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This paper examines historical patterns of ROA (return on assets) for a
cohort of 53,038 publicly traded firms across 93 countries, measured over
the past 45 years. Our goal is to screen for firms whose ROA trajectories
suggest that they have systematically outperformed their peer groups over
time. Such a project faces at least three statistical difficulties: adjustment for
relevant covariates, massive multiplicity, and longitudinal dependence. We
conclude that, once these difficulties are taken into account, demonstrably
superior performance appears to be quite rare. We compare our findings with
other recent management studies on the same subject, and with the popular
literature on corporate success.

Our methodological contribution is to propose a new class of priors for
use in large-scale simultaneous testing. These priors are based on the hyper-
geometric inverted-beta family, and have two main attractive features: heavy
tails and computational tractability. The family is a four-parameter general-
ization of the normal/inverted-beta prior, and is the natural conjugate prior
for shrinkage coefficients in a hierarchical normal model. Our results em-
phasize the usefulness of these heavy-tailed priors in large multiple-testing
problems, as they have a mild rate of tail decay in the marginal likelihood
m(y)—a property long recognized to be important in testing.

1. Introduction.

1.1. Large-scale screening of historical ROA data. Understanding the reasons
why some firms thrive and others fail is one of the primary goals of research in
strategic management. Studies that examine successful companies to uncover the
putative secrets of successful companies are very popular, both in the academic
and popular literature.

Before the search for special causes can begin, however, success must be quan-
tified and benchmarked. This is what our paper tries to do. In keeping with prior
studies [McGahan and Porter (1999), Wiggins and Ruefli (2005), Henderson,
Raynor and Ahmed (2009)], we use a common metric called ROA, or return on
assets, to measure a company’s success. This quantity gives investors some notion
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of how effectively a firm uses its available funds to produce income. It is funda-
mentally different from a market-based measure like stock returns, which may fail
to reflect underlying fundamentals over long periods of time (e.g., during bubbles),
and which exhibit wild fluctuations that make the identification of trends problem-
atic. Figure 1 shows three examples of firm-level ROA trajectories over time; these
have been standardized using a procedure which we will soon describe.

FIG. 1. Left: the actual performance of three firms (dots), superimposed on the benchmark dis-
tribution estimated from the Bayesian regression-tree model (black line and grey area, showing the
posterior mean and 95% predictive interval of expected performance by all firms in the correspond-
ing peer group). Right: these same firms placed on a common (normal CDF) scale of benchmarked
performance, with the integers 0–9 representing the decile.
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In this paper we apply Bayesian methods to historical ROA data, with the goal
of comparing publicly traded companies against their peers. To be sure, ROA is an
imperfect measure of corporate success, and our study will have the same short-
comings in this regard as any other that uses ROA as an outcome variable. One
important practical reason for our use of ROA, aside from a desire to use the same
metric as other researchers studying similar questions, is the sheer availability of
data on companies from across the world (rather than just in the United States).
This enables us to screen as large a database as possible: 645,456 records from
53,038 companies in 93 different countries, spanning 1966–2008. In principle,
however, our Bayesian statistical methodology could be applied to any outcome
variable in any subpopulation of the corporate universe.

We conclude that evidence of sustained superior performance is quite rare. To
reach this conclusion, we use Bayesian models to compute the posterior probabil-
ity that a firm falls into each of two classes: a null class, wherein deviations from
the peer-group average are attributable to chance; and an alternative class, wherein
these deviations, both positive and negative, are systematic. These posterior proba-
bilities depend upon the particular assumptions made about the longitudinal persis-
tence of “lucky” performances, in a manner soon to be explained. But even under
the generous (and unrealistic) assumption of longitudinal independence, we find
that there are at most 1076 firms over the last 45 years for which there is moder-
ately strong evidence of sustained superior performance over 5 years or more. We
argue that this is a conservative upper bound on the number of such firms, and that
the actual number is much smaller—our best estimate is 262, or 0.5% of all firms,
once longitudinal dependence is taken into account.

1.2. Statistical issues in identifying sustained superior performance. Any at-
tempt to benchmark performance, and to identify sustained superior performers,
must deal with at least three statistical challenges.

First, one must adjust observed performance for relevant covariates. One im-
portant covariate is a firm’s country of operation. Another one is a firm’s industry;
as Henderson, Raynor and Ahmed (2009) observe, some industries exhibit struc-
tures that are intrinsically more favorable to monopolies, which would seem to be
a source of advantage unrelated to managerial talent or firm-level characteristics.
Other potentially important characteristics that have been explored in the literature
include a firm’s size and capital structure.

Our method adjusts for the effect of all of these covariates, both on the con-
ditional mean and conditional variance of performance. Importantly, there is no
reason to assume that ROA depends upon them linearly. This is quite differ-
ent from the situation in finance, for example, where the capital-asset pricing
model (CAPM) and its variants predict a linear dependence between firm-level
and market-level measures of performance. No such theory exists that would pre-
dict a parallel result for ROA. This means that nonlinear relationships must, at
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least in principle, be allowed. We do this using Bayesian treed-regression models,
as described in Section 4.

Second, even “lucky” performance trajectories may exhibit significant longitu-
dinal dependencies that lead to spurious declarations of impressiveness. Following
Denrell (2005), imagine a very simple state-space model, wherein

yt = axt + et ,

xt = bxt−1 + ut ,

where yt is an observed performance metric, and xt is some underlying AR(1)
firm-level characteristic (e.g., resources). Even if there is no systematic compo-
nent of variation in xt , the observed yt ’s can still exhibit pronounced longitudinal
autocorrelation, which can look very much like a sustained run of excellence. For-
mally correcting for such autocorrelation would require specific parametric models
incorporating a wide variety of firm-level effects. Instead of taking this route, we
try to correct for longitudinal dependence in a crude-but-simple fashion by esti-
mating an effective sample size for each firm, and adjusting our Bayesian model
accordingly.

Finally, there is the issue of massive multiplicity. Given the large number of
hypothesis tests being conducted, and the frequentist leanings of the management-
theory community, maintaining control over false positives is crucial. Yet having
access to the posterior distribution of effect sizes can greatly inform follow-up case
studies of individual firms, and is only possible under a fully Bayesian model. This
applied context makes a combined Bayes/frequentist approach especially appeal-
ing.

Our paper’s methodological innovation is to introduce a new class of heavy-
tailed priors for the multiple-testing problem. We first give a brief overview of this
problem from a Bayesian perspective (Section 2), deferring much of the details
to Appendices. We then describe some simulation studies in Section 3, which are
designed to benchmark our proposed method against reasonable alternatives. In
these studies, our methods show excellent performance in terms of limiting false
positives, lending credence to the results for the actual data. Finally, we analyze
the corporate ROA data in Section 4, where we also describe in further detail how
we approach the other statistical issues we have raised.

2. Large-scale simultaneous testing.

2.1. Methodological overview. In large-scale simultaneous testing, the goal
is to uncover lower-dimensional signals from high-dimensional data. For example,
researchers who use microarrays have long been interested in the problem of multi-
plicity adjustment, where “adjustment” can be understood in the sense of adjusting
one’s tolerance for surprise as the set of potentially surprising events grows large.
The same issue arises in all modern high-throughput experiments; other examples
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include functional magnetic-resonance imaging, environmental sensor networks,
combinatorial chemistry, and proteomics. Too many type-I errors will mean too
many expensive wild-goose chases. Hence, the case for a testing procedure that
displays good frequentist properties is very compelling.

But so too is the case for a model-based Bayesian procedure. These experiments
may involve thousands of separate tests, and such a large volume of data often
allows the distributional properties of “signals” and “noise” to be characterized
quite precisely.

This paper considers a new version of the two-groups multiple-testing model,
where we observe data yi for i = (1, . . . , p) according to a hierarchical model:

(yi | βi, σ
2) ∼ N(βi, σ

2),

(βi | w,θ) ∼ w · g(βi | θ) + (1 − w) · δ0,

w ∼ p(w),

a mixture of a Dirac measure at zero, and an alternative model g that is absolutely
continuous with respect to the Lebesgue measure. (The alternative model g has
hyperparameter θ , presumably also given a prior.) The most attractive feature of
this model is that it automatically adjusts for multiplicity, without the need for ad-
hoc regularization. This is because inference for the βi ’s will involve the posterior
for common mixing fraction, p(w | y). If one tests many noise observations in the
presence of a few signals, then our estimate of w will be small, making it more
difficult for all the observations to overcome the prior belief in their irrelevance.
This exerts a powerful form of control over false positives.

To handle the multiple-testing problem, we introduce a family of distributions
g based on normal variance mixtures, where the mixing distribution is a hyperge-
ometric inverted-beta (HIB) prior:

(βi | λ2
i , γi = 1) ∼ N(0, σ 2λ2

i ),

λ2
i ∼ HIB(a, b, τ, s),

where the indicator γi = 1 if βi is nonzero, and zero otherwise. We approach these
priors from a hybrid Bayesian/frequentist perspective, using them to compute not
only posterior distributions, but also false-discovery rates, or FDR [Benjamini and
Hochberg (1995)]. We also study the behavior of the posterior mean, which is
competitive with existing gold-standard methods [e.g., Johnstone and Silverman
(2004)] under squared-error loss.

In both our data analysis and simulation studies, we focus on three key features
of our approach:

(1) The hypergeometric inverted-beta scale mixtures form an especially flex-
ible class of symmetric, unimodal densities and can accommodate a wide range
of tail behavior and behavior near the centering parameter. This class simultane-
ously generalizes the robust priors of Strawderman (1971) and Berger (1980), the
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normal-exponential-gamma prior of Griffin and Brown (2005), and the horseshoe
prior of Carvalho, Polson and Scott (2010). The ability of our class to model heavy-
tailed distributions with minimal computational fuss is of particular relevance in
testing problems [see, e.g., Section 5.2 of Jeffreys (1961)].

(2) Our class of priors allows very easy computation of a wide array of impor-
tant Bayesian and frequentist quantities. This includes posterior means, variances,
and higher-order moments; posterior null probabilities for individual observations;
the score function; false-discovery rates; and local false-discovery rates [Efron
(2008)]. The ease with which these quantities can be computed all relates to the
analytical tractability of the marginal likelihood function m(y), whose importance
we describe in Section 2.2. Appendix A provides all the details.

(3) Our approach yields testing error rates that are competitive with existing
cutting-edge methods. At the same time, it also retains the advantages of a fully
Bayesian procedure, in that in principle one has access to the joint posterior distri-
bution of all parameters.

Many of the technical details characterizing the behavior of the basic mixture
model can be found in Scott and Berger (2006) and Bogdan, Chakrabarti and
Ghosh (2008). These authors assume that the nonzero means follow a normal dis-
tribution, an assumption we generalize in this paper. Do, Müller and Tang (2005)
also provide an interesting variation wherein the nonzero means are modeled non-
parametrically using Dirichlet processes.

The same issues arise in empirical-Bayes analysis. See, for example, Johnstone
and Silverman (2004), Abramovich et al. (2006) and Dahl and Newton (2007). Ad-
ditionally, Müller, Parmigiani and Rice (2007), Bogdan, Ghosh and Tokdar (2008)
and Park and Ghosh (2010). All describe the relationship between Bayesian mul-
tiple testing and classical approaches that control the false-discovery rate.

2.2. The importance of the marginal likelihood function. Many common
Bayesian and frequentist treatments of the multiple-testing problem can be un-
derstood through the marginal likelihood functions

m0(y | σ 2) = N(y | 0, σ 2),

m1(y | θ) =
∫

R

N(yi | βi, σ
2)g(βi | θ)dβi,

m(y | θ, σ 2) = w · m1(y) + (1 − w) · m0(y).

First, following Efron (2008), the local FDR and the posterior probability of yi

being noise are given by the same expression:

f dr(y) = P(βi = 0 | y,σ 2, θ) = (1 − w) · m0(y)

m(y)
.
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Furthermore, if we let F0(y) = ∫ y
−∞ m0(u)du, F1(y) = ∫ y

−∞ m1(u)du, and
F(y) = w · F1(y) + (1 − w) · F0(y), then the FDR is the tail area

FDR(y) = (1 − w) · F0(y)

F (y)
.

Second, the marginal likelihood function also arises in Masreliez’s classic rep-
resentation of the posterior mean. This gives an explicit expression for the Bayes
estimator for βi under squared-error loss (assuming that γi = 1):

E(βi | y, γi = 1) = yi + d

dyi

lnm1(yi),

versions of which appear in Masreliez (1975), Polson (1991), Pericchi and Smith
(1992) and Carvalho, Polson and Scott (2010). The choice of alternative model
g(βi | θ) is crucial, insofar as it helps to determine m1(y).

At the same time, the prior should have desirable statistical properties, with flat
tails being a particularly important feature. The use of heavy-tailed priors for con-
structing robust shrinkage estimators has a long history, with prominent examples
to be found in Strawderman (1971) and Berger (1980). Jeffreys, meanwhile, ob-
served as early as 1939 that heavy-tailed priors play an important role in Bayesian
hypothesis testing [see Jeffreys (1961), a later edition]. His arguments have been
recapitulated in the context of linear models by Zellner and Siow (1980) and, more
recently, Liang et al. (2008).

The difficulty is that, while heavy-tailed priors lead to a desirably mild rate of
tail decay in the marginal likelihood m(y), there are few such priors that are also
analytically tractable. Any prior that possesses both properties, as our proposed
family does under certain hyperparameter choices, is therefore of great potential
interest to Bayesians and non-Bayesians alike.

We describe the hypergeometric-beta family of priors more fully in a lengthy
technical Appendix. But first we present simulation studies that demonstrate the
usefulness of our approach for limiting false positives, before turning to an analysis
of the data set at hand.

3. Simulation studies. As our methodological Appendix shows, hypergeo-
metric inverted-beta scale mixtures of normals are an especially useful class of
priors for building discrete mixture models for βi , due to the existence of simple
expressions for moments and marginals under the hypothesis that βi is nonzero:

(βi | κi) ∼ w · N(0, κ−1 − 1) + (1 − w) · δ0,(3.1)

κi ∼ HB(a, b, τ, s),(3.2)

where δ0 indicates a degenerate distribution at 0. The posterior mean under this
model is a natural estimator for β = (β1, . . . , βp), since it averages over uncer-
tainty about whether each component is zero or nonzero.
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We conducted two simulation studies comparing the mean-squared error perfor-
mance of our estimators with the procedure from Johnstone and Silverman (2004),
where βi is estimated by the posterior median under a mixture of a point mass
zero and a double-exponential (Laplace) prior. We also keep track of the number
of false positives generated by each procedure.

Each of the two studies involved estimating signals from a different signal class.
In all cases the dimension of the location vector was p = 1,000.

Experiment 1: Fixed coefficients. Table 1 summarizes an experiment involving
12 configurations of different sparsity patterns (5, 50, and 100 nonzero means) and
different scales (all nonzero means equal to 3, 4, 5, or 7).

TABLE 1
Experiment 1, fixed coefficients. SSE: sum of squared errors in the estimate of the β sequence.

FP: false positive declarations in the estimate of β sequence. FDR: realized false-discovery rate.
Laplace: posterior median estimator from the empirical Bayes procedure of Johnstone and

Silverman (2004). The numbers in parentheses indicate, in order, the choices
of a and b the HIB model

Number nonzero out of 1,000 means

5 50 100

Value: 3 4 5 7 3 4 5 7 3 4 5 7

SSE Laplace 35.1 32.8 17.9 8.5 210.5 150.8 99.7 71.9 331.1 248.3 177.5 142.9
(1,2) 35.4 31.9 17.9 10.3 205.4 157.7 116.7 90.6 334.6 268.2 213.2 180.4
(1,1) 35.0 31.3 18.5 11.1 200.5 161.9 124.7 95.3 329.1 280.8 229.3 188.5

(1,0.5) 34.7 31.0 19.6 12.2 199.6 170.7 135.3 100.6 335.2 302.2 248.1 196.3
(0.5,2) 37.9 36.8 18.3 7.3 242.6 167.3 104.0 70.8 395.3 272.8 182.8 145.7
(0.5,1) 37.6 36.3 18.1 7.6 234.9 164.1 105.0 72.6 379.5 268.8 186.4 148.9

(0.5,0.5) 37.4 35.7 17.9 7.9 227.5 161.1 106.2 74.2 363.6 266.2 190.9 151.9

FP Laplace 0.8 1.0 0.8 0.4 16.1 11.3 7.6 4.2 53.3 28.7 17 8.9
(1,2) 0.2 0.3 0.6 0.5 4.0 6.9 6.6 5.5 12.2 18.2 17.2 13.2
(1,1) 0.2 0.4 0.7 0.5 6.4 10.2 9.4 6.9 23.7 34.0 29.2 18.7

(1,0.5) 0.3 0.6 0.8 0.7 13.5 21.1 16.9 9.8 153.5 199.8 90.0 33.4
(0.5,2) 0.1 0.1 0.1 0.2 1.1 2.5 2.2 2.2 2.9 5.5 5.4 5.1
(0.5,1) 0.1 0.1 0.2 0.2 1.4 3.0 2.7 2.5 3.7 7.1 6.7 5.9

(0.5,0.5) 0.1 0.1 0.2 0.2 1.7 3.7 3.1 2.8 5.5 9.5 8.6 6.8

FDR Laplace 0.2 0.2 0.1 0.1 0.3 0.2 0.1 0.1 0.4 0.2 0.1 0.1
(1,2) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1
(1,1) 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.3 0.2 0.2
(1, .5) 0.2 0.1 0.1 0.1 0.3 0.3 0.2 0.2 0.6 0.6 0.5 0.2
(0.5,2) 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.0
(0.5,1) 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1

(0.5,0.5) 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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TABLE 2
Experiment 2, random coefficients. The HIB prior set a = 1/2, b = 1

Number nonzero

50 100 200 500

Scale c: 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

SSE HIB 8.3 16.0 55.4 28.8 53.2 125 90.2 235 336 181 391 604
Laplace 8.6 16.1 60.4 29.5 57.3 136 93.1 250 370 180 394 646

FP HIB 0.0 0.0 0.2 0.0 0.2 0.5 0.1 0.8 3.3 0.1 0.9 10.8
Laplace 0.4 3.7 1.1 2.3 1.6 3.2 23.5 34 19.1 138 134 71.5

Experiment 2: Random t3-distributed coefficients. Table 2 summarizes an ex-
periment in which the nonzero means were randomly drawn from a heavy-tailed t

distribution with 5 degrees of freedom and scale parameter c. We investigated 12
configurations of different sparsity patterns (20, 50, 200, and 500 nonzero means)
and different scales (c = 0.5,1,2).

Tables 1 and 2 show the average sum of squared errors in estimating β over
100 independent data sets. Also shown are the average number of false positives
declared by the two procedures in each case, and the average false-discovery rate.
For the Johnstone/Silverman procedure, a false positive occurs when the posterior
median of βi is nonzero, but the actual value is zero. For the Bayesian procedure
using the hypergeometric inverted-beta prior, a false positive occurs when the pos-
terior inclusion probability for βi is greater than 50% and βi is actually zero. This
threshold reflects a 0–1 loss function that penalizes false positives and false neg-
atives equally, regardless of size. A full decision-theoretic analysis incorporating
more realistic loss functions would yield a different, data-adaptive threshold, but
would only complicate the analysis slightly.

For the hypergeometric inverted-beta prior, we set s = 0, while w and τ were
estimated by importance sampling. For priors, we assumed that τ ∼ C+(0, σ ), and
that w ∼ Unif(0,1).

In experiment 1, we used a range of values for a and b. The best overall choice
seemed to be a = 1/2, b = 1, and so we focused solely on this choice in exper-
iment 2. Indeed, although certain alternative choices produced improvements in
specific situations, we found a = 1/2, b = 1 to be a good all-purpose option be-
cause of its blend of good performance in estimation and testing.

Overall, when squared error in estimation is used to decide between procedures,
our preferred Bayes procedure with a = 1/2, b = 1 wins slightly on experiment 2,
while the empirical-Bayes thresholding procedure wins slightly on experiment 1.
We attribute these differences to the relative tail weight of the two priors. The
double-exponential prior has tails that are heavier than the Gaussian likelihood,
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but not as heavy as those of the hypergeometric inverted-beta priors we studied.
This difference in tail weight becomes much more significant in the experiment
with random coefficients, since draws from a t3 density produce some very large
signals—much larger than signals of size 7 in the “fixed coefficients” study. In
experiment 2, however, the heavier-tailed priors are wasting some of their mass
in areas of the parameter space far from the origin. Since these areas are predes-
tined to be unimportant by the particular choices of fixed signals, it is no surprise
that a lighter-tailed prior such as the double-exponential will yield superior re-
sults. Similarly, when the coefficients are slightly larger, as in the t3 signals from
experiment 2, the heavier-tailed prior will outperform.

But when the measuring stick is the false-positive rate, the fully Bayes proce-
dure with smaller values of a and b wins. It produces far fewer false positives
across the board, along with lower false-discovery rates (suggesting that it is not
merely more conservative across the board in declaring an observation to be a
signal). It therefore seems like the more robust choice. For situations when esti-
mation is the goal, its performance is roughly comparable to the existing John-
stone/Silverman procedure. Yet for situations when testing is the goal, the Bayes
procedure appears more trustworthy.

4. Testing for superior historical performance.

4.1. Data preprocessing. Before applying our multiple-testing method, we
preprocessed the data as follows. Let yit be the raw data point for company i

in year t . We first standardized the data to have zero mean and unit variance across
all countries and years. Using Bayesian treed-regression software [Gramacy and
Lee (2008)], we then estimated a conditional mean mit and a conditional standard
deviation sit , representing the expected distribution of performance for other firms
in company i’s peer group in year t . As covariates, we used a company’s industry,
size, leverage, country of operation, and market share. For an extensive discussion
of how this issue relates to the disambiguation of so-called “Schumpeterian” rents
from “monopolistic” rents, see Henderson, Raynor and Ahmed (2009).

The regression-tree approach allows us to account for the highly nonlinear, con-
ditionally heteroskedastic relationships present in the data. An instructive compar-
ison can be found in Figure 1, which shows three firms: JPMorgan Chase, IBM,
and Gap Instrument Corporation. It is clear that the three firms have noticeably
different peer-group means, and drastically different peer-group standard devia-
tions. The left-hand plots show the actual performance, along with the “benchmark
distribution”—that is, the mean and standard deviation of that year’s expected per-
formance, given firm-level covariates. The right-hand plots show the performance
with respect to the benchmark distribution, all on a common normal-CDF scale.
Supplemental files available upon request from the authors show the results of an
extensive exploratory analysis of ROA versus important covariates, and substanti-
ates our claim that nonlinear, conditionally heteroskedastic regression is essential
here.
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We then computed a z-score zit = (yit − mit )/sit for each company-year data
point. We emphasize that the term mit accounts only for the effects of covariates,
and does not include a random effect specific to the firm in question. Therefore,
if firm i systematically performs μi standard deviations above (or below) its peer-
group mean, and each year’s performance is conditionally independent given μi ,
then

(zit | μi) ∼ N(μi,1) for i = 1, . . . , ni .

If μi = 0, then the sample mean of the zit ’s for firm i is normally distributed with
mean 0 and variance 1/ni , where ni is the number of observations we have for that
firm (ranging from 5 to 43). This is our preliminary null hypothesis. Stated in an
equivalent form,

zi = z̄i

√
ni ∼ N(0,1).

These z-scores are the raw inputs to our multiple-testing approach. Based on
the simulation results above, we are reporting results for a = 1/2, b = 1, which
seemed to provide the best overall results in terms of testing.

4.2. Summary of results. We ran the proposed multiple-testing method on the
cohort of firms for which at least 5 years of past data were available. This initial
sieve left us with a cohort of 37,014 firms, each with somewhere between 5 and 43
annual observations.

Of the tested cohort, 1,076 firms (or about 3%) had posterior probabilities of
outperformance larger than 90%, indicating moderate to high confidence that they
have systematically outperformed their peer groups. For this cohort, the expected
group-wise false discovery rate (FDR) is 2%; this can be computed by simply
averaging the posterior probabilities that each firm in the cohort comes from the
null model. An additional 705 firms had posterior probabilities of outperformance
between 50% and 90%. For this intermediate group, the expected FDR is 28%.

The top 10 overall firms ranked by posterior probability are described in Ta-
ble 3, along with the reason that firm dropped out of the database (if applicable).
Of these 10 firms, 8 seemed to outperform their peer group, while 2 seemed to un-
derperform. The first non-American firm on the list is British–American Tobacco,
incorporated in (of all places) Malaysia, which ranks 11th by estimated posterior
inclusion probability.

The historical trajectories for these 10 firms can be seen in Figure 2. Two are
large drug companies; the rest come from a variety of different industries. All but
four—Wyeth, Merck, Tambrands, and WD-40—are likely unknown to the average
consumer.

These results are best thought of as a reasonable upper bound to the actual
number of sustained superior performers. This is true for at least two reasons.
First, although we used all data for 53,038 firms to fit the regression tree models
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TABLE 3
Ten firms with the highest posterior probabilities of having a nonzero mean

Company Description Books

Alfacell Corporation A biotech firm specializing in RNA-based technologies. —
Wyeth Large drug company; recently bought out by Pfizer. —
American List Corp Bulk mailing firm. Bought out in 1997. —
Deluxe Corp Financial and logistical services for small businesses. —
Tambrands Personal hygiene products. Bought out in 1997. —
Toth Aluminum Developed aluminum technology. Defunct. —
UST A tobacco holding company. Bought out in 2009. —
WD-40 Manufactures the anticorrosive and lubricating agent. —
Landauer Specializes in services relating to radiation safety. —
Merck Large drug company. BTL, ISE

and compute mit and sit , we did not conduct hypothesis tests for the 16,024 firms
with less than 5 years of data. It is difficult to know what “long-term superiority”
even means for this vast group of firms with so short a history. Moreover, their
presence in the testing stage of the analysis would likely bias the estimate of w (the
prior inclusion probability) downward, because the Bayes factor so strongly favors
the null hypothesis for such a short trajectory. (This results from the well-known
Bayesian “Occam’s razor” effect that arises when comparing models of different
dimensionality.) This introduces a possible survivorship bias into our procedure.
But given the assumption of exchangeability in our model, we believe that the
effects of survivorship bias are less severe than the likely effects of watering down
the cohort with so many firms for which the null hypothesis is so likely a priori.

Second, and more importantly, our analysis assumes that a company’s ROA
result in year t is independent of results from previous years, given the peer group
mean and standard deviation. This is unlikely to be exactly true, and therefore
introduces an upward bias in our estimate of the number of superior performers
(due to the fact that autocorrelation reduces the effective sample size available for
testing H0).

One way of accounting for this bias is to introduce specific parametric assump-
tions about the nature of a “true null” trajectory. Indeed, this is an active and
promising area of research in both this and in parallel fields (e.g., time-course
microarray data). Our focus on this paper, however, is on large-scale screening
with relatively few assumptions. We therefore eschew explicit parametric longitu-
dinal models and adopt the following alternative strategy in an attempt to get a fast,
crude assessment of how the independence assumption may affect our results:

(1) For each firm in the testing cohort, we estimate a one-lag autocorrelation
coefficient, φ̂i . For the handful of firms for which this estimate is negative, we
threshold at zero, since we do not wish to introduce negative correlation into the
sampling distribution for the data.
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FIG. 2. The performance trajectories for the ten firms with the highest posterior probabilities of
having a nonzero mean.
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(2) We compute an effective sample size for each trajectory as

n̂i = ni ·
(

1 − φ̂i

1 + φ̂i

)

using the well-known correction for autocorrelation. While this is motivated by
simple AR(1)-type null models, one may interpret the multiplicative term involv-
ing φ̂ purely as a deflator, corresponding to the reduction in information in each
longitudinal sample compared to the i.i.d. case.

(3) We recompute the z-score as ẑi = z̄i

√
n̂i .

We then repeat the testing procedure using the ẑi ’s as data, which has the effect of
inflating the variance under the null hypothesis. This correction led to 262 firms
with a posterior probability greater than 90% (expected FDR for the group: 2%),
and an additional 222 with a posterior probability between 50% and 90% (expected
FDR for the group: 26%). The top 10 firms remained unchanged, except for Toth
Aluminum and Alfacell.

Our results appear to be qualitatively similar to those of Henderson, Raynor and
Ahmed (2009), who use essentially the same data. But we will point to two im-
portant methodological differences that likely account for any major divergence in
testing outcomes. First, we use model-averaged estimates from Bayesian treed re-
gression to estimate a conditional mean and standard deviation for every company
in every year. In contrast, Henderson, Raynor and Ahmed (2009) use linear quan-
tile regression, which is a fundamentally different—and arguably less flexible—
way of accounting for conditional heteroskedasticity (which appears to be the
dominant effect of covariates). Second, we adjust each company’s longitudinal
results individually to account for firm-level heterogeneity with respect to autocor-
relation. In contrast, Henderson, Raynor and Ahmed (2009) account for longitudi-
nal dependence by assuming that the same semi-parametric Markov model holds
across the entire population of “lucky” firms.

4.3. Comparison with the popular literature on corporate success. As a small
aside, it is interesting to compare these results to the conclusions of a handful
of well-known books that purport to explain corporate success. We took a small,
nonscientific sample of these books, in an attempt to gauge whether the results
from the multiple-testing model correspond to widely held notions about success-
ful firms. Table 4 briefly describes these books, and indicates whether the basis for
selecting the study cohort was qualitative or quantitative in nature. The books were
chosen in conjunction with a group of senior management consultants at Deloitte
Consulting, who judged the list to be fairly representative of the popular literature.

These books follow a common recipe: start with a group of companies; identify
the “successful” ones; look for patterns in their behavior; and abstract those behav-
iors into a small set of principles that can tell others how to run their businesses



SCREENING FOR FIRMS WITH SUPERIOR PERFORMANCE 175

TABLE 4
The popular books selected for comparison

Title Published Selection method Basis

Good to Great 2001 Companies from 1965–1981 selected on
the basis of shareholder return

Quantitative

Built to Last 1994 Companies founded before 1950 that met
certain success criteria

Qualitative

In Search of Excellence 1982 Surveys of executives at author-selected
firms

Qualitative

Competitive Strategy 1980 Author selected examples to support the-
ory; method unclear

Qualitative

Hidden Values 2000 Author selected examples to support the-
ory; method unclear

Qualitative

Blueprint to a Billion 2006 Time to achieve $1 billion in revenue after
initial public offering

Quantitative

What Really Works 2003 Correspondence with prespecified “top
management practices”

Qualitative

Stall Points 2008 Patterns of stalls and recovery in revenue
growth

Quantitative

Blue Ocean Strategy 2005 Author selected examples to support the-
ory; method unclear

Qualitative

better. One important difference between these books and the approach consid-
ered here is the choice of outcome variable. In some books the outcome variable
is multidimensional, and therefore richer than our choice of ROA. Thus, while
comparisons are instructive, they do not support the conclusion that our study is
objectively right and the others wrong. Moreover, as a referee observed, the authors
of these books may have different things in mind when they define success.

Yet, collectively, these studies exhibit many unacknowledged sources of bias,
which our study attempts to address. None, for example, make a serious attempt
to verify statistically that the selected companies have done anything special when
compared with a suitable reference population. This opens up the possibility that
they have been studying companies that were lucky, rather than great—the pre-
cise null hypothesis considered in this paper. There are also serious issues with
selection bias—both in terms of metric selection and of company selection—and
of survivorship bias (although our study is also imperfect in this regard).

Perhaps for these reasons, serious discrepancies emerged between the popular
literature and the conclusions of the multiple-testing procedure considered here.
Across the nine books considered, there were 209 distinct firms that were used as
case studies—some positive, some negative—and that also appeared in our cohort
of firms with 5 or more years of data. Of the top ten firms flagged in the previous
section, only one was mentioned in any of the 9 books: Merck, a case study in Built
to Last (BTL) and In Search of Excellence (ISE). Of the 209 firms collectively
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mentioned in these books, only 9 appear on our list of firms with ROA trajectories
significantly better than those of their peer groups, once longitudinal dependence
is accounted for.

5. Final remarks. We have developed a Bayesian multiple-testing procedure
based upon a heavy-tailed prior for the nonzero means. These priors form an inter-
esting, novel class of normal variance mixtures, the hypergeometric inverted-beta
class. Overall, the procedure has the nice theoretical property of a redescending
score function under the alternative model, and seems to perform as well as, or
better than, existing gold-standard methods. Moreover, it allows relevant Bayesian
and frequentist summaries to be computed with minimal computational fuss. This
property arises from the simple, known form of the marginal distribution m(y).

We have applied the method to a large data set on historical corporate perfor-
mance, and compared the results of our analysis to some popular books that deal
with the same subject. These books appear to be studying a sample where the
large majority of firms have ROA performance profiles that are statistically indis-
tinguishable from luck. Meanwhile, there on the order of hundreds of firms (out
of a group of over 37,000) whose performance is at least suggestive of a sustained
advantage, and yet were not considered in these high-profile case studies.

APPENDIX A: THE PROPOSED FAMILY OF PRIORS

A.1. Connection with classical shrinkage rules. Our new class of priors has
its genesis in the large body of work on classical shrinkage rules, where a multivari-
ate normal prior β ∼ N(0, λ2I ) is assumed, where β = (β1, . . . , βp). Many com-
mon estimators for this problem, both Bayesian and non-Bayesian, are of the form
β̂(y) = {1 − g(Z)}y for Z = ‖y‖2 [e.g., James and Stein (1961), Strawderman
(1971), Stein (1981), Fourdrinier, Strawderman and Wells (1998)]. The central is-
sue is how to identify “nice” functions g(Z), and how to understand priors for
global variance components in terms of the behavior of the estimators they yield.

The constraint to rationality—that is, the requirement that there exists a prior
p(κ) such that, for all Z, g(Z) = E(κ | Z) under the posterior p(κ | Z)—rules out
a wide class of potential estimators. The function g(Z) cannot, for example, be
a polynomial of order two or greater. Indeed, the functional form of a g(Z) that
respects admissibility will typically be quite complicated.

It is natural to look in the class of estimators where g(Z) = p(Z)/q(Z), a ra-
tio of power-series expansions. One can construct such a g(Z) by assuming that
(β | λ2) ∼ N(0, λ2I ), and then defining β̂(λ2) = E(β | λ2,y). After removing the
dependence upon λ2 by marginalizing, this leads to

β̂ = Eλ2|y{β̂(λ2)} = {1 − E(κ | Z)}y,

recalling that κ = 1/(1 + λ2). We can therefore identify g(Z) with E(κ | Z), the
posterior expectation of κ , given Z.
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One can define a class of priors for κ indexed by (a, b, τ, s), which we call the
hypergeometric inverted-beta class, such that

g(Z) = E(κ | Z)
(A.1)

= a + p/2

a + b + p/2

�1(b,1;a + b + p/2 + 1; s + Z/2,1 − 1/τ 2)

�1(b,1;a + b + p/2; s + Z/2,1 − 1/τ 2)
,

where a, b, and τ are positive real numbers; s is any real number; and �1 is
the degenerate hypergeometric function of two variables [Gradshteyn and Ryzhik
(1965), Equations 9.261.1–9.261.3].

This g is a ratio of power series, and can be computed quite rapidly for a given
tuple (a, b, τ, s) and a given Z. It leads to a large class of admissible estimators
with a wide range of possible behavior. In particular, it includes many estimators
that exhibit robustness to large values of Z; many estimators that offer significant
risk reduction near Z = 0; and many that do both. This class generalizes the form
noted by Maruyama (1999), which contains the positive-part James–Stein estima-
tor as a limiting (improper) case.

A.2. Hypergeometric inverted-beta priors. The connection with multiple
testing is as follows. Recall that under the alternative model, βi is conditionally
normal with variance λ2

i . Our approach is to work with the transformed variable
κi = 1/(1 + λ2

i ), and to define the following prior for κi . Suppressing subscripts
for the moment,

p(κ) = C−1κa−1(1 − κ)b−1
{

1

τ 2 +
(

1 − 1

τ 2

)
κ

}−1

exp(−sκ),(A.2)

where a, b, τ > 0 and s ∈ R, and where C1 is a constant of proportionality. We
denote the hypergeometric-beta prior on the κ scale by κ ∼ HB(a, b, τ, s).

The normalizing constant

C =
∫ 1

0
κa−1(1 − κ)b−1

{
1

τ 2 +
(

1 − 1

τ 2

)
κ

}−1

exp(−sκ)dκ(A.3)

can be computed using hypergeometric series. Using the theory laid out in Gordy
(1998) and Polson and Scott (2011), we get

C = e−s Be(a, b)�1(b,1, a + b, s,1 − 1/τ 2),(A.4)

where �1 is the degenerate hypergeometric function of two variables [Gradshteyn
and Ryzhik (1965), 9.261]. This function can be calculated accurately and rapidly
by transforming it into a convergent series of 2F1 functions [Section 9.2 of
Gradshteyn and Ryzhik (1965), Gordy (1998)], making evaluation of (A.4) quite
fast for most allowable choices of the parameters.
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The implied density for λ2
i takes the form

p(λ2) = C−1(λ2)b−1(λ2 + 1)−(a+b) exp
{
− s

1 + λ2

}{
τ 2 + 1 − τ 2

1 + λ2

}−1

.(A.5)

This is a generalization of the inverted-beta distribution, also known as Pearson’s
type VI distribution. Indeed, it reduces to an inverted beta in the special case where
s = 0, τ = 1, in which case aλ2/b will follow an F(2b,2a) density.

The hypergeometric inverted-beta family contains many well-known subfami-
lies of priors for κ . These include the beta distribution, the generalized beta dis-
tribution [McDonald and Xu (1995)], and the Gauss hypergeometric distribution
[Armero and Bayarri (1994)]. The family is itself contained in the class of com-
pound confluent hypergeometric distributions [Gordy (1998)], which has two ex-
tra parameters that are not relevant in this context. These various related families
are why we call (A.5) the hypergeometric inverted-beta prior. The transformed
density on the κ scale resembles a beta distribution, and we call this family the
hypergeometric-beta (HB) prior.

The family in (A.2) has one major advantage over other similar priors: there
exist easily computable expressions for the posterior mean E(βi | yi) and the
marginal density m1(yi) = ∫

N(yi | βi, σ
2)p(βi)dβi under the hypothesis that

βi �= 0. We derive these expressions in Appendix B.

A.3. Shrinkage profiles. We now turn to the specification of the four hy-
perparameters, and to the different “local shrinkage profiles” that are accessible
through different choices of these parameters.

All normal scale-mixtures have an implied shrinkage profile p(κi), which de-
scribes the amount of shrinkage toward the origin that is expected a priori. The
prior’s behavior near κi = 0 controls the tail weight of the marginal prior for βi ,
while the behavior near κi = 1 controls the strength of shrinkage near zero.

Figure 3 plots the implied shrinkage profiles for two common priors: the double-
exponential and Cauchy priors. Contrast these shrinkage profiles with the wide

FIG. 3. Implied shrinkage profiles for double-exponential and Cauchy priors.
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FIG. 4. Effect of changing the four parameters (a, b, s, τ ) on the density for the shrinkage coeffi-
cient κ .

range of shapes that are accessible through the hypergeometric inverted-beta den-
sity, some of which are shown in Figure 4.

One important special case of the hypergeometric inverted-beta family is the
Strawderman prior [Strawderman (1971)], which corresponds to a = 1/2, b = 1,
s = 0, and τ = 1. Another special case is the half-Cauchy prior on the scale fac-
tor λ, studied by Gelman (2006) and Carvalho, Polson and Scott (2010). This cor-
responds to a = b = 1/2, s = 0, and τ = 1. Yet a third special case is the uniform-
shrinkage prior, where a = b = 1, s = 0, and τ = 1. All of these can be seen in the
upper-left pane of Figure 4.

Clearly, (A.2) can lead to many standard-looking shapes that are similar to other
normal scale mixtures. Yet it can also produce a wide variety of other densities that
are inaccessible through other standard families. We now describe the role of each
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hyperparameter, recalling that more probability near κ = 1 means more aggressive
shrinkage.

First, τ is a global scaling factor, with larger values leading to larger marginal
variance in β . To see this, suppose that all components of β have a common vari-
ance component in addition to their idiosyncratic ones: (yi | βi) ∼ N(βi, σ

2) and
βi ∼ N(0, σ 2τ 2λ2

i ). The form involving τ in (A.2) arises from the special case of
assuming a half-Cauchy prior for each λi , as in the horseshoe prior of Carvalho,
Polson and Scott (2010). The generalization of the scaled half-Cauchy prior to ar-
bitrary a, b, and s then arises quite naturally on the κ scale. Shifting τ up and down
causes the shrinkage profile to be shifted left and right, respectively, controlling the
overall aggressiveness of shrinkage.

The parameters a and b are analogous to those of beta distribution, to which
(A.2) reduces when τ = 1 and s = 0. Smaller values of a encourage heavier tails
in π(β), with a = 1/2, for example, yielding Cauchy-like tails. Smaller values of
b encourage p(β) to have more mass near the origin, and eventually to become
unbounded; b = 1/2 yields, for example, p(β) ≈ log(1 + 1/β2) near 0.

Finally, s is a second global scaling factor, though with a different effect than τ

on the shape of the density. This parameter has an interpretation as a “prior sum of
squares,” with the caveat that it can also be negative.

The scale parameters τ and s do not control the behavior of π(λ) at 0 and ∞.
Specifically, π(λ) behaves like λ2b−1

i near the origin, and like λ
−(2a+1)
i in the

upper tail. Since π(β) has the same polynomial rate of decay as π(λ), a can be
chosen to reflect the desired tail weight of π(β).

A.4. The score function and overshrinkage of exceptional observations.
We recall the following theorem from Carvalho, Polson and Scott (2010).

THEOREM A.1. Let p(|y − β|) be the likelihood, and suppose that p(β) is
a mean-zero scale mixture of normals: (β | λ) ∼ N(0, λ2), with λ having proper
prior p(λ). Assume further that the likelihood and p(β) are such that the marginal
density m(y) < ∞ for all y. Define the following three pseudo-densities, which
may be improper:

m(y) =
∫

R

p(|y − β|)p(β)dβ,

p(β) =
∫

R+
p(β | λ)p(λ)dλ,

p(λ) = λ2p(λ).

Then

E(β | y) = m(y)

m(y)

d

dy
logm(y)

(A.6)

= 1

m(y)

d

dy
m(y).
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Versions of this representation theorem appear in Masreliez (1975), Polson
(1991) and Pericchi and Smith (1992). Theorem A.1 relaxes a specific regular-
ity condition having to do with the boundedness of p(β), and extends the usual
result to situations where p(β) is a scale mixture of normals with proper mixing
density and finite marginal m(y).

The theorem characterizes the behavior of an estimator in the presence of large
signals. Specifically, it says that we can achieve “inherent Bayesian robustness”
by choosing a prior for β such that the derivative of the log predictive density is
bounded as a function of y. Ideally, of course, this bound should converge to 0
for large |y|, and will lead to E(θ | y) ≈ y for large |y|. This will avoid the over-
shrinkage of exceptional observations—clearly an important goal in large-scale
simultaneous testing problems.

It is easy to verify, using the results of the previous subsection, that normal
scale mixtures with hypergeometric inverted-beta mixing distributions satisfy the
property of tail robustness. This helps to explain their good performance in high-
dimensional settings.

A.5. The effect of shared shrinkage parameters. The hypergeometric
inverted-beta prior allows a combination of global and local shrinkage that can be
both flexible and robust. Figure 5 shows how a very small value of τ , encouraging
strong global shrinkage, can be reinforced by a small observation (y = 1.0), and
yet be almost completely overruled by a large observation (y = 4.0). Meanwhile,
the marked bimodality for an intermediate observation such as y = 2.5 reflects un-
certainty about whether such an observation corresponds to signal or noise, with
the posterior mean for β averaging over both possibilities.

This example demonstrates that global shrinkage through τ can be very effective
at squelching noise in high-dimensional problems. It is crucial, however, that τ be
estimated from the data, and that the prior for κi grow sufficiently fast near 0 in
order to allow κi to escape the strong “gravitational pull” of a small τ when yi

is large (as in this example when yi/σ = 4). We recommend setting a = 1/2 in

FIG. 5. The left pane shows the prior for κ when τ = 1/15, s = 0, and a = b = 1/2, reflecting
a prior bias for strong shrinkage. The next three panes show the different posteriors for κ upon
observing a single data point: y = 1.0, y = 2.5, or y = 4.0, respectively.
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FIG. 6. The left pane shows the prior for κ when τ = 1, a = b = 1/2, and s = −4. The next three
panes show the different posteriors for κ upon observing a single data point: y = 1.0, y = 2.5, or
y = 4.0, respectively.

sparse problems involving a normal likelihood; see Carvalho, Polson and Scott
(2010) for further discussion. In situations with heavier-tailed sampling models, it
may be appropriate to choose a smaller value of a.

When 1 − 1/τ 2 is very close to 1 (or when 1 − τ 2 is very close to 1 for τ < 1),
the �1 functions may become slow to evaluate due to the slow convergence of the
series representations given in the Appendix. In our experience, the issue becomes
practically significant in a serial computing environment only when τ 2 is larger
than 1,000 or smaller than 1/1,000. Additionally, global shrinkage can take place
through s rather than τ (with τ being set equal to 1). Then κi ∼ HB(a, b, τ = 1, s),
and so

(κi | yi) ∼ HB(a + 1/2, b, τ = 1, s + y2
i /2σ 2).

Figure 6 shows that global shrinkage through s can produce results quite similar
to global shrinkage through τ .

APPENDIX B: EXPRESSIONS FOR MOMENTS AND MARGINALS

Throughout this section, we suppress conditioning on βi ’s nonzero status. Un-
der our hypergeometric inverted-beta model, the joint distribution for yi and κi

takes the form

p(yi, κi) ∝ κa′−1
i (1 − κi)

b−1
{

1

τ 2 +
(

1 − 1

τ 2

)
κi

}−1

e−κis
′
,

where now s′ = s + y2
i /(2σ 2) and a′ = a + 1/2.

The moment-generating function of (A.2) is easily shown to be

M(t) = et �1(b,1, a + b, s − t,1 − 1/τ 2)

�1(b,1, a + b, s,1 − 1/τ 2)
.

See, for example, Gordy (1998). Expanding �1 as a sum of 1F1 functions and us-
ing the differentiation rules given in Chapter 15 of Abramowitz and Stegun (1964)
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yields

E(κn | y, σ 2) = (a′)n
(a′ + b)n

�1(b,1, a′ + b + n, s′,1 − 1/τ 2)

�1(b,1, a′ + b, s′,1 − 1/τ 2)
.(B.1)

Using (B.1), we get

E(βi | yi) =
{

1 − a′

a′ + b

�1(b,1, a′ + b + 1, s′,1 − 1/τ 2)

�1(b,1, a′ + b, s′,1 − 1/τ 2)

}
y.(B.2)

And by the law of total variance,

Var(βi | yi) = E{Var(βi | yi, κi)} + Var{E(βi | yi, κi)}
(B.3)

= σ 2{1 − E(κi | yi)} + y2 Var(κi | yi)

with all other posterior moments for βi following in turn.
There is also a tractable expression for the marginal likelihood of the data:

m(yi) = C−1
1

∫ 1

0
κa′−1
i (1 − κi)

b−1
{

1

τ 2 +
(

1 − 1

τ 2

)
κi

}−1

e−κis
′
dκi,(B.4)

where again s′ = s + y2
i /(2σ 2) and a′ = a + 1/2. This integral is in the same

family as (A.3), and so by the same series of arguments we obtain

m(yi) = 1√
2πσ 2

exp
(
− y2

i

2σ 2

)
Be(a′, b)

Be(a, b)

�1(b,1, a′ + b, s′,1 − 1/τ 2)

�1(b,1, a + b, s,1 − 1/τ 2)
.(B.5)
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