
The Annals of Applied Statistics
2012, Vol. 6, No. 3, 895–927
DOI: 10.1214/12-AOAS547
© Institute of Mathematical Statistics, 2012

BOOTSTRAPPING DATA ARRAYS OF ARBITRARY ORDER1
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In this paper we study a bootstrap strategy for estimating the variance
of a mean taken over large multifactor crossed random effects data sets. We
apply bootstrap reweighting independently to the levels of each factor, giving
each observation the product of independently sampled factor weights. No
exact bootstrap exists for this problem [McCullagh (2000) Bernoulli 6 285–
301]. We show that the proposed bootstrap is mildly conservative, meaning
biased toward overestimating the variance, under sufficient conditions that
allow very unbalanced and heteroscedastic inputs. Earlier results for a resam-
pling bootstrap only apply to two factors and use multinomial weights that are
poorly suited to online computation. The proposed reweighting approach can
be implemented in parallel and online settings. The results for this method
apply to any number of factors. The method is illustrated using a 3 factor
data set of comment lengths from Facebook.

1. Introduction. Large sparse data sets with two or more crossed random ef-
fects commonly arise from electronic commerce and Internet services, and we may
expect them to arise in other settings as automated data gathering becomes more
prevalent. Such data often have no IID structure for us to draw on. For example,
with the famous Netflix data [Bennett and Lanning (2007)] multiple ratings from
the same viewer are dependent. Similarly, multiple ratings on the same movie are
dependent. Neither rows nor columns are IID, and a crossed random effects model
with interactions is a more reasonable structure.

In Internet data there can easily be more than two crossed factors. The individual
factors could be user account numbers, IP addresses, URLs, search query strings
or identifiers for documents placed in web pages. The response variable might be
a measure of user engagement such as time spent reading, or system performance
such as the load times for pages under different versions of software.

The crossed random effects setting is challenging for inference. Methods in
Searle, Casella and McCulloch (1992) rely on Gaussian data assumptions and out-
side of balanced cases, the necessary linear algebra becomes prohibitively expen-
sive on large problems.

We might therefore turn to resampling. For IID data, the bootstrap provides
reliable variance estimates and confidence intervals under very weak assump-
tions on the mechanism generating our data. But McCullagh (2000) proved that
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there does not exist an exact bootstrap algorithm for crossed random effects.
Specifically, if Xij = μ + ai + bj + εij for independent mean 0 random vari-
ables ai , bj and εij with variances σ 2

A, σ 2
B and σ 2

E , respectively, then no re-
sampling method, from a very broad class, will provide an unbiased estimate of
Var((IJ )−1 ∑I

i=1
∑J

j=1 Xij ).
One approach to bootstrapping crossed data is to independently bootstrap the

indices of each factor. In bootstrapping a factor we are putting a random multi-
nomially distributed weight on the levels of that factor. For an r-fold data set,
the observation Xi1i2···ir gets a weight W ∗b

i1i2···ir = ∏r
j=1 W ∗b

j,ij
, where W ∗b

j,ij
is the

weight on level ij of the j th factor in the bth bootstrap reweighting. For each j and
each b, weight vectors (W ∗b

j,1,W
∗b
j,2, . . . ,W

∗b
j,Nj

) are sampled independently. Given
weights on all the data, we compute a weighted version of the statistic(s) of interest
to get the bth bootstrap value.

Bootstrapping with a product of multinomial weights has been studied before,
for r = 2. Brennan, Harris and Hanson (1987) and Wiley (2001) use it to study
variance components in educational test data. McCullagh (2000) shows that inde-
pendently bootstrapping the rows and columns of a data matrix gives a mildly con-
servative estimate of variance. That is, it has a positive bias that is usually relatively
small. McCullagh (2000) considered balanced crossed random effects (no missing
values) with homoscedastic variance components. Owen (2007) shows that this
bootstrap remains conservative (and usually mildly so) for sparsely sampled un-
balanced crossed random effects allowing for heteroscedasticity. That framework
allows every row and column (e.g., customer and movie) and even every interac-
tion to have its own variance. Resampling is then reliable and it spares the analyst
from having to estimate all of those variances.

The random weighting that we favor is a product of completely independent
weights: W ∗b

i1i2,...,ir
= ∏r

j=1 W ∗b
jij

, where for each b and each j , W ∗b
jij

are IID
weights with mean 1 and variance 1. For these large data sets, methods that
reweight data via IID random weights [Rubin (1981), Newton and Raftery (1994)]
are an appealing alternative to the multinomial weights used in resampling. First,
it is simpler to apply independent reweighting to large scale parallelized compu-
tations, as is done in online bagging and boosting [Oza (2001), Lee and Clyde
(2004)]. The reason is that large data sets are stored in a distributed fashion and
then multinomial sampling brings substantial communication and synchronization
costs. Second, resampling simplifies variance expressions by avoiding the nega-
tive dependence from the multinomial distribution. This makes it easier to develop
expressions for problems with more than two factors.

Using notation and approximations defined below, the main facts are as follows.
For r = 2 factors, we suppose the data are sampled by a random effects model
with variance components σ 2{1}, σ 2{2} and σ 2{1,2} corresponding to the main effects
and interaction, respectively. We can express the variance of the sample average
of N observations in the form (ν{1}σ 2{1} + ν{2}σ 2{2} + σ 2{1,2})/N . The subscripted



BOOTSTRAPPING DATA ARRAYS 897

ν quantities are easily computable from the data and we give explicit formulas.
Naive bootstrapping produces an estimate close to (σ 2{1} + σ 2{2} + σ 2{1,2})/N which
is grossly inadequate because it turns out that often ν{j} � 1. For instance, in the
Netflix data set, the largest ν{j} is about 56,200.

Resampling both rows and columns leads to a variance estimate close to ((ν{1} +
2)σ 2{1} + (ν{2} + 2)σ 2{2} + 3σ 2{1,2})/N , which is mildly conservative when ν{j} � 1
and the σ ’s are of comparable magnitude. It is up to three times as large as it should
be in the event that σ 2{j} � σ 2{1,2}. Being conservative by a factor of at most 3 is far
more acceptable than underestimating variance by as much as 56,200.

Our main contributions are as follows:

(1) We show that a naive bootstrap suitable for IID settings severely underes-
timates the variance of the sample mean, when r = 2, while the product strategy
mildly overestimates it. These facts were known for resampling, but we show it
also for reweighting.

(2) We generalize the reweighting results to r ≥ 2 factors. In particular, for the
homoscedastic setting, the 3σ 2{1,2} variance contribution from the case r = 2 be-

comes (2r − 1)σ 2{1,2,...,r}. We find expressions for all 2r − 1 variance coefficients.
Under reasonable conditions, for which we note exceptions, this bootstrap mag-
nifies a k-factor variance component by roughly 2k − 1. Under simply described
conditions, the k = 1 terms dominate the variance and then the variance magnifi-
cation becomes negligible.

(3) We introduce a heteroscedastic random effects model in which every
nonempty subset of factors contributes a random effect. The product weighted
bootstrap remains mildly conservative even when every factorial effect for ev-
ery observation has a distinct variance, so long as all the variances are uniformly
bounded away from 0 and infinity.

An outline of the paper is as follows. Section 2 introduces our notation for the
random effects model and some observation counts and then defines the random
effects variance that we seek to estimate. Section 3 considers naive bootstrap meth-
ods that simply resample or reweight the observations as if they were IID. They
seriously underestimate the true variance unless the only nonzero variance com-
ponent is that of the highest order interaction. Reweighting has a slight advantage
because it allows one to step up the sampling variance to compensate for cases
where the naive bootstrap variance is only a modest underestimate. Section 4 in-
troduces a factorial reweighting bootstrap strategy. For data with r = 2 factors, the
reweighting results closely match the resampling results from Owen (2007). This
section includes an interpretable approximation to the exact bootstrap variance.
Section 6 considers the heteroscedastic case, where every variance component at
every combination of its factors has its own variance parameter. When the main
effects are dominant, then the proposed bootstrap closely matches the desired vari-
ance even in the heteroscedastic setting. Section 7 describes repeated observations
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and factors nested inside the ones being reweighted. Section 8 has a numerical
example from Facebook. In that data set, UK-based users make longer comments
than do US-based users, when posting from mobile devices. The reverse holds for
comments made at Facebook’s standard web interface. The differences are small,
but statistically significant, even after taking account of a three factor structure
(commenter, sharer and URL). The proofs appear in the Appendix.

Although the product reweighting algorithm is simple, its analysis in the random
effects context is very technical. Section 9 discusses some larger statistical issues.
Among these are the reasons that we do not model the possible informativeness
of the missing data mechanism, the reasons for focusing on the bootstrap variance
of a sample mean, and the motivation for considering the heteroscedastic random
effects model, which contains many more parameters than observations.

2. Notation and random effects model. The random variables of interest
take the form Xi1,i2,...,ir ∈ Rd for integers ij ≥ 1 and j = 1, . . . , r . To simplify
notation, we write Xi for i = (i1, . . . , ir ). We work with X of dimension d = 1.
The generalization to d ≥ 1 is straightforward. We have in mind applications where
each value of ij corresponds to one level of a categorical variable with many poten-
tial values. In Internet applications, index values ij might represent users, URLs,
IP addresses, ads, query strings and so on. There may be no a priori upper bound
on the number of distinct levels for ij .

The data are composed of N of these random variables, where 1 ≤ N < ∞. The
binary variable Zi takes the value 1 when observation Xi is present and Zi = 0
when Xi is absent. We work conditionally on Zi so that they are nonrandom. In
practice, the pattern of missingness in Zi may be important. As with prior work,
we avoid modeling Zi in order to focus on estimating variance, apart from some
brief remarks in Section 9.

The letters u and v denote subsets of [r] ≡ {1, . . . , r} throughout. The summa-
tion

∑
u is taken over all 2r subsets of [r], and other summations, such as

∑
v⊇u,

denote sums over the first named set (here v) subject to the indicated condition
with the other set(s) (here u) held fixed. The index iu extracts the components ij
for j ∈ u. Then iu = i′u means that ij = i ′j for all j ∈ u.

Our r-fold crossed random effects model is

Xi = μ + ∑
u�=∅

εi,u,(1)

where μ ∈ R and εi,u are mean 0 random variables that depend on i only
through iu. We have εi,u = εi′,u if iu = i′u and εi,u independent of εi′,u otherwise.
The covariance of εi,u and εi′,u′ is

Cov(εi,u, εi′,u′) = E(εi,uεi′,u′) = σ 2
u 1u=u′1iu=i′u(2)

for σ 2
u < ∞.
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To illustrate the model notation, suppose that r = 2 and one observation is at
i = (38,44) while another is at i′ = (38,19). Then

Xi = X(38,44) = μ + ε(38,44),{1} + ε(38,44),{2} + ε(38,44),{1,2} and
(3)

Xi′ = X(38,19) = μ + ε(38,19),{1} + ε(38,19),{2} + ε(38,19),{1,2}.
Because i and i′ share a value for i1, they have the same random effect for the
set u = {1}. That is, εi,{1} = εi′,{1}. This is the only effect that they share and so
Cov(Xi,Xi′) = σ 2{1}. More generally, suppose that two indices i and i′ satisfy ij =
i ′j for and only for j ∈ u. Then Xi and Xi′ share random effects εi,v = εi′,v for all

nonempty v ⊆ u and so Cov(Xi,Xi′) = ∑
v : ∅ �=v⊆u σ 2

v .
The expression ε(38,44),{1} is mildly redundant since the second index i2 = 44

is ignored. We could have written it as ε(38),{1}. Such a choice amounts to writing
the general case as εiu,u, which is more cumbersome when it appears in lengthy
expressions.

The sample mean of X is the ratio

X̄ = ∑
i

XiZi

/∑
i

Zi,(4)

where the sums are over all index values i. The denominator in (4) is the total
number N of observations. Our goal is to estimate the variance of X̄ by resampling
methods.

2.1. Partial duplicate observations. We will need to keep track of the extent
to which different observations have the same index values, in order to properly
reflect correlations among the Xi.

For each i and u ⊆ [r], the number

Ni,u = ∑
i′

Zi′1iu=i′u

counts how many observations match Xi for all indices j ∈ u. If Zi = 1, then
Ni,u ≥ 1 because Xi matches itself. By convention, Ni,∅ = N and Ni,[r] = 1. The
quantity

νu = 1

N

∑
i

ZiNi,u ≥ 1

is the average number of matches in the subset u for observations in the data set,
and ν[r] = 1.

The most important of the νu are for singletons u = {j}. The value ν{j} has a
quadratic dependence on the pattern of duplication in the data. To see this, write
n�j = ∑

i Zi1ij=� for the number of times that variable j is equal to � in the data.
Then ν{j} = N−1 ∑∞

�=1 n2
�,j because each Ni,{j} = nij ,j appears nij ,j times in the

summation defining ν{j}.
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If u ⊆ v, then νu ≥ νv . In some applications νu � νv for proper subsets u � v.
For those applications, multiple matches are very unusual. In other settings two
factors, say, i1 and i2, might be highly though not perfectly dependent (e.g., cus-
tomer ID and phone number) and then ν{1,2} might be only slightly smaller than
ν{1} or ν{2}. We return to this issue in Section 5.

The specific pair of data values i and i′ match in components

Mii′ = {j ∈ [r] | ij = i ′j }.
For the motivating data, most of the Mii′ are empty and most of the rest have
cardinality |Mii′ | = 1. We have |Mii′ | = r if and only if i = i′. Although Mii′ is
defined for all pairs i and i′, we only use it when ZiZi′ = 1, that is, when both Xi
and Xi′ have been observed, and the term “most” above refers to these pairs.

For each i and k = 0,1, . . . , r , the number

Ni,k = ∑
i′

Zi′1|Mii′ |=k

counts how many observations match Xi in exactly k places.

2.2. Random effects variance of X̄. Here we record the true variance of X̄,
using the random effects model. This is the quantity we hope to estimate by boot-
strapping.

THEOREM 1. In the random effects model (1)

Var(X̄) = 1

N

∑
u�=∅

νuσ
2
u .(5)

The contributions of the variance components σ 2
u are proportional to the dupli-

cation indices νu. For large sparse data sets we often find that 1 � νu � N when
0 < |u| < r .

Our bootstrap approximations to this variance are centered around a quantity
(1/N)

∑
u�=∅ γuσ

2
u for gain coefficients γu that depend on the data configuration

and the particular bootstrap method. Ideally, we want γu = νu. More realistically,
some bootstrap methods are able to get γu ≥ νu with γu just barely larger than νu

for the singletons u = {j} which we expect to dominate Var(X̄).

3. Naive bootstrap methods. There are two main ways to bootstrap: resam-
pling [Efron (1979)] and reweighting [Rubin (1981)], with the distinction being
that the former uses a multinomial distribution on the data while the latter applies
independent random weights to the observations.

Naive bootstrap methods simply resample or reweight the N observations with-
out regard to their factorial structure. That is, they use the same bootstrap one
might use for IID samples. Here we show that naive bootstrap resampling and
reweighting have very similar and very unsatisfactory performance.
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3.1. Naive resampling. In the naive bootstrap, all N observations are resam-
pled with replacement. The naive bootstrap variance of X̄ converges to

VarNB(X̄) = 1

N2

∑
i

Zi(Xi − X̄)2(6)

as the number of resampled data sets tends to infinity.

THEOREM 2. Under the random effects model (1), the expected value of the
naive bootstrap variance of X̄ is

ERE(VarNB(X̄)) = 1

N

∑
u�=∅

σ 2
u

(
1 − νu

N

)
.(7)

When r > 1, the naive bootstrap can severely underestimate the coefficients
of σ 2{j}. We can see the effect in the Netflix data, which has r = 2. The gain coeffi-
cients νu can be computed directly. For a random variable X following the random
effects model (1) with variance components σ 2

movies, σ 2
raters and σ 2

movies×raters we
have

Var(X̄)
.= 1

N
(56,200σ 2

movies + 646σ 2
raters + σ 2

movies×raters),

while

VarNB(X̄) ≤ 1

N
(σ 2

movies + σ 2
raters + σ 2

movies×raters),

where N
.= 100,000,000. If X has large variance components for movies, the un-

derestimation can be severe. Even quantities dominated by a rater effect will have
a naive bootstrap variance far too small.

Theorem 2 generalizes Lemma 2 of Owen (2007) which treats naive bootstrap
sampling for r = 2. We note that Owen [(2007), page 391] has an error: it gives
the coefficient of σ 2{1,2} as 1/N where it should be 1/(N − 1).

3.2. Naive reweighting. Posterior sampling under the Bayesian bootstrap
[Rubin (1981)] uses independent Exp(1) weights on the sample values. This cor-
responds to a posterior distribution on X that is a Dirichlet distribution with pa-
rameter vector (1,1, . . . ,1) with a 1 for each observation. The corresponding prior
is a degenerate Dirichlet with a parameter of 0 on all possible values for the ran-
dom variable. The posterior is degenerate, putting 0 probability on any value of X

that was never seen in the sample, thus eliminating the user’s need to know which
possible values were not in fact observed. This motivation is simplest when the ob-
servations are assumed to be distinct as, for example, with continuously distributed
values, but the method is also used on data with ties.
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In the naive Bayesian bootstrap, all N observations are given random weights
which are then normalized. Observation i gets weight Wi ∼ G independently sam-
pled. We assume that G has mean 1 and variance τ 2 < ∞. Typically, τ 2 = 1.

The original Bayesian bootstrap [Rubin (1981)] had Wi ∼ Exp(1), but other dis-
tributions are useful too. Taking Wi ∼ Poi(1) gives a result very similar to the usual
bootstrap, and it has integer weights. Independent Bin(N,1/N) weights would
provide a more exact match, but for large N there is no practical difference be-
tween Bin(N,1/N) and Poi(1). See Oza (2001) and Lee and Clyde (2004) for
uses of independent reweighting in bagging and boosting.

Taking Wi ∼ U{0,2} = (δ0 + δ2)/2 also has integer values. The algorithm goes
“double or nothing” independently on all N observations. The nonzero integer
values are all equal, so these weights correspond to using a random unweighted
subset of the data. Double-or-nothing weighting is then a version of half-sampling
methods [McCarthy (1969)] without the constraint on the sum of weights, just as
Poisson weighting removes a sum constraint from the original bootstrap.

The choice of weights makes a small difference to the bootstrap performance.
See Section 3.3.

Each bootstrap resampled mean takes the form

X̄∗ = T ∗/N∗,

where T ∗ = ∑
i WiZiXi and N∗ = ∑

i WiZi. The bootstrap mean T ∗/N∗ is a ratio
estimator of X̄. The asymptotic formula for the variance is

ṼarNBB(X̄∗) = 1

N2 ENBB
(
(T ∗ − X̄N∗)2)

.

The tilde on VarNBB is a reminder that this formula is a delta method approxi-
mation: it is the variance of a Taylor approximation to X̄∗. Because N is usually
very large in the target applications, we consider ṼarNBB to be a reliable proxy for
VarNBB.

THEOREM 3. In the random effects model (1)

ERE(ṼarNBB(X̄∗)) = τ 2

N

∑
u�=∅

σ 2
u

(
1 − νu

N

)
.(8)

The naive Bayesian bootstrap using τ 2 = 1 has the same average variance as the
naive bootstrap. In large data sets we may find that νu � τ 2(1 − νu/N) and then
the Bayesian bootstrap greatly underestimates the true variance. When maxu�=∅ νu

is not too large, then Theorem 3 offers a way to counter this problem. We can sim-
ply multiply the naive bootstrap variance by τ 2 = maxu�=∅ νu to get conservative
variance estimates. The largest νu comes from u = {j} for some j ∈ [r] and it is
an easy quantity to compute.
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3.3. Bootstrap stability. Any distribution on weights with E(W) = 1 and
Var(W) = τ 2 will have the same value for ERE(ṼarNBB(X̄∗)). Several different
weight distributions are popular in the literature. Oza (2001) takes Wij to be inde-
pendent Poisson random variables with mean 1. This creates a very close approx-
imation to the original bootstrap’s multinomial weights. Lee and Clyde (2004)
prefer exponential weights with mean 1 because they yield an exact online version
of the Bayesian bootstrap.

In this section we look at the effect of the weight distribution. Other things being
equal, we prefer a bootstrap to yield a stable variance estimate. That is, we like a
smaller variance under bootstrap sampling for the estimated variance of the mean.
For this purpose it is better to have weights with a small kurtosis κ = E((W −
1)4)/τ 4 −3. The smallest possible kurtosis for weights with mean 1 and variance 1
arises for weights uniformly distributed on the values 0 and 2. The kurtosis of the
data, κx = (1/N)

∑
i Zi(Xi − X̄)4/σ 4 −3 where σ 2 = (1/N)

∑
i Zi(Xi − X̄)2, also

plays a role. We work out the consequences for the naive bootstrap for simplicity.
If we hold the observations Xi fixed and implement the bootstrap, doing some

number B of replicates, we will estimate the quantity

ṼarNBB(X̄∗) = 1

N2

∑
i

∑
i′

ZiZi′ENBB(WiWi′)YiYi′,

where Yi = Xi − X̄. To estimate this variance, we may use

̂̃VarNBB(X̄∗) = 1

BN2

B∑
b=1

∑
i

∑
i′

ZiZi′Wi,bWi′,bYiYi′

(9)

= 1

B

B∑
b=1

(
1

N

∑
i

ZiWi,b(Xi − X̄)

)2

,

where Wi,b are independent identically distributed random weights and b =
1, . . . ,B indexes the bootstrap replications. The hat in (9) represents estimation
from B bootstrap samples. It is possible to use (9) with B = 1. That such a “unis-
trap” is possible stems from the use of a delta method approximation.

Equation (9) is not the usual estimator. The more usual variance estimate is

s2
NBB(X̄∗) = 1

B − 1

B∑
b=1

(X̄∗
b − X̄∗

• )
2,(10)

where

X̄∗
b = 1

N

∑
i

ZiWi,bXi and X̄∗
• = 1

B

B∑
b=1

X̄∗
b.(11)
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THEOREM 4. Let W and Wi,b be IID random variables with mean 1 variance
τ 2 and kurtosis κw < ∞. Then holding Yi = Xi − X̄ fixed,

VarNBB(̂̃VarNBB(X̄∗)) = σ 4τ 4

BN2

(
2 + κ(κx + 3)

N

)
,

where σ 2 = (1/N)
∑

i ZiY
2
i and κx = (1/N)

∑
i ZiY

4
i /σ 4 − 3. A delta method ap-

proximation gives

VarNBB(s2
NBB)

.= σ 4τ 4

BN2

(
2B

B − 1
+ κ(κx + 3)

N

)
.

When κ(κx + 3) � N , then ̂̃VarNBB(X̄∗) with B reweightings has approxi-
mately the variance of s2

NBB(X̄∗) with B + 1 reweightings.
We find here that there are only small differences between weighting schemes,

but double-or-nothing weights having the smallest possible kurtosis κ = −2 have
the best stability. The Poi(1) distribution has κ = 1 and the Exp(1) distribution has
κ = 6.

4. Factorial reweighting. Our proposal here is to apply a product of inde-
pendent random weights to the data. Observation i is given weight Wi ≥ 0. The
weights take the form

Wi =
r∏

j=1

Wj,ij ,(12)

where Wj,ij are independent random variables for j ∈ [r] and ij ≥ 1. We assume
that E(Wj,ij ) = 1 and Var(Wj,ij ) = τ 2

j < ∞. The usual choice has all τ 2
j equal to

a common τ 2 which in turn is usually equal to 1.
For the example in equation (3), the observation at index i = (38,44) gets

weight Wi = W1,38W2,44. It shares one weight factor with the observation at
i′ = (38,19) which has Wi′ = W1,38W2,19.

The reweighted mean X̄∗ is once again a ratio estimate with delta method ap-
proximation

ṼarPW(X̄∗) = 1

N2 EPW
(
(T ∗ − X̄N∗)2)

,(13)

where T ∗ = ∑
i ZiWiXi and N∗ = ∑

i ZiWi for Wi given by (12). The subscript
PW refers to random weights taking the product form.

The bootstrap variance depends on precise details of the overlaps among differ-
ent observations. We will derive some approximations to this variance below. For
the exact variance we need to introduce some additional quantities:

ρk = 1

N2

∑
i

∑
i′

ZiZi′1|Mii′ |=k,
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νk,u = 1

N

∑
i

∑
i′

ZiZi′1|Mii′ |=k1iu=i′u

and

ν̃k,u = 1

N2

∑
i

∑
i′

∑
i′′

ZiZi′Zi′′1|Mii′ |=k1iu=i′′′u

= 1

N2

∑
i

ZiNi,uNi,k

for k = 0,1, . . . , r and u ⊆ [r]. In words, ρk gives the fraction of data pairs that
match in exactly k positions, while νk,u/N gives the fraction of data pairs that
match in exactly k positions including all j ∈ u. The third quantity, ν̃k,u, is N times
the fraction of data triples (i, i′, i′′) in which i matches i′ in precisely k places while
also matching i′′ for all j ∈ u.

These new quantities satisfy the identities
r∑

k=0

ρk = 1 and
r∑

k=0

νk,u =
r∑

k=0

ν̃k,u = νu.

Also, it is clear that νk,u = 0 when |u| > k.

THEOREM 5. In the random effects model (1)

ERE(ṼarPW(X̄∗)) = 1

N

∑
u�=∅

γuσ
2
u ,(14)

where

γu =
r∑

k=0

(1 + τ 2)k(νk,u − 2ν̃k,u + ρkνu).(15)

The quantities γu are “gain coefficients” which multiply σ 2
u /N . Ideally they

should equal νu and then the bootstrap variance would match the desired one.
Where they differ from νu, the bootstrap variance is biased. Typically, the bias is
positive, making this bootstrap conservative. Sometimes the bias is very small.

The special case r = 1 is interesting because it corresponds to IID sampling.
Then the only variance component is σ 2{1}, which we abbreviate to σ 2 and equation
(14) simplifies to

τ 2σ 2

N

(
1 − 1

N

)
= τ 2σ 2

N − 1
.

In this instance there is a (trivial) negative bias if τ 2 = 1.
Independently reweighting rows and columns is similar to independently resam-

pling them. That strategy of bootstrapping rows and columns has been given sev-
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eral names in the literature. Brennan, Harris and Hanson (1987) called it “boot-p,i”
because for educational testing data, it resamples both people and items. McCul-
lagh [(2000), page 294] calls the method “Boot-II.” There is also another “Boot-II”
for the one way layout in that paper. Noting a similarity to Cornfield and Tukey’s
pigeonhole model for analysis of variance, Owen (2007) calls this approach the
“pigeonhole bootstrap.” Reweighting with a product of Rubin’s (1981) exponen-
tial weights is thus a “Bayesian pigeonhole bootstrap.”

5. Interpretable approximations. Theorem 5 gives exact finite sample for-
mulas for the gain coefficients γu, but they are unwieldy. Here we make some
approximations to γu in order to get more interpretable results.

First we introduce the quantity

ε = max
i

max
u�=∅

Ni,u

N
= max

i
max

1≤j≤r

Ni,{j}
N

,

which measures the largest proportional duplication of indices. Though 1 ≥
ε ≥ 1/N , we anticipate that ε will usually be small. For the Netflix data, ε =
232,944/100,480,507 .= 0.00232, stemming from one movie having 232,944 rat-
ings.

Although we suppose that ε is small below, it is worth pointing out that excep-
tions do arise, even for some very large data sets. For example, if the observed data
form a complete N1 ×N2 ×· · ·×Nr sample, then ε = max1≤j≤r 1/Nj . If one fac-
tor takes only a modest number of levels, then ε is large. A second context where
ε is large arises when one of the factors is greatly dominated by one of its levels,
as, for example, we might find in Internet data where one factor is the country of
the web user.

A second parameter to aid interpretability is

η = max
∅�u�v

νv

νu

.

By construction η ≤ 1, and we ordinarily expect η to be small. Of the indices which
match for j ∈ u, only a relatively small number should also match for j ∈ v − u

too, because each additional match in large data sets represents a coincidence. For
the Netflix data

η = max
{
ν{1,2}/ν{1}, ν{1,2}/ν{2}

} = 1/646 .= 0.00155.

While η is often small, there are exceptions. If two factors are very dependent,
then η need not be small. For example, people’s names and phone numbers may be
such variables: many or even most phone numbers are used by a small number of
people (often one) and many people use only a small number of phone numbers.
Then the fraction of data pairs matching on both of these variables will not be
much smaller than the fraction matching on one of them.

In simplifying expressions we use O(η) and O(ε). These describe limits as η

(resp., ε) converge to 0. The implied constants may depend on r . In some expres-
sions we have retained explicit constants.
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THEOREM 6. In the random effects model (1), the gain coefficient (15) for
u �= ∅ in the product reweighted bootstrap is

γu = νu

[
(1 + τ 2)|u| − 1 + θuε

] + ∑
v�u

(1 + τ 2)|v|(τ 2)|v−u|νv,(16)

where |θu| ≤ (1 + τ 2)((1 + τ 2)r − 1)/τ 2. For τ 2 = 1,

γu = νu

[
2|u| − 1 + θuε

] + ∑
v�u

2|v|νv,

where |θu| ≤ 2r+1 − 2.

For r = 2 using ν{1,2} = 1 and the usual choice τ 2 = 1, we find that

γ{j} = ν{j}
(
1 + θ{j}ε

) + 2, j = 1,2,

and

γ{1,2} = ν{1,2}
(
3 + θ{1,2}ε

)
,

where each |θ | ≤ 6. The Bayesian pigeonhole bootstrap variance closely matches
the ordinary pigeonhole bootstrap variance. In the extreme setting where σ 2{1} =
σ 2{2} = 0 < σ 2{1,2} the resulting bootstrap variance is about three times as high as it
should be. In a limit as minj ν{j} → ∞ and ε → 0,

ERE(ṼarPW(X̄∗))
Var(X̄)

→ 1(17)

holds for fixed σ 2{j} > 0, j = 1,2. For r = 3, with ν{1,2,3} = 1 and τ 2 = 1,

γ{1} ≈ ν{1} + 4ν{1,2} + 4ν{1,3} + 8,

γ{1,2} ≈ 3ν{1,2} + 8 and γ{1,2,3} ≈ 7,

where ≈ reflects an additive error of size νuθuε for |θu| ≤ 14. In the extreme case
where the only nonzero variance coefficient is σ 2[3], then the product reweighted
bootstrap variance is about 7 times as large as it should be. On the other hand,
when the main effect variances σ 2{j} are positive and νv/νu → 0 for v � u, then
(17) holds. More generally, we have Theorem 7.

THEOREM 7. For the random effects model (1) and the product reweighted
bootstrap with τ 2 = 1, the gain coefficient for nonempty u ⊆ [r] satisfies

2|u| − 1 − (2r+1 − 2)ε <
γu

νu

≤ 2|u|(1 + 2η)|v−u| − 1 + (2r+1 − 2)ε.

If there exist m and M with 0 < m ≤ σ 2
u ≤ M < ∞ for all u �= ∅, then

ERE(ṼarPW(X̄∗))
Var(X̄)

= 1 + O(η + ε).
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The first claim of Theorem 7 can be summarized as
γu

νu

= (
2|u| − 1

)(
1 + O(η)

) + O(ε) ≈ 2|u| − 1,

and the second as ERE(ṼarPW(X̄∗))/Var(X̄) ≈ 1, where the implied constants de-
pend on r . They generally grow exponentially in r but the interesting values of r

are small integers from 2 to 6 or so. The main effects dominate when η is small
and they are properly accounted for when ε is small.

6. The heteroscedastic model. In the r-fold crossed random effects model
(1), the term εi,u has the same variance for all i. This model may not be realistic.
For instance, the Netflix data includes some customers whose ratings have very
small variance and others with a very large variance. Similarly, but to a lesser
extent, movies also differ in the variance of their ratings. Unequal variances have
the potential to bias inferences, especially in unbalanced cases, because the entities
with more observations on them might have systematically higher variance than
the others do.

A more realistic model is the heteroscedastic r-fold crossed random effects
model, with

Xi = μ + ∑
u�=∅

εi,u,(18)

where μ ∈ R and εi,u are independent random variables with mean 0 and vari-
ance σ 2

i,u. There are more variance parameters than observations, we do not need
to estimate them. Owen (2007) gives conditions under which the pigeonhole boot-
strap with r = 2 produces a variance estimate with relative error tending to zero in
the heteroscedastic setting. Here we investigate product reweighting with general
r for model (18).

We need some new quantities. For u �= ∅, define

νi,u = 1

N

∑
i′

Zi′1iu=i′u = Ni,u

N
,

νi,k = 1

N

∑
i′

Zi′1|Mii′ |=k = Ni,k

N

and

νi,k,u = 1

N

∑
i′

Zi′1|Mii′ |=k1iu=i′u.

We also will use

νuσ 2
u = 1

N

∑
i

Ziνi,uσ
2
i,u
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and

νk = 1

N

∑
i

Ziνi,k.

Next, we parallel the development from the ordinary random effects model (1).
Theorem 8 gives the exact variance of X̄ for heteroscedastic random effects, Theo-
rem 9 gives the gain coefficients under product reweighting, Theorem 10 provides
interpretable bounds for the gains in terms of ε. Finally, Theorem 11 gives condi-
tions under which the product reweighted bootstrap has a negligible bias.

THEOREM 8. In the heteroscedastic random effect model (18)

Var(X̄) = 1

N

∑
u�=∅

∑
i

νi,uσ
2
i,u.(19)

THEOREM 9. In the heteroscedastic random effects model (18)

ERE(ṼarPW(X̄∗)) = 1

N

∑
u�=∅

∑
i

γi,uσ
2
i,u,(20)

where

γi,u =
r∑

k=0

(1 + τ 2)k(νi,k,u − 2νi,kνi,u + νkνi,u).(21)

THEOREM 10. In the heteroscedastic random effects model (18), the gain co-
efficient γi,u of (21) for Zi = 1 and u �= ∅ in the product reweighted bootstrap
is

γi,u = νi,u
[
(1 + τ 2)|u| − 1 + θuε

] + ∑
v�u

(1 + τ 2)|v|(τ 2)|v−u|νi,v,

where |θu| ≤ (1 + τ 2)((1 + τ 2)r − 1)/τ 2. For τ 2 = 1

γi,u = νi,u
[
2|u| − 1 + θuε

] + ∑
v�u

2|v|νi,v,

where |θu| ≤ 2r+1 − 2.

Theorem 10 establishes that our bootstrap is conservative in the heteroscedastic
case. With τ 2 = 1 we have

γi,u

νi,u
≥ 2|u| − 1 − (2r+1 − 2)ε.

For the homoscedastic random effects model, the main effects dominate when
η = max∅�u�v νv/νu is small and the variance components are all within the inter-
val [m,M] for 0 < m ≤ M > ∞. In the heteroscedastic case we might reasonably
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require every σ 2
i,u ∈ [m,M]. The analysis we used for Theorem 7 also requires the

quantities

ηi =
⎧⎨
⎩ max

∅�u�v

νi,v

νi,u
, Zi = 1,

0, Zi = 0,

to be small.
For r = 2 the only subsets u and v which appear in ηi are u = {j} and v = {1,2}.

Furthermore, νi,{1,2} = 1/N and so

max
i

ηi = max
j∈{1,2} max

i

Ni,{j}
N

= ε.

Then using the same argument we used to prove the second part of Theorem 7, we
get

ERE(ṼarPW(X̄∗))
Var(X̄)

= 1 + O(ε) for r = 2.

The case for r > 2 is more complicated. There may be observations i with large
values for νi,v/νi,u where ∅ � u � v. We still get a good approximation from
the product reweighted bootstrap because even though the individual ηi need not
always be small, sums of νi,v over i are small compared to corresponding sums of
νi,u for ∅ � u � v.

THEOREM 11. For the heteroscedastic random effects model (18), assume
that there exist m and M with 0 < m ≤ σ 2

i,u ≤ M < ∞. Then the product

reweighted bootstrap with τ 2 = 1 satisfies

ERE(ṼarPW(X̄∗))
Var(X̄)

= 1 + O(η + ε).

7. Nested random effects. The r-fold crossed random effects model (1) ex-
cludes replicated observations by definition: there can be only one Xi for any com-
bination i of factors. If two X’s are observed to share all index values ij , we can
incorporate them by introducing an r + 1st index ir+1 which breaks the ties. Con-
ditionally on the effects of the first r indices, distinct replicates are independent.
That is, σ 2

u = 0 when r + 1 ∈ u but u �= {1,2, . . . , r + 1}. The replicate index ir+1
is a factor that is nested within the first r factors.

More generally, we could have s additional indices corresponding to factors
crossed with each other, but nested within our r outer factors. Then the index
i ∈ {1,2, . . .}r+s uniquely identifies a data point. Ordinary replication has s = 1.
The nesting structure means that

σ 2
u = 0 if u ∩ {r + 1, . . . , r + s} �= ∅ and u ∩ [r] �= [r].(22)
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In words, the effect εi,u is 0 if the factors in u include any of the inner factors
without including all of the outer factors.

When one factor is nested within another, such as replicates within subjects, it
is a common practice to resample or reweight the outer factor only. For example,
the resampled data set might contain resampled subjects retaining the repeated
measurements from each of them.

In the nested setting, the variance of X̄ under an r + s factor version of the
random effects model (1) is still (1/N)

∑
u�=∅ νuσ

2
u , although many of the σ 2

u terms
are zero.

For i ∈ [r + s] let �i� = (i1, . . . , ir ) be the indices of its outer factors. We can
study these nested models by introducing the variables

T�i� = ∑
i′

Zi′1�i′�=�i�Xi′

and

M�i� = ∑
i′

Zi′1�i′�=�i�,

so that the sample mean

X̄ = 1

N

∑
i

ZiXi =
∑

�i� T�i�∑
�i� M�i�

is an r-factor ratio estimator.
When the numbers M�i� of replicates for each outer factor vary, we obtain a

heteroscedastic random effects model in the first r variables.

8. Example: Loquacity of Facebook comments. We present an analysis of
national differences in comment length on Facebook. In particular, Facebook users
can share links with their friends. Their friends, and the posting user, can comment
on the link. We compare the length of these comments produced by users in the
United States using the site in American English (US users) and those produced
by users in the United Kingdom using the site in British English (UK users). We
restrict the analysis to US and UK users commenting on links shared by US and
UK users. We additionally consider two different modes by which users can com-
ment: the standard web interface to Facebook (web) and an application for some
touchscreen mobile phones (mobile).

We treat the logarithm of the number of characters in a comment as the outcome
in the following random effects model:

Xcm,i = μcm + ∑
u�=∅

εcm,i,u,

where μcm is the mean log characters for country c in mode m. Here the members
of i are indexes for the user sharing the link (sharer), the user commenting on the
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link (commenter) and the canonicalized URL being shared (URL). By definition,
no comments have 0 characters, and so each X in our data set is well defined.

The data consist of Xcm,i for a sample of comments by US and UK who are us-
ing Facebook in American and British English, respectively, during a short period
in 2011. This sample includes 18,134,419 comments by 8,078,531 commenters on
2,085,639 URLs shared by 3,904,715 sharers. We examine whether these US and
UK users post comments of different lengths for both of the modes. The duplica-
tion coefficients for this data are

νsh
.= 17.71, νcom

.= 7.71, νurl
.= 26,854.92,

νsh,com
.= 5.92, νsh,url

.= 12.91, νcom,url
.= 5.19

and

νsh,com,url
.= 4.88.

The coefficient for URLs is conspicuously large, indicating that a naive bootstrap
would be very unreliable.

The sample mean for a country and mode is

μ̂cm =
∑

i Zcm,iXcm,i∑
i Zcm,i

.

We regard μ̂cm as an estimate of μcm conditional on the observed combinations of
sharers, commenters and URLs.

The four sample means for both countries and both modes suggest that the
US users write longer comments than UK users when commenting on the web
(μ̂US,web = 3.62, μ̂UK,web = 3.55), while UK users write longer comments than
US users when commenting via the selected mobile interface (μ̂US,mobile = 3.5,
μ̂UK,mobile = 3.57). Many differences between US and UK users likely contribute
to these observed differences. Before searching for causes of these two differences,
a data analyst would likely want to quantify the evidence for the existence and size
of these differences. We test whether these two pairs of means are likely to be ob-
served given the null hypothesis of no difference in comment length between the
countries within each mode.

Using software for Hive [Thusoo et al. (2009)], a Hadoop-based map-reduce
data warehousing and parallel computing environment, we can compute each of
these four means for a number of bootstrap reweightings of the data, while visiting
each observation only once. When visiting an observation, the hashed identifiers
for the factor levels for that observation are each used as seeds to random number
generators. This allows all nodes to use the same U{0,2} draw in computing the
product weight for all observations that share a particular factor level. Note that
users can be both sharers and commenters. Since users can comment on their own
shared links, some observations could have the same factor level identifier for both
the sharer and commenter levels. We use different portions of the hashed identifier



BOOTSTRAPPING DATA ARRAYS 913

FIG. 1. Difference between the logged number of characters in comments by US and UK users
for three different bootstrap reweightings with R = 50. Each data point in the plotted ECDF is the
difference in means from a single bootstrap reweighting. US users post longer comments than UK
users on the web, but this difference is reversed for the mobile interface studied.

so that the weights for these two roles are not dependent. For each reweighting, we
compute four reweighted sample means

μ̂∗
cm =

∑
i Zcm,iWcm,iXcm,i∑

i Zcm,iWcm,i
,

corresponding to c ∈ {US,UK} and m ∈ {web,mobile}.
For comparison, we conduct this analysis reweighting one, two and all three of

the factors. Figure 1 presents R = 50 bootstrapped differences in the two pairs of
means when reweighting commenters, commenters and sharers, and all three fac-
tors. Inspection of these ECDFs confirms that the observed differences cannot be
attributed to chance, even when accounting for the random main and interaction
effects of commenters, sharers and URLs. The bootstrapped differences in means
are strikingly more dispersed for the three-factor analysis. Figure 2 shows 95%
confidence intervals for the two differences computed as quantiles of the normal
distribution with variance computed from the bootstrap reweightings. This high-
lights the substantial overstatement of certainty that can come from neglecting the
presence of additional random effects. In this case, the three analyses would all
reject the null hypothesis, but would produce quite different confidence intervals.

For the approximations developed in Section 5 to apply, we require that ε and
η be small—that no single level of any random effect make up a large portion
of the observations and that the number of observations matching on v is small
compared to the number matching on u factors for all ∅ � u � v. We find that
ε = 686,990/18,134,419 .= 0.0379, as one URL had 686,990 comments in this
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FIG. 2. Confidence intervals for the difference between the logged number of characters in com-
ments by US and UK users for three different bootstrap reweightings with R = 50. Confidence inter-
vals span the 2.5% and 97.5% quantiles of the normal with variance computed from the bootstrap
reweightings. While all three analyses reject the null hypothesis, the one- and two-factor analyses
may substantially overstate confidence about the size of the true difference, especially in the case of
comments posted via the web interface.

sample. We also found that η
.= 0.767. Because η is not very small it is possible

that the variance estimates are conservative.

9. Discussion. We have worked conditionally on the observed values holding
Zi fixed. It is clear that missingness can be informative and thereby introduce a
bias into a sample mean.

The way to correct for missingness and even whether to do such a correction is
problem dependent. In the Netflix data, the company is seeking to predict ratings
that were not made and so the bias between observed and unobserved ratings is
of interest. The people who competed in the Netflix contest were trying to predict
ratings that were actually made and then artificially withheld, so the pairs to be
predicted were not subject to this bias. For the Facebook data, some of the observed
difference between the lengths of comments by US and UK users may be due to
differences in which URLs they comment on. An accounting of missingness might
involve inferring the likely length of comments that would have been made by US
and UK users if they had the same propensity to comment on particular URLs. An
analysis made conditionally on Zi describes the statistical stability of comment
lengths for the actual pattern of commenting, which may be of more interest.

To make an adjustment for missing data requires some kind of assumption about
the missingness mechanism. That assumption cannot be tested within a given data
set because the necessary confirmation values are not available. It is clear that
reweighting cannot correct a sampling bias because many different sample biases
may be consistent with an observed data set. In a given problem with our pre-
ferred adjustment for missingness built into the statistic of interest, we could then
consider how to bootstrap the resulting bias adjusted statistics. Alternatively, if
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the statistic is partially identified, then we could consider how to bootstrap the re-
sulting sample bounds on the statistic. It is not obvious which bootstrap method
would suit these tasks, but it seems clear that in the random effects context product
reweighting will succeed more generally than naive bootstrapping.

We have used the variance of a sample mean as a way to identify a suitable boot-
strap method. Plain sample means are practically important. For example, click
through rates, or feature usage rates, are means or ratios of means. Even for this
simple problem, naive bootstrapping methods are severely downward biased in the
random effects setting. Product weighting replaces this bias by a small upward bias
that is more acceptable in applications.

A bootstrap method that underestimates the variance of a mean cannot be ex-
pected to work well on other problems. One that is properly calibrated or con-
servative for the variance of a scalar sample mean will also work in some other
settings.

The extension to multivariate means is very straightforward. When Xi ∈ Rd for
d > 1 we may replace the variances σ 2

u or σ 2
i,u by variance–covariance matrices

�u or �i,u, respectively, in the variance formulas. This follows by considering the
variance of φTXi for vectors φ ∈ Rd .

Bootstrap correctness extends from means to other statistics. See Hall (1992)
and Mammen (1992). The extension to smooth functions g(X̄) of means is via
Taylor expansion, when g has a Jacobian matrix with full rank at E(X̄).

The bootstrap is usually used to get confidence intervals, not variance estimates.
For an asymptotically unbiased statistic that satisfies a central limit theorem,
a properly calibrated variance yields asymptotically correct bootstrap percentile
confidence intervals. An overestimated variance yields conservative percentile in-
tervals.

Another way to extend from means to other statistics is via estimating equa-
tions. If the parameter θ̂ is defined by

∑
i Zim(Xi; θ̂ ) = 0, then we may test the

hypothesis that θ = θ0 by testing whether m(Xi; θ0) has mean zero. In practice,
one would ordinarily form a histogram of resampled θ̂∗ values and construct a
confidence interval from them.

The heteroscedastic random effects model (18) has 2r − 1 variance parameters
for each observation. Such a model can arise in an r-fold generalization of factor
analysis. Suppose that Fiu is a nonrandom factor depending on indices in the set
u ⊂ {1,2, . . . , r} and that Liv is a mean zero random loading depending on indices
in the set v ⊂ {1,2, . . . , r} where u ∩ v = ∅. Let

Xi = μ + · · · + FiuLiv + · · · + εi,{1,...,r},

where the ellipses hide other factors of the type just described for different subsets
of the variables. The term shown contributes F 2

iu Var(Liv ) to the variance compo-
nent for subset v on observation i. Even if the loadings have constant variance,
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unequal factor values will make this variance component heteroscedastic. The fac-
tors and loadings could both have a product form so that they contribute∏

j∈u

Fj,ij × ∏
j∈v

Lj,ij

to Xi generalizing the SVD, but a product form is not necessary.
A generalized factor model would be extremely hard to estimate. However, the

total variance from all those different variance contributions is handled by product
reweighting, with a small upward bias in the bootstrap variance of a mean. A sim-
ilar phenomenon is well known in the context of the wild bootstrap [Mammen
(1993)] for the linear model. There a different distribution is posited for each of
n observations in a regression and the bootstrap process provides reliable infer-
ences for the regression coefficients without having to accurately estimate all n

distributions.

APPENDIX: PROOFS

This Appendix contains theorem proofs and a few lemmas. The theorems are
restated to make it easier to follow the steps. Equation numbers that appear in the
theorem statements from the article are preserved in this Appendix.

Proof of Theorem 1.

THEOREM 1. In the random effects model (1)

Var(X̄) = 1

N

∑
u�=∅

νuσ
2
u .

PROOF. The numerator of X̄ in (4) is
∑

i ZiXi = Nμ+∑
i
∑

u�=∅ Ziεiu . There-
fore, the variance of X̄ under the random effects model is

Var(X̄) = 1

N2 E

(∑
i

∑
i′

ZiZi′
∑
u�=∅

∑
u′ �=∅

εi,uεi′,u′
)

= 1

N2

∑
u�=∅

σ 2
u

∑
i

∑
i′

ZiZi′1iu=i′u

= 1

N2

∑
u�=∅

σ 2
u

∑
i

ZiNi,u

= 1

N

∑
u�=∅

νuσ
2
u .

�
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Proofs of Theorems 2, 3 and 4. Here we prove the theorems about naive
bootstrap sampling. Theorem 2 is about naive resampling and Theorem 3 handles
naive reweighting. Theorem 4 is about bootstrap stability.

THEOREM 2. Under the random effects model (1), the expected value of the
naive bootstrap variance of X̄ is

ERE(VarNB(X̄)) = 1

N

∑
u�=∅

σ 2
u

(
1 − νu

N

)
.(7)

PROOF. A U -statistic decomposition of the sample variance is

VarNB(X̄) = 1

2N3

∑
i

∑
i′

ZiZi′(Xi − Xi′)
2

= 1

2N3

∑
i

∑
i′

ZiZi′
( ∑

u�=∅

εi,u − εi′,u

)2

.

Under the random effects model

ERE(VarNB(X̄)) = 1

2N3

∑
i

∑
i′

ZiZi′
∑
u�=∅

2σ 2
u (1 − 1iu=i′u)

= 1

N

∑
u�=∅

σ 2
u

(
1 − νu

N

)
.

�

To prove Theorem 3, we begin with a lemma on the covariance of pairs of
observations under the random effects model.

LEMMA 1. Let Xi follow the random effects model (1) and let Yi = Xi − X̄.
Then

ERE(XiXi′) = μ2 + ∑
u�=∅

σ 2
u 1iu=i′u(23)

and

ERE(YiYi′) = ∑
u�=∅

σ 2
u

(
1iu=i′u − Ni,u

N
− Ni′,u

N
+ νu

N

)
.(24)

PROOF. Equation (23) follows directly from the random effects model defini-
tion. Expanding YiYi′ yields

XiXi′ − 1

N

∑
i′′

Zi′′XiXi′′ − 1

N

∑
i′′

Zi′′Xi′Xi′′ + 1

N2

∑
i′′

∑
i′′′

Zi′′Zi′′′Xi′′Xi′′′ .
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Because μ cancels from Yi we may assume that μ = 0 while proving (24). Now

ERE

(
1

N

∑
i′

Zi′XiXi′
)

= 1

N

∑
u�=∅

σ 2
u

∑
i′

Zi′1iu=i′u = 1

N

∑
u�=∅

σ 2
uNi,u.

Therefore,

ERE(YiYi′) = ∑
u�=∅

σ 2
u

(
1iu=i′u − Ni,u

N
− Ni′,u

N
+ 1

N2

∑
i′′

Zi′′Ni′′,u

)
,

which reduces to (24). �

THEOREM 3. In the random effects model (1)

ERE(ṼarNBB(X̄∗)) = τ 2

N

∑
u�=∅

σ 2
u

(
1 − νu

N

)
.(8)

PROOF. Let Yi = Xi − X̄ and T ∗
y = ∑

i WiZiYi. Then

ERE(ṼarNBB(X̄∗)) = 1

N2 ERE
(
ENBB

(
(T ∗ − X̄N∗)2))

= 1

N2 ERE

(∑
i

∑
i′

ZiZi′YiYi′ENBB(WiWi′)
)

= 1

N2

∑
i

∑
i′

ZiZi′ERE(YiYi′)ENBB(WiWi′).

Next, ENBB(WiWi′) = 1 + τ 21i=i′ . Therefore,

ERE(ṼarNBB(X̄∗)) = 1

N2

∑
i

∑
i′

ZiZi′ERE(YiYi′) + τ 2

N2

∑
i

ZiERE(Y 2
i ).(25)

The double sum in (25) vanishes because
∑

i ZiYi = 0. Then from Lemma 1, the
coefficient of σ 2

u in (25) is

τ 2

N2

∑
i

Zi

(
1 − 2Ni,u

N
+ νu

N

)
= τ 2

N2 (N − 2νu + νu),

establishing (8). �

THEOREM 4. Let W and Wi,b be IID random variables with mean 1 variance
τ 2 and kurtosis κw < ∞. Then holding Yi = Xi − X̄ fixed,

VarNBB(̂̃VarNBB(X̄∗)) = σ 4τ 4

BN2

(
2 + κ(κx + 3)

N

)
,
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where σ 2 = (1/N)
∑

i ZiY
2
i and κx = (1/N)

∑
i ZiY

4
i /σ 4 − 3. A delta method ap-

proximation gives

VarNBB(s2
NBB)

.= σ 4τ 4

BN2

(
2B

B − 1
+ κ(κx + 3)

N

)
.

PROOF. First, the variance of ̂̃VarNBB(X̄∗) scales as 1/B so we can work
with B = 1 and divide the result by B . For B = 1, we drop the subscript b

from W ’s. We will use the identity
∑

i ZiWiYi = ∑
i Zi(Wi − 1)Yi. If B = 1, then

VarNBB(̂̃VarNBB(X̄∗)) equals

ENBB

((∑
i

ZiWiYi

)4)
−

(
σ 2τ 2

N

)2

= 1

N4

∑
i

ZiE
(
(Wi − 1)4)

Y 4
i + 3

N4

∑
i

∑
i′

ZiZi′E
(
(Wi − 1)2)2

Y 2
i Y 2

i′

− 3

N4

∑
i

ZiE
(
(Wi − 1)2)2

Y 4
i −

(
σ 2τ 2

N

)2

= τ 4σ 4(κ + 3)(κx + 3)

N3 + 3τ 4σ 4

N2 − 3τ 4σ 4(κx + 3)

N3 − σ 4τ 4

N2

= τ 4σ 4

N2

(
2 + κ(κx + 3)

N

)
.

For the second part

VarNBB(s2
NBB) = ENBB(s2

NBB)2
(

2

B − 1
+ κ∗

B

)
,

where κ∗ is the kurtosis of X̄∗ = ∑
i ZiWiYi/

∑
i ZiWi. The delta method approxi-

mation to ENBB(s2
NBB) is τ 2σ 2/N . For the kurtosis, we make the Taylor approxi-

mation

X̄∗ .= X̄ + ∑
i

Zi(Wi − 1)Yi.

The expected value of X̄∗ − X̄ reuses much of the above computation and yields

ENBB
(
(X̄∗ − X̄)4) .= τ 4σ 4

N2

(
3 + κ(κx + 3)

N

)
.

Therefore, κ∗ = κ(κx + 3)/N and so

VarNBB(s2
NBB) = τ 4σ 4

BN2

(
2B

B − 1
+ κ(κx + 3)

N

)
. �



920 A. B. OWEN AND D. ECKLES

Proofs of Theorems 5, 6 and 7. Theorem 5 gives an exact expression for the
gain coefficients of the Bayesian pigeonhole bootstrap in the constant variance
crossed random effects model. Theorem 6 gives an interpretable approximation to
those gain coefficients. Theorem 7 shows factorial reweighting gives nearly the
correct variance when ε and η are both small.

THEOREM 5. In the random effects model (1)

ERE(ṼarPW(X̄∗)) = 1

N

∑
u�=∅

γuσ
2
u ,(14)

where

γu =
r∑

k=0

(1 + τ 2)k(νk,u − 2ν̃k,u + ρkνu).(15)

PROOF. We begin along the same lines as Theorem 3 and find that

ERE(ṼarPW(X̄∗)) = 1

N2

∑
i

∑
i′

ZiZi′ERE(YiYi′)EPW(WiWi′).

For the product weights used in this bootstrap,

EPW(WiWi′) = ∏
j : ij=i′j

(1 + τ 2) = (1 + τ 2)|Mii′ |

with EPW(WiWi′) = 1 if i and i′ are not equal in any components.
From Lemma 1, the coefficient of σ 2

u in ERE(ṼarPW(X̄∗)) is

1

N2

∑
i

∑
i′

ZiZi′
(

1iu=i′u − Ni,u

N
− Ni′,u

N
+ νu

N

)
(1 + τ 2)|Mii′ |

= 1

N2

∑
i

∑
i′

ZiZi′
(

1iu=i′u − 2Ni,u

N
+ νu

N

)
(1 + τ 2)|Mii′ |

= 1

N2

r∑
k=0

(1 + τ 2)k
∑

i

∑
i′

1|Mii′ |=kZiZi′
(

1iu=i′u − 2Ni,u

N
+ νu

N

)

= 1

N

r∑
k=0

(1 + τ 2)k(νk,u − 2ν̃k,u + ρkνu). �

Next we establish an interpretable approximation to the Bayesian pigeonhole
bootstrap variance, using the quantity ε = maxi maxj Ni,{j}/N which is small un-
less the data are extremely imbalanced.
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THEOREM 6. In the random effects model (1), the gain coefficient (15) for
u �= ∅ in the product reweighted bootstrap is

γu = νu

[
(1 + τ 2)|u| − 1 + θuε

] + ∑
v�u

(1 + τ 2)|v|(τ 2)|v−u|νv,(16)

where |θu| ≤ (1 + τ 2)((1 + τ 2)r − 1)/τ 2. For τ 2 = 1,

γu = νu

[
2|u| − 1 + θuε

] + ∑
v�u

2|v|νv,

where |θu| ≤ 2r+1 − 2.

PROOF. The second claim follows immediately from the first which we now
prove. We will approximate γu = ∑r

k=0(1 + τ 2)k(νk,u − 2ν̃k,u + ρkνu). First,

r∑
k=0

(1 + τ 2)kνk,u = 1

N

r∑
k=0

(1 + τ 2)k
∑

i

∑
i′

ZiZi′1|Mii′ |=k1iu=i′u

= 1

N

∑
w⊇u

(1 + τ 2)|w| ∑
i

∑
i′

ZiZi′1Mii′=w

= 1

N

∑
w⊇u

(1 + τ 2)|w| ∑
i

∑
i′

ZiZi′
∑
v⊇w

(−1)|v−w|1iw=i′w

= ∑
w⊇u

(1 + τ 2)|w| ∑
v⊇w

(−1)|v−w|νv.

Writing w ∈ [u, v] for u ⊆ w ⊆ v,∑
w⊇u

(1 + τ 2)|w| ∑
v⊆w

(−1)|v−w|νv

= ∑
v⊇u

νv

∑
w∈[u,v]

(1 + τ 2)|w|(−1)|v−w|

= ∑
v⊇u

νv

|v−u|∑
�=0

( |v − u|
�

)
(−1)�(1 + τ 2)|v|−�

= ∑
v⊇u

νv(1 + τ 2)|v|(τ 2)|v−u|.

For the other parts of γu, we use quantities θ that satisfy bounds 0 ≤ θ ≤ 1.
There are several such quantities, distinguished by subscripts, and defined at their
first appearance. First, we have the bounds

Ni,0

N
= 1 − rθi,0ε and

Ni,k

N
= θi,kε, 1 ≤ k ≤ r.(26)
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Next, for u �= ∅,

ν̃0,u = 1

N2

∑
i

ZiNi,uNi,0 = 1

N

∑
i

ZiNi,u(1 − rθi,0ε) = νu(1 − rθ0,uε)

and for k = 1, . . . , r ,

ν̃k,u = 1

N2

∑
i

ZiNi,uNi,k = 1

N

∑
i

ZiNi,uθi,kε = νuθk,uε.

Turning to ρk ,

ρ0 = 1

N2

∑
i

ZiNi,0 = 1

N

∑
i

Zi(1 − εrθi,0) = 1 − εrθ0

and

ρk = 1

N2

∑
i

ZiNi,k = 1

N

∑
i

Ziθi,kε = θkε, k = 1, . . . , r.

Now −2ν̃0,u + ρ0νu = −νu + νu(2θ0,u − θ0)rε and

r∑
k=1

(1 + τ 2)k(−2ν̃k,u + ρkνu) = νu

r∑
k=1

(1 + τ 2)k(θk − 2θk,u)ε.

Therefore,

γu = νu

(
(1 + τ 2)|u| − 1 + θuε

) + ∑
v�u

νv(1 + τ 2)(τ 2)|v−u|,

where

θu =
r∑

k=1

(1 + τ 2)k(θk − 2θk,u).

The proof follows because −1 ≤ θk − 2θk,u ≤ 1 and
∑r

k=1(1 + τ 2)k = (1 +
τ 2)((1 + τ 2)r − 1)/τ 2. �

THEOREM 7. For the random effects model (1) and the product reweighted
bootstrap with τ 2 = 1, the gain coefficient for nonempty u ⊆ [r] satisfies

2|u| − 1 − (2r+1 − 2)ε <
γu

νu

≤ 2|u|(1 + 2η)|v−u| − 1 + (2r+1 − 2)ε.

If there exist m and M with 0 < m ≤ σ 2
u ≤ M < ∞ for all u �= ∅, then

ERE(ṼarPW(X̄∗))
Var(X̄)

= 1 + O(η + ε).
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PROOF. From Theorem 6
γu

νu

≤ −1 + ∑
v⊇u

2|v|η|v−u| + (2r+1 − 2)ε

= 2|u|(1 + 2η)|v−u| − 1 + (2r+1 − 2)ε,

and then using νv > 0,
γu

νu

> 2|u| − 1 − (2r+1 − 2)ε.

For the second claim, small η means that the variance is dominated by contri-
butions σ 2{j} for which γ{j} ≈ ν{j}. Now∑

|u|=1

γuσ
2
u = ∑

|u|=1

νuσ
2
u [1 + O(η + ε)],

where the constant in O(·) can depend on r , and∑
|u|>1

γuσ
2
u = ∑

|u|>1

νuσ
2
u

[
2|u| + O(η + ε)

] = O(η)
∑

|u|=1

νuσ
2
u .

Similarly,
∑

|u|>1 γuσ
2
u = O(η)

∑
|u|=1 νuσ

2
u . Therefore,

ERE(ṼarPW(X̄∗))
Var(X̄)

= (1 + O(η + ε))
∑

|u|=1 νuσ
2
u

(1 + O(η))
∑

|u|=1 νuσ 2
u

= 1 + O(η + ε). �

Proofs of Theorems 8 through 11. Here we prove the theorems for the het-
eroscedastic case. We begin with a lemma.

LEMMA 2. Let Xi follow the heteroscedastic random effects model (18) and
let Yi = Xi − X̄. Then

ERE(XiXi′) = μ2 + ∑
u�=∅

σ 2
i,u1iu=i′u(27)

and

ERE(YiYi′) = ∑
u�=∅

(1iu=i′uσ
2
i,u − νi,uσ

2
i,u − νi′,uσ

2
i′,u + νuσ 2

u ).(28)

PROOF. Equation (27) follows directly just as the analogous expression did in
Lemma 1. Once again, expanding YiYi′ yields

XiXi′ − 1

N

∑
i′′

Zi′′XiXi′′ − 1

N

∑
i′′

Zi′′Xi′Xi′′ + 1

N2

∑
i′′

∑
i′′′

Zi′′Zi′′′Xi′′Xi′′′

and we may assume that μ = 0 while proving (28). Now

ERE

(
1

N

∑
i′

Zi′XiXi′
)

= 1

N

∑
u�=∅

∑
i′

Zi′1iu=i′uσ
2
i,u = ∑

u�=∅

∑
i

σ 2
i,uνi,u
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and

ERE

(
1

N2

∑
i′′

∑
i′′′

Zi′′Zi′′′Xi′′Xi′′′
)

= 1

N2

∑
u�=∅

∑
i′′

∑
i′′′

Zi′′Zi′′′1i′′u=i′′′u
σ 2

i′′,u

= 1

N

∑
u�=∅

∑
i′′

Zi′′σ
2
i′′,uνi′′,u

= ∑
u�=∅

νuσ 2
u ,

which together establish (28). �

THEOREM 8. In the heteroscedastic random effect model (18)

Var(X̄) = 1

N

∑
u�=∅

∑
i

νi,uσ
2
i,u.(29)

PROOF. The proof is very similar to that of Theorem 1. �

THEOREM 9. In the heteroscedastic random effects model (18)

ERE(ṼarPW(X̄∗)) = 1

N

∑
u�=∅

∑
i

γi,uσ
2
i,u,(20)

where

γi,u =
r∑

k=0

(1 + τ 2)k(νi,k,u − 2νi,kνi,u + νkνi,u).(21)

PROOF. We begin along the same lines as Theorem 3 and find that

ERE(ṼarPW(X̄∗)) = 1

N2

∑
i

∑
i′

ZiZi′ERE(YiYi′)EPW(WiWi′).

As in Theorem 5, EPW(WiWi′) = (1 + τ 2)|Mii′ |.
From Lemma 2,

ERE(ṼarPW(X̄∗))

= 1

N2

∑
u�=∅

∑
i

∑
i′

ZiZi′(1 + τ 2)|Mii′ |(30)

× (1iu=i′uσ
2
i,u − νi,uσ

2
i,u − νi′,uσ

2
i′,u + νuσ 2

u ).

The contribution from the last term in the parentheses of (30) is

1

N

∑
u�=∅

νuσ 2
u

r∑
k=0

(1 + τ 2)k
∑

i

Ziνi,k = ∑
u�=∅

νuσ 2
u

r∑
k=0

(1 + τ 2)kνk.
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Therefore, the coefficient of σ 2
i,u, in ERE(ṼarPW(X̄∗)) (when Zi = 1) is

1

N2

∑
i′

Zi′
r∑

k=0

1|Mii′ |=k(1 + τ 2)k(1iu=i′u − 2νi,u) + νi,u

N

r∑
k=0

(1 + τ 2)rνk

= 1

N

r∑
k=0

(1 + τ 2)k(νi,k,u − 2νi,kνi,u + νkνi,u). �

THEOREM 10. In the heteroscedastic random effects model (18), the gain co-
efficient γi,u of (21) for Zi = 1 and u �= ∅ in the product reweighted bootstrap
is

γi,u = νi,u
[
(1 + τ 2)|u| − 1 + θuε

] + ∑
v�u

(1 + τ 2)|v|(τ 2)|v−u|νi,v,

where |θu| ≤ (1 + τ 2)((1 + τ 2)r − 1)/τ 2. For τ 2 = 1

γi,u = νi,u
[
2|u| − 1 + θuε

] + ∑
v�u

2|v|νi,v,

where |θu| ≤ 2r+1 − 2.

PROOF. From Theorem 9, γi,u = ∑r
k=0(1 + τ 2)k(νi,k,u − 2νi,kνi,u + νkνi,u).

The proof is similar to that of Theorem 6, so we summarize the steps. First,
r∑

k=0

(1 + τ 2)kνi,k,u = ∑
v⊇u

νi,v(1 + τ 2)|v|(τ 2)|v−u|.

Next, νi,0 = 1− rθi,0ε and ν0 = 1− rθ0, while for k ≥ 1, νi,k = θi,kε and νk = θkε.
Here, all of the θ ’s are in the interval [0,1]. The result follows as in Theorem 6.

�

THEOREM 11. For the heteroscedastic random effects model (18), assume
that there exist m and M with 0 < m ≤ σ 2

i,u ≤ M < ∞. Then the product

reweighted bootstrap with τ 2 = 1 satisfies

ERE(ṼarPW(X̄∗))
Var(X̄)

= 1 + O(η + ε).

PROOF. First we show that main effects dominate. For |u| > 1,∑
i

γi,uσ
2
i,u ≤ M

∑
i

νi,u
(
2|u| − 1 + 2r+1ε

) + ∑
v�u

2|v|νi,v

= M

(
νu

(
2|u| − 1 + 2r+1ε

) + ∑
v�u

2|v|νv

)

= (
2|u| − 1

)
Mνu

(
1 + O(ε + η)

)
= O(η) max

1≤j≤r
ν{j}
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and, similarly,
∑

i νi,uσ
2
i,u = O(η)max1≤j≤r ν{j}. For u = {j},∑
i

γi,{j}σ 2
i,{j} ≥ m

∑
i

νi,{j}(1 − 2r+1ε)

= mν{j}
(
1 + O(ε)

)
.

Therefore,

ERE(ṼarPW(X̄∗))
Var(X̄)

=
∑

i
∑r

j=1 γi,{j}σ 2
i,{j}∑

i
∑r

j=1 νi,{j}σ 2
i,{j}

(
1 + O(η + ε)

)
.

Next we show that the main effects are properly estimated

∑
i

r∑
j=1

∣∣γi,{j} − νi,{j}
∣∣σ 2

i,{j} ≤ M
∑

i

r∑
j=1

∣∣γi,{j} − νi,{j}
∣∣

≤ M
∑

i

r∑
j=1

νi,{j}(2r+1ε + 3rη)

=
r∑

j=1

ν{j}O(η + ε),

while
∑

i
∑r

j=1 νi,{j}σ 2
i,{j} ≥ m

∑r
j=1 ν{j}. �
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