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THE IMPORTANCE OF DISTINCT MODELING STRATEGIES FOR
GENE AND GENE-SPECIFIC TREATMENT EFFECTS IN
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When analyzing microarray data, hierarchical models are often used to
share information across genes when estimating means and variances or iden-
tifying differential expression. Many methods utilize some form of the two-
level hierarchical model structure suggested by Kendziorski et al. [Stat. Med.
(2003) 22 3899–3914] in which the first level describes the distribution of la-
tent mean expression levels among genes and among differentially expressed
treatments within a gene. The second level describes the conditional distri-
bution, given a latent mean, of repeated observations for a single gene and
treatment. Many of these models, including those used in Kendziorski’s et al.
[Stat. Med. (2003) 22 3899–3914] EBarrays package, assume that expression
level changes due to treatment effects have the same distribution as expres-
sion level changes from gene to gene. We present empirical evidence that this
assumption is often inadequate and propose three-level hierarchical models
as extensions to the two-level log-normal based EBarrays models to address
this inadequacy. We demonstrate that use of our three-level models dramati-
cally changes analysis results for a variety of microarray data sets and verify
the validity and improved performance of our suggested method in a series
of simulation studies. We also illustrate the importance of accounting for the
uncertainty of gene-specific error variance estimates when using hierarchical
models to identify differentially expressed genes.

1. Introduction. There are many analytic methods for microarray data that
utilize a hierarchical model to share information across genes when estimating
mean expression levels. A large subset of these methods model differences in ex-
pression levels from gene to gene and differences in expression levels caused by
treatment effects with a single distribution. Canonical examples of such methods
are implemented in the EBarrays package for R developed by Kendziorski et al.
(2003). This work has been influential as indicated by a variety of recent methods
that cite Kendziorski et al. (2003) and follow their modeling strategy. Examples
include Newton et al. (2004), Yuan and Kendziorski (2006a, 2006b), Yuan (2006),
Lo and Gottardo (2007), Keleş (2007), Wei and Li (2007, 2008), Wu et al. (2007),
Jensen et al. (2009), and Rossell (2009).
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The analytic methods provided in EBarrays are based on two-level hierarchical
parametric models that can be used to analyze data from experiments with more
than two treatment groups and produce posterior expression pattern probabilities,
which can be used to assess the significance of and classify differential expression
of genes. The first level of the hierarchical model describes the distribution of la-
tent mean expression levels among genes and among differentially expressed (DE)
treatments within a gene. The second level describes the conditional distribution,
given a latent mean, of repeated observations for a single gene and treatment.

A necessary user input to models like those included in EBarrays is a list of
possible expression patterns. In a two-treatment experiment, the only two expres-
sion patterns are equivalent expression and differential expression. In general, each
pattern describes how to partition the experimental units into groups based on the
experimental conditions or treatments associated with the experimental units. An
analysis based on these models can yield a gene-specific posterior probability es-
timate for each pattern.

The application of hierarchical models to microarray data has many benefits:
“sharing” information across genes compensates for having few replicates, users
may define expression patterns of interest involving two or more experimental con-
ditions, posterior probabilities assigned to expression patterns are easy to interpret
and allow for easy classification or ranking, and simultaneous analysis of all genes
in a data set greatly reduces the dimensionality of the inference problem. While
the work of Kendziorski et al. (2003) lays a foundation for a powerful method of
microarray analysis upon which many methods have been developed, there is room
to relax assumptions and to improve the models described.

The main point of this paper concerns the assumption—implied by the model-
ing strategy of Kendziorski et al. (2003)—that expression changes across genes
have the same distribution as expression changes caused by treatment effects.
This assumption is convenient for computational reasons but has undesirable con-
sequences. In particular, if expression differences from gene to gene tend to be
larger than treatment effects, the power to identify differentially expressed genes
will be reduced. Based on our experience with microarray data, we see no reason
to believe that expression differences across genes have the same distribution as
expression differences caused by treatment effects in all experiments. Thus, we
propose to relax this assumption by adding an additional level to the hierarchy of
Kendziorski’s et al. (2003) lognormal–normal (LNN) model. This creates a three-
level hierarchical model that we will call the lognormal–normal–normal (LN3)
model.

A secondary point of this paper concerns the assumption of a constant coef-
ficient of variation used in Kendziorski’s et al. (2003) gamma–gamma (GG) and
lognormal–normal (LNN) models, which, for the latter model, implies an error
variance of log expression values that is common to all genes. This assumption
is now widely regarded as untenable. To address this, Lo and Gottardo (2007)
introduced a method to relax the assumption of the GG and LNN models, and
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many methods to estimate gene-specific error variances for microarray data have
been developed. [See, e.g., Baldi and Long (2001), Lönnstedt and Speed (2002),
Wright and Simon (2003), Cui et al. (2005).] Kendziorski’s et al. (2003) EBar-
rays package includes the LNN-moderated variance (LNNMV) method, which
uses shrunken point estimates of gene-specific error variances similar to those de-
scribed by Smyth (2004). We briefly demonstrate that using point estimates of
gene-specific error variances without accounting for their uncertainty produces
liberal posterior pattern probability estimates, which causes underestimation of
the proportion of false positives on a list of significant genes. We propose a simple
adaptation to the LNNMV method to account for the uncertainty in gene-specific
variance estimates and demonstrate this corrects the liberal bias in the estimated
expression pattern posterior probabilities. Finally, we combine our proposed three-
level hierarchical modeling strategy with gene-specific error variance modeling to
obtain a more general model denoted LN3MV.

We formally describe the four lognormal based models (LNN, LNNMV, LN3,
and LN3MV) and corresponding analytic methods in Section 2. In Section 3 we
present empirical evidence from two example microarray data sets that clearly
supports our proposed three-level hierarchical modeling strategy. In Section 4 we
demonstrate the practical impact of our suggested adaptations by analyzing data
from the two microarray experiments with several methods. Section 5 describes a
variety of simulation studies used to verify the validity and improved power of our
suggested methods. For both real and simulated data sets, the use of our proposed
three-level hierarchal model dramatically increases power to detect DE genes.

2. Model descriptions. Throughout this paper, we will use the term “group”
to denote a set of equivalently expressed (EE) observations from a single gene.
Consider a microarray data set with expression values for J genes from each of I

experimental units divided among 2 experimental conditions. If for gene j there
is no difference between the expression distributions for experimental units under
conditions 1 and 2, then the entire set of I observations forms a single group. If for
gene j there is a difference between the expression distributions for experimental
units under conditions 1 and 2, then the set of observations from experimental units
under condition 1 forms one group and the set of observations from experimental
units under condition 2 forms a second group. In general, there is at least one
group for every gene and at most one group for every combination of gene and
experimental condition.

Throughout this section, we will use Gp(i) to denote the group (subset of EE
observations) to which the ith experimental unit belongs under the pth expres-
sion pattern. For example, suppose there is an experiment with 6 experimental
units distributed across 3 treatment groups labeled control, A, and B. If a re-
searcher aims to compare each of treatments A and B to the control, then ex-
pression patterns of interest for each gene are p = 1: control = A, control = B;
p = 2: control �= A, control = B; p = 3: control = A, control �= B; and p = 4:
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control �= A, control �= B. If experimental units 1 and 2 received the control treat-
ment, 3 and 4 received treatment A, and 5 and 6 received treatment B; then
G1(i) = 1 for i = 1, . . . ,6; G2(i) = 1 for i = 1,2,5,6 and 2 for i = 3,4;
G3(i) = 1 for i = 1,2,3,4 and 2 for i = 5,6; G4(i) = i/2 rounded up to the
nearest integer for all i. We will use P to denote the number of expression patterns
of interest and np to denote the number of groups under expression pattern p. In
the example above, P = 4, n1 = 1, n2 = n3 = 2, and n4 = 3.

In each model, the marginal density for yj = (yj1, yj2, . . . , yjI )
′, the vector of

observations from the j th gene for I experimental units, is given by f (yj |θ ,π) =∑P
p=1 πpfp(yj |θ), where π = (π1, π2, . . . , πP )′, πp is the probability that a gene

follows expression pattern p, θ is a vector of hyperparameters for the given model,
and fp(yj |θ) is the density of yj under pattern p according to the given model. The
marginal likelihood of the entire data set is given by

∏J
j=1 f (yj |θ ,π), since ob-

servations between genes are considered independent under each of the discussed
models. The posterior probability gene j follows expression pattern p given yj is

πpfp(yj |θ)∑P
p=1 πpfp(yj |θ)

.

For each model, estimates of π and θ that maximize the marginal likelihood can
be obtained using the EM algorithm, treating expression pattern as the unknown
variable. When used, gene-specific error variances are estimated and treated as
fixed before using the EM algorithm to estimate other model parameters. Marginal
densities and posterior probabilities are estimated by treating parameter estimates
as the true parameter values in the formulas above.

In the following subsections, we formally define four models and seven methods
of analysis. The distinguishing features of the seven methods are summarized in
Table 1 for future reference.

2.1. The lognormal–normal model. The LNN model for the log scale obser-
vation for the j th gene from the ith experimental unit under expression pattern p

can be written as

yji = μ + τjGp(i) + εji,

where

τj1, . . . , τjnp

i.i.d.∼ N(0, σ 2
τ ) and εj1, . . . , εjI

i.i.d.∼ N(0, σ 2).

In this expression, μ represents the average expression of all genes and groups,
τjGp(i) represents a random group effect for observations from the Gp(i)th group
(under pattern p) in the j th gene, and εji represents a random error.

Under this model, fp(yj |θ) is the density from a multivariate normal dis-
tribution with mean vector (μ, . . . ,μ)′ and pattern specific covariance matrix
�p = σ 2I + σ 2

τ Mp , where I is the identity matrix and Mp is a symmetric ma-
trix with element [i, j ] = 1 if experimental units i and j are in the same group
under pattern p and [i, j ] = 0 if experimental units i and j are in different groups.
This model has hyperparameters θ = (μ,σ 2, σ 2

τ ).
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TABLE 1
Legend for method and model acronyms

Relies on distinct
modeling strategies for Uses Accounts for
differences across genes gene-specific uncertainty in
and differences across error variance error variance

Method Model DE treatments estimates estimators

LNN LNN
LNNMV LNNMV �
LNNMV* LNNMV �
LNNGV LNNMV � �
LN3 LN3 �
LN3MV* LN3MV � �
LN3GV LN3MV � � �

The methods with acronyms ending in MV* use point estimates of error variances that account for
the degrees of freedom used when estimating treatment means (see Section 2.3).

2.2. The lognormal–normal–normal model. To explicitly model gene effects
separately from treatment effects, we propose a three-level hierarchical model,
which we denote LN3. Under the LN3 model, the log scale observation from the
j th gene and the ith experimental unit under expression pattern p is modeled as

yji = μ + γj + τjGp(i) + εji,

where

γj
i.i.d.∼ N(0, σ 2

γ ), τj1, . . . , τjnp

i.i.d.∼ N(0, σ 2
τ ) and

εj1, . . . , εjI
i.i.d.∼ N(0, σ 2).

In this expression, μ represents the average expression of all genes and groups,
γj represents a random gene effect for the j th gene, τjGp(i) represents a random
group effect for observations from the Gp(i)th group (under pattern p) in the j th
gene, and εji represents a random error. Under expression pattern p, the density
for the vector of log-scale observations for the j th gene, fp(yj |θ), is evaluated
according to a multivariate normal distribution with mean vector (μ, . . . ,μ)′ and
pattern specific covariance matrix �p = σ 2I+σ 2

γ J+σ 2
τ Mp , where I is the identity

matrix, J is a matrix of 1’s, and

Mp[i, j ] =
{

1, if Gp(i) = Gp(j),
0, otherwise.

This model has hyperparameters θ = (μ,σ 2, σ 2
τ , σ 2

γ ) and is a generalization of the
LNN model. That is, the LNN model is a special case of the LN3 model in which
σ 2

γ = 0.
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2.3. The lognormal–normal model with gene-specific error variances. The
LNN model assumes that all genes have a common error variance, σ 2. This as-
sumption can be relaxed to allow each gene to have a unique error variance, σ 2

j ,
forming the LNNMV model. We consider three methods based on this model, in-
cluding EBarrays’ LNNMV.

Under this model, the log scale observation for the j th gene from the ith exper-
imental unit under expression pattern p can be written as

yji = μ + τjGp(i) + εji,

where

τj1, . . . , τjnp

i.i.d.∼ N(0, σ 2
τ ) and εj1, . . . , εjI

i.i.d.∼ N(0, σ 2
j ).

This model has hyperparameters θ = (μ,σ 2
τ ,σ 2), where σ 2 = (σ 2

1 , σ 2
2 , . . . , σ 2

J ).
The LNNMV method from EBarrays places a scaled inverse chi-squared dis-

tribution on the gene-specific error variances. That is, σ 2
j ∼ inv-χ2 (df = ν,

scaling = 
), such that ν
/σ 2
j ∼ χ2

ν . Given estimates ν̂ and 
̂, the gene-specific

error variances are estimated by σ̂ 2
j = ν̂
̂+(I−T )S2

j

ν̂+I−2 , where S2
j is the ordinary sample

variance estimator with (I − T ) degrees of freedom for the log-scale observations
from the j th gene and T is total number of experimental conditions.

The denominator of the LNNMV point estimator for σ 2
j does not account

for degrees of freedom used when estimating treatment means for each gene in
the computation of S2

j . Similar to MLEs for σ 2 in a traditional ANOVA anal-

ysis, this estimator systematically underestimates σ 2
j , resulting in liberal detec-

tion of differential expression. If one were to use a point estimator for σ 2
j , we

would recommend the less liberal approach of using the posterior expectation

σ̂ 2
j = Ê(σ 2

j |S2
j ) = ν̂
̂+(I−T )S2

j

ν̂+(I−T )−2 . We denote this approach as LNNMV*; however,
this adjusted denominator does not provide a fully adequate solution.

The EBarrays methods estimate the posterior probability that gene j follows

expression pattern p given yj as π̂pfp(yj |θ̂)∑P
p=1 π̂pfp(yj |θ̂)

, assuming all hyperparameter es-

timates are the true hyperparameter values. This expression is clearly sensitive
to θ̂ . Given that μ and σ 2

τ are assumed to be the same for all genes and there
are typically thousands of genes in a microarray data set, the effective sample
size for estimating these parameters is high so that there will generally be lit-
tle uncertainty associated with the ML estimates μ̂ and σ̂ 2

τ obtained from the
EM algorithm. Therefore, it may be reasonable to act as if μ̂ = μ and σ̂ 2

τ = σ 2
τ

when estimating posterior pattern probabilities. Similarly, it may also be rea-
sonable to ignore uncertainty in the estimator of σ 2 under the LNN and LN3

models. However, when σ 2
j is allowed to vary from gene to gene, there will be

nonnegligible uncertainty in the corresponding estimators σ̂ 2
j , which is not taken
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into account by assuming σ̂ 2
j = σ 2

j . Under a model allowing for gene-specific
error variances, a better estimator of the posterior probability that gene j fol-

lows expression pattern p is π̂pfp(yj |μ̂,σ̂ 2
τ ,ν̂,
̂)∑P

p=1 π̂pfp(yj |μ̂,σ̂ 2
τ ,ν̂,
̂)

, where fp(yj |μ̂, σ̂ 2
τ , ν̂, 
̂) =

∫
fp(yj |μ̂, σ̂ 2

τ , σ 2
j )f (σ 2

j |ν̂, 
̂) dσ 2
j , where f (σ 2

j |ν̂, 
̂) is the empirically esti-

mated inverse chi-squared prior distribution for σ 2
j .

Our suggested approach is to estimate ν̂ and 
̂ using the method described by
Smyth (2004) and compute shrunken estimates σ̂ 2

j = Ê(σ 2
j |S2

j ) to use when fitting

the EM algorithm to obtain estimates for μ,σ 2
τ , and π . Then when estimating the

posterior expression pattern probabilities for each gene, we suggest empirically ap-
proximating fp(yj |μ̂, σ̂ 2

τ , ν̂, 
̂) as
∑Q

q=1 fp(yj |μ̂, σ̂ 2
τ , σ∗2

q)/Q where σ∗2
q is the

q/(Q+1)th quantile of f (σ 2
j |ν̂, 
̂) and Q is a reasonably large number like 1000.

We denote this method as LNNGV, which has hyperparameters θ = (μ,σ 2
τ , ν,
).

The effectiveness and impact of this suggestion are examined in Sections 4 and 5.

2.4. The lognormal–normal–normal model with gene-specific error variances.
As with the LNN model, the LN3 model assumes that all genes have a com-
mon error variance, σ 2, and this assumption can be relaxed to form the LN3MV
model, which allows for gene-specific error variances. For the LN3MV model, we
consider two methods, denoted LN3MV* and LN3GV, which incorporate gene-
specific error variances in exactly the same way as the LNNMV* and LNNGV
methods, respectively. The LN3MV* (LN3GV) method is a generalization of the
LNNMV* (LNNGV) method. That is, the LNNMV* (LNNGV) method is a spe-
cial case of the LN3MV* (LN3GV) method in which σ 2

γ = 0.

3. Evidence supporting need for three-level hierarchical models. Obser-
vations from a common gene are correlated for many reasons, even across differ-
entially expressed treatments. Variability from gene to gene in several factors con-
tributes to such correlation, including binding affinity of probe sets [Binder et al.
(2004)], amount of florescent dye that binds to each cDNA fragment [Binder et al.
(2004)], RNA transcription and degradation rate [Selinger et al. (2003)], and the
function of genes’ corresponding proteins. These considerations imply that models
for microarray data should contain gene effects like those present in the LN3 and
LN3MV models but omitted from the models of Kendziorski et al. (2003).

The theoretical impact of gene effects when detecting DE genes can be demon-
strated by comparing the modeled variance of differences between pairs of obser-
vations in two scenarios. The first scenario is when the observations in a pair come
from different groups in a common gene. The second scenario is when the obser-
vations in a pair come from different genes. Under the LNN model, the variance
of the difference for both scenarios is 2(σ 2

τ +σ 2). That is, the LNN model expects
differences among same-gene observations from differentially expressed groups to
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“look like” differences among observations from different genes. However, when
a gene effect is present, the variance for differences between observations from
different genes is 2(σ 2

γ + σ 2
τ + σ 2), which is greater than the variance for differ-

ences between observations from different groups in a common gene, 2(σ 2
τ + σ 2).

In this case, the LNN model expects within-gene differences due to differential
expression to be more extreme than they actually are, which reduces the model’s
power to detect differential expression. Creating a three-level hierarchical model
by adding normally distributed gene effects is a tractable and effective method
to correct this shortcoming. A similar argument can be made when considering
models that accommodate gene-specific error variances.

If information about DE groups for each gene were known for real microar-
ray data, we could check for evidence of gene effects by comparing the variance
of between-gene differences to the variance of within-gene differences across DE
groups. Because information about DE groups is unknown, such a simple strategy
is not possible. However, we can fit three-level models to actual microarray data
and examine the resulting estimates of σ 2

γ . Because the two-level models are spe-
cial cases of three-level models with σ 2

γ = 0, estimates of σ 2
γ far from 0 provide

evidence in favor of our proposed three-level hierarchy over the two-level hier-
archy. The next section presents results of two example microarray experiments
where the estimates of σ 2

γ provide clear support for the three-level hierarchy. We
describe this point in detail in the supplementary material [Lund and Nettleton
(2012)].

As additional evidence of the inadequacy of models that omit gene effects, we
compare the correlation structure implied by the LNN model to the correlation
structure present in actual microarray data.

Under the LNN model,

cov(yji, yji′) =
{

σ 2
τ , if yji and yji′ are EE,

0, otherwise.

For any two experimental units, under the LNN model,
∑J

j=1 cov(yji, yji′)/J =
πEE(i, i′)σ 2

τ , where πEE(i, i′) is the proportion of genes that are EE between
experimental units i and i′. If experimental units i and i ′ correspond to the
same experimental condition, an unbiased estimator of σ 2

τ is given by σ̂ 2
τ (i, i′) =∑J

j=1(yji − ȳ·i)(yji′ − ȳ·i′)/(J − 1), because πEE(i, i′) = 1 in this case. It follows

that σ̄ 2
τ is also an unbiased estimator of σ 2

τ , where σ̄ 2
τ is the average of σ̂ 2

τ (i, i′)
over all pairs of experimental units (i, i′) such that the experimental condition as-
sociated with experimental units i and i′ is the same.

In practice, given an estimate π̂EE(i, i′), observed covariances between exper-
imental units associated with different experimental conditions are often much
larger than π̂EE(i, i′)σ̄ 2

τ . Table 2 summarizes this phenomenon for various treat-
ment comparisons within two separate microarray data sets, which are described in
Section 4. Each data set was analyzed with the LIMMA package for R developed
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TABLE 2
Empirical evidence for presence of gene effects

Dataset (conditions) π̂EE σ̄ 2
τ π̂EEσ̄ 2

τ Average across condition cov

DC3000 (NaCl, ctrl) 0.716 0.952 0.681 0.903
DC3000 (phen, ctrl) 0.693 0.977 0.677 0.910
DC3000 (PEG, ctrl) 0.352 0.914 0.322 0.838
DC3000 (H2O2, ctrl) 0.961 0.957 0.920 0.948
Mouse (Ch, FF) 0.874 0.281 0.245 0.280
Mouse (Ch, MP) 0.824 0.281 0.231 0.279
Mouse (FF, MP) 0.956 0.284 0.272 0.284

by Smyth (2004). Estimates of πEE(i, i′) were obtained by applying the method
of Nettleton et al. (2006) to the distribution of p-values for each pairwise com-
parison. The final column provides estimates of between-treatment covariances,
which were computed as the average of all the pairwise covariances involving one
experimental unit from each of the two treatments. The LNN and LNNMV models
imply the observed between-treatment covariances should closely match π̂EEσ̄ 2

τ ,
but Table 2 shows that the estimated between-treatment covariances were larger
than π̂EEσ̄ 2

τ for every treatment comparison.
The additional covariance observed between experimental units from different

experimental conditions is easily explained by the presence of gene effects. For
any two experimental units, under the LN3 model,

∑J
j=1 cov(yji, yji′)/J = σ 2

γ +
πEE(i, i′)σ 2

τ rather than πEE(i, i′)σ 2
τ .

4. Data analysis.

4.1. Data set descriptions. We analyzed a NimbleGen mRNA data set of 5608
genes from the DC3000 strain of the bacterial plant pathogen Pseudomonas sy-
ringae, resulting from an unpublished experiment conducted in the Department of
Plant Pathology at Iowa State University. NimbleGen performed RMA normaliza-
tion on the data [Irizarry et al. (2003)]. The experiment had two biological repli-
cate samples grown in each of five different media: control (ctrl), phenol (phen),
sodium chloride (NaCl), polyethylene glycol MW8000 (PEG), and hydrogen per-
oxide (H2O2). Before analyzing the data, the primary investigator suggested that
any two noncontrol media will be EE only when they are also EE with the control,
which reduces the number of expression patterns included in the analysis. Because
each of the four treatments can be either EE or DE with the control, there are
24 = 16 different expression patterns to consider.

The second data set we analyzed is a subset of the data used in Somel et al.
(2008), available at the Gene Expression Omnibus (GEO) website as GDS3221.
This experiment examined the impact of diet on the expression of 45,101 genes in
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mice. We analyzed data from nine Affymetrix GeneChips corresponding to three
treatment groups of three mice each. Each treatment involved ad libidum feed-
ing of one of the following diets: (1) vegetables, fruit, and yogurt identical to the
diet fed to chimpanzees in their ape facility (Ch); (2) McDonald’s fast food (FF);
(3) mouse pellets on which the mice were raised (MP). To keep the presentation
simple, we have omitted data from a second batch of chips and a fourth diet group
(cafeteria food), which produced expression profiles very similar to those from the
McDonald’s diet. With the three included treatment groups, there are a total of five
possible expression patterns: Ch = FF = MP; Ch = FF �= MP; Ch �= FF = MP;
Ch = MP �= FF; and Ch �= FF, Ch �= MP, FF �= MP.

4.2. Analysis of real data. We analyzed these data sets with each of the eight
methods and report the resulting parameter estimates from the GG, LNN, LNNGV,
LN3, and LN3GV methods in Table 3. [The LNNMV*, LNNMV, and LN3MV*
methods share theoretical models (and thus parameter estimates) with the LNNGV,
LNNGV, and LN3GV methods, resp.] The parameter estimates in Table 3 are con-
sistent with what we expected. For both data sets, when a random gene effect

TABLE 3
Hyperparameter estimates and estimated proportion of null genes for DC3000 (top) and mouse diet

(bottom) data from each of the models

Model used to analyze

Parameter GG LNN LNNGV LN3 LN3GV

α̂ 69.8 – – – –
α̂0 1.54 – – – –
ν̂* 0.0254 – – – –
μ̂ – 0.501 0.419 0.277 0.264
σ̂ 2
τ – 0.982 0.878 0.151 0.101

σ̂ 2
γ – – – 0.813 0.832

σ̂ 2 – 0.0129 – 0.0116 –

̂ – – 0.00509 – 0.00509
ν̂ – – 3.546 – 3.546
π̂null 0.728 0.721 0.657 0.655 0.492

α̂ 269.5 – – – –
α̂0 4.59 – – – –
ν̂* 0.0187 – – – –
μ̂ – 0.206 0.210 0.194 0.194
σ̂ 2
τ – 0.279 0.281 0.00468 0.00678

σ̂ 2
γ – – – 0.278 0.275

σ̂ 2 – 0.00346 – 0.00331 –

̂ – – 0.00249 – 0.00249
ν̂ – – 8.186 – 8.186
π̂null 0.958 0.954 0.931 0.802 0.840
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is accounted for in the model, the estimated treatment effect variance decreases
drastically and the gene effect variance is estimated to be much larger than the
treatment effect variance. This means the LN3 and LN3GV methods are able to
detect smaller treatment effects than their respective two-level counterparts, LNN
and LNNGV. It is not surprising then to see that for both data sets the LNN method
estimates a larger proportion of genes following the null pattern than does the LN3

method, or that the LNNGV method estimates a larger proportion of genes follow-
ing the null pattern than does the LN3GV method.

Rather than examining parameter estimates, researchers are often more inter-
ested in creating lists of genes that are likely to follow expression patterns of inter-
est. To construct a list of DE genes, one would collect all genes with an estimated
posterior probability of equivalent expression (ePPEE) less than a given threshold.
When the ePPEE falls below the given threshold for many genes, not all identified
potentially DE genes may be individually studied further. However, the size and
contents of the entire list provide important information to researchers about the
global effects of the treatments on gene expression. The composition of a long list
of potentially DE genes forms the basis for popular gene set enrichment analy-
ses that are commonly used to interpret the results of microarray experiments. To
examine the practical differences between gene lists created by the methods, we
begin by plotting the empirical CDF of the ePPEEs for each method for the two
data sets in Figure 1. These plots quickly provide the observed size of a gene list
for any PPEE cutoff, obtained by intersecting a vertical line at the desired PPEE
cutoff with the curve for each method.

The plots show substantial differences between the examined methods in the
number of detected genes over a wide range of PPEE thresholds. For models with
gene-specific error variances, incorporating uncertainty in estimated error vari-
ances greatly reduced the number of detected genes (LNNGV and LN3GV curves
are lower than LNNMV* and LN3MV* curves, resp.). In the DC3000 data at a
PPEE cutoff of 0.1, for example, the LNNMV, LNNMV*, and LNNGV methods
would produce lists with 1983, 1498, and 893 genes, respectively. Incorporating
gene effects greatly increased the number of detected genes (LN3, LN3MV*, and
LN3GV curves are higher than LNN, LNNMV*, and LNNGV curves, resp.). In
the mouse diet data at a PPEE cutoff of 0.1, for example, the LN3GV method iden-
tified almost three times as many DE genes as the LNNGV method (945 vs. 324
genes, resp.). These results indicate that differences between the methods’ ePPEEs
are practically significant, and care should be taken when choosing among the sug-
gested methods.

Constraints on time, money, material, and personnel resources limit the number
of genes that researchers will follow up on with further study. Thus, the overlap
between lists from each method containing a fixed number of the most significant
genes is an important feature for assessing the similarity between methods’ results.
Table 4 provides the size of pairwise intersections of lists containing the 200 most
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FIG. 1. Comparison across methods of empirical ePPEE CDFs for DC3000 (top) and mouse diet
(bottom) data.

significant genes from each method for the DC3000 and mouse diet data sets, re-
spectively. These results show substantial practical differences between rankings,
as many lists overlap by roughly half their genes and most lists overlap by fewer
than 150 genes.

5. Simulation study. Here we briefly summarize our simulation study and its
results. Detailed accounts of simulation procedures and results are presented in the
supplementary material [Lund and Nettleton (2012)].

We conduct a variety of simulations to assess the accuracy and power of the
considered methods. By “accuracy,” we refer to the property that for any given col-
lection of genes the average estimated posterior probability for each pattern should
closely match the proportion of genes in the collection that follow the given pat-
tern. By “power,” we refer to a method’s ability to detect differential expression.
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TABLE 4
Overlap in lists of top 200 most significant DE genes for DC3000 (top)

and mouse diet (bottom) data

Method 1 2 3 4 5 6 7

(1) GG 200
(2) LNN 187 200
(3) LNNMV 122 119 200
(4) LNNMV* 118 120 160 200
(5) LNNGV 130 127 185 162 200
(6) LN3 186 198 117 118 125 200
(7) LN3MV* 117 114 194 154 184 113 200
(8) LN3GV 77 81 137 149 133 79 135

(1) GG 200
(2) LNN 193 200
(3) LNNMV 108 107 200
(4) LNNMV* 125 124 152 200
(5) LNNGV 88 87 173 136 200
(6) LN3 193 197 109 124 89 200
(7) LN3MV* 93 92 181 134 184 94 200
(8) LN3GV 83 82 155 148 158 82 148

We prefer the method that creates the largest list of genes for a given ePPEE thresh-
old, provided that the method’s ePPEEs are accurate.

We simulated data from each of the five models (GG, LNN, LNNMV, LN3, and
LN3MV) using the model parameters reported for the DC3000 data set in Table 3.
In addition to these model-based simulations, we also conducted simulations us-
ing an HIV mRNA expression data set from the GEO website, named GDS1449.
We analyzed each simulated data set with each method and recorded estimated
posterior probabilities for each expression pattern for each gene.

The simulation results clearly support our claims that failing to distinctly model
gene and gene-specific treatment effects reduces power and produces conservative
results and that using point estimates of error variances produces liberal results.
The LN3GV method stands out as the best method from these simulations. The
LN3GV method was the only method to produce accurate ePPEEs in all simulation
scenarios, and no method produced better average significance rankings (as seen
in ROC curves) than those of the LN3GV method in any simulation scenario. The
LN3GV method exhibited greater power than the LNNGV method, which was the
only other method that did not produce liberal results in at least one simulation
scenario.

6. Discussion. When modeling a data set that includes multiple observations
from each of multiple genes, a conventional analysis would begin with a model
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that incorporates gene effects. One might decide to omit gene effects if, after look-
ing, there was no evidence of gene effects or if results from an analysis were not
affected by the omission of gene effects. We have demonstrated that gene effects
are present in real data sets and provided generalizations of the methods based on
lognormal two-level hierarchical models to include gene effects. These generaliza-
tions behave nearly identically to their two-level counterparts when analyzing data
without gene effects and improve power and accuracy when data contain gene ef-
fects. These extensions serve as an example of how other hierarchical models that
omit gene effects might be improved by more versatile modeling.

Using point estimates of gene-specific error variances without accounting for
their uncertainty produces liberal ePPEEs. We have suggested a corrected ap-
proach that involves integration over an empirically estimated prior distribution
for the error variances and demonstrated this adaptation yields accurate ePPEEs.

As noted in the Introduction, we have identified nearly a dozen methods that
omit gene effects. There are far more methods in the microarray data analysis lit-
erature that do not suffer from this problem. Most published methods explicitly or
implicitly include gene effects whose distribution is allowed to differ from the dis-
tribution of within gene treatment effects. Methods based on gene-specific linear
models that make no attempt to borrow information across genes fall into this cat-
egory, as do methods that borrow information across genes only for the purpose of
improved error variance estimation. While we expect our LN3GV method to per-
form well when compared against the large collection of competing approaches,
a broad comparison of methods is beyond the scope of this paper, and we make
no claims of superiority here. Our main point is that the hierarchical modeling ap-
proach pioneered by Kendziorski et al. (2003) can be improved by the inclusion of
both gene and gene-specific treatment effects. Given the influential nature of the
original work of Kendziorski et al. (2003), we think this is an important point to
make.

The development of the LNN and GG models by Kendziorski et al. (2003) rep-
resents groundbreaking work on the hierarchical modeling of gene expression data.
We have shown how to improve on the original work by allowing for random gene
effects and replacing gene-specific error variance point estimates without dramat-
ically affecting computational costs. Adding random gene effects to a model in-
creases the dimension of the parameter space across which the EM algorithm must
optimize by one, but does not substantially increase computational costs. For any
of the described methods, analyzing a data set with 5000 genes, 9 experimental
units, and 4 expression patterns of interest takes less than 10 minutes using a sin-
gle Linux machine and R code that calls a C routine to evaluate multivariate normal
densities. We have developed the R package LN3GV (available at the CRAN web-
page) to implement the LNNMV*, LNNGV, LN3, LN3MV*, and LN3GV meth-
ods discussed in this article. Throughout this paper, the GG, LNN, and LNNMV
methods were implemented via the EBarrays package.
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We have focused on the approach of Kendziorski et al. (2003) not only because
of its influential nature but also because of its unique and elegant approach to in-
ference for experiments with more than two treatments. The vast majority of com-
peting approaches have been developed primarily for the case of two treatments.
While it is easy to extend many of these methods to cover the case of more than
two treatments, very few methods outside the Kendziorski et al. (2003) lineage
provide an inherent natural strategy for classifying genes according to their pattern
of expression across multiple treatments. Thus, we believe our efforts to improve
the original work of Kendziorski et al. (2003) have been well spent.

SUPPLEMENTARY MATERIAL

Additional evidence supporting need for three-level hierarchy and sim-
ulation study details (DOI: 10.1214/12-AOAS535SUPP; .pdf). The correlation
across genes present in real microarray data makes directly testing the statistical
significance of gene effect variance estimates intractable. We present a simulation
study that demonstrates the gene effect variance estimates obtained when analyz-
ing the DC3000 and mouse diet data sets are drastically greater than those that arise
when analyzing data simulated without gene effects. We also provide detailed ac-
counts of simulation procedures and results used to evaluate the considered meth-
ods. These simulations clearly support our claims regarding the importance of
distinctly modeling gene and gene-specific treatment effects and accounting for
uncertainty in error variance estimators.
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