid-
ered three models:

(I) Autoregressive (AR) models of order two (Xt = μ + Yt where Yt =
α1Yt−1 + α2Yt−2 + Wt ).

(II) Moving average (MA) models of order two (Xt = μ + Yt where Yt =
β1Wt−1 + β2Wt−2 + Wt ).

(III) A periodic time series model (Xt = μt + Wt , Wt = σεt ),

where Wt = σεt and {εt } are i.i.d. random variables with zero mean and unit vari-
ance. The parameter values of the AR models are α1 = 0.8, α2 = 0.1 with constant
mean μ = 0.1 and with σ = 0.2. Similarly, for the MA models, we took the MA-
parameters as β1 = 0.3, β2 = 0.5, and set σ = 0.2 and μ = 0.1. For the third
model, the mean of the Xt -variables were taken as a periodic function of time t :

μt = μ + cos 2πt/p + sin 2πt/p

with μ = 1.0 and p ∈ {5,10,20} and with σ = 0.2. In all three cases, the εt are
generated from two distributions, namely, (i) N(0,1)-distribution and (ii) a cen-
tered Exponential (1) distribution, to compare the effects of nonnormality on the
performance of the two methods. Note that the rows of the generated X are iden-
tically distributed for models I and II but not for model III. We considered six
combinations of (n,p) where n denotes the sample size and p the number of time
slots (or the periodicity). The parameter of interest θ was the population mean
and the estimator θ̂n was taken to be the sample mean. Thus, the row-wise esti-
mators θ̂jn were the sample means of the row-variables and the weights in (3.4)
were wjn = 1/p for all j = 1, . . . , p. In all, there are (3 × 2 × 6 =) 36 possible
combinations of (n,p)-pairs, the error distributions, and the three models. To keep
the size of the paper to a reasonable length, we shall only present 3 combinations
of (n,p) in the tables, while we present side-by-side box-plots for all 6 combi-
nations of (n,p), arranged by the error distributions. All results are based on 500
simulation runs.

Figures 2 and 3 give the box-plots of the differences between the Gap Boot-
strap I standard error estimates and the true standard errors in the one-dimensional
case under centered exponential and under normal error distributions, respec-
tively. Here box-plots in the top panels are based on the AR(2) model, the mid-
dle panels are based on the MA(2) model, while the bottom panels are based
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FIG. 2. Box-plots of the differences between the standard error estimates based on Gap Bootstrap
I and the true standard errors in the one-dimensional case using 500 simulation runs. Here, plots in
the first panel are based on Model I, those in the second and third panels are based on Models II and
III, respectively. The values of (n,p) for each box-plot are given at the bottom of the third panel. The
innovation distribution is centered exponential.

on the periodic model. For each model, the combinations of (n,p) are given by
(n,p) = (200,5), (500,10), (1800,30), (3500,50), (6000,75), (10,000,100).

Similarly, Figures 4 and 5 give the corresponding box-plots for the Gap Boot-
strap II method under centered exponential and under normal error distributions,
respectively.

From the Figures 4 and 5, it is evident that the variability of the standard error
estimates from the Gap Bootstrap I Method is higher under Models I and II than
under Model III for both error distributions. However, the bias under Model III is
persistently higher even for larger values of the sample size. This can be explained
by noting that for Method I, the assumption of approximate exchangeability of
the rows is violated under the periodic mean structure of Model III, leading to a
bigger bias. In comparison, Gap Bootstrap II estimates tend to center around the
target value (i.e., with differences around zero) even for the periodic model. Table 1
gives the true values of the standard errors of θ̂n based on Monte-Carlo simulation
and the corresponding summary measures for Gap Bootstrap methods I and II in
18 out of the 36 cases [we report only the first 3 combinations of (n,p) to save
space. A similar pattern was observed in the other 18 cases].
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FIG. 3. Box-plots for the differences of Gap Bootstrap I estimates and the true standard errors as
in Figure 2, but under normal innovation distribution.

From the table, we make the following observations:

(i) The biases of the Gap Bootstrap I estimators are consistently higher than
those based on Method II under Models I and II for both normal and nonnormal
errors, resulting in higher overall MSEs for Gap Bootstrap I estimators.

(ii) Unlike under Models I and II, here the biases of the two methods can have
opposite signs.

(iii) From the last column of Table 1 (which gives the ratios of the MSEs of
estimators based on Methods I and II), it follows that the Gap Bootstrap II works
significantly better than Gap Bootstrap I for Models I and II. For Model III, neither
method dominates the other in terms of bias and/or MSE. MSE comparison shows
a curious behavior of Method I at (n,p) = (500,10) for the periodic model.

(iv) The nonnormality of the Xt ’s does not seem to have significant effects on
the relative accuracy of the two methods.

Next we consider performance of the two gap Bootstrap methods for multivari-
ate data. The models we consider are analogs of (I)–(III) above, with the general
structure

Yt = (0.2,0.3,0.4,0.5)′ + Zt , t ≥ 1,

where Zt is taken to be the following: (IV) a multivariate autoregressive (MAR)
process, (V) a multivariate moving average (MMA) process, and (VI) a multivari-
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FIG. 4. Box-plots of the differences of standard error estimates based on Gap Bootstrap II and
the true standard errors in the one-dimensional case, as in Figure 2, under the centered exponential
innovation distribution.

ate periodic process. For the MAR process,

Zt = �Zt−1 + et ,

where

� =

⎡⎢⎢⎢⎣
0.5 0 0 0
0.1 0.6 0 0
0 0 −0.2 0
0 0.1 0 0.4

⎤⎥⎥⎥⎦
and the et are i.i.d. d = 4 dimensional normal random vectors with mean 0 and
covariance matrix �0, where we consider two choices of �0:

(i) �0 is the identity matrix of order 4;
(ii) �0 has (i, j)th element given by (−ρ)|i−j |, 1 ≤ i, j ≤ 4, with ρ = 0.55.

For the MMA model, we take

Zt = �1et−1 + �2et−2 + et ,
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FIG. 5. Box-plots of the differences of standard error estimates based on Gap Bootstrap II and
the true standard errors in the one-dimensional case, as in Figure 2, under the normal innovation
distribution.

where et are as above. The matrix of MA coefficients are given by

�1 =

⎡⎢⎢⎢⎣
1 0 0 0
∗ 2 0 0
∗ ∗ 2 0
∗ ∗ ∗ 2

⎤⎥⎥⎥⎦ and �2 = 1

8

⎡⎢⎢⎢⎣
1 0 0 0
∗ 1 0 0
∗ ∗ 1 0
∗ ∗ ∗ 1

⎤⎥⎥⎥⎦ ,

where, in both �1 and �2, the ∗’s are generated by using a random sample from
the UNIFORM (0,1) distribution [i.e., random numbers in (0,1)] and are held
fixed throughout the simulation. We take �1 and �2 as lower triangular matrices
to mimic the structure of the OD model for the real data example that will be
considered in Section 6 below. Finally, the observations Xt under the periodic
model (VI) are generated by stacking the univariate case with the same p, but
with μ changed to the the vector (0.2,0.3,0.4,0.5). The component-wise values
of α1 and α2 are kept the same and the εt ’s for the 4 components are now given by
the et ’s, with the two choices of the covariance matrix.

The parameter of interest is the mean of component-wise means, that is,

θ = μ̄ = [0.2 + 0.3 + 0.4 + 0.5]/4.

The estimator θ̂n is the mean of the component-wise means of the entire data
set and θ̃ (i) is given by the mean of the component-wise means coming from
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TABLE 1
Bias and MSEs of Standard Error estimates from Gap Bootstraps I and II for univariate data for

Models I–III. For each model, the two sets of 3 rows correspond to
(n,p) = (200,5), (500,10), (1800,30) under the normal (denoted by N in the first column) and the

centered Exponential (denoted by E) error distributions, respectively. Here B-I = Bias of Gap
Bootstrap I ×102, M-I = MSE of Gap Bootstrap I ×104, B-II = Bias of Gap Bootstrap II ×103,
and M-II = MSE of Gap Bootstrap II ×104. Column 2 gives the target parameter evaluated by

Monte-Carlo simulations and the last column is the ratio of columns 4 and 6

Model True-se B-I M-I B-II M-II Ratio (fix)

I.N.1 0.013 −0.831 0.708 −0.376 0.029 24.4
I.N.2 0.011 −0.700 0.503 −0.118 0.0202 25.2
I.N.3 0.008 −0.481 0.241 −0.256 0.0142 17.2

I.E.1 0.065 −4.18 17.8 −1.97 0.623 28.6
I.E.2 0.053 −3.54 12.8 −1.52 0.451 28.4
I.E.3 0.038 −2.41 6.04 −0.844 0.348 17.4

II.N.1 0.005 −0.240 0.061 −0.178 0.008 7.6
II.N.2 0.003 −0.154 0.026 −0.122 0.004 6.5
II.N.3 0.002 −0.081 0.007 −0.087 0.001 7.0

II.E.1 0.023 −1.22E 1.59 −1.18 0.183 8.9
II.E.2 0.015 −0.767 0.657 −0.288 0.101 6.5
II.E.3 0.008 −0.398 0.184 −0.092 0.025 7.4

III.N.1 0.003 −0.125 0.016 −0.183 0.005 3.2
III.N.2 0.002 −0.0263 0.0008 −0.065 0.002 0.4
III.N.3 0.001 0.059 0.004 −0.028 0.0004 10.0

III.E.1 0.014 −0.619 0.386 −0.549 0.094 4.1
III.E.2 0.009 −0.158 0.026 −0.506 0.042 0.6
III.E.3 0.005 0.292 0.086 −0.216 0.010 8.6

the ith row of n/p-many data vectors, for j = 1, . . . , p. Box-plots of the dif-
ferences between the true standard errors of θ̂n and their estimates obtained by
the two Gap Bootstrap methods are reported in Figures 6 and 7, respectively. We
only report the results for the models with covariance structure (ii) above (to save
space).

The number of simulation runs is 500 as in the univariate case. From the figures
it follows that the relative patterns of the box-plots mimic those in the case of
the univariate case, with Gap Bootstrap I leading to systematic biases under the
periodic mean structure. For comparison, we have also considered the performance
of more standard methods, namely, the overlapping versions of the Subsampling
(SS) and the Block Bootstrap (BB).

Figures 8 and 9 give box-plots of the differences between the true standard er-
rors of θ̂n and their estimates obtained by SS and BB methods, under Models (IV)–
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FIG. 6. Box-plots of the differences of standard error estimates based on Gap Bootstrap I and the
true standard errors in the multivariate case, under the Type II error distribution. The number of
simulation runs is 500. Also, the models and the values of (n,p) are depicted on the panels as in
Figure 2.

(VI) with covariance structure (ii). The choice of the block size was based on the
block length selection rule of Patton, Politis and White (2009). From the figures,
it follows that the relative performances of the SS and the BB methods are quali-
tatively similar and both methods handily outperform Gap Bootstrap I.

These qualitative observations are more precisely quantified in Table 2 which
gives the MSEs of all 4 methods for models (IV)–(VI) for all six combinations
of (n,p) under covariance structure (ii). It follows from the table that Gap Boot-
strap Method II has the best overall performance in terms of the MSE. This may
appear somewhat counter-intuitive at first glance, but the gain in efficiency of Gap
Bootstrap II can be explained by noting that it results from judicious choices of
resampling methods for different parts of the target parameter, as explained in
Section 3.3.3 (cf. Remark 3.1). On the other hand, in terms of computational time,
Gap Bootstrap I had the best possible performance, followed by the SS, Gap Boot-
strap II and the BB methods, respectively. Since the basic estimator θ̂n is com-
putationally very simple (being the sample mean), the computational time may
exhibit a very different relative pattern (e.g., for θ̂n requiring high-dimensional
matrix inversion, the BB method based on the entire data set may be totally infea-
sible).
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FIG. 7. Box-plots of the differences of standard error estimates based on Gap Bootstrap II and the
true standard errors in the multivariate case, under the setup of Figure 6.

6. A real data example: The OD estimation problem.

6.1. Data description. A 4.9 mile section of Interstate 10 (I-10) in San An-
tonio, Texas was chosen as the test bed for this study. This section of freeway is
monitored as part of San Antonio’s TransGuide Traffic Management Center, an in-
telligent transportation systems application that provides motorists with advanced
information regarding travel times, congestion, accidents and other traffic condi-
tions. Archived link volume counts from a series of 14 inductive loop detector lo-
cations (2 main lane locations, 6 on-ramps and 6 off-ramps) were used in this study
(see Figure 1). The analysis is based on 575 days of peak AM (6:30 to 9:30) traffic
count data (All weekdays—January 1, 2007 to March 13, 2009). Each day’s data
were summarized into 36 volume counts of 5-minute duration. Thus, there were a
total of 20,700 time points, and each time point giving 14 origin-destination traffic
data, resulting in more than a quarter-million data-values. Figures 10 and 11 are
plots showing the periodic behavior of the link volume count data at the 7 origin
(O1 to O7) and 7 destination (D1 to D7) locations, respectively.

6.2. A synthetic OD model. As described in Section 2, the OD trip matrix
is required in many traffic applications such as traffic simulation models, traffic
management, transportation planning and economic development. However, due
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FIG. 8. Box-plots of the difference of standard error estimates based on Subsampling and the true
standard errors in the multivariate case, under the setup of Figure 6.

to the high cost of direct measurements, the OD entries are constructed using syn-
thetic OD models [Cascetta (1984), Bell (1991), Okutani (1987), Dixon and Rilett
(2000)]. One common approach for estimating the OD matrix from link volume
counts is based on the least squares regression where the unknown OD matrix is
estimated by minimizing the squared Euclidean distance between the observed link
volumes and the estimated link volumes.

Given the link volume counts on all origin and destination ramps, the OD split
proportion, pij (assumed homogeneous over the morning rush-hours), is the frac-
tion of vehicles that exit the system at destination ramp djt given that they enter
at origin ramp oit at time point t (cf. Section 2). Once the split proportions are
known, the OD matrix for each time period can be identified as a linear combi-
nation of the split proportion matrix and the vector of origin volumes. It should
be noted that because the origin volumes are dynamic, the estimated OD matrix
is also dynamic. However, the split proportions are typically assumed constant so
that the OD matrices by time slice are linear functions of each other [Gajewski et
al. (2002)]. While this is a reasonable assumption for short freeway segments over
a time span with homogeneous traffic patterns like the ones used in this study, it
elicits the question as to when trips began and ended when used on larger networks
over a longer tie span. It is also assumed that all vehicles that enter the system from
each origin ramp during a given time period exit the system during the same time
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FIG. 9. Box-plots of the differences of standard error estimates based on the block bootstrap and
the true standard errors in the multivariate case, under the setup of Figure 6.

period. That is, it is assumed that conservation of vehicles holds, so that the sum
of the trip proportions from each origin ramp equals 1. Caution should be exer-
cised in situations where a large proportion of trips begin and end during different
time periods [Gajewski et al. (2002)]. Note also that some split proportions such
as p21 are not feasible because of the structure of the network. Moreover, all ve-
hicles that enter the freeway from origin ramp 7 go through destination ramp 7 so
that p77 = 1. All of these constraints need to be incorporated into the estimation
process.

Let djt denote the volume at destination j over the t th time interval (of dura-
tion 5 minutes) and ojt denote the j th origin volume over the same period. Let pij

be the proportion of origin i volume contributing to the destination j volume (as-
sumed not to change over time). Then, the synthetic OD model for the link volume
counts can be described as follows:

For each t ,

d1t = o1tp11 + ε1t ,

d2t = o1tp12 + o2tp22 + ε2t ,

d3t = o1tp13 + o2tp23 + o3tp33 + ε3t ,

d4t = o1tp14 + o2tp24 + o3tp34 + o4tp44 + ε4t ,(6.1)
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TABLE 2
MSEs of Standard Error estimates from Gap Bootstraps I and II and the Subsampling (SS) and

Block Bootstrap (BB) methods for the multivariate data for Models IV–VI under covariance matrix
of type (ii). The six rows under each model correspond to

(n,p) = (200,5), (500,10), (1800,30), (3500,50), (6000,75), (10,000,100). Further, the entries
in the table gives the values of the MSEs multiplied 104, 104 and 105 for Models IV–VI, respectively

Model True-se GB-I GB-II SS BB

IV.1 0.044 6.190 0.634 1.390 1.510
IV.2 0.030 2.970 0.353 0.568 0.567
IV.3 0.017 0.873 0.116 0.151 0.162
IV.4 0.012 0.451 0.064 0.078 0.082
IV.5 0.009 0.247 0.034 0.040 0.042
IV.6 0.007 0.155 0.017 0.020 0.020

V.1 0.076 14.300 2.350 3.690 4.040
V.2 0.053 7.560 1.190 1.650 1.690
V.3 0.028 2.060 0.300 0.374 0.427
V.4 0.019 0.930 0.144 0.165 0.176
V.5 0.015 0.590 0.080 0.094 0.099
V.6 0.011 0.297 0.037 0.043 0.045

VI.1 0.022 10.300 2.400 3.150 3.440
VI.2 0.014 4.250 0.918 1.110 1.100
VI.3 0.007 2.230 0.215 0.257 0.291
VI.4 0.005 3.860 0.111 0.134 0.140
VI.5 0.004 4.620 0.069 0.073 0.074
VI.6 0.003 4.350 0.032 0.036 0.038

d5t = o1tp15 + o2tp25 + o3tp35 + o4tp45 + o5tp55 + ε5t ,

d6t = o1tp16 + o2tp26 + o3tp36 + o4tp46 + o5tp56 + o6tp66 + ε6t ,

d7t = o1tp17 + o2tp27 + o3tp37 + o4tp47 + o5tp57 + o6tp67

+ o7tp77 + ε7t ,

where εjt are (correlated) error variables. Note that the parameters pij satisfy the
conditions

7∑
j=i

pij = 1 for i = 1, . . . ,7.(6.2)

In particular, p77 = 1. Because of the above linear restrictions on the pij ’s, it is
enough to estimate the parameter vector p = (p11,p12, . . . , p16;p22, . . . , p26; . . . ;
p66)

′. We relabel the components and write p = (θ [1], . . . , θ [21])′ ≡ θ . We will es-
timate these parameters by the least squares method using the entire data, resulting
in the estimator θ̂n and using the daily data over each of the 36 time intervals of
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length 5 minutes, yielding θ̂jn, j = 1, . . . ,24. For notational simplicity, we set
θ̂0n = θ̂n.

For t = 1, . . . ,20,700, let Dt = (d1t , . . . , d6t , d7t −∑7
i=1 o1i )

′ and let Ot be the
7 × 21 matrix given by

Ot = [
O

[1]
t : . . . :O[6]

t

]
,

where, for k = 1, . . . ,6, O
[k]
t is a 7 × (7 − k) matrix with its last row given by

(−okt , . . . ,−okt ) and the rest of the elements by(
O

[k]
t

)
ij = okt1(i ≥ k)1(j = i − k + 1), i = 1, . . . ,6, j = 1, . . . ,7 − k.

For j = 0,1, . . . ,36, let

θ̂jn =
[∑
t∈Tj

O ′
tOt

]−1 ∑
t∈Tj

O ′
tDt ,(6.3)

where Tj = {j, j + 36, . . . , j + (574 × 36)} for j = 1, . . . ,36 and where T0 =
{1, . . . ,720}. Note that each of T1, . . . , T36 has size 575 (the total number of days)
and corresponds to the counts data over the respective 5 minute period, while
T0 has size 20,700 and it corresponds to the entire data set. For applying Gap
Bootstrap II, we need a minor extension of the formulas given in Section 3.3,
as the weights in (3.4) now vary component-wise. For j = 0,1, . . . ,36, define
�jn = ∑

t∈Tj
O ′

tOt . Then, the following version of (3.4) holds [without the op(1)

term]:

θ̂n =
36∑

j=1

Wjnθ̂jn,

where Wjn = �−1
0n �jn. This can be proved by noting that

θ̂n = �−1
0n

∑
t∈T0

O ′
tDt = �−1

0n

36∑
j=1

∑
t∈Tj

O ′
tDt ≡

36∑
j=1

Wjnθ̂jn.

The Gap Bootstrap II estimator of the variance of the individual components
θ̂ [1]
n , . . . , θ̂ [21]

n of the estimator θ̂n is now given by

V̂ar
(
θ̂ [a]
n

) =
36∑

k=1

36∑
l=1

σ̂akσ̂al ρ̃a(k, l), a = 1, . . . ,21,

where σ̂ 2
ak = w′

ak�̂
(k)wak , �̂(k) is the i.i.d. bootstrap based estimator of the vari-

ance matrix of θ̂kn, ρ̃a(k, j) is the sampling window estimator of the correlation
between the ath component of the kth and j th row-wise estimators of θ and wak’s
are weights based on Wjn’s. Indeed, with e1 = (1,0, . . . ,0)′, . . . , e21 = (0, . . . ,1)′,
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FIG. 10. Plots of the origin volume counts for the San Antonio, TX data (including weekend days).
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FIG. 11. Plots of the destination volume counts for the San Antonio, TX data (including weekend
days).
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TABLE 3
Standard Error estimates from Gap Bootstraps I and II (denoted by STD-I and STD-II, resp.) for the

San Antonio, TX data

pij Estimates STD-I STD-II pij Estimates STD-I STD-II

p11 0.355 0.0009 0.0019 p33 0.046 0.0026 0.0041
p12 0.104 0.0018 0.0042 p34 0.232 0.0032 0.0132
p13 0.011 0.0006 0.0015 p35 0.106 0.0061 0.0082
p14 0.064 0.0043 0.0131 p36 0.039 0.0025 0.0080
p15 0.047 0.0024 0.0073 p44 0.436 0.0100 0.0155
p16 0.022 0.0017 0.0042 p45 0.240 0.0123 0.0094
p22 0.385 0.0079 0.0118 p46 0.105 0.0057 0.0141
p23 0.083 0.0044 0.0066 p55 0.233 0.0080 0.0130
p24 0.242 0.0053 0.0237 p56 0.109 0.0045 0.0168
p25 0.112 0.0107 0.0144 p66 0.537 0.0093 0.0263
p26 0.064 0.0037 0.0058

we have waj = e′
a�

−1
0n �jn, 1 ≤ j ≤ 36. To find ρ̃a(k, j)’s, we applied the sampling

window method estimator with � = 17 and the following formula for ρ̃a(k, j):

ρ̃a(k, j) = I−1 ∑I
i=1(w

′
ak[θ̃ (i)

kn − θ̂n])(w′
aj [θ̃ (i)

jn − θ̂n])
[I−1 ∑I

i=1(w
′
ak[θ̃ (i)

kn − θ̂n])2]1/2[I−1 ∑I
i=1(w

′
aj [θ̃ (i)

jn − θ̂n])2]1/2
,

j, k = 1, . . . ,36, a = 1, . . . ,21, where θ̃
(i)
kn ’s is the ith subsample version of θ̂kn

and I = 575 − � + 1 = 559. Following the result on the optimal order of the block
size for estimation of (co)-variances in the block resampling literature [cf. Lahiri
(2003)], here we have set � = cN1/3 with N = 575 and c = 2.

Table 3 gives the estimated standard errors of the least squares estimators of
the 21 parameters θ1, . . . , θ21.

From the table, it is evident that the estimates generated by Gap Bootstrap I are
consistently smaller than those produced by Gap Bootstrap II. To verify the pres-
ence of serial correlation within columns, we also computed the component-wise
sample autocorrelation functions (ACFs) for each of origin and destination time
series (not shown here). From these, we found that there is nontrivial correlation
in all other series up to lag 14 and that the ACFs are of different shapes. In view of
the nonstationarity of the components and the presence of nontrivial serial correla-
tion, it seems reasonable to infer that Gap Bootstrap I underestimates the standard
error of the split proportion estimates in the synthetic OD model and, hence, Gap
Bootstrap II estimates may be used for further analysis and decision making.

7. Concluding remarks. In this paper we have presented two resampling
methods that are suitable for carrying out inference on a class of massive data
sets that have a special structural property. While naive applications of the existing
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resampling methodology are severely constrained by the computational issues as-
sociated with massive data sets, the proposed methods exploit the so-called “gap”
structure of massive data sets to split them into well-behaved smaller subsets where
judicious combinations of known resampling techniques can be employed to ob-
tain subset-wise accurate solutions. Some simple analytical considerations are then
used to combine the piece-wise results to solve the original problem that is other-
wise intractable. As is evident from the discussions earlier, the versions of the
proposed Gap Bootstrap methods require different sets of regularity conditions for
their validity. Method I requires that the different subsets (in our notation, rows)
have approximately the same distribution and that the number of such subsets be
large. In comparison, Method II allows for nonstationarity among the different
subsets and does not require the number of subsets itself to go to infinity. How-
ever, the price paid for a wider range of validity for Method II is that it requires
some analytical considerations [cf. (3.4)] and that it uses more complex resampling
methodology. We show that the analytical considerations are often simple, specif-
ically for asymptotically linear estimators, which cover a number of commonly
used classes of estimators. Even in the nonstationary setup, such as in the regres-
sion models associated with the real data example, finding the weights in (3.4) is
not very difficult. In the moderate scale simulation of Section 5, Method II typi-
cally outperformed all the resampling methods considered here, including, perhaps
surprisingly, the block bootstrap on the entire data set; This can be explained by
noting that unlike the block bootstrap method, Method II crucially exploits the gap
structure to estimate different parts by using a suitable resampling method for each
part separately. On the other hand, Method I gives a “quick and simple” alternative
for massive data sets that has a reasonably good performance whenever the data
subsets are relatively homogeneous and the number of subsets is large.

APPENDIX: PROOFS

For clarity of exposition, we first give a relatively detailed proof of Theorem 4.2
in Section A.1 and then outline a proof of Theorem 4.1 in Section A.2.

A.1. Proof of consistency of Method II.

A.1.1. Conditions. Let {Yt }t∈Z be a d-dimensional time series on a probabil-
ity space (�, F ,P ) with strong mixing coefficient

α(n) ≡ sup
{∣∣P(A ∩ B) − P(A)P (B)

∣∣ :A ∈ F a∞,B ∈ F ∞
a+n, a ∈ Z

}
, n ≥ 1,

where Z = {0,±1,±2, . . .} and where F b
a = σ 〈Yt : t ∈ [a, b] ∩ Z〉 for −∞ ≤

a ≤ b ≤ ∞. We suppose that the observations {Xt : t = 1, . . . , n} are obtained
from the Yt -series with systematic deletion of Yt -subseries of length q , as de-
scribed in Section 2.2, leaving a gap of q in between two columns of X, that
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is, (X1, . . . ,Xp) = (Y1, . . . ,Yp), (Xp+1, . . . ,X2p = (Yp+q+1, . . . ,Y2p+q), etc.
Thus, for i = 0, . . . ,m − 1 and j = 1, . . . , p,

Xip+j = Yi(p+q)+j .

Further, suppose that the vectorized process {(Xip+1, . . . ,X(i+1)p) : i ≥ 0} is sta-
tionary. Thus, the original process {Yt } is nonstationary, but it has a periodic struc-
ture over a suitable subset of the index set, as is the case in the transportation data
example. Note that these assumptions are somewhat weaker than the requirements
in (2.2). Also, for each j = 1, . . . , p, denote the i.i.d. bootstrap observations gen-
erated by Efron (1979)’s bootstrap by {X∗

ip+j : i = 0, . . . ,m − 1} and the bootstrap

version of θ̂jn by θ∗
jn. Write E∗ and Var∗ to denote the conditional expectation and

variance of the bootstrap variables.
To prove the consistency of the Gap bootstrap II variance estimator, we will

make use of the following conditions:

(C.1) There exist C ∈ (0,∞) and δ ∈ (0,∞) such that for j = 1, . . . , p,

Eψj(Xj ) = 0, E
∣∣ψj(Xj )

∣∣2+δ
< C

and
∑∞

n=1 α(n)δ/(2+δ) < ∞.
(C.2) [θ̂n − ∑p

j=1 wjnθ̂jn] = o(n−1/2) in L2(P ).
(C.3) (i) For j = 1, . . . , p,

θ̂jn = m−1
m−1∑
i=0

ψj(Xip+j ) + o
(
m−1/2) in L2(P ).

(ii) For j = 1, . . . , p,

θ∗
jn = m−1

m−1∑
i=0

ψj

(
X∗

ip+j

) + R∗
jn and E

[
E∗

{
R∗

jn

}2] = o
(
m−1/2),

θ̃
(i)
jn =

i+�−1∑
a=i

ψj (X(a−1)p+j ) + o
(
�−1/2) in L2(P ), i = 1, . . . , I.

(C.4) q → ∞ and p
∑p

j=1 w2
jn = O(1) as n → ∞.

We now briefly comment on the conditions. Condition (C.1) is a standard
moment and mixing condition used in the literature for convergence of the se-
ries

∑∞
k=1 Cov(ψj (Xj ),ψj (Xkp+j )) [cf. Ibragimov and Linnik (1971)]. Condi-

tion (C.2) is a stronger form of (3.4). It guarantees asymptotic equivalence of the
variances of θ̂n and its subsample (row)-based approximation

∑p
j=1 wjnθ̂jn. Con-

dition (C.3) in turn allows us to obtain an explicit expression for the asymptotic
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variance of θ̂jn and, hence, of θ̂n. Note that the linear representation of θ̂jn in (C.3)
holds for many common estimators, including M , L and R estimators, where the
L2(P ) convergence is replaced by convergence in probability. The L(P ) conver-
gence holds for M-estimators under suitable monotonicity conditions on the score
function; for L and R-estimators, it also holds under suitable moment condition
on Xj ’s and under suitable growth conditions on the weight functions. Condi-
tion (C.3)(ii) requires that a linear representation similar to that of the row-wise
estimator θ̂jn holds for its i.i.d. bootstrap version θ∗

jn. If the bootstrap variables
X∗

ip+j are defined on (�, F ,P ) (which can always be done on a possibly enlarged

probability space), then the iterated expectation E[E∗{R∗
jn}2] is the same as the

unconditional expectation E{R∗
jn}2, and the first part of (C.2)(ii) can be simply

stated as

θ∗
jn = m−1

m−1∑
i=0

ψj

(
X∗

ip+j

) + o
(
m−1/2) in L2(P ).

The second part of (C.2)(ii) is an analog of (C.2)(i) for the subsample versions
of the estimators θ̂jn’s. The remainder term here is o(�−1/2), as the subsampling
estimators are now based on � columns of Xt -variables as opposed to m columns
for θ̂jn’s. All the representations in condition (C.3) hold for suitable classes of M ,
L and R estimators, as described above.

Next consider condition (C.4). It requires that the gap between the Yt variables
in two consecutive columns of X go to infinity, at an arbitrary rate. This con-
dition guarantees that the i.i.d. bootstrap of Efron (1979) yields consistent vari-
ance estimators for the row-wise estimators θ̂jn’s, even in presence of (weak)
serial correlation. The second part of condition (C.4) is equivalent to requiring
wjn = O(1) for each j = 1, . . . , p, when p is fixed. For simplicity, in the fol-
lowing we only prove Theorem 4.2 for the case p is fixed. However, in some
applications, “p → ∞” may be a more realistic assumption and, in this case, The-
orem 4.2 remains valid provided the order symbols in (C.3) have the rate o(m−1/2)

uniformly over j ∈ {1, . . . , p}, in addition to the other conditions.

A.1.2. Proofs. Let θ†
n = ∑p

j=1 wjnθ̂jn and θ
†
jn = m−1 ∑m−1

i=0 ψj(Xip+j ), j =
1, . . . , p. Let K denote a generic constant in (0,∞) that does not depend on n.
Also, unless otherwise specified, limits in order symbols are taken by letting n →
∞.

PROOF OF THEOREM 4.2. First we show that

n

∣∣∣∣∣Var(θ̂n) −
p∑

j=1

p∑
k=1

wjnwkn Cov(θ̂jn, θ̂kn)

∣∣∣∣∣ = o(1).(A.1)
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Let �n = θ̂n − θ†
n . Note that by condition (C.2), E�2

n = o(1). Hence, by the
Cauchy–Schwarz inequality, the left side of (A.1) equals

n
∣∣E(θ̂n − Eθ̂n)

2 − E
(
θ†
n − Eθ†

n

)2∣∣
≤ 2n

∣∣E(
θ†
n − Eθ†

n

)
(�n − E�n)

∣∣ + nVar(�n)

≤ 2n
[
Var

(
θ†
n

)]1/2(
E�2

n

)1/2 + E�2
n

= o(1),

provided Var(θ†
n) = O(1).

To see that Var(θ†
n) = O(1), note that

mVar
(
θ

†
jn

) = m−1 Var

(
m−1∑
i=0

ψj(Xip+j )

)

= Eψj(Xj )
2 + 2m−1

m−1∑
k=1

(m − k)Eψj (Xj )ψj (Xkp+j )(A.2)

= Eψj(Xj )
2 + o(1)

as, by conditions (C.1) and (C.4),

2m−1
m−1∑
k=1

(m − k)
∣∣Eψj(Yj )ψj (Yk(p+q)+j )

∣∣
≤ K

m−1∑
k=1

α
(
k[p + q])δ/(2+δ)(

E
∣∣ψj(Xj )

∣∣2+δ)2/(2+δ)

≤ C2/(2+δ)K

∞∑
k=p+q

α(k)δ/(2+δ) = o(1).

By similar arguments, for any 1 ≤ j, k ≤ p,

mCov
(
θ

†
jn, θ

†
kn

) = Eψj(Xj )ψk(Xk) + o(1).(A.3)

Also, by (A.2) and conditions (C.3) and (C.4),

nVar
(
θ†
n

) = n

p∑
j=1

w2
jn Var(θ̂jn) + 2n

∑
1≤j<k≤p

|wjnwkn|
∣∣Cov(θ̂jn, θ̂kn)

∣∣
= O

([ p∑
j=1

|wjn|
]2

nm−1

)
= O(1).

Hence, (A.1) follows.
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To complete the proof of the theorem, by (A.1), it now remains to show that

m
[
σ̂ 2

jn − Var(θ̂jn)
] = op(1),(A.4)

ρ̂n(j, k) − ρn(j, k) = op(1)(A.5)

for all 1 ≤ j, k ≤ p, where ρn(j, k) is the correlation between θ̂jn and θ̂kn. First
consider (A.4). Note that by (A.2), mVar(θ̂jn) = Eψj(Xj )

2 + o(1) and by condi-
tion (C.3)(ii),

mσ̂ 2
jn = mVar∗

(
m−1

m−1∑
i=0

ψj

(
X∗

ip+j

)) + op(1).

By using a truncation argument and the mixing condition (C.4), it is easy to show
that

m−1
m−1∑
i=0

[
ψj(Xip+j )

]r = E
[
ψj(Xip+j )

]r + op(1), r = 1,2.

Hence, (A.4) follows. Next, to prove (A.5), note that by condition (C.3), (A.2)
and (A.3),

ρn(j, k) = Eψj(Xj )ψk(Xk)

[Eψj(Xj )2]1/2[Eψk(Xk)2]1/2 + o(1)

for all j, k. Also, by conditions (C.3)–(C.4) and standard variance bound under the
moment and mixing conditions of (C.4), for all j, k,

I−1
I∑

i=1

θ̃
(i)
jn θ̃

(i)
kn = I−1

I∑
i=1

θ
†(i)
jn θ

†(i)
kn + op

(
�−1/2),

where θ
†(i)
jn = ∑i+�−1

a=i ψj (X(a−1)p+j ), i = 1, . . . , I . The consistency of the sam-
pling window estimator of ρn(j, k) can now be proved by using conditions (C.2),
(C.3) and standard results [cf. Theorem 3.1, Lahiri (2003)]. This completes the
proof of (A.5) and hence of Theorem 4.2.

PROOFS OF (3.9) AND (3.10). For notational simplicity, w.l.g., we set μ = 0.
(Otherwise, replace Xt by Xt − μ for all t in the following steps.) Write X̄jn

and X̄(k), respectively, for the sample averages of the j th row and kth column,
1 ≤ j ≤ p and 1 ≤ k ≤ m. First consider (3.9). Since μ = 0, it follows that for
each j ∈ {1, . . . , p},

θ̂jn = m−1
m∑

i=1

X2
(i−1)p+j − X̄2

jn = m−1
m∑

i=1

X2
(i−1)p+j + Op

(
n−1).

Since n = mp, using a similar argument, it follows that θ̂n = n−1 ∑n
i=1 X2

i +
Op(n−1) = p−1 ∑p

j=1 θ̂jn + Op(n−1). Hence, (3.9) holds.
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Next consider (3.10). It is easy to check that for all k = 1, . . . ,m, θ̂ (k) =
p−1 ∑p

i=1 X2
(k−1)p+i − [X̄(k)]2 and E[X̄(k)]2 = p−21′�1. Hence, with Wk =

[X̄(k)]2 − E[X̄(k)]2,

θ̂n = n−1
n∑

i=1

X2
i + Op

(
n−1)

= m−1
m∑

k=1

[
θ̂ (k) + {

X̄(k)}2] + Op

(
n−1)

= m−1
m∑

k=1

θ̂ (k) + p−21′�1 + m−1
m∑

k=1

Wk + Op

(
n−1)

= m−1
m∑

k=1

θ̂ (k) + p−21′�1 + Op

(
n−1/2),

provided condition (C.1) holds with ψj(x) = x2 for all j . Further, note that the
leading part of the Op(n−1/2)-term is n−1/2 × m−1/2 ∑m

k=1 Wk and m−1/2 ×∑m
k=1 Wk is asymptotically normal with mean zero and variance σ 2

W ≡ Var(W1) +
2
∑∞

i=1 Cov(W1,Wi+1). As a result, the Op(n−1/2)-term cannot be of a smaller
order (except in the special case of σ 2

W = 0). �

A.2. Proof of consistency of Method I.

A.2.1. Conditions. We shall continue to use the notation and conventions of
Section A.1.2. In addition to assuming that X satisfies (2.2), we shall make use of
the following conditions:

(A.1) (i) Pairwise distributions of {m1/2(θ̂jn − θ) : 1 ≤ j ≤ p} are identical.
(ii) {m1/2(θ̂jn − θ) : 1 ≤ j ≤ p} are m0-dependent with m0 = o(p).

(A.2) (i) mVar(θ̂1n) → � and mCov(θ̂1n, θ̂2n) → � as n → ∞.
(ii) {[m1/2(θ̂1n − θ)]2 :n ≥ 1} is uniformly integrable.

(iii) mp−1 ∑p
j=1 V̂ar(θ̂jn) →p � as n → ∞.

Now we briefly comment on the conditions. As indicated earlier, for the valid-
ity of the Gap Bootstrap I method, we do not need the exchangeability of the rows
of X; the amount of homogeneity of the centered and scaled row-wise estimators
{m1/2(θ̂jn −θ) : 1 ≤ j ≤ p}, as specified by condition (A.1)(i), is all that is needed.
(A.1)(i) also provides the motivation behind the definition of the variance estimator
of the pair-wise differences right above (3.3). Condition (A.1)(ii) has two implica-
tions. First, it quantifies the approximate independence condition in (2.2). A suit-
able strong mixing condition can be used instead, as in the proof of Theorem 4.2,
but we do not attempt such generalizations to keep the proof short. A second im-
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plication of (A.1)(ii) is that p → ∞ as n → ∞, that is, the number of subsample
estimators θ̂jn’s must be large. In comparison, m0 may or may not go to infinity
with n → ∞. Next consider condition (A.2). Condition (A.2)(i) says that the row-
wise estimators are root-m consistent and that for any pair j �= k, the covariance
between m1/2(θ̂jn − θ) and m1/2(θ̂kn − θ) has a common limit, which is what we
are indirectly trying to estimate using mṼar(θ̂jn − θ̂kn). Condition (A.2)(ii) is a
uniform integrability condition that is implied by E|m1/2(θ̂1n − θ̂2n)|2+δ = O(1)

[cf. condition (C.1)] for some δ > 0. Part (iii) of condition (A.2) says that the
i.i.d. bootstrap variance estimator applied to the (average of the) row-wise estima-
tors be consistent. A proof of this can be easily constructed using the arguments
given in the proof of Theorem 4.2, by requiring some standard regularity condi-
tions on the score functions that define the θ̂jn’s in Section 3.2. We decided to
state it as a high level condition to avoid repetition of similar arguments and to
save space.

A.2.2. Proof of Theorem 4.1. In view of condition (A.2)(iii) and (3.3), it is
enough to show that

m
[
Ṽar(θ̂1n − θ̂2n) − E(θ̂1n − θ̂2n)(θ̂1n − θ̂2n)

′] →p 0.

Since this is equivalent to showing component-wise consistency, without loss of
generality, we may suppose that the θ̂jn’s are one-dimensional. Define Vjk =
m(θ̂jn − θ̂kn)

21(|m1/2(θ̂jn − θ̂kn)| > an), Wjk = m(θ̂jn − θ̂kn)
21(|m1/2(θ̂jn −

θ̂kn)| ≤ an), for some an ∈ (0,∞) to be specified later. It is now enough to show
that

Q1n ≡ p−2
∑

1≤j �=k≤p

|Vjk − EVjk| →p 0,

Q2n ≡ p−2
∣∣∣∣ ∑
1≤j �=k≤p

[Wjk − EWjk]
∣∣∣∣ →p 0.

By condition (A.2)(ii), {[m1/2(θ̂1n − θ̂2n)]2 :n ≥ 1} is also uniformly integrable
and, hence,

EQ1n ≤ 2E|m1/2(θ̂1n − θ̂2n)
21

(∣∣m1/2(θ̂1n − θ̂2n)
∣∣ > an

) = o(1)

whenever an → ∞ as n → ∞. Next consider Q2n. Define the sets J1 =
{(j, k) : 1 ≤ j �= k ≤ p}, Aj,k = {(j1, k1) ∈ J1 : min{|j − j1|, |k − k1|} ≤ m0} and
Bj,k = J1 \ Aj,k , (j, k) ∈ J1. Then, for any (j, k) ∈ J1, by the m0-dependence
condition,

Cov(Wjk,Wa,b) = 0 for all (a, b) ∈ Bj,k.
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Further, note that |Aj,k| ≡ the size of Aj,k is at most 2m0p for all (j, k) ∈ J1.
Hence, it follows that

EQ2
2n ≤ p−4

[ ∑
(j,k)∈J1

Var(Wjk) + ∑
(j,k)∈J1

∑
(a,b) �=(j,k)

Cov(Wjk,Wab)

]

≤ p−4
[
p2EW 2

12 + ∑
(j,k)∈J1

∑
(a,b)∈Aj,k

∣∣Cov(Wjk,Wab)
∣∣]

≤ p−4[p2a2
nE|W12| + p2 · 2m0p · a2

nE|W12|]
= O

(
p−1m0a

2
n

)
as E|W12| ≤ mE(θ̂1n− θ̂2n)

2 = O(1). Now choosing an = [p/m0]1/3 (say), we get
Qkn →p 0 for k = 1,2, proving (A.6). This completes the proof of Theorem 4.1.

�
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