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Pooling specimens, a well-accepted sampling strategy in biomedical re-
search, can be applied to reduce the cost of studying biomarkers. Even if
the cost of a single assay is not a major restriction in evaluating biomarkers,
pooling can be a powerful design that increases the efficiency of estimation
based on data that is censored due to an instrument’s lower limit of detection
(LLOD). However, there are situations when the pooling design strongly ag-
gravates the detection limit problem. To combine the benefits of pooled assays
and individual assays, hybrid designs that involve taking a sample of both
pooled and individual specimens have been proposed. We examine the effi-
ciency of these hybrid designs in estimating parameters of two systems sub-
ject to a LLOD: (1) normally distributed biomarker with normally distributed
measurement error and pooling error; (2) Gamma distributed biomarker with
double exponentially distributed measurement error and pooling error. Three-
assay design and two-assay design with replicates are applied to estimate the
measurement and pooling error. The Maximum likelihood method is used to
estimate the parameters. We found that the simple one-pool design, where all
assays but one are random individuals and a single pooled assay includes the
remaining specimens, under plausible conditions, is very efficient and can be
recommended for practical use.

1. Introduction. Epidemiological studies frequently investigate the relation-
ship between biomarkers and disease. In such studies, assaying specimens for
biomarkers can be expensive. For example, a single assay to measure polychlo-
rinated biphenyl (PCB) costs between $500 and $1,000 [Louis et al. (2005)]. The
high cost severely constrains the number of assays that can be performed in a study,
thereby limiting the study’s ability to characterize a biomarker-disease association.
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Two study designs, the pooling design and the simple random sampling de-
sign, have been proposed to reduce total assaying cost. Pooling involves assay-
ing only pooled, that is, physically mixed, specimens [Sham et al. (2002)]. Each
pooled specimen is obtained by mixing pooling group size p individual speci-
mens together, and each pooled specimen is assumed to contain an amount of
biomarker that is the mean of the amounts contained in its constituent individ-
ual specimens [Vexler, Liu and Schisterman (2006), Faraggi, Reiser and Schister-
man (2003), Schisterman et al. (2001, 2005), Vexler et al. (2008)]. Simple random
sampling involves assaying only a simple random sample of individual specimens
[Dorfman (1943), Liu and Schisterman (2003), Liu, Schisterman and Teoh (2004),
Vexler, Schisterman and Liu (2008), Weinberg and Umbach (1999), Zhang and
Gant (2005)].

Not only does cost hinder the characterization of a biomarker-disease associa-
tion, instrument sensitivity does as well. An instrument may be unable to detect an
amount of biomarker below a certain level, the lower limit of detection (LLOD)
[Vexler, Liu and Schisterman (2006), Mumford et al. (2006), Vexler et al. (2008),
Schisterman et al. (2006)]. Biomarker values above the LLOD are numerically de-
termined, but values below the LLOD are censored. Because instrument sensitivity
is an important issue in many areas such as occupational medicine and epidemiol-
ogy, LLOD issues have been extensively dealt with in the biostatistical literature
[Schisterman et al. (2006), Richardson and Ciampi (2003)].

Investigations of the efficiencies of pooling and simple random sampling in
parameter estimation when data are subject to a LLOD have been performed.
Mumford et al. (2006) and Vexler, Liu and Schisterman (2006) showed that, in
the context of biomarker mean and variance estimation, there is always an interval
of LLOD values for which pooling is more efficient than simple random sampling
and sometimes even more efficient than assaying each and every individual speci-
men. This phenomenon can be explained by the fact that, when a LLOD is below
the mean of a biomarker distribution, a pooled assay has a greater chance of be-
ing above the LLOD than an individual assay [Schisterman and Vexler (2008)].
Mumford et al. (2006) also showed that pooling is more efficient than simple ran-
dom sampling at estimating the area under the receiver operating characteristic
curve (AUC) when the LLOD affects less than 50% of the data. However, when
the LLOD is substantially greater than the mean of the biomarker distribution,
the pooling design is less efficient than simple random sampling at estimating the
AUC. Furthermore, the reconstruction of individual assays’ characteristics from
pooled data is generally a complex issue [Vexler, Schisterman and Liu (2008)].

The merits of pooling and simple random sampling led to the consideration
of hybrid designs, which combine pooling and simple random sampling. Some
randomly sampled individual specimens are each assayed, and the remaining as-
says are pooled assays. The efficiency of hybrid designs at parameter estimation
has been considered when data are not affected by a LLOD [Schisterman et al.
(2010)]. The present article extends previous work by examining the efficiency of
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a variety of hybrid designs at estimating biomarker distribution parameters and
any assaying errors, when assays are affected by a LLOD. When LLOD is present,
ignoring missing or replacing missing with a value might lead to severe bias. So
it is important to extend our previous work by including LLOD. Furthermore, we
demonstrate some hybrid designs under different situations in this article. We con-
sider the efficiency of hybrid designs under various combinations of pooling error
and measurement error. Particularly, we are interested in a special case of the gen-
eral hybrid design, which we call the one-pool design, where all assays but one are
random individuals and a single pooled assay includes the remaining specimens.
This one-pool design is easy to execute in practice. Our approaches can apply to
the upper limit detection (ULOD) as well.

In the following sections we examine the efficiencies of hybrid designs when
data are subject to various errors and LLOD. Three-assay design and two-assay
design with replicates are applied to account for the pooling error and measure-
ment error. Three-assay design combines one individual sampling group and two
pooling groups with different pooling size; while the two-assay design with repli-
cates combines an individual sampling group and one pooling group where each
group is measured in replicate. Both designs can be used to estimate the parameters
of the biomarker, measurement error and pooling error. The variances of param-
eters are evaluated for both normally and Gamma distributed biomarker levels.
Last, we apply hybrid design to two cases: (1) normally distributed data on choles-
terol, a coronary heart disease biomarker and (2) Gamma distributed data on a
chemokine biomarker with double exponentially distributed measurement error
and pooling error.

2. Pooled-unpooled hybrid design subject to a LLOD. In this section we
describe a hybrid design, which combines assays on individual specimens and
assays on pooled specimens, when assays are subject to a LLOD. Suppose we
have N uncorrelated specimens {Xs, s = 1, . . . ,N}, and we can perform only
n assays. Let α be the proportion of n that are assays of individual specimens
randomly sampled from all individual specimens. When α = 1, only n of the
N specimens are used for a simple random sampling design. We measure αn

individual specimens {Xs, s = 1, . . . , αn} and use the remaining N − αn indi-
vidual specimens {Xs, s = αn + 1, . . . ,N} to create (1 − α)n pooled specimens
{X(p)

i , i = 1, . . . , (1 − α)n}. Here we use subscript i to indicate assays. Ideally we
would obtain pooled measurements

X
(p)
i = 1

p

ip+αn∑
s=(i−1)p+αn+1

Xs,

where p is pooling group size, p = [ N−αn
(1−α)n

]. Here [x] is the integer round of a
quantity x. When αn = n − 1, we have one-pool design with n − 1 individual
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assays {Xi, i = 1, . . . , n − 1} and 1 pooled assay {X(p)
1 }. αone-pool = 1 − 1

n
is the

maximum of α under hybrid design.
In this article we study the hybrid design in a realistic scenario where assays

have measurement error and pooling error as well as subject to a LLOD. A simple
two-assay hybrid design composed of an individual assay group and a pooled assay
group is not enough to estimate both measurement error and pooling error. We can
apply two approaches to estimate both errors: (1) three-assay hybrid design and
(2) two-assay hybrid design with replicates.

2.1. Three-assay hybrid design. A three-assay hybrid design consists of three
different groups, an individual group Z(1), a pooled group Z(p1) of pooling group
size p1, and a pooled group Z(p2) of pooling group size p2. Let α be the fraction
of assays that are individual assays, and β the fraction of assays that are second
pooled assays with pooling size p2. The numbers of the assays in each group are
n1 = αn, np1 = (1 −α −β)n, and np2 = βn, respectively. The total number of the
specimens are N = αn + (1 − α − β)np1 + βnp2. Given β and p2, we can obtain
p1 = [N−αn−βnp2

(1−α−β)n
]. Due to the LLOD, each observation takes the following forms:

Z
(w)
i =

{
X

(w)
i + γ (w)e

(p)
i + e

(m)
i , X

(w)
i + γ (w)e

(p)
i + e

(m)
i ≥ LLOD,

N/A, X
(w)
i + γ (w)e

p
i + e

(m)
i < LLOD,

where w = 1,p1,p2 (p1 �= p2, since the three-assay design reduces to the two-
assay design when p1 = p2), i = 1, . . . , nw , X

(1)
i are the individual specimens,

e
(m)
i is measurement error, e(p)

i is pooling error, and γ (w) is a known function such
that γ (1) = 0. For simplicity, we assume γ (p1) = γ (p2) = 1. When β = 0, three-
assay design reduces to two-assay design. When αn = n − 1 − βn, we have one-
pool design with n−1−βn individual assays {Xi, i = 1, . . . , n−1−βn}, 1 pooled
assay {X(p1)

1 } with pooling size p1, and βn pooled assays {X(p2)
i , i = 1, . . . , βn}

with pooling size p2. We have αone-pool = 1 − β − 1
n

. When β = 0, three-assay
design reduces to two-assay design, that is, αone-pool = 1 − 1

n
.

2.2. Two-assay design with replicates. Another approach to estimate pooling
and measurement errors is two-assay design with replicates. In practice, labora-
tories often measure the assays twice. When a specimen is measured twice, for
individual samples, we have

Z
(1)
i1 = Xi + e

(m)
i1 , Z

(1)
i2 = Xi + e

(m)
i2 ,

where Z
(1)
i1 and Z

(1)
i2 are measured values, X is the true value, and e

(m)
i1 and e

(m)
i2

are measurement errors. In practice, laboratories often use the average of Z1
i1 and

Z1
i2 as the true biomarker value. We also have

�Z
(1)
i = Z

(1)
i1 − Z

(1)
i2 = e

(m)
1 − e

(m)
i2 .(1)
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By fitting the distribution of �Z
(1)
i , we can obtain the parameter for measurement

error e(m). For pooled assays, we have

Z
(p)
i1 = Xi + e

(m)
1 + e

(p)
1 , Z

(p)
i2 = Xi + e

(m)
i2 + e

(p)
i2 ,

where e
(p)
1 and e

(p)
i2 are pooling errors. We also have

�Z(p) = Z
(p)
i1 − Z

(p)
i2 = (

e
(m)
1 + e

(p)
1

) − (
e
(m)
i2 + e

(p)
1

)
.(2)

By fitting the distribution of �Z
(p)
i , we can obtain the parameter for the sum of

measurement error and pooling error e(m) + e(p). After we obtain the estimates of
the pooling and measurement errors, we can use a two-assay design involving one
individual sampling group and only one pooling group to estimate the parameters
of the biomarker.

2.3. Maximum likelihood estimate. The literature on limit of detection is
largely maximum likelihood (ML) due to a need to assume a distribution for the
data that are unmeasurable below the limit of detection. For insight below the
limit of detection, the distribution above is assessed and assumed consistent be-
low. ML estimation follows naturally after this. One simple way to address the
LLOD is to substitute a replacement value for unobservable data. However, it
will lead to biased assessment and it has been shown that the best value is of-
ten E[X|X < d] and required the same assumption on the distribution below the
limit of detection. In this article, we use the ML method to handle LLOD data be-
cause it yields asymptotically unbiased estimates of the parameters [Gupta (1952),
Chapman (1956)]. We consider two cases: (1) normally distributed biomarker with
normally distributed measurement error and pooling error, and (2) Gamma dis-
tributed biomarker with double exponentially distributed measurement error and
pooling error.

2.3.1. Normal distributed biomarker and errors. Let the individual biomarker
values be independently and identically distributed as follows:

Xi ∼ N(μx,σ
2
x ), i = 1, . . . , αn,

where α ∈ (0,1). By applying the pooling design based on N − αn assays, ideally
we would obtain pooled measurements following normal distribution

X
(p)
i ∼ N

(
μx,

σ 2
x

p

)
, i = 1, . . . , (1 − α)n.

We assume that the measurement error e(m) and pooling error e(p) also follow
independent normal distribution

e
(m)
i ∼ N(0, σ 2

m), e
(p)
i ∼ N(0, σ 2

p), i = 1, . . . , n.

The detailed likelihood function is available in the supplementary material [Schis-
terman et al. (2011), Section 1].
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2.3.2. Gamma distributed biomarker and double exponentially distributed er-
rors. In certain situations, the distribution of the biomarker values is skewed, and
the normality assumptions cannot be applied. In these circumstances, the Gamma
distribution is a reasonable alternative. Furthermore, the distribution of measure-
ment and pooling errors can vary by shape, and the normality assumptions are
not always reasonable. In these cases, double exponential distribution might be
appropriate, because it is symmetric and mean zero. Suppose that the individual
biomarker Xi follows a Gamma distribution

Xi ∼ g(x;a, b) = 1

ba�(a)
e−x/bxa−1, i = 1, . . . , αn.

For pooled assays with pooling size p, using the additive property of the Gamma
distribution, we have

X
(p)
i ∼ g(x;ap,b/p), i = 1, . . . , (1 − α)n,

and the measurement error and pooling error follow a double exponential distribu-
tion with scale parameters c and d , respectively,

e
(m)
i ∼ h(x; c) = 1

2c
e−|x|/c, e

(p)
i ∼ h(x;d) = 1

2d
e−|x|/d, i = 1, . . . , n.

The detailed likelihood function is available in the supplementary material [Schis-
terman et al. (2011), Section 2].

2.4. Evaluation. In this section we evaluate three cases: (1) normally dis-
tributed biomarker with negligible measurement error and pooling error under
two-assay design, (2) normally distributed biomarker with normally distributed
measurement error and pooling error under three-assay design, and (3) Gamma
distributed biomarker and double exponentially distributed measurement error and
pooling error under two-assay design.

2.4.1. Normal case with negligible pooling error and measurement error. We
are interested in the one-pool design, a special case of the hybrid design, because
it is simple and easily executed in practice. The one-pool design fixes the αn =
n − 1 individual sampling group, leaving (1 − α)n = 1 of the remaining N −
(n − 1) specimens. We first use a simple case with negligible pooling error and
measurement error to illustrate the efficiency of the one-pool design.

When random sampling and pooling are combined in the hybrid design, the

data consist of individual and pooled observations {Z(1)
1 , . . . ,Z

(1)
[αn], Z

(p)
1 , . . . ,

Z
(p)
[(1−α)n]}. If we assume that the measurement error and pooling error are negligi-

ble, that is, e(m) = 0 and e(p) = 0, the three-assay design is reduced to a two-assay
design (β = 0). Each observation takes the form

Z
(w)
i =

{
X

(w)
i , X

(w)
i ≥ LLOD,

N/A, X
(w)
i < LLOD.
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The log-likelihood function for normal distribution is a function of only param-
eters μx and σx . To calculate the MLEs of parameters μx and σx , we solve the
system of log-likelihood first derivative equations { ∂	

∂μx
= 0, ∂	

∂σx
= 0}. Expressions

for the log-likelihood equations and the entries of Fisher information matrix I can
be found in the supplementary material [Schisterman et al. (2011), Section 3]. The
asymptotic variances of the estimators can be analyzed with respect to α (the pro-
portion of assays that are individual assays), and an α that minimizes the variance
of an MLE can be proposed.

Figure 1 illustrates the asymptotic variances Var(μ̂x) and Var(σ̂x) versus α for
LLOD = −5,−0.5,−0.1,0,0.01,0.04,0.1,0.3 and 0.5 from bottom to top with

FIG. 1. nVar(μ̂x) and nVar(σ̂x) versus the proportion of individual assays to the measured assays
α in the absence of measurement and pooling errors with LLOD = −5,−0.5,−0.1, 0, 0.01, 0.04,
0.1, 0.3 and 0.5 from bottom to top; N = 1,000, n = 100, μx = 0 and σx = 1.
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N = 1,000, n = 100, μx = 0 and σx = 1. Note that the rightmost point is at α =
(n − 1)/n, that is, one-pool design, rather than α = 1.

When LLOD is negligible (e.g., LLOD = −5), Var(μ̂x) is approximately con-
stant for α < 1 in Figure 1(a). Var(μ̂x) increases with the increase of LLOD. For
LLOD ≤ μx , Var(μx) decreases as α increases, for example, LLOD = μx (i.e., 0)
and μx −0.1σx (i.e., −0.1). Var(μx) takes the minimum at αone-pool = (n−1)/n =
0.99. When LLOD > μx , Var(μ̂x) takes a minimum value at an 0 < α < αone-pool
as shown in Figure 1(a) and (b). A hybrid design is more efficient than only mea-
suring pooled assays or only measuring individual assays. When LLOD < μx , the
traditional pooling design (α = 0) is more efficient than simple random sampling
[Vexler, Liu and Schisterman (2006), Mumford et al. (2006)]. However, when a
pooled-unpooled hybrid design is applicable, when LLOD ≤ μx and the objective
is the estimate μx , we recommend a one-pool design given that pooling and mea-
surement errors are negligible. However, when N is very large, pooling N −(n−1)

specimens might exceed the laboratory limitations.
Figure 1(c) shows Var(σ̂x) is approximately constant as well when LLOD is

absent (e.g., LLOD = −5). For LLOD < μx (e.g., LLOD = μx − 0.5σx ), pool
design (α = 0) minimizes Var(σ̂x). For LLOD ≥ μx (e.g., 0, 0.01, 0.04, 0.1, 0.3
and 0.5), Var(σ̂x) takes the minimum when the one-pool design is used, as shown
in Figure 1(c) and (d).

The traditional pooling design involves obtaining n pooled assays with pooling
group size p = N/n. With this design, the variance of the μx-estimator based on
n measurements of the pooled assays is σ 2

x /N . For one-pool design with pooling
group size p = N − n + 1, when the LLOD is not in effect, the MLE of μx based
on the combined data {Z(1)

1 , . . . ,Z
(1)
n−1,Z

(N−n+1)
1 } is the following:

μ̂x = 1

n − 1 + p

(
n−1∑
i=1

Z
(1)
i + pZ

(p)
1

)

= 1

N

{
n−1∑
s=1

Xs + (N − n + 1)

(
N∑

s=n

Xs/(N − n + 1)

)}
.

Thus, the one-pool design {Z(1)
1 , . . . ,Z

(1)
n−1, Z

(N−n+1)
1 } allows estimation of μx .

Var(μ̂x) is equivalent to that based on traditionally pooled data {Z(N/n)
1 , . . . ,

Z
(N/n)
n }. This variance is not equivalent to that based on a simple random sam-

ple of individual assays {Z(1)
1 , . . . ,Z

(1)
n }. The same conclusion can be shown re-

garding the σ 2
x -estimation. This proposed one-pool design is easier to execute than

traditional pooling. Moreover, if the parametric assumptions regarding the sam-

ple distribution are rejected, the data {Z(1)
1 , . . . ,Z

(1)
n−1, Z

(N−n+1)
1 } can easily be

used to estimate the unknown distribution, whereas reconstruction of the distribu-
tion function of X based on {Z(N/n)

1 , . . . ,Z
(N/n)
n } is a very complicated problem
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[Vexler, Schisterman and Liu (2008)]. Even when the LLOD has a role, namely,
when LLOD ≤ μx , as in Figure 1(a), we can suggest the simple one-pool design.

2.4.2. Normal case with nonnegligible measurement error and pooling error.
When pooling error and measurement error are nonnegligible, one approach to es-
timating the pooling and measurement errors is a three-assay design, as mentioned
at the beginning of this section. The expressions for the normally distributed log-
likelihood equations and the entries of Fisher information matrix I can be found in
the supplementary material [Schisterman et al. (2011), Section 4]. Figure 2 depicts
the evolutions of nVar(μ̂x), nVar(σ̂x), nVar(σ̂p) and nVar(σ̂m) with N = 1,000,
n = 100, σx = 1, σp = 0.3 and σm = 0.4. The curves from bottom to top are for
LLOD = −5,−0.5, 0 and 0.5, respectively. Because our hybrid design involves
two pooling groups, we set the proportion of the second pooling group β = 0.4 and

FIG. 2. nVar(μ̂x), nVar(σ̂x), nVar(σ̂m), and nVar(σ̂p) versus the proportion of individual assays
to the measured assays α in the presence of measurement and pooling errors under three-assay
design with LLOD = −5,−0.5,0 and 0.5 from bottom to top; the proportion of the second pooled
assays β = 0.4, pooling size p2 = 5, N = 1,000, n = 100, μx = 0, σx = 1, σm = 0.3 and σp = 0.4.
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pooling size p2 = 5. Note that the rightmost point α = [(1 − β)n − 1]/n = 0.59 is
corresponding to the one-pool design that consists of (1 −β)n− 1 = 59 individual
assays, 1 pooled assay with pooling size p1 = 741, and βn = 40 pooled assays
with pooling size p2 = 5.

As LLOD increases, Var(μ̂x), Var(σ̂x), Var(σ̂m) and Var(σ̂p) increase. Var(μ̂x)

increases as α increases, that is, the pooled design minimizes Var(μ̂x). Var(σ̂x),
Var(σ̂m) and Var(σ̂p) obtain the minimum under the hybrid design. We provide
R code as the supplementary material [Schisterman et al. (2011)] to calculate
Var(μ̂x), Var(σ̂x), Var(σ̂m) and Var(σ̂p).

2.4.3. Gamma case with measurement error and pooling error. In this sub-
section we study the situation with Gamma distributed biomarker, double expo-
nentially distributed measurement error and pooling error by Monte Carlo sim-
ulation. Two-assay design can be used when we know the variances of mea-
surement error and pooling error. The parameters for the Gamma distributed
biomarker are a = 1.5 and b = 0.1. So the mean of the individual biomarker is
E(X) = ab = 0.15, and the variance Var(X) = ab2 = 0.015. The parameters for
double exponentially distributed measurement error and pooling error are c = 0.02
and d = 0.03, respectively. Both errors are mean zero and the variance of mea-
surement error is Var(e(m)) = 2c2 = 0.0008, and the variance of pooling error
Var(e(p)) = 2d2 = 0.00018. The number of specimens is N = 1,000 and the num-
ber of assays is n = 100. 1,000 simulations were performed to evaluate Var(â)

and Var(b̂) at α = 0, 0.2, 0.4, 0.6, 0.8 and 0.99, subject to LLOD = 0.02,0.05,0.1
and 0.15.

The simulation results are presented in Figure 3. Var(â) and Var(b̂) increases
with the increase of LLOD. Both Var(â) and Var(b̂) decrease with the increase
of α. They are minimized under the one-pool design (α = 0.99). When LLOD <

E(X), Var(â) does not change much with the increase of α. However, when
LLOD = E(X), Var(â) becomes significantly larger, especially when α is small.
It is five-fold larger than with other LLOD values for pool design (α = 0). Bias(â)

and Bias(b̂) for finite sample size are presented in Section 5 of the supplemen-
tary material [Schisterman et al. (2011)]. They are relatively small except for large
LLOD, for example, LLOD = 0.15 (61% missing for individual sampling).

3. Application.

3.1. Normally distributed biomarker with negligible measurement and pooling
errors. In order to investigate the efficiency of the hybrid design, we bootstrapped
by using real data from a study of biomarkers of coronary heart disease. In this
study, cholesterol level, a biomarker for coronary heart disease, was measured
for 40 individuals that had a normal rest electrocardiogram, were free of symp-
toms, and had no previous cardiovascular procedures or myocardial infarctions.
The mean of the individual biomarker assays is 205.53 mg/dl and the standard



A COMBINED EFFICIENT DESIGN SUBJECT TO A LIMIT OF DETECTION 2661

FIG. 3. nVar(â) and nVar(b̂) versus the proportion of individual assays to the measured as-
says α for simulated Gamma distributed biomarkers with double exponentially distributed mea-
surement and pooling errors with N = 1,000, n = 100, a = 1.5, b = 0.1, c = 0.02, d = 0.03,
LLOD = 0.02,0.05,0.1 and 0.15.

deviation is 42.29 mg/dl. The Shapiro–Wilk test for normality suggests that the
individual assays follow a normal distribution.

We assume that we have N = 40 specimens, we can only afford to perform n =
20 assays, and the measurement error and pooling error are negligible. Artificial
LLOD = 0,150,170,180,200,205 and 210 are applied to the cholesterol data.
We evaluated six designs, involving α values from Table 1. The rightmost one
(α = 0.95) is a one-pool design. To generate the pooled data with different pooling
size p, we pooled the individual assays together, and used the average values as
the measured values of the pooled assays. Then we combined the unpooled and
simulated pooled data, and applied the methodology for two-assay design with
negligible measurement and pooling error case in Section 2.4.1 to calculate the
maximum likelihood estimate of μx . This procedure is repeated 100,000 times to
obtain Var(μ̂x).

The results are shown in Figure 4. When LLOD < μ̂x − σ̂x (e.g., 0 and 150),
Var(μ̂x) is approximately a constant. When μ̂x − σ̂x < LLOD < μ̂x (e.g., 170

TABLE 1
Parameters used for normally distributed biomarker ignoring errors with number of samples

N = 40 and the number of assays n = 20

α 0 0.5 0.75 0.8 0.9 0.95

Number of individual assays 0 10 15 16 18 19
Number of pooled assays 20 10 5 4 2 1
Pooling size p 2 3 5 6 11 21
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FIG. 4. Var(μ̂x) versus the proportion of individual assays to the measured assays α by bootstrap-
ping with N = 40, n = 20, LLOD = 0, 150, 170, 180, 200, 205 and 210.

and 180), Var(μ̂x) decreases as α increases. The minimum is obtained under the
one-pool design. When LLOD is close to μ̂x (e.g., 200 and 205), Var(μ̂x) takes the
minimum at 0 < α < 1. A hybrid design is favorable. Although the one-pool design
does not give the minimum, Var(μ̂x) for the one-pool design (78.2 for LLOD =
200) is close to the minimum (68.7). Due to the simplicity of design, one-pool
design can be recommended. When LLOD > μ̂x (e.g., 210), Var(μ̂x) increases as
α increases. The maximum of Var(μ̂x) is obtained under one-pool design.

3.2. Gamma distributed biomarker with double exponentially distributed mea-
surement error and pooling error. In this subsection we exemplified the two-
assay design with replicates using real data from a study of chemokine biomarker
monocyte chemotactic protein-1 (MCP-1). MCP-1 plays a role in a variety of
pathological conditions such as inflammatory and immune reactions. Assays are
measured in different plates. Each plate has its own LLOD. In this article we use
only the data from the plates with LLOD = 0.016, because our model requires the
same LLOD. Each plate was measured twice. There are 99 individual sampling
assays, and 45 pooled assays with p = 2. The mean of the individual sampling
assays is 0.189, and the standard deviation is 0.183. The measurement errors can
be calculated by the difference of individual sampling assays [see (1)], and the
pooling errors can be calculated by the difference of pooled assays; see (2). We
used the R package VGAM [Yee (2010)] to fit the difference of individual repli-
cates �Z(1) to obtain the estimate of parameter c. Then we fit the difference of
pooled replicates �Z(p), which follows a double exponential distribution with pa-
rameter e. The estimated variances of measurement error and pooling error can be
obtained by

V̂ar
(
e(m)) = V̂ar(�Z(1))

2
,
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V̂ar
(
e(p)) = V̂ar(�Z(p)) − V̂ar(�Z(1))

2
.

After we obtained the estimates of the variances of pooling error and measurement
error, we used one individual sampling group and one pooling group to estimate
the other parameters, for example, a and b of the Gamma distributed biomarker.

The histograms of individual biomarker Z(1), difference of measurement er-
ror e

(m)
1 − e

(m)
2 and difference of the sum of measurement error and pooling error

(e
(m)
1 +e

(p)
1 )− (e

(m)
2 +e

(p)
2 ) are illustrated in Figure 5. The fitting curves are gener-

ated by the parameters estimated by the R package VGAM. The estimated param-

FIG. 5. Histograms of individual biomarker Z(1), difference of measurement error e
(m)
1 −e

(m)
i2 and

difference of the sum of measurement error and pooling error (e
(m)
1 + e

(p)
1 ) − (e

(m)
i2 + e

(p)
i2 ).
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TABLE 2
The estimates of the parameters for individual biomarker Z(1), difference of measurement

error e
(m)
1 − e

(m)
i2 , difference of the sum of measurement error and pooling error

(e
(m)
1 + e

(p)
1 ) − (e

(m)
i2 + e

(p)
i2 ), measurement error e(m) and pooling error e(p).

Here a and b are the shape and scale parameters of the Gamma distribution,
respectively, s are the scale parameters of double exponential distribution

Mean Variance

a b s Estimated Sample Estimated Sample

Z(1) 1.54 0.12 0.189 0.189 0.023 0.034

e
(m)
1 − e

(m)
i2 0.033 0 −0.0034 0.0022 0.0029

e
(m)
1 + e

(p)
1 − e

(m)
i2 − e

(p)
i2 0.050 0 0.012 0.0051 0.0059

e(m) 0.023 0.0011

e(p) 0.027 0.0015

eters are presented in Table 2. For double exponential distribution, the estimated
variance is 2s2, where s is the scale parameter of double exponential distribution.
The estimated V̂ar(e(m)) and V̂ar(e(p)) are presented in Table 2 as well as their
corresponding scale parameters. For Gamma distribution, the estimated mean is
ab and the estimated variance is ab2. Table 2 shows that the sample variances are
very close to the estimated variances. The fitting curves in Figure 5 fit the his-
togram quite well.

For fixed N and n, we need to vary the pooling size p to vary α. However,
we only have individual unpooled data and pooled data with pooling size p = 2.
So we pool the p = 2 pooled assays together to generate the data with different
pooling size. Because we want to include the measurement error and pooling error
in the pooled assays, we used pooled assays rather than individual sampling assays
to generate pooled assays with different pooling size. For example,

Z(p=4) = 1

2

(
Z

(p=2)
i1 + Z

(p=2)
i2

)
= 1

2

(
X1 + X2

2
+ e

(p)
1 + e

(m)
1 + X3 + X4

2
+ e

(p)
i2 + e

(m)
i2

)
= 1

4
(X1 + X2 + X3 + X4) + 1

2

(
e
(p)
1 + e

(p)
i2

) + 1

2

(
e
(m)
1 + e

(m)
i2

)
.

Then we combined individual unpooled data, and measured (p = 2) or simulated
(p > 2) pooled data to generate a hybrid design. The pooling sizes we used are
presented in Table 3. We assume that we have N = 79 or 80 specimens, and can
only afford to perform n = 40 assays. Besides the true LLOD = 0.016, additional
LLOD = 0.05,0.1 and 0.15 are applied to evaluate the influence of LLOD.
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TABLE 3
Parameters used for the Gamma distributed biomarker with double exponentially distributed errors

and the number of assays n = 40

α 0 0.675 0.8 0.925 0.975

Number of individual assays 0 27 32 37 39
Number of pooled assays 40 13 8 3 1
Pooling size p 2 4 6 14 40
Number of samples N 80 79 80 79 79

The results are illustrated in Figure 6. As α increases, Var(â) increases then
decreases at the one-pool design (α = 0.975). One-pool design gives the second
minimum. This tendency is different from the simulation result, where Var(â) de-
creases as α increases, and the minimum is reached under one-pool design. When
LLOD is very small (i.e., LLOD = 0.016), Var(â) does not change much. Var(b̂)

decreases as α increases, which is consistent with the simulation result.

4. Summary and discussion. Although the pooling design can increase the
efficiency of estimation from data subject to a LLOD, there are situations when the
pooling design strongly aggravates the detection limit problem. A hybrid design
was proposed in order to gain benefits from both individual assays and pooled
assays [Schisterman et al. (2010)].

In this article we present methodology for determining a hybrid design that most
efficiently estimates parameters from data subject to measurement error, pooling
error and a limit of detection. Efficiency is gauged by the variance of a maximum
likelihood estimator of a parameter. We demonstrated the asymptotic MLE vari-
ances as functions of the proportion of individual assays to the measured assays.

FIG. 6. nVar(â) and nVar(b̂) versus the proportion of individual assays to the measured assays α

by bootstrapping with N = 79 or 80, n = 40, LOD = 0.016,0.05,0.1 and 0.15.
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To estimate both measurement error and pooling error, a three-assay design or a
two-assay design with replicates is needed. We examined two cases: one is with the
normally distributed biomarker and errors, the other is with the Gamma distributed
biomarker and double exponentially distributed errors.

Under the condition that we have N specimens and we can only perform n < N

assays, we evaluated the efficiency of the one-pool hybrid design, which involves
assaying n − 1 individual specimens and one pooled sample of the remaining
N − (n − 1) individual specimens. When measurement error and pooling error
are negligible, for the normally distributed biomarker, one-pool design minimizes
Var(μ̂x) for LLOD ≤ μx and Var(σ̂x) for LLOD > μx . When measurement error
and pooling error are in effect, the pooled design minimizes Var(μ̂x), while the hy-
brid design minimize Var(σ̂x), Var(σ̂m) and Var(σ̂p). The α value corresponding to
the minimum can be obtained by the R code that we provided as the supplementary
material [Schisterman et al. (2011)]. Note that, in practice, our interest is in μx , σx ,
and not in σp or σm. The simulation result shows that it minimizes both Var(â) and
Var(b̂) for Gamma distribution under complex measurement error and pooling er-
ror assumptions. Hence, under the circumstances described above, when one seeks
to avoid more complicated procedures for determining and executing a potentially
more efficient hybrid design, the one-pool hybrid design is an efficient and easily
implemented alternative to a simple random sample of individual assays.
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SUPPLEMENTARY MATERIAL

R code and detailed derivations (DOI: 10.1214/11-AOAS490SUPP; .pdf).
R code used to calculate nVar(μ̂x), nVar(σ̂x), nVar(σ̂m) and nVar(σ̂p). Detailed
derivation of maximum likelihood estimates and the Fisher information matrix.
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