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Most of the available methods for longitudinal data analysis are de-
signed and validated for the situation where the number of subjects is large
and the number of observations per subject is relatively small. Motivated by
the Naturalistic Teenage Driving Study (NTDS), which represents the exact
opposite situation, we examine standard and propose new methodology for
marginal analysis of longitudinal count data in a small number of very long
sequences. We consider standard methods based on generalized estimating
equations, under working independence or an appropriate correlation struc-
ture, and find them unsatisfactory for dealing with time-dependent covariates
when the counts are low. For this situation, we explore a within-cluster resam-
pling (WCR) approach that involves repeated analyses of random subsamples
with a final analysis that synthesizes results across subsamples. This leads to a
novel WCR method which operates on separated blocks within subjects and
which performs better than all of the previously considered methods. The
methods are applied to the NTDS data and evaluated in simulation experi-
ments mimicking the NTDS.

1. Introduction. In this paper we consider the analysis of longitudinal data
that arise in the form of a small number of long sequences. Our interest in this
problem is motivated by the Naturalistic Teenage Driving Study (NTDS), an obser-
vational study of teenage driving performance and characteristics [Simons-Morton
et al. (2011a, 2011b)]. In the study, 42 newly licensed teenage drivers in Virginia
were monitored continuously during their first 18 months of independent driving
using in-vehicle data recording systems. The instrumentation included accelerom-
eters, video cameras, a global positioning system, a front radar and a lane tracker.
The NTDS is a first of its kind, at least for teenage drivers in the United States.
The study provides valuable information on risky driving behavior, which can be
assessed in terms of elevated gravitational force (g-force) events (rapid start, hard
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FIG. 1. Summary of NTDS data by subject: the number of trips made and the total number of miles
driven, both plotted on the logarithmic scale.

stop, hard turn and yaw). Counts of g-force events are available for each trip (de-
fined as ignition on to ignition off), and their incidence rates represent different
aspects of risky driving behavior. The NTDS data set comprises more than 68,000
trips by the 42 teen subjects, with an average of 1,626 trips per subject. Figure 1
provides a summary of the NTDS data by subject in terms of the number of trips
made and the total number of miles driven. An important goal in our analysis of
the NTDS data is to understand how risky driving is associated with subject-level
covariates (i.e., individual characteristics such as gender) as well as trip-level or
time-dependent covariates (e.g., time since licensure, presence of passengers).

There is an extensive literature on longitudinal data analysis; see, for example,
Diggle et al. (2002), Fitzmaurice et al. (2008) and McCulloch, Searle and Neuhaus
(2008). Common approaches to longitudinal data analysis include random effect
models [Laird and Ware (1982), McCulloch, Searle and Neuhaus (2008)] and gen-
eralized estimating equations (GEE) [Liang and Zeger (1986), Zeger and Liang
(1986), Zeger, Liang and Albert (1988)]. In general, the two approaches have
different interpretations (subject-specific versus marginal), although that distinc-
tion is not important when the log link is used for count data. For analyzing the
NTDS data, it is natural to consider generalized linear mixed models (GLMM)
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with appropriate random effects to account for population heterogeneity, serial
correlation and/or possible overdispersion [Chan and Ledolter (1995), McCulloch
(1997), McCulloch, Searle and Neuhaus (2008)]. However, a realistic GLMM for
the NTDS data would involve several random components, including a latent pro-
cess that induces serial correlation (see Section 5), and the computational demand
of such a GLMM analysis can be prohibitive with thousands of trips per subject.
Even if the computation is feasible, the resulting inference may be sensitive to
modeling assumptions that are difficult to verify. The computational burden can
be reduced by resorting to a marginal analysis using the GEE approach, espe-
cially under a working independence assumption. The GEE approach only requires
specification of the first two moments and not the entire distribution. The robust
variance estimate can be used to make asymptotically valid inference that only
requires correct specification of the mean structure, assuming that the number of
subjects is large relative to the number of observations per subject. The exact op-
posite situation occurs in the NTDS, and Albert and McShane (1995) have shown
that the robust variance estimate can perform poorly in such a situation and that the
model-based variance estimate may be preferable. Numerous methods have been
proposed to improve upon the robust variance estimate, including jackknife [Paik
(1988), Lipsitz, Laird and Harrington (1990)], bias correction [Mancl and DeR-
ouen (2001)] and window subsampling techniques [Sherman (1996), Heagerty and
Lumley (2000)].

Given the well-known advantages and potential issues of the GEE approach,
it is natural to ask how to perform a simple and valid marginal analysis of the
NTDS data with reasonable efficiency and robustness. We attempt to address this
question in the present paper by examining some existing methods and develop-
ing new ones. We find that it is generally helpful to include a fixed effect for each
subject in the GEE model. Once the subject effects are estimated, they can be
treated as the response variable in a subsequent linear regression analysis for es-
timating the effects of subject-level covariates. These fixed effects also help with
trip-level covariates by removing the correlation due to population heterogeneity.
If the counts are large (with a marginal mean of 1, say), the effects of trip-level co-
variates can be estimated from a conventional GEE analysis using an estimated co-
variance matrix together with the robust variance estimate. For small counts (with
a marginal mean of 0.1), the conventional approach is not satisfactory, and we ex-
plore a within-cluster resampling (WCR) approach [Hoffman, Sen and Weinberg
(2001), Follmann, Proschan and Leifer (2003)]. The WCR approach was origi-
nally proposed to deal with informative cluster sizes, which is not of concern in
the NTDS. Our motivation for considering WCR is to improve the performance
of GEE methods by altering the data structure. To this end, we consider exten-
sions of WCR that reduce serial correlation within clusters or increase the number
of (approximately) independent clusters. This leads to a WCR method involving
separated blocks which performs better than the conventional methods.
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The rest of the paper is organized as follows. In the next section we set up the
notation, formulate the problem, and discuss potential issues. Then we examine the
standard GEE methods in Section 3 and explore some WCR methods in Section 4.
The NTDS data are analyzed in Section 5 using the appropriate methods. The
paper concludes with a discussion in Section 6.

2. Formulation. Let Yij (i = 1, . . . , n; j = 1, . . . , ki) denote the number of
events that occur during the j th trip by the ith subject. For reasons that will be-
come clear later, we distinguish subject-level covariates such as gender from trip-
level covariates such as time since licensure, writing Zi for the former group of
covariates and Xij for the latter. Note that Xij may include interactions between
subject-level and trip-level covariates. With mij denoting the mileage of the j th
trip by the ith subject, the marginal model of interest to us may be written as

E(Yij ) = mij exp(ν + α′Zi + β ′Xij ),(1)

where ν, α and β are unknown parameters, the latter two being of primary impor-
tance. Without loss of generality, we treat the covariates as fixed.

Estimation of the parameters in model (1) is challenged by the fact that the Yij

from the same subject tend to be correlated due to considerable variability between
drivers as well as serial correlation (over time) within drivers. These sources of
correlation are often accounted for using random effects [e.g., Zeger (1988), Davis,
Dunsmuir and Wang (2000)]. For example, one might postulate that, conditional
on the random effects bi , cij and eij , the Yij are independent and each follows a
Poisson distribution with conditional mean

E(Yij |bi, cij , eij ) = mij exp(ν∗ + α′Zi + β ′Xij + bi + cij + eij ),(2)

where bi induces some heterogeneity between drivers (beyond that explained
by Zi), cij generates serial correlation among trips close in time, and eij accounts
for any additional overdispersion relative to the Poisson model. It is often assumed
that the cij for a given subject arise from a subject-specific stochastic process ci

through the relationship cij = ci(tij ), where tij denotes the time of the j th trip.
Note that model (2) is consistent with model (1) because it implies the same mean
structure after integrating out the random effects, provided the distributions of the
random effects do not depend on the covariates.

For the NTDS data, it seems reasonable to equip model (2) with the following
distributional assumptions. One might assume that bi ∼ N(0, σ 2

b ), eij ∼ N(0, σ 2
e ),

and ci is a zero-mean Gaussian process with a covariance structure given by

cov{ci(t1), ci(t2)} = σ 2
c exp(−γ |t1 − t2|).(3)

The random effects bi and eij and the process ci are assumed independent of each
other, although the cij = ci(tij ) are necessarily correlated within each subject. The
parameter γ > 0 determines how rapidly the serial correlation decreases with the
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gap time. The process ci is known as the Ornstein–Uhlenbeck process [Uhlenbeck
and Ornstein (1930)], and the above distributional assumptions will be collectively
referred to as the Gauss–Ornstein–Uhlenbeck–Poisson (GOUP) model. It is possi-
ble to perform a maximum likelihood analysis under the GOUP model [e.g., Chan
and Ledolter (1995)]. However, such an analysis can be computationally demand-
ing because of the serial correlation, and the resulting inference may be sensitive
to the distributional assumptions involved. The methods to be considered for our
marginal analysis will not require the full strength of the GOUP model, and they
may or may not involve the distributional assumptions in the GOUP model. Some
of the methods we consider do incorporate such distributional assumptions into
estimating equations through a working covariance matrix, in which case we also
assess the robustness of the resulting inference against misspecification of the cor-
relation structure. Our goal is to make valid and reasonably efficient inference on
α and β in model (1) with minimal dependence on the distributional assumptions
in the GOUP model.

Without the distributional assumptions, model (2) does play a crucial role in this
paper, as a way to conceptualize the different sources of variability. We assume that
the different subjects are independent of each other and that the random effects bi

and (eij )
ki

j=1 and the random process ci are independent of each other within each
subject. It follows that the Yij (j = 1, . . . , ki) are conditionally independent given
bi and ci . Another important implication is that

E(Yij |bi) = mij exp(νi + β ′Xij ),(4)

where

νi = ν∗ + α′Zi + bi + log[E{exp(cij + eij )}] = const. + α′Zi + bi.(5)

This shows that the correlation due to bi can be removed by treating subject as
a fixed effect. Obviously, this approach would not work in the usual asymptotic
theory assuming a large number of subjects and a limited number of observations
per subject. However, it might be appropriate when the number of subjects is small
and the number of observations per subject is large as in the NTDS. Note that the
subject-specific model (4) does not directly involve α, which has been absorbed
into the subject-specific intercept νi ; thus, α cannot be estimated directly by fitting
model (4). Nonetheless, equation (5) suggests that once νi has been estimated,
say, by ν̂i , it should be possible to estimate α from a subject-level linear model
regressing ν̂i on Zi .

3. Standard GEE methods.

3.1. GEE with working independence. Assuming working independence,
a standard GEE analysis can be performed with or without fixed subject effects
(FSE), using either the robust variance estimate or the model-based variance es-
timate. This gives rise to four possible methods for estimating β . As discussed
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earlier, α is not directly estimable from a GEE analysis with FSE but can be re-
covered from a subsequent linear regression analysis based on (5). Let ν̂i denote
the GEE estimate of νi , and assume that ν̂i is approximately unbiased, that is,
E(̂νi |νi) ≈ νi . This, together with (5), implies that

E(̂νi) = E{E(̂νi |νi)} ≈ E(νi) = const. + α′Zi.

An approximately unbiased estimate of α can then be obtained from a subject-level
linear model regressing ν̂i on Zi . A standard least squares (LS) algorithm can be
used to fit this model if the ν̂i can be treated as independent. In general, the ν̂i

are correlated due to correlated errors in GEE estimation, even though the νi are
indeed independent of each other. This correlation can be taken into account using
an iteratively reweighted least squares (IRLS) algorithm described in Appendix A.
Thus, under working independence, α can also be estimated using four different
methods (LS and IRLS with FSE, robust and model-based without FSE).

These methods are evaluated and compared in a simulation study mimicking
the NTDS. Specifically, each simulated data set consists of 40 subjects and 60,000
trips (1500 per subject). The study duration is rescaled to the unit interval, over
which the trips are uniformly distributed. The offset log(mij ) follows a normal
distribution with mean 1 and variance 1, Zi is generated as a Bernoulli variable
with success probability 0.5, and Xij is taken to be the trip time (i.e., Xij = tij ).
Given the covariates, the outcome Yij is generated according to the GOUP model
described in Section 2, with σ 2

b = σ 2
c = σ 2

e = 1 and γ = 50 or 300, correspond-
ing to longer- and shorter-lived serial correlation, respectively. These values are
based on the NTDS data (see Section 5) and the wide range for γ reflects a large
amount of variability in its estimation (see Section 3.2). We set α = β = 0 for sim-
plicity because the results change little over a range of realistic values for these
parameters. We choose ν∗ in (2) such that the marginal mean of Yij equals a spec-
ified value (0.1 or 1). This range for E(Yij ) covers most kinematic measures in the
NTDS with varying thresholds. Some measures are associated with larger counts,
which are generally easier to deal with. In each scenario (combination of parame-
ter values), 1,000 replicate samples are generated and analyzed using the methods
described in the preceding paragraph.

Table 1 compares the four methods for estimating α in terms of empirical bias,
standard deviation, median standard error and coverage probability of intended
95% confidence intervals. All methods in Table 1 are nearly unbiased, suggesting
that bias is not of concern here. In terms of efficiency, the most important factor is
clearly the use of FSE, which consistently results in smaller standard deviations.
With FSE in the model, one might expect the IRLS estimate of α, which accounts
for the correlation among the ν̂i , to be more efficient than the LS estimate. How-
ever, their difference seems rather small in Table 1, for two reasons. First, the
variability due to estimating the νi is dominated by the variability in the νi , result-
ing in weak correlation among the ν̂i in this particular example. Second, a referee
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TABLE 1
Estimation of α, the effect of a subject-level covariate, using GEE methods with working

independence. The methods are described in Section 3.1 and Appendix A, and compared in terms of
empirical bias, standard deviation (SD), median standard error (SE) and coverage probability (CP)

of intended 95% confidence intervals. Each entry is based on 1,000 replicates

Mean Serial Include Further Emp. Emp. Median Emp.
count correlation FSE? option bias SD SE CP

1 Short No Robust 0.00 0.39 0.33 0.90
No Model-based 0.00 0.40 0.03 0.14
Yes LS 0.00 0.33 0.32 0.95
Yes IRLS 0.01 0.32 0.31 0.95

Long No Robust 0.00 0.42 0.34 0.90
No Model-based −0.01 0.42 0.03 0.11
Yes LS −0.01 0.33 0.33 0.94
Yes IRLS 0.00 0.32 0.32 0.95

0.1 Short No Robust 0.02 0.41 0.33 0.90
No Model-based 0.01 0.40 0.04 0.17
Yes LS −0.01 0.35 0.33 0.94
Yes IRLS −0.01 0.36 0.32 0.93

Long No Robust −0.01 0.42 0.34 0.89
No Model-based 0.00 0.40 0.04 0.15
Yes LS 0.01 0.35 0.33 0.94
Yes IRLS 0.00 0.33 0.32 0.95

pointed out that any correlation that does exist among the ν̂i should be approxi-
mately exchangeable, in which case the LS estimate is still efficient. The precision
in estimating α appears insensitive to the length of the serial correlation (speci-
fied through γ ), although the FSE estimates do seem to become more variable for
low counts [E(Yij ) = 0.1]. The use of FSE also helps with variance estimation.
Without FSE, the model-based variance estimate is clearly disastrous, as expected,
and even the robust variance estimate is unsatisfactory, with sub-nominal coverage
(≈90%). Including FSE in the GEE model leads to reasonable variance estimates
and nearly correct coverage, under both (LS and IRLS) approaches. Thus, it seems
that the key to valid and efficient inference about α in similar situations is to in-
clude FSE in a GEE analysis followed by a subject-level linear regression analysis
for the estimated FSE.

Estimation of β is a different story, as shown in the top section of Table 2. As
in the case of estimating α, bias is not a major issue in estimating β . The precision
in estimating β depends mostly on the length of the serial correlation, with better
precision for shorter-lived serial correlation, and seems insensitive to other factors
(e.g., FSE, mean count). This is clearly different from the situation in Table 1,
and an intuitive explanation is the following. In general, estimating the effect of a
subject-level covariate is essentially comparing one group of subjects with another,
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TABLE 2
Estimation of β , the effect of a trip-level covariate, using standard GEE methods. The methods are
described in Sections 3.1–3.3 and compared in terms of empirical bias, standard deviation (SD),
median standard error (SE), coverage probability (CP) of intended 95% confidence intervals and

the percentage of estimates that are not available (NA) due to numerical problems such as
noninvertible matrices. In each scenario, 1,000 replicates are generated, and the NA estimates are

counted and then excluded in calculating the other summary statistics

Mean Serial Include Variance Emp. Emp. Median Emp.
count correlation FSE? estimate bias SD SE CP %NA

Working independence

1 Short No Robust 0.00 0.12 0.09 0.91 0.0
No Model-based 0.00 0.12 0.05 0.67 0.0
Yes Robust −0.01 0.12 0.09 0.90 0.0
Yes Model-based 0.00 0.12 0.04 0.47 0.0

Long No Robust 0.01 0.21 0.16 0.92 0.0
No Model-based −0.01 0.21 0.05 0.41 0.0
Yes Robust −0.01 0.21 0.16 0.91 0.0
Yes Model-based −0.01 0.21 0.04 0.28 0.0

0.1 Short No Robust 0.00 0.13 0.10 0.90 0.0
No Model-based −0.01 0.13 0.07 0.74 0.0
Yes Robust 0.00 0.13 0.10 0.90 0.0
Yes Model-based 0.00 0.13 0.06 0.65 0.0

Long No Robust 0.02 0.21 0.17 0.90 0.0
No Model-based 0.00 0.21 0.07 0.49 0.0
Yes Robust −0.01 0.21 0.17 0.91 0.0
Yes Model-based −0.01 0.21 0.06 0.42 0.0

Estimated covariance matrix

1 Short Yes Robust 0.00 0.07 0.07 0.95 0.0
Yes Model-based −0.01 0.07 0.07 0.95 0.0

Long Yes Robust −0.01 0.12 0.12 0.94 0.0
Yes Model-based 0.00 0.12 0.11 0.90 0.1

0.1 Short Yes Robust 0.00 0.09 0.10 0.92 4.6
Yes Model-based 0.00 0.10 0.10 0.95 4.9

Long Yes Robust 0.00 0.15 0.16 0.90 3.5
Yes Model-based −0.01 0.15 0.12 0.87 3.9

Misspecified covariance matrix

1 Varying Yes Robust −0.02 0.09 0.09 0.93 0.0
Yes Model-based −0.03 0.09 0.08 0.92 0.0

0.1 Varying Yes Robust −0.02 0.11 0.12 0.90 3.7
Yes Model-based −0.02 0.11 0.11 0.93 2.9

while estimating the effect of a trip-level covariate is essentially comparing one
group of trips with another group of trips by the same subjects. With Xij = tij ,
estimation of β is basically a comparison of later trips with earlier trips, and it
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seems natural that serial correlation has a larger impact on this comparison than on
a comparison of boys with girls, say. The latter comparison, on the other hand, is
more likely to benefit from the use of FSE to separate the relevant information (i.e.,
overall incidence rates of individual drivers) from the noise (i.e., within-subject
variation). In Table 2, none of the four methods is satisfactory in terms of coverage,
though the robust variance estimate performs better than the model-based one.
Several alternatives to the robust variance estimate have also been explored with
little success (see Section 6).

3.2. GEE based on an estimated covariance matrix. We now consider GEE
methods incorporating the covariance matrix for the Yij . Under the GOUP model
described in Section 2, it is straightforward to show, by appealing to well-known
properties of normal and Poisson distributions, that

E(Yij ) = mij exp{ν∗ + α′Zi + β ′Xij + (σ 2
b + σ 2

c + σ 2
e )/2} =: μij ,

var(Yij ) = μij + μ2
ij {exp(σ 2

b + σ 2
c + σ 2

e ) − 1},(6)

cov(Yij , Yij ′) = μijμij ′ [exp{σ 2
b + σ 2

c exp(−γ |tij − tij ′ |)} − 1],
(7)

(j �= j ′).
These expressions provide the marginal covariance matrix relevant in a GEE anal-
ysis without FSE. With FSE in the model, we need to condition on bi and the
relevant formulas become

E(Yij |bi) = mij exp(νi + β ′Xij ) =: μij |bi
,

var(Yij |bi) = μij |bi
+ μ2

ij |bi
{exp(σ 2

c + σ 2
e ) − 1},(8)

cov(Yij , Yij ′ |bi) = μij |bi
μij ′|bi

[exp{σ 2
c exp(−γ |tij − tij ′ |)} − 1],

(9)
(j �= j ′),

with νi defined in Section 2. Note that σ 2
b is not involved in the covariance ma-

trix in a GEE analysis with FSE. Unknown parameters in the covariance matrix
(σ 2

c , σ 2
e , γ and possibly σ 2

b ) can be estimated by applying moment methods and
nonlinear regression techniques to residuals from a preliminary GEE analysis with
working independence (see Appendix B for details). This preliminary GEE analy-
sis can be performed with or without FSE, regardless of the primary GEE analysis
for estimating β . With FSE in the preliminary GEE analysis, the aforementioned
techniques do not provide an estimate of σ 2

b . If desired, an estimate of σ 2
b can be

obtained from the IRLS estimation of α or simply as the error variance in the LS
analysis, ignoring the fact that ν̂i is an error-prone estimate of νi (see Section 3.1
and Appendix A for details). Thus, the covariance matrix can be estimated using
three methods: FSE-LS, FSE-IRLS and no FSE, with the first two differing only
in the estimate of σ 2

b .
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TABLE 3
Estimation of parameters in the covariance matrix (σ 2

b , σ 2
c , σ 2

e , γ ) using moment and nonlinear
regression methods. The methods are described in Appendix B and compared in terms of empirical

bias, standard deviation (SD) and the percentage of estimates that are not available (NA) due to
convergence failure in nonlinear regression. In each scenario, 1,000 replicates are generated, and

the NA estimates are counted and then excluded in calculating the other summary statistics

Serial
correlation

Emp. bias Emp. SD

Method σ 2
b σ 2

c σ 2
e γ σ 2

b σ 2
c σ 2

e γ % NA

Mean count = 10

Short FSE-LS −0.01 −0.03 −0.02 1.1E+01 0.23 0.10 0.11 1.4E+02 0.1
(γ = 300) FSE-IRLS −0.02 −0.03 −0.02 1.1E+01 0.23 0.10 0.11 1.4E+02 0.1

No FSE −0.26 0.01 −0.06 4.1E+02 0.25 0.29 0.22 5.9E+03 6.8
Long FSE-LS 0.03 −0.10 −0.02 2.0E+01 0.24 0.07 0.08 4.9E+01 0.2

(γ = 50) FSE-IRLS 0.02 −0.10 −0.02 2.0E+01 0.24 0.07 0.08 4.9E+01 0.2
No FSE −0.30 0.01 −0.06 1.8E+02 0.26 0.40 0.17 2.1E+03 5.8

Mean count = 1

Short FSE-LS −0.01 −0.03 0.00 1.2E+02 0.23 0.21 0.23 2.9E+03 0.3
(γ = 300) FSE-IRLS −0.02 −0.03 0.00 1.2E+02 0.23 0.21 0.23 2.9E+03 0.3

No FSE −0.29 0.01 −0.06 2.6E+02 0.23 0.24 0.21 4.5E+03 8.7
Long FSE-LS 0.03 −0.10 −0.02 3.4E+01 0.25 0.10 0.21 8.5E+01 0.4

(γ = 50) FSE-IRLS 0.01 −0.10 −0.02 3.4E+01 0.24 0.10 0.21 8.5E+01 0.4
No FSE −0.30 0.05 −0.08 2.1E+02 0.28 0.97 0.20 1.5E+03 17.5

Mean count = 0.1

Short FSE-LS 0.28 −0.03 −0.13 6.3E+02 2.97 0.51 1.18 4.1E+03 7.9
(γ = 300) FSE-IRLS 0.25 −0.03 −0.13 6.3E+02 2.97 0.51 1.18 4.1E+03 7.9

No FSE −0.28 0.08 −0.12 6.5E+02 0.35 0.39 0.39 3.6E+03 30.4
Long FSE-LS 0.14 −0.04 −0.14 1.0E+03 1.65 0.51 1.17 1.4E+04 12.9

(γ = 50) FSE-IRLS 0.08 −0.04 −0.14 1.0E+03 1.24 0.51 1.17 1.4E+04 12.9
No FSE −0.34 0.14 −0.14 2.2E+03 0.33 0.58 0.35 3.3E+04 37.3

Table 3 shows the performance of the above three methods for estimating pa-
rameters in the covariance structure, in terms of bias, standard deviation and con-
vergence. The methods are evaluated in the same scenarios as the previous simu-
lation experiments, with the addition of a higher mean count (10) to show a more
complete picture. For a mean count of 10, the FSE methods are nearly unbiased
for the variance components but biased for γ in a way that results in underestima-
tion of the length of the serial correlation. The bias for γ is larger for longer-lived
serial correlation. The no FSE method is more biased for γ (in the same direction)
and even visibly biased for σ 2

b . With decreasing counts, the bias problem becomes
more severe, especially for γ , to the extent that estimation of the serial correlation
is meaningless for a mean count of 0.1. The problem is compounded by a large
amount of variability in estimating γ . Another issue with low counts is conver-
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gence in the nonlinear regression. For a mean count of 0.1, the convergence failure
rates are approximately 8% and 13% (with short- and long-lived serial correlation,
resp.) for the FSE methods and even worse for the no FSE method. The FSE meth-
ods appear more reasonable than the no FSE method, and we will use FSE-LS,
which is simpler than FSE-IRLS, in the subsequent simulations.

GEE methods based on covariance matrices estimated through FSE-LS are eval-
uated in the same setting described in Section 3.1. When the nonlinear regression
in FSE-LS fails to converge, the data-driven initial values will be taken as the final
estimates [see equation (15) in Appendix B]. With thousands of trips per subject,
inverting a covariance matrix is time-consuming, and iterating until convergence in
the usual Fisher scoring algorithm [Fitzmaurice et al. (2008), Section 3.2.4] would
be prohibitive. We therefore settle for a one-step estimate of the regression coef-
ficients based on just one iteration in the Fisher scoring algorithm. Specifically,
we start with a GEE analysis with working independence, use the residuals to es-
timate parameters in the covariance matrix, and update the regression coefficients
just once using the estimated covariance matrix. Under this approach, it is neces-
sary to include FSE in each GEE analysis; otherwise meaningful simulation results
cannot be produced. This is not surprising because inversion of large covariance
matrices can be difficult when the correlation is strong (without FSE) and poorly
estimated. This is not a serious limitation because the use of FSE leads to better
efficiency and coverage anyway, which we have observed in simulations where the
true covariance matrix is used in GEE (results not shown). Once FSE are included,
numerical problems become much less frequent (3–5% for a mean count of 0.1,
≤1% for higher counts).

We have found that incorporating the covariance matrix into the estimating
equation does little to improve the estimation of α in terms of efficiency and cov-
erage. We therefore omit the results for estimating α and henceforth focus on es-
timating β . The results for the latter, reported in the middle section of Table 2,
show that better efficiency is attained using an estimated covariance matrix than
under working independence. In terms of coverage, the robust variance estimate
performs well for higher counts but not for lower ones, especially when the se-
rial correlation is long-lived. The model-based variance estimate performs well for
short-lived serial correlation and poorly for long-lived serial correlation. The for-
mer case shows that underestimating the length of the serial correlation has little
effect when the serial correlation is already negligibly short. Although not shown
in Table 2, the model-based variance estimate has been found to work well in all
cases if the true covariance matrix is used. Thus, the root of the problem appears
to be the difficulty in estimating γ .

3.3. GEE based on a misspecified covariance matrix. It is natural to ask how
the GEE methods based on the GOUP model would perform if the model is mis-
specified. For the NTDS, the GOUP model seems plausible for the most part. It is
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possible, however, that the length of the serial correlation, which is assumed con-
stant, might change over time. To formalize this notion of changing length, note
that the covariance structure given by (3) can be generalized into

cov{ci(t1), ci(t2)} = σ 2
c exp

(
−

∫ t2

t1

γ (t) dt

)
, t1 < t2,(10)

for a function γ : [0,1] → (0,∞). For a constant γ , this reduces to the original
GOUP model. In the next set of simulation experiments, we will generate data
using the generalized GOUP model with γ taken to be a straight line from γ (0) =
300 to γ (1) = 50. Thus, instead of working exclusively with short- or long-lived
serial correlation, we allow it to be short-lived at the beginning and to gradually
become long-lived at the end. This is motivated by the conjecture that teenage
driving will tend to be haphazard at the beginning and will become more consistent
over time. Unfortunately, it appears difficult to verify this conjecture directly using
the data. Indeed, even when γ is a constant, we have seen in Table 3 that it can be
really difficult to estimate, especially when the counts are low. It seems reasonable
to expect that a time-varying γ will be even more difficult to estimate. We therefore
take a sensitivity analysis approach to this issue. The bottom section of Table 2
shows the performance in the present setting of GEE methods based on the original
GOUP model. The point estimates are more (or less) efficient in this setting than
if the serial correlation is consistently long-lived (or short-lived). The coverage
property of the model-based variance estimate is also intermediate between the
two extremes. As before, the robust variance estimate works well for large counts
but not for small ones.

3.4. Summary. To summarize, valid inference on α can be made through a
GEE analysis with FSE (regardless of the covariance matrix) followed by a linear
regression analysis, while inference on β requires more work. For large counts,
valid inference on β can be made by estimating the covariance matrix and using
the robust variance estimate; in this case, the inference seems robust with respect
to the serial correlation structure. For small counts, the robust variance estimate is
unsatisfactory and the model-based variance estimate performs well only for short-
lived serial correlation. Because the serial correlation is difficult to estimate with
small counts, one would not know in practice whether the model-based variance
estimate is appropriate for a particular application. Therefore, it is necessary to
develop methods that perform well (or better) for small counts with short- and
long-lived serial correlation. This is the focus of the next section, where we explore
WCR-type methods.

4. WCR and extensions.

4.1. The standard WCR approach. WCR is a resampling approach for
marginal analysis of clustered data, originally designed to deal with informative
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cluster sizes [Hoffman, Sen and Weinberg (2001), Follmann, Proschan and Leifer
(2003)]. In its original form, the approach can be applied to the present problem as
follows. Suppose we sample a trip from each subject randomly and form a subset
of nonclustered data

{(ZiJi
,XiJi

, YiJi
), i = 1, . . . , n},(11)

where Ji is uniformly distributed on {1, . . . , ki}, independently across i. There
is no correlation in the subsample (11), which can therefore be analyzed using a
quasi-Poisson model with mean structure given by (1). This can be repeated a large
number (say, L) of times to yield {(θ̂l, �̂l), l = 1, . . . ,L}, where θ̂l denotes the
point estimate of θ = (α,β) based on the lth subsample, and �̂l is the associated
variance estimate. Then the WCR estimate of θ is given by

θ̂WCR = 1

L

L∑
l=1

θ̂l ,(12)

and the associated variance estimate is

�̂WCR = 1

L

L∑
l=1

�̂l − 1

L − 1

L∑
l=1

(θ̂l − θ̂WCR)(θ̂l − θ̂WCR)′.(13)

The first term on the right-hand side of (13) measures the variability within sub-
samples, while the second term measures the variability between subsamples.

In general, for any WCR method to work, it is essential that valid estimates
(θ̂l, �̂l) be obtained from each subsample. Note that the estimates (θ̂l, �̂l) are
identically distributed. If θ̂l is biased for θ , then θ̂WCR given by (12) is also bi-
ased by the same amount. Similarly, if �̂l underestimates the sampling variance
of θ̂l , then �̂WCR given by (13) will underestimate the sampling variance of θ̂WCR
by a similar amount, because the second term on the right-hand side of (13) will be
approximately unbiased for large L. Furthermore, in terms of relative bias, the un-
derestimation problem of �̂WCR is generally worse than that of �̂l , simply because
the true variance of θ̂WCR is smaller than that of θ̂l . In light of these observations,
we will study WCR methods in two steps, always considering a single subsample
before moving to repeated sampling.

4.2. WCR with simple random sampling (WCR-SRS). There is no reason why
a WCR subsample must consist of exactly one observation from each subject. In
fact, to fit a model with FSE, there has to be more than one observation from
each subject. Without FSE, the standard WCR approach is feasible but, as we
shall see, does not work well. We therefore consider an extended WCR approach
where a simple random sample (SRS) is taken from each subject to form an WCR
subsample. Thus, instead of a single number Ji , we take an SRS {J (1)

i , . . . , J
(R)
i }

from the index set {1, . . . , ki} for each i. The resulting subsample is{(
Z

iJ
(r)
i

,X
iJ

(r)
i

, Y
iJ

(r)
i

)
, i = 1, . . . , n, r = 1, . . . ,R

}
,
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for which a standard GEE analysis can be performed, under working independence
or using an estimated covariance matrix, with or without FSE, using the robust or
model-based variance estimate. This can be repeated a large number of times, and
the resulting estimates can be combined using (12) and (13). If the covariance
matrix for the Yij is used, it will be estimated once from the full sample and the
estimate will be applied to all subsamples.

This WCR-SRS approach is evaluated in Table 4. Given the findings in the last
section, this evaluation is focused on small counts. Under working independence,
only the robust variance estimate is considered because the model-based variance
estimate is clearly invalid. As before, no meaningful results are available when an

TABLE 4
Estimation of β , the effect of a trip-level covariate, using the WCR-SRS approach with different

values of R (number of trips to sample from each subject) and L (number of repetitions in WCR).
The methods are described in Sections 4.1 and 4.2 and compared in terms of empirical bias,

standard deviation (SD), median standard error (SE), coverage probability (CP) of intended 95%
confidence intervals and the percentage of estimates that are not available (NA). The mean count is

fixed at 0.1. In each scenario, 1,000 replicates are generated, and the NA estimates are
counted and then excluded in calculating the other summary statistics

Serial Include Variance Emp. Emp. Median Emp.
correlation FSE? estimate R L bias SD SE CP %NA

Working independence

Short No Robust 1 1 −15.40 357.22 1.59 0.64 0.4
5 1 −0.02 1.44 0.99 0.86 0.0

25 1 0.03 0.64 0.52 0.91 0.0
100 1 −0.02 0.37 0.28 0.91 0.0
500 1 −0.01 0.20 0.15 0.92 0.0
100 500 0.00 0.13 0.00 0.16 0.0

Yes Robust 5 1 0.09 1.59 1.16 0.87 0.2
25 1 0.01 0.68 0.50 0.87 0.1

100 1 −0.02 0.37 0.28 0.90 0.1
500 1 0.00 0.18 0.14 0.91 0.0
100 500 0.00 0.12 0.00 0.18 0.0

Long No Robust 1 1 32.12 2011.24 1.64 0.64 0.8
5 1 −0.08 1.43 1.00 0.89 0.0

25 1 −0.01 0.72 0.53 0.89 0.0
100 1 0.01 0.42 0.31 0.92 0.0
500 1 0.00 0.24 0.20 0.91 0.0
100 500 −0.01 0.21 0.10 0.52 0.0

Yes Robust 5 1 −0.62 19.13 1.13 0.85 0.1
25 1 −0.02 0.71 0.52 0.89 0.1

100 1 0.00 0.39 0.30 0.90 0.0
500 1 −0.01 0.24 0.20 0.90 0.0
100 500 −0.01 0.21 0.10 0.56 0.0



MARGINAL ANALYSIS OF LONGITUDINAL COUNT DATA 41

TABLE 4
(Continued)

Serial Include Variance Emp. Emp. Median Emp.
correlation FSE? estimate R L bias SD SE CP %NA

Estimated covariance matrix

Short Yes Robust 5 1 0.03 1.44 0.89 0.75 0.4
25 1 0.02 0.59 0.48 0.85 1.4

100 1 0.01 0.30 0.29 0.91 3.3
500 1 −0.01 0.15 0.15 0.92 4.6
100 500 0.00 0.09 0.21 0.70 2.6

Model-based 5 1 −0.09 1.49 1.19 0.91 0.2
25 1 0.02 0.58 0.55 0.94 1.1

100 1 0.00 0.29 0.30 0.94 2.2
500 1 0.00 0.15 0.15 0.97 4.1
100 500 0.01 0.10 0.12 0.68 1.4

Long Yes Robust 5 1 −0.04 1.48 0.93 0.76 0.4
25 1 0.00 0.61 0.51 0.87 1.2

100 1 0.00 0.31 0.30 0.90 2.3
500 1 −0.01 0.18 0.19 0.90 3.1
100 500 0.00 0.15 0.24 0.69 2.8

Model-based 5 1 −0.02 1.67 1.22 0.92 0.4
25 1 0.01 0.59 0.54 0.93 1.9

100 1 −0.01 0.32 0.31 0.94 2.4
500 1 0.00 0.18 0.17 0.92 3.2
100 500 0.00 0.16 0.16 0.72 2.6

estimated covariance matrix is used without FSE. For each method, we begin by
analyzing a single subsample, with L = 1 and different values of R (size of the
SRS from each subject). Table 4 shows poor performance for R = 1 (i.e., standard
WCR), apparently due to erratic estimates, which are likely to arise when the sub-
sample is very small. Even for R = 5, the point estimate is visibly biased in some
cases, probably because the subsample is still small. The coverage probability gen-
erally increases with R, at least for R ≤ 100. The best coverage is seen when an
estimated covariance matrix is used together with FSE and the model-based vari-
ance estimate. As explained in Section 3.2, this method tends to work well when
the serial correlation is weak, which is precisely what happens to a randomly se-
lected subset of trips, which tend to be farther apart from each other than in the
full sample. This explains why better coverage is seen here than in the correspond-
ing portion of Table 2. Of course, this trend will be reversed when the number of
selected trips gets too large, which explains the slight drop in coverage probabil-
ity when R increases further to 500. Overall, it appears that R = 100 would be a
reasonable choice in terms of bias and coverage. Efficiency is not a major consid-
eration here because the efficiency loss due to R ≤ ki can be recovered through
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repeated sampling. Table 4 also shows the performance of the WCR-SRS method
with L = 500 and R = 100, whose efficiency levels appear similar to the corre-
sponding results in Table 2, as expected. For the working independence methods,
the WCR variance estimate is seriously biased downward and the coverage proba-
bility is far below the nominal level, confirming the conjecture in Section 4.1 that
the variance underestimation problem of �̂WCR is generally worse than that of �̂l

in terms of relative bias. For methods based on an estimated covariance matrix, the
WCR variance estimate is not necessarily biased downward but the coverage prop-
erties are not good. This behavior is probably due to erratic estimates which arise
frequently in repeated analyses of subsamples when a poorly estimated covariance
matrix is used.

Table 4 does suggest a potential benefit of WCR, that is, the ability to produce
a sparse subset of trips with weaker serial correlation. This advantage can be ex-
ploited further by selecting trips that are separated from each other by a specified
amount. Specifically, for a given positive integer S, we can choose a trip randomly
among the first S + 1 trips and every (S + 1)st trip from there on, until the end
of the sequence. This can be done for each subject and the process can be re-
peated many times as before. This approach does lead to good coverage in single
outputation when an estimated covariance matrix is used together with FSE and
the model-based variance estimate (results not shown). However, upon moving to
WCR, this approach exhibits the same strange behavior as seen in Table 4 (results
not shown), probably for the same reason.

4.3. WCR with separated blocks (WCR-SB). The previous experiments with
WCR show that variance underestimation can be a serious problem, especially
when the variance of θ̂WCR is much smaller than that of θ̂l . The latter difference
can be reduced by including more observations in each subsample, and the ques-
tion then becomes how to ensure reasonable performance of the variance estimate
based on a subsample. To this end, we propose the following WCR approach in-
volving separated blocks. With FSE in the model, the only source of correlation is
serial correlation, which is weaker for trips farther apart. Thus, with an appropriate
amount of separation, trips from the same subject can be treated as approximately
independent. Let B denote the block size (i.e., the number of consecutive trips to
be analyzed together as a block) and S the separation (i.e., the number of trips used
to separate the blocks). For a given subject, one possible set of separated blocks
can be formed by taking the first B trips, skipping the next S trips, taking the
next B , skipping the next S, and so on. Each group of B trips sampled together
will be treated as a block and the different blocks will be treated as independent
in the subsequent GEE analysis. A random shift can be added to this sampling
process, and the random sampling process can be repeated many times as before.

Preliminary simulation results, as well as those in Table 4, suggest that a reason-
able block size would be B = 100. Simple calculations based on (8) and (9) show
that, with S = 50, the correlation between trips in different blocks is typically
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TABLE 5
Estimation of β , the effect of a trip-level covariate, using the WCR-SB approach with working

independence and the robust variance estimate, implemented with B = 100 (block size), S = 50
(separation) and L = 1 (single subsample) or 50. The method is evaluated in terms of empirical

bias, standard deviation (SD), median standard error (SE), coverage probability (CP) of intended
95% confidence intervals and the percentage of estimates that are not available (NA). The mean
count is fixed at 0.1. In each scenario, 1,000 replicates are generated, and the NA estimates are

counted and then excluded in calculating the other summary statistics

Serial Emp. Emp. Median Emp.
correlation L bias SD SE CP %NA

Short 1 0.00 0.15 0.13 0.94 0.0
50 0.00 0.12 0.10 0.92 0.0

Long 1 0.00 0.22 0.19 0.92 0.0
50 0.01 0.20 0.17 0.92 0.0

Varying 1 0.00 0.18 0.15 0.92 0.1
50 0.00 0.15 0.13 0.92 0.0

well below 0.05 in all scenarios considered in this paper. With these choices for B

and S, the WCR-SB approach is evaluated through simulations and the results are
presented in Table 5. We focus on working independence to avoid numerical sta-
bility issues, and only consider the robust variance estimate. The method appears
to have better coverage when applied to a single set of separated blocks than to the
full sample (Table 2), apparently owing to a larger number of approximately inde-
pendent clusters (400 vs. 40). Note that the efficiency based on a single outputation
is quite close to that in a full sample analysis. Considering this and the computa-
tional demand, the WCR version is implemented with L = 50 repetitions, and the
resulting WCR-SB estimates are virtually as efficient as the full sample estimates.
In the case of long-lived serial correlation, better coverage (92%) is achieved here
using the working independence method than in any of the previous simulations.
The improvement (2% over Table 2) is not dramatic but still substantial, and similar
phenomena have been observed consistently in other simulation experiments un-
der similar scenarios. Table 5 also shows the performance of the WCR-SB method
when the serial correlation is generated according to (10) rather than (3). The only
noticeable effect of this change is an intermediate level of efficiency (between the
extreme cases of short- and long-lived serial correlation).

5. Analysis of NTDS data. Our analysis of the NTDS data concerns the fol-
lowing elevated g-force events: rapid start (longitudinal acceleration ≥ 0.35g),
hard stop (longitudinal deceleration ≥ 0.40g), hard left/right turn (lateral decel-
eration/acceleration ≥ 0.45g), yaw (≥5 degrees within 3 seconds), as well as a
composite measure defined as the totality of these 5 types of events. Yaw is a mea-
sure of correction after a turn and is calculated as the absolute change in angle be-
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tween an initial turn and the correction. For each specific g-force event, the thresh-
old (in parenthesis) is chosen to allow meaningful differences between drivers and
different driving conditions to be revealed and estimated with a sufficient number
of events. The mean counts based on the chosen thresholds are 0.13 (rapid start),
0.18 (hard stop), 0.20 (hard left turn), 0.15 (hard right turn), 0.04 (yaw) and 0.70
(composite measure). The mean count for yaw is relatively low, perhaps too low
for the methods discussed in this paper, but the corresponding threshold is already
the lowest for which we have data available. This limitation should be kept in mind
when interpreting the results.

From the viewpoint of behavior science, it is reasonable to expect some serial
correlation because risky driving may be related to the weather and the driver’s
mental and physical conditions (e.g., mood and fatigue). All of these factors could
result in serial correlation unless they are all included in the model, which is im-
possible in the NTDS due to the lack of this information. To explore the nature of
the serial correlation in the NTDS data, a marginal model with FSE and all relevant
covariates (to be described later) is fit for the composite measure under working
independence. Pairwise products of standardized residuals are calculated for con-
secutive trips (because the number of all possible pairs is too large). After sorting
by gap time, these pairs are grouped into 100 bins for further reduction. Within
each bin, we calculate the median gap time and the mean product of standardized
residuals, and the results are plotted in Figure 2 together with a lowess smooth.
Figure 2 suggests that some serial correlation is present in the data, although a
precise characterization of the serial correlation seems difficult. Under the GOUP
model and using the techniques described in Appendix B, the estimated variance
components are generally close to 1 (for the composite measure and other g-force
events), while the estimate of γ varies wildly and depends heavily on the initial
value.

Figure 3 presents the estimated incidence rate (IR) per 100 miles of each g-
force event as a function of time since licensure. The IR is defined by (1) with mij

replaced by 100, Zi empty, and Xij consisting of indicators of calendar month and
a set of regression splines for tij (one knot for every 3 months). Calendar month is
included in the model to adjust for a possible seasonal effect, which may confound
with the effect of time since licensure because the enrollment of subjects was not
uniform with respect to calendar month, with more subjects enrolled in the fall and
fewer in the spring. The estimates shown in Figure 3 represent geometric means
of the monthly estimates. Note that the IR considered here is a marginal quantity
which involves the marginal intercept ν and which should therefore be estimated
in a model without FSE. The estimates in Figure 3 are obtained under working
independence, because the GOUP model without FSE is problematic to fit and its
performance is not well understood (see Section 3.2). Under the regression spline
model, there is some ambiguity as to whether the IR for the composite measure
changes over time. The p-value for the regression splines is 0.49 based on the ro-
bust variance estimate under working independence, although the validity of this
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FIG. 2. Serial correlation for the composite measure in the NTDS. Pairwise products of standard-
ized residuals are calculated for consecutive trips and, after sorting by gap time, grouped into 100
bins. Each circle represents the median gap time and the mean product of standardized residuals in
a bin, and the solid line is a lowess smooth.

test may be questionable (see Section 3). Under the GOUP model with FSE, the
IR for the composite measure does appear to change over time (p = 0.0014 for
the robust variance estimate, p < 0.0001 for the model-based variance estimate).
The latter observation is in contrast to a previous report that risky driving largely
remains constant [Simons-Morton et al. (2011a)], and the difference is probably
due to the lower thresholds used here, which lead to more events and perhaps
more relevant information. Despite the ambiguity about statistical significance, the
main conclusion from our marginal analysis is fairly consistent with the findings
of Simons-Morton et al. (2011a). The latter reference reports IRs for adults/parents
that are consistently and substantially lower than those for novice teenagers driv-
ing the same vehicles. In Figure 3, the estimated IR of the composite measure
for teenage drivers increases over the first 6 months, declines over the next few
months, and then increases again, suggesting the establishment of a risky driving
style. This general impression is reinforced by the plots for the specific g-force
events, which show some temporal changes but no clear trends.

As noted by a referee, some instances of risky driving (e.g., mistakes due to the
lack of skills) may depend more on the amount of practice, which can be quantified
by accumulated mileage, than on time since licensure. This raises the question
of which measure is more appropriate to adjust for. Accumulated mileage is a
measure of driving experience, while time since licensure reflects both experience
and maturity. From a public health perspective, we believe that time since licensure
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FIG. 3. Incidence rates of various g-force events (rapid start, hard stop, hard left/right turn, yaw,
and the composite measure) as functions of time since licensure, estimated using regression splines
(one node for every 3 months).

is more relevant to policy makers. Nonetheless, all analyses in this section have
been repeated with time since licensure replaced by accumulated mileage, and
the results are very similar and therefore omitted. With regard to Figure 3, this
similarity suggests that persistent risky driving among teenage drivers is not only
due to inexperience but also to immaturity (i.e., aspects of adolescent development
that motivate novice young drivers to seek excitement and under-recognize risks).

Each g-force event is further analyzed in a larger model that simultaneously
adjusts for the following covariates: driver’s gender, risky friends, time of day,
passenger condition, calendar month, and time since licensure. The risky behavior
of a teenage driver’s friends is assessed using a 7-item index asking “How many
of your friends would you estimate. . . smoke cigarettes, drink alcohol, get drunk
at least once a week, use marijuana, drive after having two or more drinks in the
previous hour, exceed speed limits, and do not use safety belts (none, a few, some,
most, all).” The assessment was made at 4 time points (baseline, 6, 12 and 18
months), the 4 scores were averaged for each driver, and the average score was
then dichotomized according to the median split among all drivers in the study.
Night driving was determined from video data by visual observation of the ambient
natural lighting at the start of the trip. Late night was defined as 10 pm to 6 am,
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and night trips that did not start at late night were considered early night trips.
The presence and relative age (adult or teen) of each passenger was determined by
the coders examining the video data. In summary, gender and risky friends enter
the marginal model as subject-level binary covariates, time of day is a trip-level
covariate with 3 levels (day, early night and late night), passenger condition is also
a trip-level covariate with 3 levels (none, teens, at least one adult), calendar month
is a trip-level covariate with 12 levels, and time since licensure is represented by
the same set of regression splines as before. No signs of model misspecification
are observed in residual plots (not shown).

Table 6 presents estimates of incidence rate ratios (IRR) that quantify the asso-
ciation of each g-force event with the aforementioned covariates (except calendar
month and time since licensure). An IRR is just the result of exponentiating the
corresponding regression coefficient in the marginal model. The estimates are ob-
tained using standard GEE methods (working independence or the GOUP model,
robust or model-based variance estimate) as well as the proposed WCR-SB method
(working independence, B = 100, S = 50, L = 50). All of these methods include
FSE. In a sensitivity analysis, a different separation size (S = 100) for the WCR-
SB method is used to produce similar results, which are therefore omitted. Since
the point estimates depend primarily on the working correlation structure, only 2
sets of point estimates are shown in Table 6. For the subject-level covariates, the
LS method is used to obtain 2 sets of 95% confidence intervals (for working in-
dependence and the GOUP model). For the trip-level covariates, Table 6 presents
4 sets of 95% confidence intervals corresponding to the robust variance estimate
and the WCR-SB method under working independence as well as the robust and
model-based variance estimates under the GOUP model. Table 6 contains some
unrealistically large values (>100, labeled as ∞) for the IRRs associating risky
friends and gender with yaw and rapid start, probably due to very few events in the
subgroup of teenage drivers acting as the denominator.

Despite some numerical differences between the different methods, the results
in Table 6 indicate clearly that teenage risky driving is not associated with gender,
positively associated with risky friends, negatively associated with early night, and
negatively associated with the presence of passengers (more strongly for adults
than for teens). The evidence is not conclusive with regard to late night, whose
association with risky driving is significant in some cases but not in others. The
association of risky friends with risky driving points to potentially destructive ef-
fects of risk-accepting social norms and social identity on risky behavior. Both
the perception and the actuality of having risk-taking friends could contribute to
the perceived acceptability of risky behavior. The association of early night with
risky driving suggests that teens do recognize the danger of night driving (at least
partially) and drive more carefully (or rather, less carelessly) at night. There is no
contradiction between this finding and the apparent ambiguity about late night be-
cause late night trips often take place under unusual circumstances. Finally, it is
worth noting that passengers, especially adult passengers, appear protective with
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TABLE 6
Analysis of NTDS data using standard GEE methods (working independence or the GOUP model,

robust or model-based variance estimate) and the proposed WCR-SB method (working
independence, B = 100, S = 50, L = 50). Each outcome variable (rapid start, hard stop, hard

left/right turn, and a composite measure) is analyzed separately in a marginal model that
simultaneously adjusts for gender, risky friends, time of day, passenger condition, calendar month1

and time since licensure (the last two as confounders). The results are summarized in terms of
incidence rate ratios (IRRs) and 95% confidence intervals. The symbol ∞ denotes a value

that is unrealistically large (>100)

GOUP model Working independence

Covariate Comparison IRR Model-based Robust IRR Robust WCR-SB

Composite measure (mean count = 0.70)

Gender Male vs. female 1.16 (0.67,1.99) 1.07 (0.64,1.79)

Risky friends More vs. fewer 1.91 (1.11,3.29) 1.82 (1.08,3.05)

Time of day Early night vs. day 0.64 (0.61,0.68) (0.59,0.71) 0.73 (0.64,0.83) (0.69,0.78)

Late night vs. day 0.76 (0.69,0.84) (0.66,0.88) 0.89 (0.68,1.16) (0.80,1.00)

Passengers Teen vs. none 0.81 (0.78,0.85) (0.74,0.90) 0.78 (0.72,0.86) (0.75,0.83)

Adult vs. none 0.39 (0.34,0.45) (0.34,0.46) 0.32 (0.26,0.40) (0.28,0.40)

Rapid start (mean count = 0.13)

Gender Male vs. female 0.12 (0.00,5.69) 0.12 (0.00,5.86)

Risky friends More vs. fewer 12.33 (0.26,∞) 11.50 (0.26,∞)

Time of day Early night vs. day 0.89 (0.83,0.95) (0.70,1.14) 0.89 (0.74,1.07) (0.83,0.95)

Late night vs. day 0.89 (0.79,1.00) (0.68,1.15) 0.93 (0.77,1.12) (0.78,1.03)

Passengers Teen vs. none 0.83 (0.78,0.88) (0.68,1.01) 0.81 (0.70,0.92) (0.75,0.87)

Adult vs. none 0.32 (0.25,0.41) (0.21,0.50) 0.34 (0.26,0.44) (0.26,0.44)

Hard stop (mean count = 0.18)

Gender Male vs. female 0.78 (0.44,1.40) 0.74 (0.42,1.30)

Risky friends More vs. fewer 1.43 (0.80,2.56) 1.35 (0.77,2.38)

Time of day Early night vs. day 0.68 (0.63,0.73) (0.60,0.77) 0.70 (0.62,0.80) (0.65,0.75)

Late night vs. day 0.71 (0.61,0.82) (0.55,0.91) 0.70 (0.56,0.87) (0.61,0.80)

Passengers Teen vs. none 0.90 (0.84,0.96) (0.82,1.00) 0.88 (0.79,0.97) (0.81,0.95)

Adult vs. none 0.51 (0.42,0.63) (0.41,0.64) 0.38 (0.29,0.49) (0.32,0.47)

respect to risky driving. Further research is warranted to confirm, better character-
ize and utilize such protective effects.

6. Discussion. Even with a great variety of methods available for longitudinal
data analysis, it can still be difficult to analyze longitudinal data in long sequences,
especially when the serial correlation is strong and long-lived. In this paper, we
examine standard GEE methods and propose new ones for marginal analysis of
longitudinal count data in a small number of very long sequences. The methods
are evaluated and compared in simulation experiments mimicking the NTDS, and
the main findings can be summarized as follows. We consider the use of FSE in
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TABLE 6
(Continued)

GOUP model Working independence

Covariate Comparison IRR Model-based Robust IRR Robust WCR-SB

Hard left turn (mean count = 0.20)

Gender Male vs. female 1.36 (0.72,2.55) 1.29 (0.69,2.38)

Risky friends More vs. fewer 2.41 (1.28,4.53) 2.20 (1.19,4.07)

Time of day Early night vs. day 0.53 (0.49,0.58) (0.45,0.63) 0.64 (0.52,0.79) (0.58,0.71)

Late night vs. day 0.78 (0.67,0.92) (0.63,0.97) 1.00 (0.68,1.46) (0.83,1.18)

Passengers Teen vs. none 0.81 (0.75,0.88) (0.70,0.94) 0.76 (0.68,0.84) (0.70,0.82)

Adult vs. none 0.38 (0.30,0.49) (0.28,0.53) 0.32 (0.24,0.43) (0.25,0.40)

Hard right turn (mean count = 0.15)

Gender Male vs. female 1.39 (0.72,2.69) 1.31 (0.69,2.49)

Risky friends More vs. fewer 2.04 (1.05,3.95) 1.92 (1.01,3.65)

Time of day Early night vs. day 0.63 (0.58,0.67) (0.50,0.79) 0.69 (0.55,0.85) (0.62,0.76)

Late night vs. day 0.83 (0.74,0.93) (0.46,1.48) 0.92 (0.58,1.46) (0.75,1.14)

Passengers Teen vs. none 0.64 (0.60,0.69) (0.54,0.76) 0.62 (0.55,0.70) (0.56,0.69)

Adult vs. none 0.26 (0.20,0.33) (0.18,0.37) 0.22 (0.16,0.31) (0.17,0.30)

Yaw (mean count = 0.04)

Gender Male vs. female 0.07 (0.00,∞) 0.07 (0.00,∞)

Risky friends More vs. fewer ∞ (0.15,∞) ∞ (0.17,∞)

Time of day Early night vs. day 0.92 (0.76,1.10) (0.65,1.29) 0.94 (0.77,1.15) (0.80,1.11)

Late night vs. day 0.88 (0.63,1.23) (0.42,1.86) 0.92 (0.59,1.45) (0.71,1.14)

Passengers Teen vs. none 1.19 (1.02,1.39) (0.90,1.57) 1.17 (1.00,1.37) (1.02,1.33)

Adult vs. none 0.54 (0.32,0.92) (0.21,1.39) 0.44 (0.27,0.73) (0.27,0.68)

this particular situation, a simple technique with important practical implications.
It allows the effects of subject-level covariates to be estimated easily from a linear
regression analysis for the estimated FSE, and it also helps with trip-level covari-
ates by removing the correlation due to population heterogeneity. For trip-level
covariates, we find that a standard GEE analysis under working independence can
lead to inefficient estimates and serious undercoverage, and that both problems can
be alleviated by incorporating a properly specified correlation structure. The latter
approach works well for large counts but not for small counts, mainly because the
serial correlation is hard to estimate with small counts. We therefore explore an
alternative approach (WCR) for the case of small counts. The original version of
WCR and an extension to simple random sampling seem unsatisfactory, however,
because of numerical instability in repeated analyses of small samples and a bias
magnification effect of WCR that results in variance underestimation. To address
these issues, we propose an WCR-SB approach that involves separated blocks and
that performs better than all of the previously considered methods (WCR and stan-
dard GEE).
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In Table 6 the WCR-SB analyses are not dramatically different from the other
analyses. This is reassuring to the scientists, but it also suggests that the NTDS
data set is not ideal for demonstrating the advantage of the WCR-SB approach. To
put the latter point in perspective, we note that better performance in the frequen-
tist sense does not imply better results in every realization. The performance of
the WCR-SB approach has been evaluated in simulation experiments which are, in
fact, designed to mimic the NTDS. Most of the uncertainty in designing the sim-
ulation experiments is associated with the length of the serial correlation, which
is very difficult to estimate with small counts, as shown in Table 3. It is certainly
possible that the serial correlation in the NTDS is not sufficiently long-lived for
the new method to make a material difference. In that case, a better example than
the NTDS might be a proposed follow-up study that involves 100 teenage drivers
to be followed for at least 3 years. The larger amount of data from the latter study
will afford a better understanding of both the nature and the length of the serial
correlation. Furthermore, as teenage drivers gain experience and perspective over
time, their driving behavior may become less haphazard and more stable, in which
case the serial correlation will gradually become longer-lived toward the end of the
(longer) study duration. Thus, in terms of the length of the serial correlation, the
follow-up study will provide a better opportunity than the NTDS to demonstrate
the advantage of the WCR-SB approach.

The WCR-SB approach is designed for longitudinal data in a small number of
long sequences. The strength of this approach relative to standard GEE methods is
the ability to handle strong and long-lived serial correlation when the mean count
is low. The weaknesses of the WCR-SB approach include increased computational
demand (relative to standard GEE methods) and the need for information about the
length of the serial correlation (in order to specify the separation size S). Because
γ can be very difficult to estimate, one may need to consult the subject-matter
scientist or perform a sensitivity analysis with different values of S, as we did in
analyzing the NTDS data (see Section 5).

As mentioned earlier at the end of Section 3.1, we have actually explored
several existing alternatives to the robust variance estimate in the present sit-
uation. No appreciable improvement has been achieved using a standard boot-
strap procedure (i.e., sampling subjects with replacement) and jackknife methods
[Paik (1988), Lipsitz, Laird and Harrington (1990)]. A block bootstrap procedure
[Künsch (1989)] appears to work well for short-lived serial correlation but not
for long-lived serial correlation. In a simple setting that permits closed-form cal-
culations of the finite-sample target of the robust variance estimate (with sample
quantities replaced by their population counterparts) under working independence,
we have found that the target can be far below the sampling variance of the point
estimate observed in simulations, suggesting that the asymptotic theory may not
provide a reasonable approximation in this situation. Given that, it seems unlikely
that a substantial improvement can be made using the available bias correction
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methods [e.g., Mancl and DeRouen (2001)]. Another possible approach to vari-
ance estimation is window subsampling [Sherman (1996), Heagerty and Lumley
(2000), Oman et al. (2007)]. A practical difficulty with this approach is specifica-
tion of the window size, which has been found to have a large impact on the vari-
ance estimate. Heagerty and Lumley (2000) have suggested taking the maximum
among variance estimates based on several window sizes, but it remains unclear
how to choose the set of window sizes for the maximization. Maximizing over a
large set of window sizes can lead to a very conservative variance estimate, as the
maximum among several underestimators need not be an underestimator itself.

Under the WCR approach, we have considered various sampling schemes based
on time. An interesting possibility, suggested by a referee, is to sample trips using
a mechanism that involves other covariates than time and possibly the outcome.
In the latter case, appropriate adjustments will be necessary to account for the
outcome-dependent nature of the subsample. Further research is needed to explore
the potential benefits of the more sophisticated sampling schemes.

This article has been focused on valid inference in the sense of (nearly) cor-
rect coverage. We have not discussed the issue of generalization from a sample
of subjects to the target population, which is always important and especially so
when the number of subjects is small. Such generalizations should be easier to
justify when the within-subject variability is large relative to the between-subject
variability, which appears to be the case in the NTDS.

APPENDIX A: IRLS ESTIMATION OF α FOLLOWING A GEE
ANALYSIS WITH FSE

Write ν = (ν1, . . . , νn)
′ and ν̂ = (̂ν1, . . . , ν̂n)

′, and let �̂ν̂|ν denote the variance

estimate from the GEE analysis. As the notation indicates, �̂ν̂|ν estimates the con-
ditional variance �ν̂|ν = var(̂ν|ν) because the GEE model with FSE is conditional
on ν. The marginal variance of ν̂ is given by

�ν̂ = var(̂ν) = var{E(̂ν|ν)} + E{var(̂ν|ν)} ≈ σ 2
b In + E�ν̂|ν,

where In denotes the n × n identity matrix. A natural estimate of �ν̂ can be ob-
tained as

�̂ν̂ = σ̂ 2
b In + �̂ν̂|ν(14)

provided a reasonable estimate σ̂ 2
b is available. This suggests the following IRLS

algorithm. We start by obtaining an initial estimate of α, say, the LS estimate. Then
we proceed to the following steps:

Step 1. Calculate a moment estimate of σ 2
b , say, the mean squared residual mi-

nus the mean diagonal element of �̂ν̂ ;
Step 2. Substitute the estimate of σ 2

b into (14) and re-estimate α from a
weighted least squares analysis based on the updated �̂ν̂ .

These steps can be iterated a number of times or until convergence.
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APPENDIX B: ESTIMATION OF PARAMETERS IN THE
COVARIANCE MATRIX

Let μ̂ij denote the fitted values from a preliminary GEE analysis without FSE.
Then (6) shows that a moment estimate of the sum of σ 2

b , σ 2
c and σ 2

e can be ob-
tained as

log

[
1 + 1

N

n∑
i=1

ki∑
j=1

{
(Yij − μ̂ij )

2

μ̂2
ij

+ 1

μ̂ij

}]
,

where N = ∑n
i=1 ki is the total number of observations. Further, equation (7) sug-

gests that σ 2
b , σ 2

c and γ can be estimated from a nonlinear regression analysis with
(Yij − μ̂ij )(Yij ′ − μ̂ij ′)/(μ̂ij μ̂ij ′) as the response variable and with mean function

exp{σ 2
b + σ 2

c exp(−γ |tij − tij ′ |)} − 1.

The above quantities could be modified using bias correction adjustments [e.g.,
Davis, Dunsmuir and Wang (2000), Section 3.2] and/or smoothing techniques prior
to the nonlinear regression analysis. However, such modifications have not been
found helpful in our experiments. Ideally, the nonlinear regression analysis should
include all pairs of trips within subjects. However, this may be impractical for the
NTDS data because a subject with thousands of trips would contribute millions of
pairs, resulting in too many data points. As a compromise, we propose to base the
nonlinear regression analysis on two types of pairs: consecutive trips (with j ′ =
j + 1) and symmetric trips (with j + j ′ = ki + 1). The pairs of consecutive trips
are informative about short-lived serial correlation, while the pairs of symmetric
trips help characterize the overall correlation over the entire range of the gap time
|tij − tij ′ |.

Similar techniques can be used for a preliminary GEE analysis with fixed sub-
ject effects. With μ̂ij |bi

denoting the fitted values with fixed subject effects, the
sum of σ 2

c and σ 2
e can be estimated by

log

[
1 + 1

N

n∑
i=1

ki∑
j=1

{
(Yij − μ̂ij |bi

)2

μ̂2
ij |bi

+ 1

μ̂ij |bi

}]
,

while the separate values of σ 2
c and γ can be estimated from another nonlinear

regression analysis with (Yij − μ̂ij |bi
)(Yij ′ − μ̂ij ′|bi

)/(μ̂ij |bi
μ̂ij ′|bi

) as the response
variable and with mean function

exp{σ 2
c exp(−γ |tij − tij ′ |)} − 1.

These are justified by (8) and (9), respectively.
Initial values of the unknown parameters are required for fitting the above non-

linear regression models. In our experience, a reasonable way to obtain initial val-
ues appears to be the following linear regression method. Consider the case with



MARGINAL ANALYSIS OF LONGITUDINAL COUNT DATA 53

FSE, and note that equation (9) can be rewritten as

log log E
{
(Yij − μij |bi

)(Yij ′ − μij ′|bi
)

μij |bi
μij ′|bi

+ 1
}

= logσ 2
c − γ |tij − tij ′ |.(15)

To take advantage of this relationship, we can allocate the pairs of trips into bins
according to the value of |tij − tij ′ | and treat each bin as approximately homoge-
neous with respect to the gap time. Within each bin, we can replace μij |bi

with
μ̂ij |bi

and expectation with sample average on the left-hand side of (15), replace
|tij − tij ′ | with a typical value (say, the median) on the right-hand side, and run a
linear regression analysis with each bin as a data point. Initial estimates of σ 2

c and
γ can then be obtained by exponentiating the estimated intercept and negating the
estimated slope, respectively. This linear regression approach would not work for
the case without FSE, for which we could use as initial estimates the final estimates
from a GEE analysis with FSE.
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