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SPARSE APPROXIMATIONS OF PROTEIN STRUCTURE FROM
NOISY RANDOM PROJECTIONS1

BY VICTOR M. PANARETOS AND KJELL KONIS

Ecole Polytechnique Fédérale de Lausanne

Single-particle electron microscopy is a modern technique that biophysi-
cists employ to learn the structure of proteins. It yields data that consist of
noisy random projections of the protein structure in random directions, with
the added complication that the projection angles cannot be observed. In or-
der to reconstruct a three-dimensional model, the projection directions need
to be estimated by use of an ad-hoc starting estimate of the unknown par-
ticle. In this paper we propose a methodology that does not rely on knowl-
edge of the projection angles, to construct an objective data-dependent low-
resolution approximation of the unknown structure that can serve as such a
starting estimate. The approach assumes that the protein admits a suitable
sparse representation, and employs discrete L1-regularization (LASSO) as
well as notions from shape theory to tackle the peculiar challenges involved
in the associated inverse problem. We illustrate the approach by application
to the reconstruction of an E. coli protein component called the Klenow frag-
ment.

1. Introduction. The structure of biological macromolecules is at the heart
of the quest to understand life in purely physical terms, and thus is fundamen-
tal to any biophysical project. A key element in solving the structure of a protein
is to be able to visualize the protein in three dimensions, both in terms of exte-
rior shape as well as of interior variations. This is a challenging task given the
microscopic scale of the structures we wish to access, which can be less than a
nanometer wide. The mechanisms which enable us to gain structural information
will typically provide indirect knowledge (posing inverse problems), which will
have to be translated into initial structural terms in a mathematically sound way.
Such mechanisms include X-ray crystallography and electron microscopy, among
others [Drenth (1999), Glaeser et al. (2007)]. The electron microscope (Figure 1)
in particular, is a powerful tool that possesses important advantages over its “com-
petitors,” such as high scattering power and the retainment of phase information
[Chiu (1993), Henderson (2004)]. It allows the retrieval of sufficiently detailed
three-dimensional representations to be able to deduce atomic-level representa-
tions of the macromolecules of interest: the chemical structure of the particle of
interest (i.e., the amino acid sequence) can be fitted (docked) into the density map
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FIG. 1. A transmission electron microscope at the MRC Laboratory of Molecular Biology, Cam-
bridge, UK.

produced via electron microscopy to obtain the complete three-dimensional fold-
ing of the particle [Glaeser et al. (2007)].

At the most basic level, the structure of a protein is determined by the spatial
configuration of its constituent atoms. The negatively charged electrons of each
atom create a field of electric potential surrounding the atom, and when combined,
these electric potentials create a density of potential ρ(x, y, z) in space (that can be
thought of as a probability density function). This is called the shielded Coulomb
potential density, and we usually think of a particle as being one and the same as
its potential density (it is this density that we seek in order to dock the amino acid
sequence of the particle and completely understand its structure). When placed un-
der an electron beam, the potential ρ causes a reduction to the beam intensity due
to electron scattering. If the beam is in the z-direction, then the Abbe image for-
mation theory [Glaeser et al. (2007)] stipulates that the reduced intensity recorded
is approximately given by ∫ +∞

−∞
ρ(x, y, z) dz + noise.

Essentially, knowledge of the optical density recorded on the film corresponds to
knowledge of the two-dimensional marginal density of ρ in the z-direction, ex-
cept for some minor optical effects such as astigmatism, defocus, etc. If we were
able to obtain multiple such measurements on the same particle from various beam
directions, then determination of the three-dimensional density would amount to
the solution of a noisy tomography problem with random projection angles. This
type of problem is well understood and has been extensively studied in the sta-
tistical literature, both methodologically [e.g., Vardi, Shepp and Kaufman (1985);
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Silverman et al. (1990); Green (1990); Jones and Silverman (1989)] and theoreti-
cally [e.g., Johnstone and Silverman (1990), O’Sullivan (1995)], principally in its
positron emission tomography (PET) version.

It is impossible, however, to image the same particle under many angles be-
cause extended exposure to the electron beam will cause chemical bonds of the
particle to break, and thus will alter the structure of the specimen. A means to sur-
pass this difficulty is to crystallize many identical particles, and thus distribute the
electron dose over multiple occurrences of the same structure, but the crystalliza-
tion process is usually cumbersome, time-consuming, and unpredictably varying
for different types of particles [Glaeser (1999)].

Single particle cryo-electron microscopy is a technique of electron microscopy
that avoids the process of crystallization [e.g., Glaeser (1999)], and, as such, it is
increasingly popular as a structure determination tool in structural biology. The
idea is to image a large number of unconstrained particles in solution. The par-
ticles rotate and diffuse freely in solution, and are then rapidly vitrified, having
assumed various different random orientations. After preliminary processing, the
data yielded are essentially a number of noisy versions of the projected potential
densities, at orientations both random and unknown.

Traditional tomographic techniques break down in this setting, as these crucially
depend on the knowledge of the projection angles. In order to be able to put these
techniques to use, biophysicists attempt to estimate the unobservable projection
angles [Frank (1999)]. To this aim, they typically assume a completely specified
low resolution form for the unknown density. This model often relies on knowl-
edge on the structure of the particle gained either from other experiments or from
an ad hoc examination of the projections by eye. In some cases, this model can be
derived from the data using the so-called projection-slice theorem [Deans (1993)]
for Radon transforms, but the success of this approach will depend on the level
of noise in an image. Once such a prior is given, the unknown angles are consid-
ered as parameters to be estimated. When a set of angles is estimated, they are
used in order to obtain a traditional tomographic reconstruction [Natterer (2001),
Deans (1993)], and update the starting model [Frank (1999), Glaeser et al. (2007)].
The procedure is then iterated until it stabilizes. Broad classes of such refinement
methods include the so-called projection matching method [Penczek, Grassucci
and Frank (1994)] and 3D Radon transform method [Rademacher (1994)]. In the
first approach, the prior model is projected over a wide range of directions, ob-
taining so-called re-projections. Each data projection is then cross-correlated with
each re-projection, and is assigned an angle corresponding to the angle of that re-
projection which produced the highest cross-correlation. The 3D Radon approach
is essentially equivalent, the only difference being that it focuses on the Radon
transform rather than on the X-ray transform (which are of course very closely
related). Variations of these approaches also exist that try to “integrate out” the
angles rather than estimate them: treating them as unobservable random variables
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(missing data) and using an approach based on the EM algorithm (EM here stand-
ing for Expectation–Maximization), initialized again by some prior model for the
structure of the particle [Sigworth (1998), Bern, Chen and Wong (2005)]. Indeed,
this latter approach draws interesting parallels to the methodology of Vardi, Shepp
and Kaufman (1985) in the case of positron emission tomography. As already men-
tioned, though, what is common to any of these strategies is that they require
a completely specified initial estimate for the structure. In cases where previous
structural information is not available, the level of noise is relatively high, and a
naked eye examination is either infeasible (e.g., when the particle has no symme-
tries) or would best be avoided, it is natural to seek approaches to obtaining “ob-
jective” initial models directly from the data, in order to then initialize approaches
such as those mentioned above.

The purpose of this paper is to develop statistical tools that will enable the con-
struction of a data-dependent starting model in the noisy setting encountered in
practice. If the starting model is to depend only on the data at hand, its construction
will have to bypass the unknown angles, thus requiring the approximate solution
of a tomographic problem that has a second layer of ill-posedness. Nevertheless,
it was seen in Panaretos (2009) that a consistent formal estimator for the shape of
the particle may be constructed. However, the problem of the actual construction
of an estimate in a practical situation still remained open, as the formal estima-
tors introduced in Panaretos (2009) are only implicitly defined. Their construction
requires the solution of further inverse problems, with severe instabilities due to
the presence of noise, and the approximate nature of the modeling framework.
In this paper we propose a framework for implementing estimators such as those
proposed in Panaretos (2009) under sparsity constraints. Our approach combines
L1-regularization using Least Angles Regression with the special geometry of the
sample space to yield a procedure applicable to actual electron microscope data.
We illustrate the approach through an artificial example and also by application to
noisy single particle projections of the so-called Klenow fragment, a large protein
fragment that is produced during DNA polymerase interactions in E. coli. The pa-
per is structured as follows. Section 2 provides a statistical formulation of the prob-
lem, and some relevant background. Section 3 introduces the modeling framework
in which sparsity is to be understood. Our approach is presented in Section 4 and
illustrated on an artificial sparse density. Finally, the method is applied to single
Klenow particles, and an initial sparse approximation of the structure is obtained
in Section 6. Some concluding remarks are made in Section 7.

2. Statistical formulation. From the statistical perspective, the problem can
be phrased as follows. We wish to recover a compactly supported probability den-
sity function ρ(x), x = (x1, x2, x3)

� ∈ R3, given noisy discrete images of N ran-
dom projections,

ρ̆n(x, y) =
∫ +∞
−∞

ρ(Unx) dx3, n = 1, . . . ,N,
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where {Un}Nn=1 is a collection of i.i.d. random rotation matrices distributed accord-
ing to normalized Haar measure on SO(3), the group of rotations in R3, that is,

U�
n Un = I a.s., det(Un) = 1 a.s.

and

WUn
d= UnV ∀W,V ∈ SO(3).

The N discrete noisy profile images {Pn}Nn=1 are obtained by sampling the projec-
tions {ρ̆n}Nn=1 on a regular T × T lattice, subject to corruption by additive noise,

Pn(i, j) = ρ̆n(xi, yj ) + εn(i, j), i, j = 1, . . . , T .

It will be assumed that the noise arrays are independent, white and Gaussian,

εn(i, j, )
i.i.d.∼ N (0, σ 2

ε ). The (more or less) standard problem of tomography would
be described by

Recover ρ(x) given {(Pn,Un)}Nn=1.(2.1)

However, in the single particle setup, the rotations {Un} are unobservable, leading
to the perturbed problem

Recover ρ(x) given {Pn}Nn=1.(2.2)

The difference between these two problems is fundamental. Every established
technique for solving problem 2.1 (e.g., based on singular value decomposition,
likelihood, smoothed backprojection and Fourier methods) crucially depends on
the knowledge of the projection directions {Un}. In the absence of these directions,
the estimation problem is not even well defined: it is easy to see that the density
ρ(x) is unidentifiable, since any rotated/reflected version ρ(Qx), with Q�Q = I ,
will generate data with the same distributional properties. Intuitively, this means
that one cannot recover an exact coordinate system for the density. Although this is
conceptually obvious, it can be a serious hurdle to statistical estimation: for exam-
ple, if one wishes to parametrize the unknown density using a Fourier expansion,
the Fourier coefficients will not be invariant to changes of the coordinate system.

Nevertheless, the shape of the density ρ can potentially be recovered [Panaretos
(2009)]. The shape of ρ, denoted [ρ], encodes the totality of characteristics of ρ

that are invariant with respect to the coordinate system

[ρ] = {ρ(Ux) :U ∈ O(3)},
where we denote the group of orthogonal transformations in Rd by O(d). Fur-
thermore, it was seen in the same paper that the shape of the projection ρ̆n,
[ρ̆n] = {ρ̆n(Ux) :U ∈ O(2)}, constitutes a sufficient statistic for [ρ]. Hence, iden-
tifiability combined with the sufficiency principle would lead one to consider es-
timating [ρ] on the basis of estimators depending on the data solely through their
shape characteristics [ρ̆1], . . . , [ρ̆n].
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Unfortunately, any likelihood-type approach turns out to be completely in-
tractable in this setup. However, the feasibility of extracting an estimator from
the random projections, without any recourse to the angular component, suggests
that one might consider techniques that yield inefficient estimators that are nev-
ertheless “efficient enough” to serve as a starting model for an iterative procedure
that estimates angles, conducts traditional tomography, and iterates until the recon-
struction stabilizes. Less formally, one can set to obtain a rough initial approxima-
tion that nevertheless captures the essential features of the object that are required
to obtain a first set of angular estimates. In the next section we formulate these
approximations through a class of sparse radial mixtures. These provide, on the
one hand, a means to fruitfully parametrize the notion of shape, and, on the other
hand, a natural way to impose sparsity.

3. Sparse approximations by radial mixtures. The key to our approach is
the realization that approximating the unknown density by a relatively simple ob-
ject suffices, if the aim is to obtain a starting reconstruction. Indeed, ad-hoc start-
ing models used by biophysicists often consist of collections of solid spheres. The
class of approximate models that we shall be pursuing is that of radial mixtures,

ρ(x) =
K∑

k=1

qkφ(x − μk), K ≥ 1, {μk} ⊂ R3, qk > 0,

(3.1)
K∑

i=1

qk = 1

with φ(·) a radial probability density function on R3 (e.g., an isotropic Gaussian
density), that is,

φ(y) = φ(Uy) ∀y ∈ R3,U ∈ O(3).(3.2)

Radial mixtures comprise a flexible yet tractable class of models for density esti-
mation [see, e.g., Hastie, Tibshirani and Friedman (2001), Chapter 6, Section 7].
The choice of this class is especially well suited to this problem, as it offers two
technical advantages:

(1) Good behavior under rotation and projection: the rotated version of ρ ac-
cording to U ∈ SO(3) is given by

(Uρ)(x) = ρ(U�x) =
K∑

k=1

qkφ(U�x − μk)
(3.2)=

K∑
k=1

qkφ(x − Uμk),

that is, by a radial mixture of the same densities with the same mixing coefficients,
but centered at the rotated location parameters {Uμk}. The projected density at
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orientation U will then be given by∫ +∞
−∞

(Uρ)(x1, x2, x3) dx3 =
K∑

k=1

qk

∫ +∞
−∞

φ(x − Uμk) dx3

=
K∑

k=1

qkϕ
(
H(x − Uμk)

)
,

where H is the identity matrix with its last row deleted, and ϕ is the (unique)
two-dimensional marginal of φ,

H =
[

1 0 0
0 1 0

]
, ϕ(x1, x2) =

∫ +∞
−∞

φ(x1, x2, x3) dx3.

(2) The possibility of a finite-dimensional parametrization of the shapes of ρ

and of a projection ρ̆ using the Gram matrix of the original and projected location
parameters, respectively,

[ρ] = (Gram({μk}), {qk}), [ρ̆] = (Gram({HUμk}), {qk}),
where for a collection of K vectors {wj }Kj=1, Gram({wj }) represents the symmetric
nonnegative matrix with (i, j)-element equal to 〈wi ,wj 〉.

In Kendall’s Shape Theory, Gram matrices are employed as a coordinate system
for the shape manifold induced by rigid motions [Kendall et al. (1999), Kendall
and Le (2009)]. Note that if the vectors {wj }Kj=1 are arranged as the columns of a

3×K matrix W, then we may simply write Gram(W) = W�W . This Gram matrix
encodes all the invariant characteristics with respect to O(3) of the configuration
{wj }, since it is invariant under orthogonal transformations of the generating vec-
tors: for B ∈ O(3) we immediately see that Gram(BW) = W�B�BW = W�W =
Gram(W). Furthermore, given a Gram matrix of rank p, one can find K vectors
in Rd , d ≥ p, with centroid zero whose pairwise inner products are given by that
Gram matrix (in fact, the specification of such an ensemble amounts to merely
solving nondegenerate lower triangular linear systems of equations). Therefore,
for a given density φ (or projected density ϕ), the Gram matrices coupled with the
corresponding mixing proportions comprise a complete description of the shapes
of the original and projected densities, respectively.

A further importance of this parametrization is that it provides an interface with
the finite-dimensional case, where projected shape is better understood [Panaretos
(2006, 2008), Le and Barden (2010)]. In particular, it allows use of the following
simple connection between projected shape and original shape:

THEOREM 3.1 [Panaretos (2009)]. Let {wk}Kk=1 be a configuration of K vec-

tors in R3 and let U be a random element of SO(3) satisfying WU
d= UV

d= U ,
for any W,V ∈ SO(3). Then

E[Gram({HUwk}Kk=1)] = 2
3Gram({wk}Kk=1),
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where H is the 3 × 3 identity matrix with its last row deleted.

Based on this result, Panaretos (2009) proved, for known K and under the
assumption that for i �= j we have qi �= qj , that the hybrid maximum likeli-
hood/method of moments estimator ρ̂(x),

ρ̂(x) =
K∑

k=1

q̂kφ(x − μ̂k)(3.3)

is consistent modulo O(3), as the resolution of each image T × T and the number
of projections N grows. Here, μ̂k is any collection of K vectors in R3 with Gram
matrix

Ĝ = 3

2N

N∑
n=1

Gram({ĤUnμk}Kk=1).

The {q̂k} and {ĤUnμk} are maximum likelihood estimators of the common mix-
ing proportions and the individual projected location parameters for each profile,
stemming from the loglikelihood

�({qk}, {HUnμk})
(3.4)

∝ − 1

NT 2

N∑
n=1

T∑
i=1

T∑
j=1

{
Pn(i, j) −

K∑
k=1

qkϕ
(
H(x − Unμk)

)}2

.

The latter loglikelihood stems from the independence between projections and be-
tween pixels, and the Gaussian assumption on the noise. Notice that each of the
vectors HUnμk is treated as a separate parameter.

4. Reconstruction of a nearly black protein. Although the latter develop-
ment provides a consistent solution to the problem from a theoretical perspec-
tive, it does not provide a solution to the practical problem. The estimator defined
formally as ρ̂ cannot be readily constructed given a data set of projections, as it
is implicitly defined through the likelihood equation (3.4). The optimization of
the objective function given by the latter equation is a separate challenge of its
own—not in terms of computational tractability, but in terms of accuracy and sta-
bility. Among the reasons for this is the dimension of the search space (which is
2KN + K). This can to some extent be mitigated, if one is to obtain separate like-
lihood estimates within each projection image, breaking the overall problem into
N independent problems, each with search space dimension 3K (and then seek a
global estimate for the mixing proportions). But, more importantly, it is the highly
nonlinear form of the objective function (3.4) and the possibility of parameters
being almost unidentifiable (when projected means fall close to one another) that
presents the most serious complications in a practical reconstruction. The objective
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function admits multiple local optima that are in addition unstable to minor per-
turbations of the noise term (the search surface has multiple relatively flat peaks).
This instability of the nonlinear likelihood function is a manifestation of an inher-
ent ill-posedness, which is clearly revealed once we re-express the problem as a
collection of N deconvolution problems to be solved given discrete data:

{(ĤUnμ1, . . . , ĤUnμK); (q̂1, . . . , q̂K)}

:= arg min

∥∥∥∥∥Pn(i, j) − ϕ(x) ∗
K∑

k=1

qKδ(x − HUnμk)

∥∥∥∥∥
2

2

.

Here, δ denotes Dirac’s delta function. In this format, the problem is seen to be a
linear inverse problem in the unknown function h(x) := ∑K

k=1 qKδ(x − HUnμk).
The solution of such a problem would require regularization through the imposi-
tion of some norm penalty on the function h that we wish to recover. This cannot
work here because the unknown function to be recovered is a Dirac comb—which
is not an element of L2 and hence does not allow Hilbert space regularization meth-
ods. This is simply a different way of saying that the problem cannot be treated as a
linear one: if we are interested in the locations themselves (the spikes), the problem
is fundamentally nonlinear.

Our basic idea to tackle this problem is to turn the drawback of “singularity”
into an advantage by transforming the nonlinear problem into a linear problem
through discretization of the solution search space. While the function we seek
to recover is not well behaved when considering it as defined over a continuous
domain, it reduces to a very simple object once thought of as a high-dimensional
vector. This simplicity is reflected through sparseness.

In particular, suppose that we relax our search problem and ask to recover the
image pixels that contain spikes, rather than the precise spike locations themselves.
Choose a projection n = n0 and omit the index for simplicity. Then, the problem
can be approximately expressed via the following linear equation:

PT 2×1 = XT 2×T 2βT 2×1 + εT 2×1.(4.1)

Here, P is the vectorized image, obtained by stacking the columns of the image
matrix P . The matrix X is constructed as follows: the pth column of X is a vec-
torized (by column) image (which we call a base profile) generated by placing a
single density ϕ at the center of the j th pixel. More precisely, let uj be the center
of the j th pixel. Then, the pth column of X is given by the vector

{ϕ(uj − up)}T 2

j=1,

where j runs so that the pixels are arranged in column-major order. The parameter
vector β is a T 2 × 1 vector containing at most K nonzero entries:

‖β‖0 ≤ K.
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These entries reveal which pixels contain spikes. Since the entire density must be
contained within the image boundaries, we a priori fix entries of β that correspond
to pixels near the boundary to be zero (or, alternatively, drop the corresponding
columns from the matrix X ). Finally, ε is an i.i.d. Gaussian mean-zero error vector.

Thus, in this discrete form, the problem has been reduced to a model selec-
tion problem in linear regression: we wish to recover the nonzero entries of β ,
which will reveal the approximate spike locations. The key observation, of course,
is that β is sparse: we expect that K � T 2, so that we are attempting to recover a
nearly black object in the terminology of Donoho et al. (1992). It therefore seems
quite appropriate to employ a shrinkage estimator in this setting. There are various
possibilities, but it is the LASSO [Tibshirani (1996)] that arises as the most nat-
ural one in the setting of this problem [see also Hastie, Tibshirani and Friedman
(2001)]. Specifically, observe that the nonzero entries of β should be equal to the
mixing proportions corresponding to the respective spikes (in case multiple spikes
fall within the same pixel, then it would be the sum of the corresponding mixing
proportions). Since the object in question is a probability density, we must have

‖β‖1 =
T 2∑
i=1

|βi | =
K∑

i=1

qi = 1,

and we are naturally led to the following L1-constrained least squares problem
in β:

min‖P − X β‖2
2 subject to ‖β‖1 = 1.(4.2)

Since the specifications of the problem determined the precise value for the L1
penalty, there is even no need to perform cross-validation to determine the band-
width parameter. In practice, of course, the total mass m of the density will not be
precisely known, and may slightly differ from projection to projection. However,
an approximate value m̂ can be easily estimated. Therefore, one can employ the
Least Angle Regression (LARS) algorithm [Efron et al. (2004)] to compute the
whole LASSO path, and calibrate the results around a small neighborhood of the
bandwidth corresponding to the approximate mass m̂.

In order to illustrate the details (and effectiveness) of this discrete regularization
approach, we revisit an artificial example presented in Panaretos (2009), where a
three-dimensional mixture of four Gaussian kernels was to be recovered given its
projections at randomly chosen directions. The pseudo-particle potential density
in three dimensions was given by

ρ(u) =
4∑

k=1

qk

σ 3(
√

2π)
exp

{
−(u − μk)

�(u − μk)

2σ 2

}
,(4.3)

where u = (ux, uy, uz)
� ∈ R3, σ = 0.46, q1 = 0.18, q2 = 0.26, q3 = 0.21, q4 =

0.35, and with {μk} given by μ1 = (0,0.8,−0.3)�, μ2 = (0.7,−0.4,−0.3)�,
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μ3 = (−0.7,−0.4,−0.3)�, μ4 = (0,0,0.8)�. The corresponding signal-to-noise
level for the projections (understood as the ratio of the signal to the noise variance)
was at the level of 61 : 1.

The method employed in Panaretos (2009) to perform the deconvolutions re-
quired for the construction of the estimator was a direct spectral approach based
on results on Toeplitz forms [Grenander and Szegö (1958), Pisarenko (1973)]. The
approach performed well on noiseless projections, but would fail completely even
with very small amounts of noise. This effect is easily anticipated as the Toeplitz
form approach amounts to an approximate discrete version of deconvolution by
unregularized inversion of Fourier coefficients—which is bound to be highly un-
stable in the presence of noise.

In order to produce a reconstruction in the presence of noise, we implement
the LASSO deconvolution approach on the basis of N = 150 noisy random dis-
crete profiles. The typical profile (Figure 2) is given by a discretized image

P = {P(i, j)} defined as

P(i, j) =
K∑

k=1

qkϕ(uij |μ̃k, σ
2) + ε(i, j), i, j = 1, . . . ,64,(4.4)

where ε(i, j) are i.i.d. Gaussian with mean 0 and standard deviation 10−4;
ϕ(·|ν,σ 2) is a spherical bivariate Gaussian density with mean ν and variance σ 2;
uij is the center of the (i, j)th image pixel; {μ̃k}Kk=1 are the locations of the 4
(unobservable) projected means in that profile:

μ̃k := HUμk.

Since each image contains a region that is known a priori to be “empty” (i.e., does
not contain a projected mean), we limit our interest to pixels in the complement of
that region. Let M be the set of indices p ∈ {1, . . . , T 2} such that the pixel centers

(a) (b) (c)

FIG. 2. Three random noisy profiles of the mixture (4.3). The digits indicate the true locations of
the projected component means.
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(a) (b)

FIG. 3. Illustration of the restriction of the support for a discrete profile. (a) A discrete profile with
T = 8. The pixel centers up are denoted by gray dots. (b) The set of candidate means M for the
convolution matrix X .

up satisfy ‖up‖ < w (Figure 3). We call the elements of {up :p ∈ M} candidate
means and build the convolution matrix X as

Xj,p = ϕ(uj |up,σ 2), j ∈ {1, . . . , T 2},p ∈ M.

The choice of the tuning parameter w is made so as to ensure that the base profiles
integrate to (approximately) one. In the specific example, the choice w = π/3 is
seen to be sufficient.

We used the LARS algorithm (in particular, the lars function in the lars pack-
age [Hastie and Efron (2011)] for the R Project for Statistical Computing [R De-
velopment Core Team (2011)]) in order to compute the complete regularization
path (in t) for the LASSO problem

min‖P − X β‖2
2 subject to ‖β‖1 ≤ t,(4.5)

and retained the parameter estimates β̂ provided for t slightly less than the esti-
mated mass m̂ (to avoid overfitting). The latter was estimated by the average total
intensity of the projections. Figure 4 depicts three characteristic noisy random pro-
files, along with the pixels the LASSO picked out as candidate locations for mean
parameters. We denote the centers of these pixels as {up}p∈A, where

A := {p ∈ M : β̂p �= 0}.
Since the true locations of the projected means will almost certainly not be con-
tained in M, and since the discrete representation of the convolution will only be
approximate, a fit with precisely the right number K of nonzero parameters (K = 4
in this case) can rarely be achieved (i.e., |A| �= K). However, the nonzero parame-
ters found by the LASSO will tend to bracket the locations of the projected means,
as can be noticed in Figure 4. It therefore suffices to use a naive clustering rule to
associate nonzero LASSO parameter estimates with projected means: if two pixels
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(a) (b) (c)

FIG. 4. The same three random profiles, with black dots indicating the locations of the nonzero
LASSO coefficient estimates. The digits indicate the true locations of the projected component means.

selected by the LASSO share either an edge or a corner, then they belong to the
same cluster.

Let {Ck}Kk=1 denote the K clusters comprising A, so that A = ⊎K
k=1 Ck , where⊎

denotes a disjoint union. Then, the estimates of the locations of the projected
means are computed by taking a weighted average of the locations of the nonzero
lasso parameter estimates in each cluster using the parameter estimates as the rel-
ative weights,

ĤUμk =
∑

p∈Ck
β̂pup∑

p∈Ck
βp

.

Further, the sum of the LASSO parameter estimates in each cluster provides an
initial estimate of the mixing weight associated with that cluster. Once all of the
mixing weights have been initially estimated, the final estimates are achieved by
scaling the initial mixing weights so that they sum to m̂, the estimated total mass
of the particle,

q̂k :=
∑

p∈Ck
β̂p∑

p∈A β̂p

m̂.

Note here that this is the estimate of the mixing proportions stemming from a
single profile (these will later be combined to produce a global estimate). To mit-
igate any bias in the mixing coefficients estimates introduced by choosing a con-
straint parameter less than 1, one may allow the constraint parameter to increase so
long as the number of clusters remains constant. That is, the constraint parameter
is increased either until it is equal to 1 or until any further increase would spawn a
new cluster. Often, this results in one or more additional nonzero lasso parameter
estimates joining the current clusters.

Once a set of estimated mixing proportions and mean locations has been ob-
tained for each projection, these are used in order to construct the hybrid estima-
tor (3.3). An intermediate step required is building the estimated Gram matrices
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for each projection consistently. That is, we should ensure to the extent possible
that estimated location parameters that correspond to the same three-dimensional
mean should share the same index. For this reason, within each profile, the esti-
mated location and mixing parameters are relabeled according to the ascending
ordering of their mixing proportions (which were assumed to be distinct); that is,
the indices are assigned so that

q̂1 < q̂2 < · · · < q̂K.

Once the labels have been consistently assigned to the location estimates within
each profile, one may obtain a single profile likelihood estimate for the mixing
proportions, by solving the ordinary least squares problem obtained when plugging
the estimated location parameters into the loglikelihood (3.4).

Finally, the estimated Gram matrices and the single set of estimated mixing
proportions are used to construct the hybrid estimator (3.3). Figure 5 shows the
original pseudo-particle in contrast with the estimated version. The reconstruction
was based on 53 of the 150 profiles in our sample, for which four clusters were
more or less clearly identifiable. In the majority of these profiles, the 4 clusters
correspond to the component means. However, from time-to-time, one of the clus-
ters was a false positive. In these cases, the smallest mixing weight was far smaller
than typical for the sample. To further filter these profiles out, we rejected profiles
with left-outlying mixing proportions (left outlying values were omitted when cal-
culating the mixing weights in Table 1).

(a)

(b)

FIG. 5. The actual pseudo-particle density and the estimated density. (a) A level surface of the true
pyramid density from 3 different vantage points. (b) Corresponding level surfaces of the estimated
pyramid density.
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TABLE 1
Estimated mixing weights

k = 1 k = 2 k = 3 k = 4

True mixing weights: {qk} 0.180 0.210 0.260 0.350
Estimate mixing weights: {q̂k} 0.170 0.210 0.263 0.357

The estimated Gram matrix and corresponding estimated location parameters
are contrasted below with the true values (the estimated locations of components in
3 dimensions μ̂ can be computed by solving a simple system of linear equations):

G =

⎛
⎜⎜⎝

0.681 −0.227 −0.227 −0.227
−0.227 0.726 −0.254 −0.244
−0.227 −0.254 0.726 −0.244
−0.227 −0.244 −0.244 0.716

⎞
⎟⎟⎠ ,

Ĝ =

⎛
⎜⎜⎝

0.696 −0.176 −0.279 −0.241
−0.176 0.660 −0.247 −0.237
−0.279 −0.247 0.736 −0.209
−0.241 −0.237 −0.209 0.687

⎞
⎟⎟⎠ ,

(μ1 μ2 μ3 μ4 ) =
⎛
⎝ 0.825 −0.275 −0.275 −0.275

0.000 0.806 −0.409 −0.397
0.000 0.000 0.695 −0.695

⎞
⎠ ,

( μ̂1 μ̂2 μ̂3 μ̂4 ) =
⎛
⎝ 0.834 −0.211 −0.335 −0.289

0.000 0.784 −0.405 −0.380
0.000 0.000 0.678 −0.678

⎞
⎠ .

Interestingly enough, the reconstruction procedure was not severely affected
by higher levels of noise contamination. Even when the noise variance was in-
creased by two orders of magnitude, leading to a 1 : 1 signal-to-noise ratio, the
reconstructed version of the particle was not significantly perturbed (see Figure 6).
Since it is the deconvolution step that is the most ill-posed aspect of our approach,
this can be largely attributed to a noteworthy degree of stability exhibited by the
LASSO as a means for deconvolution.

5. More on the geometry of the problem. The implementation of the
LASSO based hybrid estimator to the almost black pseudo-particle of the previous
section brings to the surface two potential issues that might arise when implement-
ing the procedure to actual proteins (as will be done in Section 6). We consider
these in the next two paragraphs.

5.1. Using fewer projections. The first point relates to the usability of all the
profiles available. It was seen that several projections were not used because the
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FIG. 6. Reconstructions under different signal-to-noise scenarios. Each column corresponds to a
different noise level. The first row presents a typical profile along with the candidate mean positions
obtained via the LASSO. The second row presents the same profiles without any noise, and the corre-
sponding candidate mean positions obtained via the LASSO. The last two rows present two different
viewpoints of the final reconstruction obtained.
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viewing angles that they represented caused problems in the construction of the
estimator. Nevertheless, the estimator constructed seemed to be rather successful.
It is therefore natural to wonder if one could do with far fewer projections. This will
become especially relevant in practical situations where a number of projections
might not present well-identifiable mixture means. The answer is in the affirmative,
that is, one can typically use a very small number of projections, as is illustrated
by the next lemma.

LEMMA 5.1. Let H1,H2,H3 be projection matrices of rank 2 acting on R3

and (μ1, . . . ,μK) be an ensemble of K vectors in R3. If the ranges of I −H1, I −
H2, I − H3 are pairwise orthogonal, then

Gram({μk}Kk=1) = 1

2

3∑
i=1

Gram({Hiμk}Kk=1).

PROOF. Since the rank of the projection matrices involved is 2, we may find
unit vectors {ei}3

i=1 such that

Hi = (I − eie�
i ), i = 1,2,3.

Furthermore, since the images of I − H1, I − H2, and I − H3 are pairwise or-
thogonal, it must also be that {ei}3

i=1 be pairwise orthogonal, thus constituting an
orthonormal basis for R3. Letting V denote the 3 × K matrix with (μ1, . . . ,μK)

as its columns, it follows that

3∑
i=1

Gram({Hiμk}Kk=1) =
3∑

i=1

V �H�
i HiV = V �

( 3∑
i=1

Hi

)
V

= 3V �V − V �(e1e�
1 + e2e�

2 + e3e�
3 )V = 2V �V

= 2Gram({μk}Kk=1). �

Lemma 5.1 allows us to heuristically reinterpret the estimator Ĝ of the Gram
component given by

Ĝ = 3

N

1

2

N∑
n=1

Gram({ĤUnμk}Kk=1)

by thinking of it as grouping the data into N/3 triads of nearly orthogonal views,
forming an estimator within each triad using Lemma 5.1, and then averaging these
N/3 estimators.

It follows that, in principle, only a few random projections at unknown angles
suffice to reconstruct a Gram matrix—provided that we can arrange them in groups
that represent views that carry information from relatively different viewpoints. In
practice, one cannot know whether projection angles are indeed orthogonal, since
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they are unknown. However, one can try to identify classes of profiles that appear
to be carrying significantly different profile information, and use these as a proxy.
The procedure is illustrated in the next section.

5.2. Consistent construction of Gram matrices. The second issue that became
apparent from the pseudo-particle example has to do with the consistent construc-
tion of the Gram matrices across different profiles. This construction hinges on
the assumption that the mixing proportions are distinct. The formula defining the
pseudo-particle guaranteed that the mixing proportions were indeed distinct, and
allowed us to successfully construct the estimator. In practice, it is natural to ex-
pect situations where the mixing proportions for certain components are not signif-
icantly different, leading to instabilities in the construction of the estimated Gram
matrices. To address this problem, we can take advantage of the special geometry
of the problem and, in particular, the fact that the projections of a radial basis func-
tion cannot lie in a totally arbitrary subspace of the set of 2D radial basis functions:
the locus of projections is highly constrained, a fact that may be exploited in order
to assign mixing proportions in a way that attempts to respect these constraints.
The constraints on the radial basis functions induce corresponding constraints on
the support of the projected Gram matrices, forcing this support to depend cru-
cially on the three-dimensional original Gram matrix (i.e., we are dealing with a
nonregular problem). Specifically, a projected Gram matrix cannot be any arbitrary
nonnegative definite symmetric matrix. The locus of possible projected Gram ma-
trices G comprises a smooth surface in Rk×k of (intrinsic) dimension 2. The idea
is therefore that an arbitrary permutation of the entries of a projected Gram ma-
trix induces an abrupt change in its location relative to G, typically mapping it far
from G. In principle, we should thus be able to choose an arrangement of the en-
tries of a projected Gram matrix so as to make it “closest” to the locus of “allowed”
Gram matrices.

To be more precise, if V is any 3 × k matrix such that G = V �V , then the
projected Gram matrix at direction given by e = (e1, e2, e3)

� ∈ S2 is defined as

G(e) = V �(I − ee�)V .

As e ranges over the unit sphere, the matrix I − ee� ranges over the real projective
space (the sphere with antipodal points identified). This real projective space can
be visualized in three dimensions as the Roman surface (see Figure 7), using the
mapping S2 � (e1, e2, e3)

� �→ (e2e3, e1e3, e1e2)
� [Apery (1987)]. The effect of

pre-multiplying by V � and post-multiplying by V is to stretch this Roman surface
according to the singular values of V , rotate it by its left singular vectors and
finally shift it [much like a full column rank d × n matrix transforms the sphere
Sn−1 into an (n − 1)-dimensional ellipsoid in Rd ]. This can be seen directly by
using Kronecker products:

vec{G(e)} = vec{V �(I − ee�)V } = (V � ⊗ V �)vec{(I − ee�)}.
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FIG. 7. The Roman surface from three different vantage points.

In practice, the estimated Gram matrices will not lie precisely on the locus G since
their construction is subject to error. However, we expect that they should lie close
to this surface. Therefore, given a Gram matrix that is determined up to a permu-
tation of its entries, one can select the arrangement of its entries so as to minimize
its distance from the underlying locus G. Of course, the exact locus G will not be
known in practice, as it is in bijective correspondence with the unknown three-
dimensional Gram matrix G. However, an initial estimate of the surface G can
be constructed using those projected Gram matrices for which correspondences
are known. The procedure is illustrated in the next section, where we construct a
sparse initial model for the potential density of a real biological particle.

6. Application: Sparse approximation of a Klenow fragment. We now turn
to demonstrate our approach on noisy projections of an actual biological particle
called the Klenow fragment. The Klenow fragment is a large protein fragment that
is produced in E. coli when DNA polymerase reacts with certain enzymes [Klenow
and Henningsen (1970)]. The data set we will consider consists of 250 noisy pro-
jections of the actual known structure of the particle, produced in silico, mimicking
the behavior of the electron microscope, and kindly provided by Professor Andres
Leschziner, Harvard University [for a detailed description of the data generation
methodology, see Leschziner and Nogales (2006), Sections 2.1 and 2.2]. A sample
of twelve of these projections is depicted in Figure 8. The projection signal-to-
noise ratio is at the level of 3 : 1.

6.1. Identifiability and blind deconvolution. A brief visual inspection of these
projections should make it immediately clear that, unlike the synthetic particle ex-
ample treated earlier, the Klenow fragment does not fit precisely within the sparse
radial mixture framework. However, it is also apparent that if it is a coarse first
order approximation that we are interested in, then the sparse radial model is quite
reasonable. Nevertheless, the approximate nature of this representation will have
certain implications:

(1) The isotropic density function on which the radial representation is based, is
unknown. In essence, this means that the deconvolution problem at hand is a blind
deconvolution problem, as the point spread function itself is poorly determined.
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FIG. 8. A sample of twelve projections from the Klenow fragment data set.

Fortunately, we will see that the discrete deconvolution approach based on the
LASSO remains successful even when the convolution matrix is approximate.

(2) It is likely that only a subset of the projections will be usable, because sev-
eral of the projections may involve projected means that lie close to one another,
hence pushing to the limit of unidentifiability.

(3) The mixing proportions corresponding to the best fitting radial representa-
tion have no guarantee of being well separated. Therefore, we will need to make
use of the special geometry of the problem, as the estimated mixing weights will
not be sufficient for labeling the components.

We begin by applying the LASSO deconvolution procedure to each of the 250
profiles. Since the isotropic density for the expansion is unknown, we employ a
Gaussian kernel using σ = 0.224—a value chosen experimentally (and which will
later be refined). Interestingly, we observed that employing different kernels (or
even different scale parameters) did not significantly influence the results, provided
that σ was not too large. Even though the point spread function was more or less
arbitrarily selected, the LASSO deconvolution procedure produced highly sensible
output (some examples are shown in Figure 9), providing evidence to the effect
that the procedure is relatively robust to perturbations of the point spread function,
provided that it remains isotropic and relatively concentrated.
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(a)

(b)

(c)

FIG. 9. Three classes of 4 profiles. The labeling of the components was obtained by taking the
mixing weights in descending order. (a) Class 1: profiles with 6 identifiable projected component
means. (b) Class 2: profiles with 5 identifiable projected component means. (c) Class 3: profiles with
4 identifiable projected component means.

Since several profiles fell into the “almost unidentifiable” regime, we selected
three classes of profiles where the location parameters seemed well identified and
that comprised relatively different viewpoints of the particle. The classes were
constructed by choosing a generating profile and then selecting additional profiles
that appeared to be reflections or rotations of the generating profile. Class 1 con-
sisted of profiles where the LASSO deconvolution procedure identified 6 compo-
nent means. Classes 2 and 3 consisted of profiles where the LASSO deconvolution
procedure identified, respectively, 5 and 4 component means. The three classes are
shown in Figure 9. Our experience showed that only very few particles are actu-
ally required to obtain a good reconstruction and so we limited class membership
to four particles per class (in the pseudo-particle example, we observed that as few
as a dozen could be used to produce an excellent reconstruction).

The next steps require determining the correct labeling of the components
within each class relative to the generating profile, and consistently combining the



RECONSTRUCTION OF SPARSE PROTEINS 2593

Gram matrix estimates from each class to obtain an overall estimate of the Gram
matrix. To describe these steps, we use the notation μ̂

(i·j)
k and q̂

(i·j)
k to denote, re-

spectively, the estimated mean and mixing weight of the kth component in the j th
profile of class i. Additionally, we use μ̂(i·j) to denote the matrix with columns
μ̂

(i·j)
k and q̂(i·j) to denote the vector with elements q̂

(i·j)
k , k = 1, . . . ,Ki .

6.2. Labeling the projected component means within a class of profiles. Since
each class consists of profiles that are assumed to be approximately rotations or re-
flections (plus some small perturbation) of the generating profile, the Gram matrix
generated by any member of the class should be close to the Gram matrix gener-
ated by the generating profile when the corresponding components have the same
labels. This suggests the following Procrustean algorithm for determining the cor-
respondences between the projected component means in a candidate profile and
those in the generating profile:

(1) Make a list of all possible labelings of the components in the candidate
profile.

(2) For each labeling l, compute the quantity dl = ‖GR −Gl‖F where GR is the
Gram matrix generated by the reference profile, Gl is the Gram matrix generated
by the candidate profile with labeling l and ‖ · ‖F is the Frobenius matrix norm.

(3) Choose the labeling corresponding to the smallest dl .

An example is shown in Figure 10. The correspondences within each class can
now be obtained by applying these steps, in turn, to each candidate profile in the
class.

(a) (b) (c)

FIG. 10. The target profile is roughly a reflection of the reference profile. The initial labeling of
the components in the target profile was obtained from the estimated mixing weights and does not
agree with the reference profile. However, the alignment algorithm finds the correct correspondences.
(a) Reference; (b) target: before; (c) target: after.
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6.3. Estimating the Gram matrix. We begin by using Theorem 3.1 to produce
an initial estimate of the Gram matrix for Class 1:

G̃1 = 3

2 · 4

4∑
j=1

Gram
(
μ̂(1·j)).(6.1)

It should be noted that while each individual Gram matrix within this class
encodes an ensemble that is intrinsically two-dimensional (i.e., has rank 2), the
Gram matrix obtained by the averaging procedure does not necessarily encode
an ensemble that can be imbedded into a two-dimensional plane (i.e., the aver-
aged matrix has rank higher than 2). This provides some intuition on the work-
ings of the inversion procedure: if all the projections within a class were identical,
the average would be exactly of rank 2, so that the averaging provides no three-
dimensional information. However, none of the class members represent precisely
the same orientation. These minor perturbations provide some three-dimensional
information, even though not dramatic: the resulting matrix might no longer be of
rank 2, but its third singular value will be relatively small- the three-dimensional
ensemble it encodes is almost two dimensional. The intuition is that when Gram
matrices from further classes are added in (representing significantly different ori-
entations), the ensemble generated by the averaged Gram matrix becomes “more
three-dimensional.”

In fact, there is no guarantee that a Gram matrix formed by averaging several
rank-2 Gram matrices will have rank 3: the rank may actually end up being higher.
For this reason, we further make a rank 3 approximation of G̃1 using its singular
value decomposition. Let

G̃1 = U1D1V
�
1

be the singular value decomposition of G̃1 and define

Ĝ1 = U ′
1D

′
1V

′
1
�
,

where U ′
1 and V ′

1 are, respectively, the first 3 columns of U1 and V1 and D′ is a
diagonal matrix containing the first 3 singular values of G̃1.

In class 2, we have K2 = K1 −1 = 5, hence, we assume that one of the identified
means in class 2 has multiplicity 2 (i.e., we assume there are in fact 6 components
in the true density and that the projections of two of them fall sufficiently close in
the profiles in class 2 that the LASSO deconvolution approach identifies them as a
single component). Also, we note that the largest component is sufficiently distinct
that it can be used reliably to identify the first component.

Following from these assumptions and in order to obtain a 6 × 6 Gram matrix
“compatible” with Ĝ1, we consider ensembles of means of the form[

μ̂(2·j) μ̂
(2·j)
k

]



RECONSTRUCTION OF SPARSE PROTEINS 2595

for k = 1, . . . ,5 and j = 1, . . . ,4. The idea is to use the geometrical properties
introduced in the previous section, to choose that candidate Gram matrix which
lies closest to the locus of projected Gram matrices. The latter is unknown, but
we may approximate it by the locus generated by Ĝ1, which constitutes itself an
estimator of the unknown three-dimensional Gram matrix. Let P = {Pl} for l ∈ L
be the set (with index l) of all 6 × 6 permutation matrices that leave the first row
unchanged. We then build the set of candidate Gram matrices with elements

Glk = 3

2 · 4

4∑
j=1

Gram
([

μ̂(2·j) μ̂
(2·j)
k

]
Pl

)
(6.2)

for all combinations of l ∈ L and k ∈ {1, . . . ,5}.
Our measure of affinity to the locus generated by Ĝ1 is the Euclidean distance

between the candidate Gram matrix and this locus: the stretched Roman surface
generated by Ĝ1. In practice, this distance is computed by randomly sampling a set
of points on the Roman surface, then taking the minimum distance between each
of these points and the candidate Gram matrix (Figure 11). Of course, the induced
distribution on the Roman surface will no longer be uniform, but it is not necessary
that it be. All that is required is a relatively good coverage of the surface. We use a
sample of 1,000 points on the perturbed Roman surface, defined as

Sn = V ′
1(I − unu

�
n )V ′

1
�
, n = 1, . . . ,1,000,

with {un} being unit random vectors and (V ′
1)

�V ′
1 = Ĝ1. We then define the dis-

tance

d(Glk) = min
n

‖Glk − Sn‖F .

(a) (b)

FIG. 11. (a) Sampled points on the Roman surface generated by Ĝ1. (b) Point cloud of all possible
permuted Gram matrices for class 2, relative to the Roman surface generated by Ĝ1. The red point
corresponds to the point of minimum distance.
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Taking l̃ and k̃ such that d(G
l̃k̃

) is minimum, we proceed to compute an initial
estimate of the Gram matrix from the profiles in classes 1 and 2 as

G̃12 = 3

2 · 8

[ 4∑
j=1

Gram
(
μ̂(1·j)) +

4∑
j=1

Gram
([

μ̂(2·j) μ̂
(2·j)

k̃

]
P

l̃

)]
.(6.3)

The final estimate Ĝ12 is obtained by making a rank 3 approximation of G̃12 using
the singular value decomposition.

Finally, we proceed analogously for the remaining class. In class 3, we have
K3 = K1 − 2 = 4, hence, we assume that either one of the identified means has
multiplicity 3, or two identified means have multiplicity 2. Again, to obtain a 6×6
Gram matrix, we consider ensembles of the form[

μ̂(3·j) μ̂
(3·j)
k1

μ̂
(3·j)
k2

]
,

where k1 ≤ k2 ∈ {1, . . . ,4}. The overall Gram matrix estimate is again computed
by generating a set of candidate Gram matrices and taking the configuration that
yields the smallest distance to the stretched Roman surface generated by Ĝ12, then
by updating the Gram matrix estimate as above.

As a by-product of estimating the Gram matrix, we now know where to place
each of the 6 component means in any given profile, and which component means
correspond to which from profile to profile. Consequently, we may estimate the
mixing weights and the tuning parameter σ 2 using linear regression. Given a can-
didate value for σ 2, we can construct N convolution matrices {Xn,σ 2}Nn=1 (corre-
sponding to the N profiles) as described in Section 4. We thus obtain N linear
regression problems, one for each projection. By stacking the corresponding con-
volution matrices into a single N2 × 6 matrix, we obtain a single regression for
the 6 common mixing weights, and estimate the latter by ordinary least squares.
The procedure can be performed for different choices of σ 2 on a prespecified
grid, retaining the set of mixing weight estimates that correspond to the regres-
sion with the best fit. The estimate for σ 2 thus obtained for the Klenow fragment
was σ̂ 2 = 0.0571.

The sparse reconstruction produced by employing the estimated Gram matrix
and mixing coefficients is depicted in Figure 12. In order to appreciate the “fit”
of the sparse reconstruction to the data, we construct noisy projections from the
reconstruction and contrast them to several typical projections of the Klenow frag-
ment. The projections of the reconstructed model are constructed so as to mimic
the effects that the microscope induces on the profiles (astigmatism, defocus, con-
trast transfer function effects) and so as to be characterized by a signal-to-noise
ratio similar to that of the actual projections. A sample of such contrasts is given
in Figure 13. We observe that, even though rather sparse, the reconstructed den-
sity is able to capture the main features of the projections quite successfully. This
hints that the reconstructed density can be appropriate to use as a starting model.
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(a) (b) (c)

FIG. 12. Estimated density for the Klenow fragment. (a) View point 1; (b) view point 2; (c) view
point 3.

What is especially important is that the data produced by our reconstruction seems
to be highly consistent with the actual Klenow data even for viewing angles that
were not used in the reconstruction; in fact, this remains true even for viewing
angles that fall in the unidentifiability regime. Figure 14 shows the corresponding
residual deviation heat-maps. We observe that underestimation (corresponding to
yellow/orange regions) occurs in the regions between the components of the Gaus-
sian mixture—evidently, there is mass there that cannot be captured by the Gaus-
sian mixture. There are also some regions where overestimation occurs (darker
green regions), mostly close to the center of blob-like components of the particle
profiles, principally due to the fact that the mixing components of the Gaussian
mixture will obviously have relatively different higher-order concentration char-
acteristics from the blob-like components of the actual particle. For example, in
Figure 14(f), we observe slight overestimation of the density at locations corre-
sponding to the center of the blob-like components of the actual profile. These two
are the only systematic patterns that appear in the residuals, and are evidently at-
tributed to the bias introduced from our regularization via the Gaussian mixture
model employed.

7. Concluding remarks. Despite the severely ill-posed nature of noisy ran-
dom tomography, this paper demonstrates that it is practically feasible to obtain
useful three-dimensional structural information on a protein given only noisy pro-
jections at random and unknown angles. The approach proposed to this effect rests
on two basic elements: the imposition of a certain degree of sparsity on the required
reconstruction, and the exploitation of the special geometry that is intrinsic to to-
mography data and provides valuable information. Though the sparsity assumption
will typically lead to a relatively coarse-grained approximation to the protein un-
der investigation, this is precisely what is required: a low-resolution starting model
that can be used as a reference structure to iteratively recover the unknown angles
to then produce a high-resolution reconstruction based on traditional nonparamet-
ric tomographic techniques (once the projection angles have been estimated, it is
no longer necessary to maintain the mixture model).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 13. Ten pairs of projections. Each pair contains an actual Klenow fragment projection (left)
coupled with a projection from our sparse approximation (right).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 14. Heat-maps of residual deviations of the fitted projections from the actual projections.
Each of the subfigures (a)–(i) is generated from the corresponding pairs (a)–(i) in Figure 13.

While it had previously been theoretically demonstrated in Panaretos (2009) that
it is feasible to reconstruct a three-dimensional object in this setting (up to an or-
thogonal transformation), obtaining an explicit reconstruction in practice remained
elusive. By employing a radial basis representation of the unknown protein, the
problem of structure determination was reduced to the problem of recovering the
Euclidean shape of the ensemble of location parameters of the radial functions
and the associated mixing coefficients. This was done in two steps: nonlinear de-
convolution and shape averaging. In the deconvolution step, the projected location
parameters had to be identified within the noisy projections. Since the nature of
the radial expansion representation is approximate, the deconvolution problem was
blind.
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To tackle this problem, our approach relaxed the nonlinear deconvolution prob-
lem into a linear problem by considering its discretized version with an approxi-
mately chosen point spread function. When seen in this setting, the problem falls
precisely in the framework of sparse model selection. Since the object to be recov-
ered is a density function, the LASSO arose as the most natural technique to attack
the problem, with an L1 penalty corresponding to a requirement on the total mass
of the density to be recovered. Despite the fact that the exact point spread func-
tion was unknown, it was seen that the LASSO performed extremely satisfactorily
where other solution approaches break down. This was true both in the setting of
artificial examples, as well as in the setting of protein data. Once the projections of
the location parameters had been deconvolved, the averaging step was carried out.
This required the recovery of the correspondences between location parameters in
different projections. To this effect, our approach exploited the nonregularity of
the tomography problem: it was seen that the Gram matrices of the k × k projected
components are constrained to lie in a smooth two-dimensional subset of Rk×k ,
which was identified as a deformed Roman surface. This was then exploited in
order to choose consistent correspondences across projections.

The methodology was applied with success both to projection data arising from
an artificial example, as well as to projections of an actual protein component, the
Klenow fragment. Especially in the latter case, it was seen that the sparse recon-
struction recovered from the noisy projection data can very well serve as a starting
model, since its typical projections are highly similar with those of the projec-
tion of the true structure (Figure 13). It is therefore likely that our approach will
provide a useful means to obtaining objective data-dependent starting models in
the context of single particle electron microscopy. From the purely statistical per-
spective, the use of the LASSO in the setting of double blind deconvolution can
be of independent interest when seen in the context of estimation of mixtures of
scale-location densities of an unknown family.
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