
The Annals of Applied Statistics
2012, Vol. 6, No. 3, 1068–1094
DOI: 10.1214/12-AOAS550
© Institute of Mathematical Statistics, 2012

INFERENCE AND CHARACTERIZATION OF MULTI-ATTRIBUTE
NETWORKS WITH APPLICATION TO

COMPUTATIONAL BIOLOGY1

BY NATALLIA KATENKA AND ERIC D. KOLACZYK

Boston University

Our work is motivated by and illustrated with application of association
networks in computational biology, specifically in the context of gene/protein
regulatory networks. Association networks represent systems of interacting
elements, where a link between two different elements indicates a sufficient
level of similarity between element attributes. While in reality relational ties
between elements can be expected to be based on similarity across multi-
ple attributes, the vast majority of work to date on association networks in-
volves ties defined with respect to only a single attribute. We propose an
approach for the inference of multi-attribute association networks from mea-
surements on continuous attribute variables, using canonical correlation and
a hypothesis-testing strategy. Within this context, we then study the impact of
partial information on multi-attribute network inference and characterization,
when only a subset of attributes is available. We consider in detail the case of
two attributes, wherein we examine through a combination of analytical and
numerical techniques the implications of the choice and number of node at-
tributes on the ability to detect network links and, more generally, to estimate
higher-level network summary statistics, such as node degree, clustering co-
efficients and measures of centrality. Illustration and applications throughout
the paper are developed using gene and protein expression measurements on
human cancer cell lines from the NCI-60 database.

1. Introduction. Networks have been used for mathematical representation
of systems of interacting elements in the context of a wide range of technological,
biological and social applications. Statistical analysis of network data has become
particularly popular in the past decade. See Kolaczyk (2009), for example, for a
comprehensive overview of the main classes of methods for statistical inference
on networks, as well as Goldenberg et al. (2010) for a shorter review. Although the
results presented in this paper are applicable to various network applications, our
current work has been motivated by and will be illustrated within the context of
gene/protein regulatory networks. Regulatory interactions among genes/proteins
are pivotal to the function of living organisms, and understanding regulatory net-
works can help to characterize biological processes in general, and also to diagnose
different diseases and develop new cures.
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The standard representation for a network is a graph that consists of a collection
of nodes (e.g., genes, proteins, social actors, computers) and links that indicate
some notion of node interaction (e.g., co-regulation, interaction, friendship, com-
munication). Additionally, nodes or links, or both, can be accompanied by a single
or a set of multiple attributes or characteristics. One of the fundamental problems
in the area, common across different applications, is that of inferring the under-
lying network topology. Examples arise in the context of gene/protein regulatory
networks, computer networks, sensor networks, social networks and more. For ex-
ample, based on observed flow data between different computers, a reasonable
communication network can be approximated [e.g., Eriksson et al. (2007)]; based
on obtained geographical positions, a randomly deployed wireless sensor network
can be reconstructed [e.g., Pal (2011)]; or based on data gathered from individuals
about their personal interaction, preference and/or attitudes, a network of social
relations can be produced [e.g, Sampson (1969)].

There are a number of variations on the problem of network topology inference.
See Kolaczyk [(2009), Chapter 7], for example, for an overview. In this paper, we
focus on inference of association networks, where a link between two different
nodes is said to exist when a sufficient level of association is present between a
certain set of node characteristics (attributes). A link between two nodes in an
association network may indicate a certain level of interaction, dependence, or
similarity, depending on how “association” is quantified. While in reality the actual
relational ties between elements typically are based on association across multiple
attributes, the vast majority of work to date on association networks involves ties
defined with respect to only a single attribute. Here we are interested in recovering
the structure of an association network where multiple attributes are observed for
each node.

Analysis of multiple attributes at their corresponding network links has received
comparatively little attention in the literature. In the early 1980s log-linear mod-
els were adapted by Fienberg, Meyer and Wasserman (1985) for the analysis of
social interaction networks among 18 monks in a cloister and the analysis of a cor-
porate interlock network of the 25 largest organizations in Minneapolis/St. Paul;
much later, canonical correlation analysis was applied by Carroll (2006) to two
multiplex networks that described interdependence and cooperative alliances be-
tween 317 banks. Other examples include work predicting friendships, the partic-
ipation of actors in events and semantic relationships such as “advisor-of” based
on web page links and content [see Goldenberg et al. (2010) for more a detailed
review]. More recently, Chang and Blei (2010) focused on multiple attributes of
document networks and developed a hierarchical model of both network structure
and node attributes. Using repeated interactions between senders and receivers tab-
ulated over time, Perry and Wolfe (2011) modeled message sending behavior in a
corporate e-mail network. Although these studies are focused on the analysis of
networks equipped with multiple node attributes, they differ in a critical manner
from our work in that they assume observed network topologies, rather than—as
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here—focusing specifically on the problem of inferring the network from the node
attributes.

The importance of this distinction is particularly evident within the context of
computational biology and our motivating application therein. In particular, current
and anticipated “Omic” technologies (e.g., genomics, transcriptomics, proteomics
and metabolomics) can profile cells at different biological levels, including but
not limited to gene, protein, metabolic and epigenetic levels. While computational
analyses (e.g., differential expression, clustering, network, etc.) based on individ-
ual types of profiles have no doubt proven to be useful, analyses based on multiple
types of molecular profiles combined on the same set of biological samples can be
synergistic. See, for example, Lee et al. (2004), Myers et al. (2005), Naylor et al.
(2010), Shankavaram et al. (2007), Waaijenborg, Verselewel de Witt Hamer and
Zwinderman (2008). The work in Lee et al. (2004) is perhaps closest in spirit to
ours, in that multiple networks initially inferred from diverse single functional ge-
nomics data are integrated to form a single network, using a log-likelihood scoring
scheme.

To the best of our knowledge, there has been no work on direct inference of
multi-attribute networks with particular attention to specifically understanding (a)
how different node attributes contribute to the strength of a link between different
nodes and (b) the impact of having available only a subset of attributes, both on the
inference of network topology and the interpretation of high-level network char-
acteristics. In the research we report here we address these issues by answering
the following questions: how to aggregate observed multiple continuous attribute
variables into a single measure of the total similarity; how to assess the contribu-
tion of each node attribute to this similarity measure; what the implications of the
choice and the number of node attributes are on high-level network characteris-
tics, such as node degree, clustering coefficient and betweenness centrality; and,
finally, how to extract and interpret information obtained from a network inferred
from multiple node attributes.

Specifically, to aggregate multiple attributes into a measure of a total similarity
between a pair of nodes, we propose to quantify the strength of the link between
different nodes with canonical correlation, originally introduced by Hotelling
(1936). Within this context, we then examine both analytically and numerically
the impact of partial information on the ability to detect a link between a pair of
nodes. To assess the importance of individual node attributes, we use a notion of
canonical weights. We explore the impact of the attribute selection on higher-level
network summary statistics in the context of gene/protein regulatory networks in
human cancer cells. Finally, based on the association network inferred from com-
bined profiles of genes and proteins, we propose a simple heuristic for link and
node classification that allows to make reasonable interpretation of the connection
between attributes and classified nodes. We validate the proposed heuristic by de-
termining the significant enrichments of known genomic entities among acquired
classes of nodes.



MULTI-ATTRIBUTE NETWORKS 1071

The rest of the paper is structured as follows. In Section 2 we introduce the mo-
tivating application of our study and describe related work in the area. In Section 3
we provide a general formulation of the problem, state the main assumptions, and
introduce the mathematical notion of canonical correlation in terms of network in-
ference. In Section 4 we describe a method of network inference based on hypoth-
esis testing and we explore the effect of different parameters on the power of link
detection. In Section 5 we study potential implications of node attribute selection
on network summary statistics in the context of gene/protein regulatory networks.
We conclude the paper with the discussion and final remarks in Section 6.

2. Motivating application. In the application herein, we explore the use of
multi-attribute association network analysis for combining measurements on gene
and protein expression levels in order to recover networks of gene/protein interac-
tions effectively.

We choose to analyze data from the well-known NCI-60 database, which con-
tains different molecular profiles on a panel of 60 diverse human cancer cell lines.2

Specifically, we examine protein profiles [i.e., normalized reverse-phase lysate ar-
rays (RPLA) for 92 antibodies] and gene profiles (i.e., normalized RNA microar-
ray intensities from Human Genome U95 Affymetrix chip-set for > 9000 genes).
Traditionally, it has been significantly more difficult to obtain protein-level ex-
pression measurements than gene-level expression measurements, although the
former typically have been considered to be more accurate and informative than
the latter. Accordingly, our analysis will be restricted to a common subset of 91
genes/proteins for which both types of biological measurements are available to
us. Each gene/protein is represented by its Entrez ID (a unique identifier common
for a protein and a corresponding gene that encodes this protein) and has a pair
of attributes: protein profile and gene expression across the same set of 60 cancer
cells.

Typically, protein–protein (gene–gene) interaction networks are modeled by as-
sociation graphs, with nodes corresponding to proteins (genes), that has a single
attribute, that is, protein profile (gene expression), and edges indicating some level
of association between a pair of proteins (genes). Associations between pairs of
proteins can indicate either direct binding and indirect participation in the same
metabolic pathways or cellular process, and usually are known or inferred from
corresponding protein profiles summarized into some association measure. Simi-
larly, gene–gene associations may refer to direct co-regulation or indirect interac-
tion in the same functional processes, and may also be known or inferred. Various
measures of association have been used in the literature for the inference of biolog-
ical association networks, including Pearson’s product moment correlation [e.g.,
Steuer et al. (2003)], partial correlation [e.g., de la Fuente et al. (2004), Shipley

2Data set available at http://discover.nci.nih.gov/.

http://discover.nci.nih.gov/
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(2002)] and mutual information [e.g., Butte and Kohane (2000), Butte et al. (2000),
Faith et al. (2007)]. See Gardner and Faith (2005), Lee and Tzou (2009), for ex-
ample, for reviews of association measures and their corresponding computational
methods, as used in the context of inference of gene expression networks.

As described in detail in Section 3, we use correlation-based measures of associ-
ation in this paper, that is, Pearson product moment correlations for networks based
on individual attributes and canonical correlation for multi-attribute networks. Al-
though certainly the work of other authors has involved multiple types of data when
inferring genomic networks [e.g., Naylor et al. (2010), Shankavaram et al. (2007),
Waaijenborg, Verselewel de Witt Hamer and Zwinderman (2008), Yamanishi et al.
(2003)], to the best of our knowledge our work is the first to do so in a manner
focused specifically on the notion of a multi-attribute network and its relation to
the corresponding individual-attribute networks.

By way of illustration, consider the example of a simple protein network con-
sisting of three nodes: Annexin A1, Annexin A2 and Keratin 8. Annexin A1 and
Annexin A2 are two calcium-binding proteins that are encoded by genes ANXA1
and ANXA2, respectively. Keratin 8 is a keratin protein encoded by the gene
KRT8. Keratin 8 can be used to differentiate lobular carcinoma of the breast from
ductal carcinoma of the breast. Annexin A1 has been of interest for use as a po-
tential antiflamatory and anticancer drug. The gene for Annexin A1 (ANXA1) is
upregulated in hairy cell leukemia and can be used for diagnosing the disease. An-
nexin A2 is a less explored protein, that is, usually involved in the motility of the
epithelial (skin) cells.

Given protein profiles recorded on the same set of cells for all three nodes (An-
nexin A1, Annexin A2 and Keratin 8), we inferred the presence of links between
all three pairs of nodes (left panel, Figure 1); given corresponding gene expres-
sions, we inferred links only between ANXA2 and ANXA1 and between ANXA2
and KRT8 (middle panel, Figure 1). This observation confirms the expectation that
different molecular profiles can produce different networks, and, hence, an associ-
ation between protein profiles does not necessarily imply an association between
corresponding gene expressions, and vice versa. A priori, it is not immediately

FIG. 1. Inferred association networks based on protein profiles (left panel), gene expressions (mid-
dle panel) and combined profiles (right panel). Numbers represent unique Entrez IDs.
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clear how to compare these networks, and, more importantly, how to combine in-
formation based on both proteins profiles and gene expressions.

Motivated by these questions, we utilize the canonical correlation framework
from classical multivariate statistics to aggregate gene expression and protein pro-
files and construct a network based on combined profiles (right panel, Figure 1).
We see that the resulting network includes links between all three gene/protein
pairs, like that network based only on protein profiles. As we describe later, in the
application of Section 5, we are also able to equip this network with numerical
values summarizing the contribution of each type of data (i.e., protein profile ver-
sus gene expression) to each link, thus allowing us to offer an interpretation of the
relative role of each link/node in this network in terms of gene and protein activ-
ity. This interpretation may be used in turn to classify nodes (i.e., into proteomic,
genomic or “mixed” roles) and we find, through enrichment analysis with a bi-
ological databases on molecular pathways (i.e., KEGG3), that our classifications
appear to be quite sensible when interpreted within the broader biological context.
See Section 5 for details.

3. Multi-attribute association networks. By an association network we will
mean a graph G = (V ,E), for nodes vi ∈ V , i = 1, . . . ,Nv = |V |, and edges
e(i, j) ∈ E, in which edges indicate a sufficient level of association between the
attributes of these nodes, according to some criterion function. Node attributes can
be, for example, personal characteristics and preferences in social networks or lev-
els of activity on different biological dimensions of a cell in biological networks.
Our interest here is in contexts where nodes are possessed of multiple attributes,
all of which may enter into determining association between nodes. That is, we are
interested in multi-attribute association networks. The main issue we consider in
this section is the definition of a suitable summary of association between pairs of
nodes and the relationship among such summaries when based on only subsets of
the full set of attributes. The question of inference of links in our network, given a
choice of association measure, is addressed later in Section 4.

3.1. Measures of association. Suppose that for each node i one can poten-
tially observe K attributes and define a corresponding multivariate random vari-
able Xi = (X

(1)
i , . . . ,X

(K)
i )T . In what follows, we assume that all attributes are

continuous random variables. Let SIMC(i, j) be a specified measure of similar-
ity between nodes i and j based on the subset of the node attributes C, where
C ⊂ {1, . . . ,K}. For a sufficiently “large” value of similarity SIMC(i, j) between
nodes i and j , an edge e(i, j) will be assigned. In other words, we are interested
in similarity measures SIMC(i, j) that constitute a “nontrivial” level of association

3KEGG (Kyoto Encyclopedia of Genes and Genomes) is a bioinformatics resource for linking
genomes to life and the environment, http://www.genome.jp/kegg/.

http://www.genome.jp/kegg/
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between attributes of two nodes i and j of network G. Usually, the similarity func-
tion SIMC(i, j) is not observable, but, nevertheless, can be potentially estimated
from the information contained by measurements on node attributes.

Intuitively, it is expected that any chosen similarity measure SIMC(i, j) would
differ for a different choice of subset of node attributes C. Therefore, it is important
to understand how similarity measure SIMC(i, j) varies for different subsets of
attributes within a given class of similarity measures. As a rule, the choice of an
appropriate similarity measure, to a large extent, depends on a specific application.
Here we restrict our attention to correlation-based similarity measures.

When only a single attribute is available (K = 1), the Pearson product moment
correlation

ρ(i, j) = cov(Xi,Xj )√
var(Xi)var(Xj )

(1)

is commonly used as a similarity measure. When more than one node attribute is
under consideration (K > 1), Pearson’s correlation between nodes i and j can be
computed for each common attribute separately ρl(i, j) = corr(X(l)

i ,X
(l)
j ), l ∈ C,

and then, if desired, computed values can be summarized into some aggregated
measure of total between node similarity SIMC(i, j). For example:

• Maximum correlation

SIMC(i, j) ≡ max
l∈C

ρl(i, j),(2)

• Minimum correlation

SIMC(i, j) ≡ min
l∈C

ρl(i, j).(3)

While these choices of multi-attribute similarity are intuitive and straightfor-
ward, their main disadvantage is that they do not take into account the correlations
between attributes observed on the same node and the cross-correlations between
attributes observed on different nodes. From this perspective, canonical correlation
is a more natural choice of total similarity for two main reasons. First, because it
takes into consideration both the correlations between attributes on the same node
and the cross-correlations between different attributes on different nodes, and sec-
ond, because canonical correlation relates node sets of attributes in an optimal
way. Additionally, canonical correlation analysis provides a way to evaluate the
effective number and the importance of node attributes.

Originally introduced by Hotelling (1936) and now a classical tool in multivari-
ate statistics, we propose to use the canonical correlation ρc(i, j) here as a measure
of total similarity between multiple node attributes Xi and Xj of two nodes i and j

in a network. We recall that computation of canonical correlation ρc(i, j) is equiv-
alent to maximization (in absolute value) of the correlation between two linear
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combinations wT
i Xi and wT

j Xj with respect to the vectors of weights wi ∈ R
|C|

and wj ∈ R
|C|, also called canonical weights:

ρc(i, j) = max
wi,wj∈R|C|

corr(wT
i Xi,w

T
j Xj ).(4)

Note that since canonical weights wi and wj depend on a pair of indexes (i, j),
they are defined for each pair (i, j) separately. However, we have suppressed this
detail in our notation for the purpose of readability.

By definition, the canonical correlation ρc is a bounded quantity that takes val-
ues between zero and one. By construction, ρc is always greater or equal to the
maximum in absolute value of any cross-attribute correlation between any pair of
nodes in a network:

ρc(i, j) = max
wi,wj∈R|C|

corr(wT
i Xi,w

T
j Xj ) ≥ max

l �=k∈C

∣∣corr
(
X(l)

i ,X(k)
j

)∣∣.
We will find it useful to adopt the eigenvalue formulation of the canonical cor-

relation, and we will express this formulation in terms of correlation matrices. Let
�ii = Corr(Xi) and �jj = Corr(Xj ) be the marginal correlation matrices of at-
tributes of node i and node j , respectively; and let �ij = Corr(Xi,Xj ) be the
cross-correlation matrix between attributes of node i, and attributes of node j .
Then the correlation supermatrix �(i, j) can be represented as

�(i, j) =
(

�ii �T
ij

�ij �jj

)
,(5)

and the canonical correlation (4) can be expressed as

ρc(i, j) = max
wi,wj∈R|C|

wT
i �ijwj√

wT
i �iiwi

√
wT

j �jjwj

,(6)

where the vectors of weights wi and wj can be found directly by solving the opti-
mization problem above, or by solving the system of eigenvalue equations⎧⎨

⎩
�−1

jj �T
ij�

−1
ii �ijwj = λ2wj ,

�−1
ii �ij�

−1
jj �T

ijwi = λ2wi.
(7)

The canonical weights wi and wj are the eigenvectors that correspond to the max-
imum eigenvalue λ2, the square root of which equals ρc(i, j).

Using canonical correlation, a natural criterion for assigning an edge between
two nodes i and j is that ρc(i, j) be greater than zero. When an edge exists, the
canonical weights wi,wj and the canonical scores wT

i Xi,w
T
j Xj can be used to

assess the relative contribution of each of the K attributes to that edge. This inter-
pretation is an analogy to how we would evaluate the importance of explanatory
variables in a multiple regression analysis. Key ideas follow from the interpreta-
tion of these quantities. Specifically, the squared canonical correlation ρ2

c (i, j) is
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interpreted as the percentage of variation shared by the sets of attributes of nodes i

and j along the directions defined by the canonical weights wi,wj . Furthermore,
the standardized canonical weights can be used to assess the relative importance
of individual node attributes to a given canonical correlation. In particular, the
squared, standardized canonical weight (w

(l)
i )2, l ∈ C, provides the relative con-

tribution of attribute l of node i to ρc(i, j). Finally, canonical scores wT
i Xi and

wT
j Xj represent aggregated measures of attributes for nodes i and j , respectively.
Often in network analysis it is not unreasonable to assume a certain level of

homogeneity across nodes in a network. In the context of our model for multi-
ple attributes, a natural set of homogeneity assumptions consists of assuming (a)
equality of the marginal correlation matrices, that is, �ii = �jj , and (b) symmetry
of the cross-correlation matrix, that is, �ij = �T

ij . The first assumption dictates
that the correlations among attributes within a node are the same for both i and j .
The second assumption dictates that the correlation among any pair of attributes
between nodes i and j , one from i and one from j , respectively, is unchanged if
instead we look at those same two attributes but from j and i. In this case, we have
the following result.

PROPOSITION 3.1. Under the homogeneity assumptions that �ii = �jj and
�ij = �T

ij , the optimization (6) defining the canonical correlation ρc(i, j) between
nodes i and j simplifies to

ρc(i, j) = max
w∈RK

wT �ijw

wT �iiw
,(8)

and the corresponding eigenvalue problem is reduced to

�−1
ii �ijw = λw.(9)

A proof of this result is given in the Appendix. This result has the important im-
plication that, under homogeneity, only one set of canonical weights is required.
Therefore, when an edge exists between nodes i and j , that is, when ρc(i, j) > 0,
this single vector w is a summary of the relative contribution of each attribute to
the edge. We will make use of this homogeneity assumption and the corresponding
result both in the illustration that follows next, in Section 3.2, and in the simula-
tions of Section 4.2. In practice, these homogeneity conditions can be checked, for
each pair (i, j), using a simple likelihood ratio testing procedure, as we do in the
application described in Section 5.

3.2. Illustration: The case of K = 2. For the purpose of illustration, we con-
sider the special case of a single pair of nodes and K = 2 attributes observed on
each node. Let Xi = (X

(1)
i ,X

(2)
i )T and Xj = (X

(1)
j ,X

(2)
j )T be the attribute vectors

for two nodes i and j , with common marginal correlation matrix Corr(X) ≡ �m
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and symmetric cross-correlation matrix Corr(Xi,Xj ) = Corr(Xj ,Xi) ≡ �c. We
parametrize �m and �c as

�m =
(

1 r

r 1

)
and �c =

(
ρ1 b

b ρ2

)
, yielding � =

(
�m �c

�c �m

)
.

Here the parameter r = Corr(X(1),X(2)) represents the marginal correlation be-
tween the two attributes on a given node; b = Corr(X(1)

i ,X
(2)
j ) = Corr(X(2)

i ,X
(1)
j )

is the cross-attribute correlation between nodes; and ρ1 = Corr(X(1)
i ,X

(1)
j ) and

ρ2 = Corr(X(2)
i ,X

(2)
j ) are the within-attribute correlations between nodes for the

first and the second attributes, respectively.
To explore the space of parameter values where the canonical correlation ρc

is well-defined, and the effect of those parameter values on the value of ρc, we
investigate the conditions under which the correlation matrix � is positive-definite.
The eigenvalues corresponding to � are of the form

eig1,2(�) = 1 − (ρ1 + ρ2) ±
√

(ρ1 − ρ2)2 + 4(b − r)2

2
,

eig3,4(�) = 1 + (ρ1 + ρ2) ±
√

(ρ1 − ρ2)2 + 4(b + r)2

2
.

These eigenvalues are positive, and, consequently, � is positive-definite, if the
following conditions are satisfied:{

|b − r| < A1 = √
(1 − ρ1)(1 − ρ2),

|b + r| < A2 = √
(1 + ρ1)(1 + ρ2).

(10)

The domain of the canonical correlation ρc in terms of values r , b, for fixed
values of ρ1 and ρ2, where ρ2 > ρ1, represents an oblique parallelepiped centered
at the origin and with its size defined by values of 2A1 and 2A2, which in turn
depend on ρ1 and ρ2. The corresponding value of the canonical correlation can be
computed explicitly by solving �−1

m �cx = λx with respect to λ, yielding

ρc = max{| eig1,2(�
−1
m �c)|} = max

{∣∣∣∣ρ1 + ρ2 − 2br ∓ √
D

2(1 − r2)

∣∣∣∣
}

(11)
where D = (ρ1 − ρ2)

2 + 4(b − ρ1r)(b − ρ2r).

Figure 2 shows the domain of canonical correlation (left panel) and actual val-
ues of canonical correlation (right panel) computed for fixed values of ρ1 = 0.3
and ρ2 = 0.1 as functions of r and b. If the cross-correlation b is induced by cor-
relation r between attributes of the same node, then the canonical correlation is
not noticeably greater than the maximum in absolute value of ρ1, ρ2 and b. How-
ever, if substantial cross-correlation b exists between different attributes, then the
value of the canonical correlation is noticeably greater than ρ1, ρ2 or b. Canonical



1078 N. KATENKA AND E. D. KOLACZYK

FIG. 2. Domain of canonical correlation (left panel) and actual values of canonical correlation
(right panel) computed for fixed values of ρ1 = 0.3 and ρ2 = 0.1 as functions of r and b.

weights are depicted in Figure 3. Since all necessary conditions of Proposition 3.1
are satisfied, only one set of weights (w1,w2) for each pair of nodes needs to be
computed. Squared, standardized weights w2

1 and w2
2, in this scenario, provide rel-

ative contribution of the first and the second attributes to ρc. When b is relatively
small, meaning there is no substantial cross-correlation between different attributes
of different nodes, the value of canonical correlation is effected, to a large extent,
by that attribute on which the correlation between two nodes is the strongest. This
results in a large value of w2

1 (close to one), and, consequently, a small value of
w2

2 (close to zero). For small and moderate values of r , as the cross-correlation
increases in absolute value, the value of canonical correlation also increases, and
so too the influence of the second attribute. This tendency results in lower values
of w2

1 and higher values of w2
2. Due to the constraints on r and b for obtaining

a valid covariance matrix �, not all combinations of these parameters result in
proper values of ρc, w1 and w2.

FIG. 3. Squared standardized canonical weights w2
1 (left panel) and w2

2 (right panel) computed
for fixed values of ρ1 = 0.3 and ρ2 = 0.1 as functions of r and b.
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For K > 2, in the simplest scenario, where all off-diagonal elements of the
matrix �m are equal to r and all diagonal elements equal to 1, and all off-diagonal
elements of the cross-covariance matrix �c are equal to b and diagonal elements
equal to ρ, the corresponding eigenvalues of � can be computed explicitly:

eig1,2,...,(k−2)(�) = (1 − r) ± (ρ − b),

eig(k−1),k(�) = (
1 + (k − 1)r

) ± (
ρ + (k − 1)b

)
.

These values are positive provided

−1/(k − 1) < r < 1, |ρ − b| < |1 − r|, |ρ + (k − 1)b| < |1 + (k − 1)r|
and the corresponding canonical correlation is

ρc = max
{∣∣∣∣ρ − b

1 − r

∣∣∣∣,
∣∣∣∣ρ + (k − 1)b

1 + (k − 1)r

∣∣∣∣
}
.

In this situation, there are only two unique canonical roots, and so we can use
any two or even one attribute to infer links in the network. In general, however,
for networks with an arbitrary number K of multiple attributes per node and less
trivial correlation structure, the number of parameters increases significantly, so
that an explicit expression of the canonical correlation becomes intractable.

4. Network topology inference. We describe here a testing-based approach
to inferring multi-attribute association networks and we present the results of a
small simulation study comparing the power of edge detection using the several
definitions of similarity detailed above in the previous section.

4.1. Methods. Recall that a link between two nodes i and j in a multi-attribute
association network G = (V ,E) is present when there is sufficient similarity
SIMC(i, j) between the corresponding sets of attributes Xi and Xj , based on some
choice of subset C ⊆ {1, . . . ,K} of |C| attributes. Given appropriate data, we wish
to infer the topology of our network G. In general, for inference of single-attribute
association networks methods are of two types: those based on principles of hy-
pothesis testing and those based on regression principles. See Kolaczyk [(2009),
Chapter 7.3] for an overview. Here we choose to employ a testing-based approach
for inferring multi-attribute association networks.

Specifically, given a choice of similarity SIMC(i, j), and n independent and
identically distributed observations {(xik, xjk)}nk=1 of the random variable pair
(Xi,Xj ) of attributes for a pair of nodes i and j , we approach the task of de-
termining whether e(i, j) ∈ E as one of testing the hypotheses

H0 : SIMC(i, j) = 0 versus H1 : SIMC(i, j) �= 0.(12)

We test each such pair of nodes (i, j), for i, j ∈ V and i < j , and control for
the large number of tests [i.e., Nv(Nv − 1)/2 in all] using false discovery rate
principles, through application of the method of Benjamini and Hochberg (1995).



1080 N. KATENKA AND E. D. KOLACZYK

The network G of primary interest to us in this paper is that defined through the
use of canonical correlation as our similarity measure. The corresponding hypoth-
esis testing problem is

H0 : ρc(i, j) = 0 versus H1 : ρc(i, j) �= 0.(13)

There are several test statistics from classical multivariate statistics that can be used
in testing these hypotheses. Here we employ the one arguably most commonly
used, Bartlett’s χ2 statistics [Bartlett (1941)]. Specifically, we compute for each
pair (i, j) the statistic

χ2(i, j) = −[(n − 1) − (|C| + 0.5)] ln
|C|∏
l=1

[
1 − ρ̂2

c(l)(i, j)
]
,(14)

which, by Wilk’s theorem, under H0 is asymptotically distributed as a χ2 random
variable with |C|2 degrees of freedom, when applied to a subset C ⊆ {1, . . . ,K}
of |C| attributes. Note that in order to compute this statistic it is necessary to es-
timate the marginal and cross-correlation matrices for each edge i and j and to
solve the generalized eigenvalue problem (6) [or, under homogeneity, the eigen-
value problem (9)], computing all eigenvalue roots ρ̂2

c(l) = λl, l = 1, . . . , |C|. This
may be done using standard software. In addition, in order to estimate (2|C|) di-
mensional super-correlation matrix, for each attribute, one needs to have at least
(2|C|)(2|C| − 1)/2 independent observations. In the absence of sufficiently large
numbers of observations, if the underlying network is expected to be sufficiently
sparse, an alternative would be to compare the test statistic to a null distribution
derived from empirical null principles [Efron (2010)].

Note that by declaring an edge based on Bartlett’s χ2 statistics (14), we use
canonical variables of all orders ρ2

c(l) = λl, l = 1, . . . , |C| by definition. However,
once an edge is declared, we assign it canonical weights that correspond to the first
order (the maximum) canonical correlation ρc ≡ ρc(1).

By way of comparison, and in preparation for our simulation study below, we
also consider the corresponding testing procedures for inference of G based on (i)
just a single attribute and Pearson’s product moment correlation, and (ii) a max- or
min-based aggregation across attributes, combining the individual Pearson corre-
lations per the expressions in (2) and (3).

In the case where only a single attribute is used for each node (indeed, perhaps
only a single attribute is observed), and Pearson’s correlation is used as a measure
of similarity between a pair of nodes, a link between nodes i and j is declared
according to the following test of hypotheses:

H0 : ρ(i, j) = 0 versus H1 : ρ(i, j) �= 0.(15)

The natural test statistic is the empirical correlation ρ̂(i, j), which is commonly
transformed and compared to either standard normal distribution or an appropriate
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Student’s t-distribution. See Kolaczyk [(2009), Chapter 7.3.1]. Here we adopt the
former formulation, based on Fisher’s transformation, comparing the statistic

z(i, j) =
√

n − 3

2
log

{
(1 + ρ̂(i, j))

(1 − ρ̂(i, j))

}
(16)

to a normal distribution with mean zero and variance one.
In the case of max- or min-based aggregation across attributes, a link between

nodes i and j is declared according to the following tests of hypotheses, respec-
tively:

H0 : ρl(i, j) = 0, ∀l ∈ C versus H1 : max
l∈C

ρl(i, j) �= 0,

(17)
H0 : ρl(i, j) = 0, ∀l ∈ C versus H1 : min

l∈C
ρl(i, j) �= 0.

Here, we estimate the sample correlation ρ̂l(i, j) for each attribute l ∈ C and com-
pute the corresponding testing statistic zl(i, j) using Fisher’s transformation (16).
Since z(i, j) is an increasing function of ρ̂(i, j), the maximum (minimum) of
zl(i, j) will correspond to the maximum (minimum) of ρ̂l(i, j). To calculate p-
values associated with such tests, approximations based on the so-called rhombus
formula may be used [Efron (1997), Li et al. (2008)].

4.2. A simulation study. In order to gain some insight into the comparative be-
havior of these different test-based approaches to inferring association networks,
and the different ways in which they utilize information on multiple attributes, we
conducted a small simulation study. In what follows we evaluate numerically the
power of each test to infer an individual link. Specifically, we infer the presence
of a link defined through (1) Pearson’s correlation measured on the first attribute,
based on ρ1 > 0; (2) Pearson’s correlation measured on the second attribute, based
on ρ2 > 0; (3) the maximum correlation, max(ρ1, ρ2) > 0; (4) the minimum cor-
relation, min(ρ1, ρ2) > 0; and (5) the canonical correlation, ρc. The corresponding
hypotheses to be tested are as follows:

1. H0 :ρ1 = 0 vs. H1 :ρ1 > 0,
2. H0 :ρ2 = 0 vs. H1 :ρ2 > 0,
3. H0 :ρ1 = ρ2 = 0 vs. H1 : max(ρ1, ρ2) > 0 (ρ1 > 0 or ρ2 > 0),
4. H0 :ρ1 = ρ2 = 0 vs. H1 : min(ρ1, ρ2) > 0 (ρ1 > 0 and ρ2 > 0),
5. H0 :ρc = 0 vs. H1 :ρc > 0.

Our simulations are performed under the following setup. We fix values ρ1
and ρ2 to be 0.3 and 0.1, respectively, and generate 1000 independent data sam-
ples of size n = 50 from the multivariate normal distribution (X,Y ) ∼ N4(0,�),
where � is defined as in Section 3.2, over a range of values for r and b. Given sim-
ulated data, we estimate the values of ρ1, ρ2 and ρc and compute the appropriate
test statistics, as described in Section 4.1, and evaluate the power of the tests under
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the described five sets of hypotheses. For Scenario 3, we approximate p-values us-
ing a simplified version of the rhombus formula, the so-called W-formula, derived
by Efron (1997) and fitted for k = 2:

Pr
(
max(z1(i, j), z2(i, j)) > c

) ≈ �̄(c) + φ(c)
φ(cL/2) − 0.5

c/2
,(18)

where L = arccos(corr(z1(i, j), z2(i, j))) and c is an observed value of the max-
imum of test statistics z1(i, j) and z2(i, j), with �̄ and φ denoting the comple-
mentary cumulative distribution function and the density function of the standard
normal, respectively. Analogously, for Scenario 4, we have

Pr
(
min(z1(i, j), z2(i, j)) > c̃

) ≈ �̄(c̃) − φ(c̃)
φ(c̃L/2) − 0.5

c̃/2
,(19)

where c̃ is an observed value of the maximum of test statistics z1(i, j) and z2(i, j).
Note that association exists (i.e., there is an edge present) under all five measures
of similarity.

The results of the simulations are depicted in Figure 4. The top panel of Fig-
ure 4 shows power as a function of r and b for canonical correlation only. Recall

FIG. 4. Top panel shows power for canonical correlation only [scenario (5)]; left and right panels
present the power for all five described scenarios as a function of r (where b = 0.2r) and as a function
of b (where r = 0.2b).



MULTI-ATTRIBUTE NETWORKS 1083

that r is the correlation between attributes for a given vertex (i.e., within-vertex
correlation), while b is the correlation between attributes across two vertices (i.e.,
between-vertex correlation). From the top panel in the figure it is clear that, while
power increases as the within-vertex correlation r increases, for a fixed value of r

even a small amount of between-vertex correlation b is sufficient to greatly in-
crease power.

Now consider the left and right panels of Figure 4, in which we present the
power for all five described scenarios as a function of r (where b = 0.2r) and as
a function of b (where r = 0.2b). The power curves for detecting the edge when
using either the first or second attribute alone indicate what may be achieved with
only partial information, that is, on only one attribute or the other. That the higher
power curve corresponds to the first attribute is natural, given that ρ1 = 0.3 >

0.1 = ρ2. More interestingly, we see that among the three scenarios under which
information on both attributes is used, only that based on canonical correlation of
attributes is capable of exceeding the power using the first attribute alone. More
specifically, the left panel shows the situation where the within-vertex correlation r

varies from −1 to 1, but at the same time cross-correlation between two nodes stays
relatively small, in a range of (−0.2,0.2). In this case, the effect of the correlation
based on the first attribute on the power of link detection is reduced, and hence
the power of the test for canonical correlation decreases. In contrast, when the
cross-correlation between two nodes b grows more rapidly than correlation r , the
power of the test for canonical correlation increases similarly rapidly and quickly
achieves a maximum of 1.0.

Thus, by means of this small, illustrative simulation study, we were able to
provide qualitative explanation of the relationship between the power for detecting
an edge under the five different scenarios and, in particular, gain some insight into
the way in which differing extents to which information on multiple attributes is
used can affect the power.

5. Inference and characterization of a gene–protein network. In this sec-
tion we turn our attention to the gene/protein regulatory network application intro-
duced in Section 2. We analyze a subset of the NCI-60 database that contains 92
protein profiles and gene expressions for approximately 9000 genes. Note that the
problem of combining multiple types of biological profiles is nontrivial. We adopt
the procedure described in Shankavaram et al. (2007) to construct a so-called “con-
census” data set comprised of 91 protein profiles and 91 gene profiles matched
in corresponding pairs by their common gene/protein Entrez identifiers. In this
manner we obtain a set of bivariate measurements on the expression for each 91
genes/proteins across 60 cancer cells.

5.1. Network inference and characterization. We inferred three types of net-
works: a network of associated proteins, based on similarity of protein expres-
sion profiles alone; a network of associated genes, based on similarity of gene
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FIG. 5. Inferred association network based on protein profiles (left panel), gene expressions (mid-
dle panel), and gene and protein profiles combined (right panel). Numbers in boxes represent unique
Entrez IDs; numbers on edges represent estimated correlations and, for gene–protein network (right
panel), and corresponding canonical weights. Dashed lines indicate absent edges.

expression profiles alone; and a single gene/protein network, based on both types
of expression profiles. We used the methods of hypothesis testing described in
Section 4, with an FDR control level of γ = 0.05. Note that since we found (us-
ing formal hypothesis testing) that network homogeneity is not supported for all
pairs of nodes in the gene–protein network, the simplified homogeneous covari-
ance structure discussed in parts of Section 3 is not assumed here.

Before discussing the full networks we obtained, consider the small illustrative
example introduced in Section 2, involving the three proteins (Annexin A1, An-
nexin A2 and Keratin 8) and their three corresponding genes (ANXA1, ANXA2
and KRT8). Figure 5 shows these subnetworks, now annotated with the values
of their estimated correlations and, in the case of the gene/protein network, the
canonical weights as well. As one can easily observe, the protein and gene net-
works differ in the values of their (marginal) correlations and, consequently, in
their structure. For example, the correlation between proteins Annexin 1 and Ker-
atin 8 is negative, −0.18, but, nevertheless, sufficient to produce an edge in the
network; the correlation between the corresponding genes ANXA1 and KRT8 is
positive, 0.03, but insufficient to declare an edge. At the same time, the absolute
value of the canonical correlation, based on the combined expression profiles, is
equal to 0.2. Furthermore, examining the canonical weights on this edge, we see
that 93% of the canonical correlation can be explained by protein-level informa-
tion, while only 7% is explained by gene-level information.

This example is suggestive in two ways. First is that different molecular pro-
files can produce different networks; and second is that the network inferred from
combined molecular profiles via canonical correlation can effectively summarize
the combined contributions of the two types of measurements.

Now consider the networks comprised of the full set of 91 nodes. Table 1 reports
the number of edges declared for each network, and the corresponding network
densities, while Table 2 summarizes the extent to which edges are shared between
networks, through both the Jaccard similarities and the raw counts. We see that
the gene–protein network has the largest number of edges (791), with a density
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TABLE 1
Summary statistics for protein, gene and gene–protein networks: number of nodes, number of edges,

density, size of the largest connected component (LCC), average nonzero correlation, degree,
clustering coefficient and (normalized) betweenness centrality

Protein network Gene network Gene–protein network

Nodes (Nv) 91 91 91
Edges (Ne) 426 240 791
Density 0.10 0.06 0.19
LCC 90 80 91
Avg correlation (ρ̂) 0.26 0.18 0.53
Avg degree (d̄) 9.36 5.27 17.38
Avg clustering 0.36 0.31 0.39
Avg betweenness 0.034 0.041 0.022

of almost 0.20, while the protein and gene networks have noticeably fewer edges
(426 and 240, resp.), with densities roughly half and a quarter that of the gene–
protein network. Furthermore, the gene–protein network shares over 40% of its
edges (329) with the protein network, but only about 25% with the gene network.
In contrast, the protein and gene networks themselves share comparatively few
edges (52). Most interestingly, the gene–protein network contains 309 edges that
are unique and belong to neither the protein nor the gene networks. The presence
of such edges indicates both high correlation of between gene and protein profiles
for the same node and/or high cross-correlation of gene and protein profiles for
distinct nodes.

Also shown in Table 1 are other standard summaries of network structure, in-
cluding the size of the largest connected component and the average degree, clus-
tering coefficient, and betweenness centrality. We refer the reader to Kolaczyk
[(2009), Chapter 4] for definitions. We see that only the gene–protein network is
fully connected. In addition, the average degree of nodes in the gene–protein net-
work is nearly twice that in the protein network and over three times that in the
gene network. Furthermore, while the protein and gene–protein networks display
similar levels of clustering (i.e., proportions of triads closing to form triangles), the
gene network shows somewhat less (see Figure 6). On the other hand, all three net-

TABLE 2
Jaccard similarities (number of shared edges) between gene, protein and gene–protein networks

Protein network Gene network Gene–protein network

Protein network 1.0 (426) 0.09 (52) 0.37 (329)
Gene network 1.0 (240) 0.25 (205)
Gene–protein network 1.0 (791)
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FIG. 6. Distribution of degree (top row), clustering coefficient (middle row) and (normalized) be-
tweenness centrality (bottom row), for the protein (left column), gene (middle column) and gene–pro-
tein (right column) networks.

works show similar levels of betweenness centrality. Particularly interesting, how-
ever, is the fact that the gene–protein network shows some evidence for a bimodal
degree distribution, suggesting that there are potentially two classes of nodes in
the network. Note that the spikes at zero in the histograms of degree, clustering
and betweenness for the gene network are due to isolated nodes.

5.2. Edge and node classification. We now focus on analysis of the gene–
protein network alone, with the specific goal of better understanding the contri-
bution of the two node attributes (i.e., gene expression and protein profile) to the
edges incident to each node. We separate edges/nodes into three separate classes
using a simple classification heuristic based on the canonical weights. Alterna-
tively, we also tried using more sophisticated methods of “community detection”
but found that the results obtained were substantially less interpretable.

In our analysis, for each pair of nodes with a declared edges, we take the vector
of canonical weights, say, wp and wg , corresponding to protein and gene attributes,
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FIG. 7. Distribution of the canonical weights (squared) corresponding to gene–protein network.

respectively, and standardized them to have unit length. A plot of the values w2
p ,

over all edges, is shown in Figure 7. The distribution shows two clear peaks at
the far left and right extremes, corresponding to w2

p close to zero and one, respec-
tively. The remainder of the distribution between the two peaks is relatively flat.
These observations suggest separating edges into three classes, through the use of
a threshold, say, T ∈ (0,1), with edges for which 0 ≤ w2

p ≤ T described as mainly
gene-influenced, edges for which 1 − T ≤ w2

p ≤ 1, as mainly protein-influenced,
and the rest as being of mixed type. By extension, we then similarly classify nodes
according to the majority class of its incident edges.

Figure 8 provides a visual illustration of the same process of node classification,
for the choices of threshold T = 0.1,0.25 and 0.4. For each node the proportions
pgene, pprotein and pmixed incident edges were computed. Because the sum of these
proportions is one, the nodes may be conveniently displayed in the unit simplex.
Nodes that are close to the bottom left corner have a large proportion of gene
edges, while those that are close to the bottom right corner have a large proportion
of protein edges. Mixed nodes tend to be located near the top corner. Therefore,
the location of each node is an indication of the contribution of each of the two at-

FIG. 8. Node classification, according to proportion of gene/protein influence on incident edges.
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tributes to its connectivity in the gene–protein network. Based on visual inspection
of Figures 7 and 8, we chose a threshold of T = 0.25 as most reasonable and use
that in the remainder of our analysis, described below.

Note that the above-described approach for classifying nodes can be extended in
a natural manner when there are K > 2 attributes. First, one separates edges/nodes
into K + 1 separate classes using the canonical weights. Specifically, for each pair
of nodes with a declared edge, the vector of canonical weights w1,w2, . . . ,wK ,
corresponding to each of the K attributes, are standardized and the maximum of
the corresponding squared values is noted, say, w2

l . Through the use of a thresh-
old T ∈ (0,1), an edge is characterized as mainly influenced by this attribute l

if 1 − T ≤ w2
l ≤ 1; otherwise the edge is characterized as being of mixed type.

A node can then be classified according to the majority class of its incident edges
via the use of a multidimensional analogue of our triangular strategy. In particular,
for each node, proportions {pattrl } and pmixed need to be computed and then ana-
lyzed on the multidimensional unit simplex. Note that nodes in “bottom” corners
will correspond to groups of nodes mostly effected by a single attribute, while all
mixed-type nodes will be concentrated near the “top” corner.

5.3. Biological interpretation. Our classification analysis provides an ability
to suggest a primary “role” in which each node participates in the biology un-
derlying our measurements, that is, either at the level of gene expression, protein
expression or both. In order to assess the extent to which such assignments may be
biologically meaningful, we perform an enrichment analysis of our three classes
of genes/proteins against the biochemical pathways in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways [Kanehisa et al. (2004)]. That is, we iden-
tify those cases in which our classes contain significant overlap with particular
collections of genes related by their common participation in various specific bio-
chemical processes and, through our understanding of those processes, offer an
interpretation of the assignments produced by our classification.

A preliminary comparison of our 91 network nodes with KEGG revealed that
only 68 of the corresponding genes were contained in at least one of the 148 KEGG
pathways. More specifically, 15 protein nodes, 18 gene nodes and 35 mixed nodes
were represented in KEGG. See the Appendix, Table 3. Accordingly, our enrich-
ment analysis is restricted to this subset of nodes. For each pathway and each
class, we performed a standard hyper-geometric test (i.e., a so-called test for en-
richment in the computational biology literature) of independence for allocation of
the genes in that class between the, say, M genes in the pathway and the remaining
5017 − M KEGG genes outside that pathway. A class is said to be “enriched” for
a given pathway if the null hypothesis is rejected. To adjust for multiplicity due to
the large number of KEGG pathways, we again use the Benjamini and Hochberg
(1995) false discovery rate (FDR) control procedure and set γ = 0.05. Note that
prior to conducting our tests, we excluded from the analysis all KEGG pathways
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related to any type of cancer or any other disease, in general, restricting our focus
to only those pathways involved with more specific biological functions.

In examining our results, we find that the protein nodes are enriched for 14
pathways, the gene nodes are enriched for one pathway, and the mixed nodes are
enriched for 37 pathways. See the Appendix, Table 4. The pathways for which
the protein nodes are enriched are almost all involved with signaling activity
(e.g., JAK-STAT-SIGNALING, INSULIN-SIGNALING, GNRH-SIGNALING),
for which we can expect to see coordinated activity at the level of protein expres-
sion. The pathway for which the gene nodes are enriched is called MISMATCH
REPAIR, which refers to the process whereby mismatches that may occur dur-
ing DNA replication and recombination are repaired. This pathway also is among
the 14 pathways enriched by our protein nodes. However, it makes sense that
we would see enrichment as well with nodes associated primarily at the level
of gene expression, due to the intimate connection between replication and gene
transcription/translation. Finally, we note that the set of nodes classified as be-
ing of mixed status are enriched for 24 KEGG pathways. These include MIS-
MATCH REPAIR and 12 of the other pathways with which the protein nodes
were enriched, but also include, for example, various metabolic pathways (e.g.,
RIBOFLAVIN-METABOLISM), thus seeming to confirm the appropriateness of
the label “mixed.”

6. Concluding remarks. In this paper we proposed to use canonical corre-
lation to incorporate multiple node attributes and measure a total similarity be-
tween nodes pairs in association networks. Using estimated canonical weights, we
assessed the importance of individual node attributes and examined both analyti-
cally and numerically the impact of partial information (i.e., measurements of only
some, but not all, attributes) on the ability to detect an edge between two nodes.
More generally, we also examined the impact of attribute selection on higher-level
network summary statistics, such as degree distribution, and betweenness central-
ity. For the special case of a network with two attributes collected for each node, we
proposed a simple heuristic to characterize network edges and group nodes with
respect to the influence of each attribute. We evaluated the proposed framework in
the context of gene/protein regulatory networks in human cancer cells, and found
that a network based on combined protein profiles and gene expressions appears
to be a considerably more rich summary of information than one defined on only
a single molecular profile alone.

Our work was developed with an assumption of continuous measurements.
While, in principle, it is true that often categorical measurements can be trans-
formed to the continuous case in a useful manner, a more satisfying solution would
be an extension of our work based on log-linear models. Previous work on model-
ing multiple sociometric relations [e.g., Fienberg, Meyer and Wasserman (1985)]
should be instructive here.
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As noted earlier, topology inference in association networks typically is done
using either hypothesis testing or regression methods [Kolaczyk (2009), Chap-
ter 7.3]. A regression-based analogue of the work presented here would be wel-
come. Such an approach would presumably exploit the connection between canon-
ical correlation and multiple regression. But given the large number of variables
entering such a regression (e.g., one for each node being considered as a neighbor
for a fixed node of interest), some appropriate form of penalization will be critical.

Last, we mention that while we focused here largely on the case of just two node
attributes, the other extreme, in which the number of attributes K is very large, is
also likely to be of considerable interest. In particular, there are likely interesting
connections between this case and the current body of work on high-dimensional
inference and sparseness, given that in reality a large set of K measured attributes
does not necessarily mean that any more than a few are actually important drivers
of association between nodes.

APPENDIX

A.1. Biological interpretation tables. Our classification analysis provides an
ability to suggest a primary “role” in which each node participates in the biology
underlying our measurements.

A.2. Proposition proof. Here we show that if the assumption of equal
marginal covariance matrices (�ii = �jj = �m) and symmetrical cross-
covariance matrix (�ij = �ji = �c) for two nodes i and j are satisfied, then
optimization problem (6) can be simplified to

ρc(i, j) = max
w∈R|C|

wT �cw

wT �mw
,(20)

and only one set of weights for each edge e(i, j) is required. To proof that, we
first observe that solution to the problem is not affected by rescaling wi or wj

either independently or together, that is, if replacing wi by αwi and wj by βwj ,
canonical correlation ρ(i, j) would not change:

ρc(i, j) = max
wi,wj∈

αwT
i �cβwj√

αwT
i �mαwi

√
βwT

j �mβwj

= max
wi,wj

wT
i �cwj√

wT
i �mwi

√
wT

j �mwj

for all α,β ∈ R.

Therefore, the canonical optimization problem (6) is equivalent to

max
wi,wj

wT
i �cwj , subject to

(21)
wT

i �mwi = 1,w′
j�mwj = 1.
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TABLE 3
Preliminary comparison of 91 network nodes with KEGG revealed only 68 contained in at least one

of the 148 KEGG pathways: 15 protein nodes, 18 gene nodes and 35 mixed nodes

Nodes Protein type Gene type Mixed type

Contained
in KEGG

CDH1,
CDK4,
CDK5,
CDK7,
FN1, GRB2,
MSH6,
GTF2B,
HRAS,
IRS1, JAK1,
STAT1,
STAT6, IRF9,
RNASEH2A

ACVR2A,
FASLG, CDH3,
CDK6, ERBB2,
MCM7, CD46,
MLH1, MSH2,
MSN, NCAM1,
PRKCH,
PRKCI,
MAP2K2,
TGFB1I1,
VASP, RIPK1,
EXOC4

PARP1, CASP7, CCNA2, CCNB1,
CDH2, CDKN2A, AP2M1, CRK,
CTNNB1, CTTN, EP300, XRCC6,
GSK3B, GSTP1, HSPA4, HSPD1,
NME1, PCNA, PGR, PRKCA,
PRKCB, MAPK1, MAP2K1,
PTPN6, PTPN11, RB1, RELA,
STAT3, STAT5A, TP53, TUBB2A,
TYR, EZR, RADD, FADD

NOT
contained
in KEGG

ANXA4,
CDC2,
KRT8,
MGMT,
ADNP

ANXA1,
ANXA2,
KLK3, CASP2,
DSG1, ESR1,
KRT7, KRT19,
AKAP5,
AKAP8

KRT18, MCC, PRSS8, ATXN2,
SMARCB1, VIL1, MVP, KRT20

Applying the method of Lagrange multipliers, we construct a maximization crite-
rion as

L(λi, λj ,wi,wj ) = wT
i �cwj − λi

2
(wT

i �mwi − 1) − λj

2
(wT

j �mwj − 1).

Taking partial derivatives of L(λi, λj ,wi,wj ) with respect to wi and wj , we ob-
tain the following system of equations (7):

�c(i, j)wj − λi�m(i)wi = 0,

�T
c (i, j)wi − λj�m(j)wj = 0.

Multiplying the first equation by wT
i and the second equation by −wT

j and adding
them together, we have

−λiw
T
i �mwi + λjw

T
j �mwj = 0,

which together with constraints implies λi = λj = λ. In this case, we may reduce
the system (7) to the system

�cwj = λ2
i �m(�−1

c )T �mwj ,

�T
c wi = λ2

i �m�−1
c �m(i)wi,
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TABLE 4
Results of enrichment analysis: protein type nodes are enriched for 14 pathways, the gene

nodes—for one pathway and the mixed nodes—for 37 pathways

Gene Protein Mixed
KEGG pathway type type type

MISMATCH-REPAIR X X X
JAK-STAT-SIGNALING-PATHWAY X X
T-CELL-RECEPTOR-SIGNALING-PATHWAY X X
NEUROTROPHIN-SIGNALING-PATHWAY X X
INSULIN-SIGNALING-PATHWAY X X
B-CELL-RECEPTOR-SIGNALING-PATHWAY X X
FC-EPSILON-RI-SIGNALING-PATHWAY X X
CHEMOKINE-SIGNALING-PATHWAY X X
ERBB-SIGNALING-PATHWAY X X
GAP-JUNCTION X X
DORSO-VENTRAL-AXIS-FORMATION X X
FOCAL-ADHESION X X
GNRH-SIGNALING-PATHWAY X X
DNA-REPLICATION X
TIGHT-JUNCTION X
MELANOGENESIS X
CELL-CYCLE X
LONG-TERM-POTENTIATION X
PROGESTERONE-MEDIATED-OOCYTE-MATURATION X
APOPTOSIS X
NATURAL-KILLER-CELL-MEDIATED-CYTOTOXICITY X
FC-GAMMA-R-MEDIATED-PHAGOCYTOSIS X
WNT-SIGNALING-PATHWAY X
ADIPOCYTOKINE-SIGNALING-PATHWAY X
LEUKOCYTE-TRANSENDOTHELIAL-MIGRATION X
ADHERENS-JUNCTION X
VEGF-SIGNALING-PATHWAY X
ALDOSTERONE-REGULATED-SODIUM-REABSORPTION X
MAPK-SIGNALING-PATHWAY X
TOLL-LIKE-RECEPTOR-SIGNALING-PATHWAY X
OOCYTE-MEIOSIS X
VASCULAR-SMOOTH-MUSCLE-CONTRACTION X
P53-SIGNALING-PATHWAY X
RIG-I-LIKE-RECEPTOR-SIGNALING-PATHWAY X
BASE-EXCISION-REPAIR X
NON-HOMOLOGOUS-END-JOINING X
RIBOFLAVIN-METABOLISM X
NOD-LIKE-RECEPTOR-SIGNALING-PATHWAY X



MULTI-ATTRIBUTE NETWORKS 1093

or assuming �m = �m and �T
c = �c,

�cwj = λ2
i �m�−1

c �mwj and �cwi = λ2
i �m�−1

c �mwi.

The last set of equations shows that wi and wj are both the eigenvectors of ma-
trix �−1

m �c�
−1
m �c, correspond to the same eigenvalue λ2, and both satisfy con-

straints (21), so that implies wi ≡ wj = w. Thus, eigenvalue problem (7) is re-
duced to

�−1
m �cw = λiw.
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