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In geostatistics, it is common to model spatially distributed phenom-
ena through an underlying stationary and isotropic spatial process. However,
these assumptions are often untenable in practice because of the influence of
local effects in the correlation structure. Therefore, it has been of prolonged
interest in the literature to provide flexible and effective ways to model non-
stationarity in the spatial effects. Arguably, due to the local nature of the
problem, we might envision that the correlation structure would be highly
dependent on local characteristics of the domain of study, namely, the lati-
tude, longitude and altitude of the observation sites, as well as other locally
defined covariate information. In this work, we provide a flexible and compu-
tationally feasible way for allowing the correlation structure of the underlying
processes to depend on local covariate information. We discuss the properties
of the induced covariance functions and methods to assess its dependence on
local covariate information. The proposed method is used to analyze daily
ozone in the southeast United States.

1. Introduction. The advance of technology has allowed for the storage and
analysis of complex data sets. In particular, environmental phenomena are usually
observed at fixed locations over a region of interest at several time points. The
literature on modeling spatiotemporal processes has been experiencing a signifi-
cant growth in the recent years. The main objective of this research is to define
flexible and realistic spatiotemporal covariance structures, since predictions for
unobserved locations and future time points, and the corresponding prediction er-
ror variances, are highly dependent on the covariance structure of the process. An
important challenge is to specify a flexible covariance structure, while retaining
model simplicity.

In this paper we are concerned with modeling ozone levels observed in the
southeast USA. We explore models for ozone which allow the covariance struc-
ture to be nonseparable and nonstationary. Many spatiotemporal models have been
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proposed for ambient ozone data for various purposes. Guttorp, Meiring and Samp-
son (1994) and Meiring, Guttorp and Sampson (1998) generate predictions using
independent spatial deformation models for each time period to evaluate determin-
istic models. Carroll et al. (1997) combine ozone predictions with population data
to calculate exposure indices. Huerta, Sansó and Stroud (2004) and Dou, Le and
Zidek (2010) use a dynamic linear model to perform short-term forecasting over a
small region, while Sahu, Gelfand and Holland (2007) use a dynamic linear model
to predict temporal summaries of ozone and examine meteorologically-adjusted
trends over space. Gilleland and Nychka (2005) seek a method for drawing at-
tainment boundaries. McMillan et al. (2005) present a mixture model that allows
heavy ozone production and normal regimes; the probability of each depends on
atmospheric pressure. Berrocal, Gelfand and Holland (2010) combine determin-
istic model output with observations via a computationally efficient hierarchical
Bayesian approach. Nail, Hughes-Oliver and Monahan (2010) explicitly model
ozone chemistry and transport with additional goals of decomposition into global
background, local creation and regional transport components, and of long-term
prediction under hypothetical emission controls.

A challenging aspect of modeling ozone is its complex relationship with meteo-
rology. Tropospheric ozone is a secondary pollutant in that it is not directly emitted
from cars, power plants, etc. Instead, it is formed from photochemical reactions of
precursors nitrogen oxides (NOx), and volatile organic compounds (VOCs), which
are primary pollutants. The reactions that form ozone are driven by sunlight, so that
ambient concentrations are highest in hot and sunny conditions, and ozone, NOx
and VOCs are transported on the wind, so that emissions at one site affect ozone at
another. It is therefore natural to wonder whether meteorological variables affect
not only the mean concentration, but also its variance and spatiotemporal corre-
lation. Of the studies mentioned, Guttorp, Meiring and Sampson (1994), Meiring,
Guttorp and Sampson (1998), Huang and Hsu (2004) and Nail, Hughes-Oliver and
Monahan (2010) model the dependence of the covariance on covariates in some
form. Guttorp, Meiring and Sampson (1994) and Meiring, Guttorp and Samp-
son (1998) allow the spatial covariance to vary by hour of the day, while Nail,
Hughes-Oliver and Monahan (2010) allow it to vary by season. Huang and Hsu
(2004) allow the covariance to vary as a function of wind speed and direction, and
Nail, Hughes-Oliver and Monahan (2010) model the transport of ozone using wind
speed and direction.

We present a class of spatiotemporal covariance functions that allow the me-
teorological covariates to affect the covariance function [Schmidt, Guttorp and
O’Hagan (2011), Schmidt and Rodríguez (2011)]. This produces a nonstationary
covariance, since the correlation between pairs of points separated by the same
distance may be different depending on local meteorological conditions. Sampson
and Guttorp (1992) were among the first to propose a nonstationary spatial covari-
ance function by making use of a latent space wherein stationarity holds. Schmidt
and O’Hagan (2003) proposed a Bayesian model using the idea of the latent space
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where inference is performed under a single framework. Higdon, Swall and Kern
(1999) use a moving average convolution approach based on the fact that any Gaus-
sian process can be represented as a convolution between a kernel and a white noise
process; nonstationarity results from allowing the kernel to vary smoothly across
locations. Fuentes (2002), instead, assumed that the spatial process is a convolu-
tion between a fixed kernel and independent Gaussian processes whose parameters
are allowed to vary across locations. Paciorek and Schervish (2006) generalize the
kernel convolution approach of Higdon, Swall and Kern (1999). On the other hand,
Cressie and Huang (1999), Gneiting (2002) and Stein (2005) present examples of
nonseparable stationary covariance functions for space–time processes. Although
these models provide flexible covariance structures, they usually have many pa-
rameters, which may be challenging to estimate.

Cooley, Nychka and Naveau (2007) capture nonstationarity using covariates
(but not geographic coordinates) to model extreme precipitation. Schmidt, Gut-
torp and O’Hagan (2011) extended the work of Schmidt and O’Hagan (2003) by
allowing both geographic coordinates and covariates to define the axis of the latent
space. They also provide a particular case of the general model which has a simpler
structure but is still able to capture nonstationarity. Schmidt and Rodríguez (2011)
apply this simpler version of the model in the case of multivariate counts observed
across the shores of a lake.

In this paper we provide a more flexible covariance model that allows not only
the distance between covariates, but also the covariate values themselves to affect
the spatial covariance. For example, the spatial covariance is allowed to be different
for a pair of observations with the same temperature on a cold day than for a
pair of observations with the same temperature on a warm day. Following Fuentes
(2002), we model the spatial process at location s, μ(s), as a linear combination of
stationary processes with different covariances,

μ(s) =
M∑

j=1

wj(s)θj (s),(1)

where wj(s) are the weights and θj are independent zero-mean Gaussian processes
with covariance Kj . Fuentes (2002) models the weights as kernel functions of
space centered at predefined knots φj , so that Kj represents the local covariance
for sites near φj . In contrast, we specify the weights in terms of spatial covariates,
so that Kj represents the covariance under environmental conditions described by
the covariates.

The paper proceeds as follows. Section 2 introduces the model and Section 3
discusses its properties. Model-fitting issues and computational details are dis-
cussed in Sections 4 and 5, respectively. We analyze ozone data in Section 6. We
find that the spatial correlation is stronger on windy days, and that temporal corre-
lation depends on temperature and cloud cover. Section 7 concludes.

2. Covariate-dependent covariance functions. Let y(s, t) be the observa-
tion taken at spatial location s ∈ R2 and time t ∈ R. The response is modeled as
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a function of p covariates x(s, t) = [x1(s, t), . . . , xp(s, t)]T , where x1(s, t) = 1 for
the intercept. We assume that

y(s, t) = x(s, t)T β + δ(s) + μ(s, t) + ε(s, t),(2)

where β is the p-vector of regression coefficients, δ is a Gaussian process to cap-
ture the overall spatial trend remaining after accounting for x(s, t)T β [Stein and

Fang (1997)], μ(s, t) is a spatiotemporal effect, and ε(s, t)
i.i.d.∼ N(0, σ 2) is pure

error.
The spatiotemporal process μ is taken to be a Gaussian process with mean zero

and covariance that may depend on (perhaps a subset of) the covariates, x. As
described in Section 1, we model μ as a linear combination of stationary processes,

μ(s, t) =
M∑

j=1

wj [x(s, t)]θj (s, t),(3)

where θj are independent Gaussian processes with mean zero and covariance Kj

and wj [x(s, t)] is the weight on process j . The motivation for this model is that
different environmental conditions, described by the covariates, may favor differ-
ent covariance functions. The weight wj [x(s, t)] determines the spatiotemporal
locations where the covariance function Kj is the most relevant.

Integrating over the latent processes θj , the covariance becomes

Cov[μ(s, t),μ(s′, t ′)|x] =
M∑

j=1

wj [x(s, t)]wj [x(s′, t ′)]Kj(s − s′, t − t ′).(4)

With M = 1, only the variance of the process depends on the covariates, and the
correlation, K1(s−s′, t − t ′)/K1(0,0), is stationary. With M > 1, both the variance
and the correlation depend on the covariates.

As an illustration of the flexible spatial patterns allowed by our specification,
Figure 1 plots the spatial covariance for two simple examples. In both cases we
assume a one-dimensional spatial grid with s ∈ R, a single covariate x(s), and
that the spatial correlation is high in areas with large x(s). Both examples have
M = 2, logit(w2(s)) = x(s), w1(s) = 1−w2(s), K1(s−s′) = exp(−|s−s ′|/0.02),
and K2(s − s ′) = exp(−|s − s′|/0.50). Figure 1 shows the covariance for x(s) =
s2 and x(s) = sin(4πs). For the quadratic covariate, the second term has higher
spatial correlation and the weight on the second process is high for locations with
large x(s), therefore, the spatial correlation is stronger for s near −1 and 1 where
x(s) is high. The spatial covariance is not a monotonic function of spatial distance
for the periodic covariate. This may be reasonable if, say, x(s) is elevation and a
site with high elevation shares more common features with other high-elevation
sites than nearby low-elevation sites.

There is confounding in (4) between the scale of the weights wj and covari-
ances Kj , since multiplying the weights by the constant c > 0 and dividing the
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FIG. 1. Covariance functions for a one-dimensional spatial process with M = 2, logit(w2(s)) =
x(s), w1(s) = 1 −w2(s), K1(s − s′) = exp(−|s − s′|/0.02), and K2(s − s′) = exp(−|s − s′|/0.50).

standard deviation of Kj by c gives the same covariance. Therefore, for identifica-
tion purposes we restrict the squared weights for each observation to sum to one,∑M

j=1 wj [x(s, t)]2 = 1. Also, allowing the weights to be negative would result in
a negative spatiotemporal covariance if wj [x(s, t)] > 0 and wj [x(s′, t ′)] < 0. In
some situations this may be desirable, however, we elect to restrict wj [x(s, t)] > 0
to ensure a positive spatiotemporal covariance. Section 4 discusses weight selec-
tion in further detail.

An important consequence of the covariance construction in (3) is that values
of the process at two sites are uncorrelated unless at least one of the M weight
functions is positive at both sites. Therefore, unlike other nonstationary covariance
models [e.g., Sampson and Guttorp (1992) and Higdon, Swall and Kern (1999)], it
may be difficult to separate strength of dependence from severity of nonstationar-
ity. For example, if M = 2, w1(s1) = w2(s2) = 1, and w2(s1) = w1(s2) = 0, then
not only is the covariance near s1 different than the covariance near s2, but μ(s1)

and μ(s2) are necessarily uncorrelated. If this is deemed undesirable for a partic-
ular application, one alternative would be to allow for dependence between the
latent θj using a multivariate spatial model. Another option would be to use only
covariates in the weights that have larger spatial range (perhaps pre-smoothed co-
variates) than the latent θj processes, in which case this scenario is less likely.
Section 3.2 provides further discussion about the relative roles of the spatial range
of the latent and covariate processes.

This covariance model has interesting connections with other commonly used
spatial models. For example, if we consider purely spatial data, as mentioned in
Section 1, taking the weights to be kernel functions of the spatial location alone,
that is, wj [x(s)] = wj(s), gives the nonstationary spatial model of Fuentes (2002).
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By modeling the weights as functions of the covariates, it may be possible to ex-
plain nonstationarity with fewer terms, giving a more concise and interpretable
model. Also, with M = p and wj [x(s)] = xj (s) for j = 1, . . . , p, we obtain the
spatially-varying coefficient model of Gelfand et al. (2003). In this model θj (s)
represents the effect of the j th covariate at location s. The motivation for the
spatially-varying coefficients model is to study local effects of covariates on the
mean response. In contrast, our objective is to model the covariance. For example,
in a situation with p = 20 covariates it may be sufficient to describe the spatial
covariance using M = 2 stationary processes where conditions that favor the two
covariance functions are described by weights w1 and w2 that depend on all p

covariates. Therefore, to provide an adequate description of the covariance, we
assume the weights are random functions of unknown parameters that describe
environmental conditions (see Section 4) rather than taking the weights to be the
covariates themselves. Finally, setting the weights wj to be constant in time and
the latent processes θj to be constant over space gives the spatial dynamic factor
model of Lopes, Salazar and Gamerman (2008). Our model differs from this ap-
proach since our weights (loadings) are functions of spatial covariates rather than
purely stochastic spatial processes.

3. Properties of the covariance model. In this section we discuss some prop-
erties of the proposed model in (3) and the spatiotemporal covariance function. For
example, it is clear that even if the individual covariances Kj are separable, sta-
tionary and isotropic, the resulting covariance (4) is in general nonseparable, non-
stationary and anisotropic. Below we discuss other properties of the covariance
model.

3.1. Monotonicity of the spatial covariance function. As shown in Figure 1,
the covariance function can be a nonmonotonic function of spatial distance, even
if the underlying covariances Kj are decreasing. Intuitively, this occurs only if the
spatial range of the covariates is small relative to the spatial range of the covariance
functions Kj . More formally, assuming s ∈ R and the wj and each component of
x are differentiable, then for any h > 0

∂ Cov(μ(s),μ(s + h)|x)

∂h
(5)

=
M∑

j=1

wj(x[s])wj (x[s + h])Kj (h)

[w′
j (x[s + h])

wj (x[s + h]) + K ′
j (h)

Kj (h)

]
,

both w′
j and K ′

j are derivatives with respect to h. Therefore, if the weights
wj(x[s]) and covariance Kj(h) are positive, a sufficient but not necessary con-
dition for a monotonic covariance is that w′

j (x[s + h])/wj (x[s + h]) + K ′
j (h)/

Kj (h) < 0 for all j . The ratios w′
j (x[s])/wj (x[s]) and −K ′

j (h)/Kj (h) can be in-
terpreted as the elasticity of the weight function (which depends on both the weight
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function itself and the derivative of the covariate process) and covariance function,
respectively. This condition makes the initial statement more precise, in that (5)
is negative if the elasticity of the weight function is less than the elasticity of the
spatial covariance.

In the special case of a powered-exponential covariance model Kj(s, s + h) =
τ 2
j exp(−ρjh

κj ) and exponential weights wj(x) = exp(xT αj ), where αj is a vec-
tor of coefficients, (5) becomes

∂ Cov(μ(s),μ(s + h)|x)

∂h
(6)

=
M∑

j=1

wj(x[s])wj (x[s + h])Kj (h)[�x(s + h)T αj − κjρjh
κj−1],

where �x(s + h) denotes the vector of derivatives of x(s + h) with respect to h.
The covariance is decreasing in h if �x(s+h)αj < κjρjh

κj−1 for all j and h. This
shows that it is possible to allow the spatial covariance to depend on covariates but
retain monotonicity by restricting the parameters αj , κj and ρj based on bounds
on the covariate process derivatives.

3.2. Smoothness properties of the spatial process. The smoothness properties
of a Gaussian process are often quantified in terms of the mean squared continuity
of its derivatives. For many spatial processes, including the nonstationary model
of Fuentes (2002), the smoothness of their process realizations is well studied [see
Banerjee and Gelfand (2003), Banerjee, Gelfand and Sirmans (2003)]. However,
our model postulates a more general dependence of the covariance on spatial co-
variates. Hence, in this section we explore the effect of that dependence on the
smoothness properties of the realizations. For notational convenience, we assume
a one-dimensional spatial process with s ∈ R; the results naturally extend to more
general direction derivatives by taking s = uT s for any unit vector u. We start by
assuming the covariates x are fixed; this assumption will be later relaxed.

Following the arguments of Banerjee and Gelfand (2003), we say that the kth
derivative (with respect to s) of the process μ (if it exists) is mean square continu-
ous at s if

lim
h→0

E
[
μ(k)(s) − μ(k)(s + h)|x]2 = 0.(7)

For k = 0, we can substitute (3) in (7) and get

lim
h→0

E[μ(s) − μ(s + h)|x]2

=
M∑

j=1

lim
h→0

Kj(0)
(
wj [x(s + h)] − wj [x(s)])2(8)

+
M∑

j=1

lim
h→0

2wj [x(s)]wj [x(s + h)](Kj(0) − Kj(h)
)
,
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which shows that μ is mean square continuous if each latent process is mean square
continuous [limh→0 Kj(h) = Kj(0)] and the weights are smooth enough to satisfy
limh→0(wj [x(s +h)]−wj [x(s)])2 = 0 for all j , for example, they are continuous
functions of the continuous spatial covariates.

In some settings, it may be reasonable to consider x to be a random process. We
extend the discussion of Banerjee and Gelfand (2003) to the case when the weights
are functions of stochastic covariates. In this case, to study the smoothness of μ

requires considering variability in both the latent θj as well as the covariates x.
The covariates enter the covariance model only through the stochastic weights
Wj(s) = wj [x(s)]. Taking the expectation with respect to both θj and Wj(s) gives

lim
h→0

E[μ(s) − μ(s + h)]2

=
M∑

j=1

lim
h→0

Kj(0)EWj
[Wj(s) − Wj(s + h)]2(9)

+ 2
M∑

j=1

lim
h→0

(
Kj(0) − Kj(h)

)
EWj

[Wj(s)Wj (s + h)].

Therefore, under stochastic covariates, the process μ is mean square contin-
uous if and only if the latent processes θj and the weight processes Wj are
both mean square continuous. It is well known from probability theory that the
weight function Wj is mean square continuous, for example, if it is bounded
and the covariate processes are almost surely continuous. Mean square conti-
nuity also follows when wj is Lipschitz continuous of order 1 and the covari-
ate processes are mean square continuous. For example, the logistic weights
wj(x) = exp(xT αj )/[1 + exp(xT αj )] are both bounded and Lipschitz continuous
of order 1, whereas exponential weights wj(x) = exp(xT αj ) are not.

These results naturally extend from mean squared continuity to mean square
differentiability, and higher order derivatives. Since μ(s) is the sum of stochas-
tic processes Zj(s) = Wj(s)θj (s), then μ(k)(s) = ∑M

j=1 Z
(k)
j (s). In particular, for

k = 1 the derivative process at s is

μ(1)(s) =
M∑

j=1

θ
(1)
j (s)Wj (s) + θj (s)W

(1)
j (s).(10)

So the process μ is mean square differentiable if both Wj(s) and θj (s) are mean
square differentiable. Conditions analogous to those outlined above for mean
square continuity will assure that the weights are mean square differentiable. More
precisely, if the covariate processes x1(s), . . . , xp(s) are mean square differentiable
and the function wj(·) is Lipschitz continuous of order 1, then the resulting process
Wj(s) is mean square differentiable, and so is μ(s).
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One could go further to study sample path properties and almost sure continuity
of the induced spatial process, although the required proofs are generally more
difficult than the proofs of mean square properties. If both the weight functions
and latent processes are almost surely continuous, then the induced spatial process
is also almost surely continuous. Adler (1981) and Kent (1989) provide conditions
to verify almost sure continuity for spatial fields.

3.3. Span of the covariance function. The covariance in (4) is quite flexible.
For example, consider partitioning the covariate space in N subsets A1, . . . , AN

and

wj [x(s, t)] =
N∑

i=1

ajiI
(
x(s, t) ∈ Ai

)
.

When x(s, t) ∈ Ai and x(s′, t ′) ∈ Ak , the covariance becomes

Cov(μ(s, t),μ(s′, t ′)|x) =
M∑

j=1

ajiajkKj (s − s′, t − t ′).

Hence, each covariance Kj(s − s′, t − t ′) contributes to the mixture differently
according to the levels of the covariates. Setting some of the weights aij = 0 al-
lows Kj to contribute only to the covariance of terms with specific combinations
of covariates, for example, both observations have low wind speed and high cloud
cover. Also, by setting some of the aij < 0, it is possible to specify negative cor-
relation for observations with different levels of the covariate. By increasing M

and N , this argument shows how the covariate-dependent weights can be used to
describe quite general spatiotemporal behavior depending on the covariates.

4. Priors and model-fitting. In this section we describe a convenient specifi-
cation of the model. For notational convenience, we assume that at each time point
observations are taken at spatial locations s1, . . . , sN ∈ R2 and that t ∈ {1,2, . . .}.
The overall spatial trend δ is a Gaussian process with mean zero and spatial covari-
ance Ks

0 . We assume that δ’s covariance is stationary, although one could allow δ’s
covariance to be nonstationary as well. We assume an autoregressive spatiotempo-
ral model for the latent processes θj ,

θj (s, t) = γj θj (s, t − 1) + ej (s, t),(11)

where γj ∈ (0,1) controls the temporal correlation and the ej t = [ej (s1, t), . . . ,

ej (sN, t)] are independent (over j and t) spatial processes with mean zero and spa-
tial covariance Ks

j . We use exponential covariance functions for Ks
j , j = 0, . . . ,M .

We note that although this is a relatively simple specification for the temporal com-
ponent for each latent process, complex temporal covariance structures can emerge
from this mixture model. The covariance between subsequent observations at a site
is a mixture of M autoregressive covariances that varies with space and time ac-



2434 B. J. REICH ET AL.

cording to the covariates. This approach could be very useful for modeling hourly
ozone which is generally low and steady at night, and high and volatile in the day,
which could be fit by including hour of the day as a covariate in the weights.

As mentioned in Section 2, there is confounding in (4) between the scale of the
weights wj and covariances Kj . Therefore, for identification purposes we restrict
the squared weights for each observation to sum to one,

∑M
j=1 wj [x(s, t)]2 = 1.

Although there are other possibilities, we assume the weights have the multinomial
logistic form

wj [x(s, t)]2 = exp (x(s, t)T αj )∑M
l=1 exp (x(s, t)T αl)

,(12)

where α1, . . . ,αM are vectors of regression coefficients that control the effects
of the covariates on the covariance. For these weights setting M = 1 gives
w1[x(s, t)] = 1 and the model is stationary with covariance K1. The choice of
logistic weights also ensures mean square continuity of the process realizations, as
outlined in Section 3. For identification purposes, we fix α1 = 0, as is customary
in logistic regression.

The priors for the hyperparameters are uninformative. We use N(0,102)

priors for the elements of β and αj . The covariance parameters have priors

σ−2, τ−2
j

i.i.d.∼ Gamma(0.1,0.1), and γj ∼ Unif(0,1). Also, we take Ks
j (‖hs‖) =

exp(−‖hs‖/ρj ), where hs is the distance between points after a Mercator
projection, scaled to correspond roughly to distance in kilometers, and ρj ∼
Unif(0,2,000).

The covariance and the effect of an individual covariate on the covariance in (4)
are rather obscure. This is due to the label-switching problem, that is, the labels
of the processes are arbitrary: for example, θ1 may correspond to a high variance
process for some MCMC iterations and to a small variance process for others,
making inference on individual parameters difficult. One remedy for the label-
switching problem is to introduce constraints, perhaps, Var(θ1) < · · · < Var(θM).
However, ordering constraints on complex functions such as spatiotemporal co-
variance functions is not straightforward. Therefore, rather than summarizing the
individual parameters in the model, we summarize the entire covariance function
for different combinations of covariates. A simple way to summarize the effect of
the kth covariate is in terms of the posterior of the ratio of the covariance of two
observations with xk = 2 (standard deviation units above the mean) compared to
the covariance of two observations with xk = 0, assuming all other covariates are
fixed at zero (their mean). That is,

�k(hs, ht ) =
∑M

j=1((exp(αj1 + αjk))/(
∑M

l=1 exp(αl1 + αlk)))Kj (hs, ht )∑M
j=1((exp(αj1))/(

∑M
l=1 exp(αl1)))Kj (hs, ht )

,(13)

where αjk is the kth element of αj and Kj(hs, ht ) = Ks
j (‖hs‖)γ |ht |

j . We also in-
spect the ratio of correlations �̃k(hs, ht ) = �k(hs, ht )/�k(0,0). We consider a
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covariate to have a significant effect on the variance if the posterior interval for
�k(0,0) excludes one. Similarly, we consider a covariate to have a significant
effect on the spatial (temporal) correlation if the posterior interval for �̃k(hs,0)

[�̃k(0, ht )] excludes one.
Finally, we discuss how to select the number of terms, M . One approach would

be to model M as unknown and average over model space using reversible jump
MCMC. Lopes, Salazar and Gamerman (2008), Salazar, Lopes and Gamerman
(2011) use reversible jump MCMC to select the number of factors in a latent spatial
factor model. However, this approach is likely to pose computational challenges
for large spatiotemporal data sets. Therefore, we select the number of terms using
cross-validation and assume M is fixed in the final analysis. For cross-validation,
we randomly (across space and time) split the data into training (n = 63,881) and
testing (N = 3,367) sets. We fit the model on the training data and compute the
posterior predictive distribution for each test set observation. We then compute
the mean squared error MSE = ∑

i (Yi − Ȳi)
2/N and mean absolute deviation

MAD = ∑
i (Yi − Ỹi)

2/N , where the sum is over the N test set observations, Ȳi

is the posterior mean, and Ỹi is the posterior median. We also compute the mean
(over the test set observations) of the posterior predictive variances (“AVE VAR”),
the median of the posterior predictive standard deviations (“MED SD”) and the
coverage probability of 95% prediction intervals.

5. Computational details. We implement the model in R (http://www.
r-project.org/). Though implementation in WinBUGS (http://www.mrc-bsu.cam.
ac.uk/bugs/) would also be straightforward, run times might be long for large data
sets. We update θ j t = [θj (s1, t), . . . , θj (sN, t)], β , σ 2 and γj , which have conju-
gate full conditionals, via Gibbs sampling, and we update αjk , ρj and νj using
Metropolis–Hastings sampling with a Gaussian candidate distribution tuned to
give acceptance probability around 0.4.

Sampling using the dynamic spatial model in (11) allows us to update the θj t

as a block and avoid inverting large matrices. The alternative of sampling after
marginalizing out the latent θ j t would require computing the entire spatiotemporal
covariance with elements given by (4), which would likely give better mixing for
small to moderate data sets. For our large data set, however, matrix computations
of this size are not feasible.

We monitor convergence with trace and autocorrelation plots for several repre-
sentative parameters. Monitoring convergence is challenging for this model since
the labels of the latent terms may switch during MCMC sampling: exchanging α1,
ρ1, ν1 and γ1, for example, with α2, ρ2, ν2 and γ2, does not affect the covariance
in (4). Rather than monitoring convergence for these parameters individually, we
therefore monitor convergence of the covariance (4) at several lags and of the spa-
tiotemporal effect μ(s, t) for several spatiotemporal locations. For the application
in Section 6 we generate 20,000 samples, discarding the first 10,000 as burn-in.

http://www.r-project.org/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.r-project.org/
http://www.mrc-bsu.cam.ac.uk/bugs/
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For the exponential covariances considered here this appears to be sufficient; how-
ever, for smoother processes, such as those induced by the squared exponential
covariance, 20,000 iterations may not be sufficient.

6. Application to southeastern US daily ozone. To illustrate our spatiotem-
poral covariance model, we analyze ozone in the southeast US. The primary Na-
tional Ambient Air Quality Standard (NAAQS) for ozone requires the three-year
average of the annual fourth-highest daily maximum 8-hour daily average con-
centration to fall beneath 75 parts per billion (ppb) [CFR (2008), pages 16436–
16514]. Our response variable is thus the square root—to ensure Gaussianity—
of the daily “8-hour ozone” metric. We focus on the 89 sites in North Carolina,
South Carolina and Georgia shown in Figure 2. This geographically heteroge-
neous region transitions from the flat, low-altitude coastal plains in the east, to
the gentle, rolling hills of the piedmont, to mountains in the northwest, with
a handful of urban islands buffered by suburbs that give way to rural tracts.
Since summertime ozone concentrations are highest, and therefore most rele-
vant for attainment determination, we extract daily 8-hour ozone concentrations,
longitude, latitude, elevation and site classification (urban, suburban or rural)
for June–August, 1997–2005 (6444/73,692 = 8.7% missing) from the US EPA
Air Quality System (AQS) database, available via the Air Explorer web tool
(http://www.epa.gov/airexplorer/index.htm).

We obtain daily average temperature and daily maximum wind speed from the
National Climatic Data Center (NCDC) Global Summary of the Day and daily
average cloud cover from the NCDC National Solar Radiation database. Since

FIG. 2. Plots of square root ozone (pbb). Panel (a) plots the average for each station (the stations
are marked with points) and panel (b) gives trace plots for each station in August 2005 (Day 1 is
August 1, 2005).

http://www.epa.gov/airexplorer/index.htm
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meteorological and ozone data are not observed at the same locations, for each day
we predict each meteorological variable at ozone observation sites using spatial
Kriging implemented in SAS V9.1 Proc MIXED with an exponential covariance
function. Though Li, Tang and Lin (2009) show that ignoring uncertainty when
using spatial predictions of covariates is not without consequence, accounting for
that uncertainty is nontrivial. Since our current focus is the development of the
covariate-dependent covariance model, we treat these predictions as fixed.

Covariates x(s, t) in the mean trend include the continuous variables tempera-
ture, wind speed, cloud cover, elevation, longitude, latitude and a linear trend in
year, each standardized to have mean zero and variance one, and we include two
indicator variables identifying a station as urban or rural, leaving suburban as the
baseline. We have no detailed land-use covariates as in Paciorek et al. (2009), how-
ever, which would likely improve fine-scale prediction. We consider all two-way
interactions between the three meteorological variables and quadratic effects of
the meteorological variables. The covariance is modeled as a function of only the
main effects of these covariates.

6.1. Empirical variogram analysis. We begin studying the data by analyzing
the spatial variogram, defined as γ (h) = E([r(s, t)− r(s +hu, t)]2), where r(s, t)
is the residual after accounting for the mean trend and u is a unit vector. Though
there is evidence that regression coefficient estimation can be affected by disre-
garding spatial correlation [Reich, Hodges and Zadnik (2006), Wakefield (2007),
Paciorek (2010)], for simplicity we use ordinary least squares, pooled over all ob-
servations, to estimate the mean trend. We estimate the variogram as the mean
squared difference between all pairs of observations in a bin Dh, that is,

γ̂ (h) = 1

|Dh|
∑
t

∑
(s,s′)∈Dh

[r(s, t) − r(s′, t)]2,(14)

where Dh is the set of pairs of points on the same day with ‖s− s′‖ ∈ (h−ε,h+ε)

and |Dh| is the cardinality of Dh.
To explore the effects of each of the covariates on the spatial covariance, we

compute individual variograms for three categories of site pairings. In the “low–
low” category, both sites have values of the covariate below the sample median
for the covariate; in the “high–high” category, both have values above the median;
and in the “low–high” category, one has a value below, and the other above, the
median. Such variograms for cloud cover and wind speed are given in Figures 3
and 4, respectively.

In Figure 3(a), the variogram is lowest for pairs of observations for which both
sites have high cloud cover, higher when both sites have low cloud cover, and
highest when one site has low and the other high cloud cover. Solar radiation is
required to turn NO2 into ozone or to create VOC’s that turn NO into NO2. There-
fore, under high cloud cover conditions, ozone levels would be expected to drop
close to background levels (a long-term equilibrium that would exist in the absence
of local emissions), which would be homogeneous over a region of this size. Two
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FIG. 3. Sample variograms for the ozone data by cloud cover. The data are plotted separately
for pairs of observations with both (“Low–Low”), one (“Low–High”) and neither (“High–High”)
members of the pair with cloud cover below the median cloud cover. Panel (b) plots the ratio of
curves in (a), panel (c) uses log-transformed, rather than square-root-transformed data, and panel
(d) standardizes the residuals by the daily sample standard deviation.

sites for which cloud cover is low would be expected to be less similar to each
other than would two sites that both have high cloud cover because the production
of ozone via solar radiation is now dependent on the spatially-varying precursors.
For example, areas very close to major sources of NOx (power plants and urban
centers on workdays) would have low ozone due to NOx scavenging, and moving
downwind from these sources, ozone would increase and then decrease. Finally,
based on the explanation above, it is clear that if one site has high cloud cover, so
that ozone production is minimal, and the other has low cloud cover, so that ozone
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FIG. 4. Sample variograms for the ozone data by wind speed. The data are plotted separately
for pairs of observations with both (“Low–Low”), one (“Low–High”) and neither (“High–High”)
members of the pair with wind speed below the median wind speed. Panel (b) plots the ratio of
curves in (a), panel (c) uses log-transformed, rather than square-root-transformed data, and panel
(d) standardizes the residuals by the daily sample standard deviation.

production is rampant, they would have very dissimilar ozone values, so that the
variogram would be highest for the low–high category.

Wind speed does not generally affect the chemical reactions that create or de-
stroy ozone, but it does transport ozone and its precursors. One would expect that
within smaller subregions with higher wind speeds, distance is effectively short-
ened so that spatial correlation would be higher, and two sites in the “high–high”
category would have lower variogram, followed by those with “low–high,” then
“low–low,” as we see in Figures 4(a) and 4(b) for spatial lags below 250 km. The
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ordering of the categories is reversed for larger spatial lags, where transport is less
relevant.

In addition to computing these variograms for our square root ozone response,
we compute the variograms using residuals from a regression on the log, rather
than square root, of ozone, and the variogram of standardized residuals, that is,
r∗(s, t) = r(s, t)/st , where st is the sample standard deviation of the residuals
for day t . The variograms are affected more by the log transformation than by
standardizing. The same general patterns remain after standardizing, but new ones
emerge after a log transformation. For example, the ordering of the variograms for
cloudy and sunny days switches after a log transformation in Figure 3. The patterns
of the log-transformed responses also indicate covariate-dependent covariance, so
it appears that the transformation is important, but does not resolve nonstationarity.

6.2. Results. We fit five versions of the model, with the number of mixture
components varying from M = 1 to 5. We withheld 5% of the observations (3,687
observations), selected randomly across space and time. Table 1 compares for pre-
dictions of square root ozone for this validation set. For all models, the predic-
tion intervals have coverage greater than 0.95. The five-component model mini-
mizes all measures of prediction error and variance. The ratio of mean squared
error for the five-component model to that of the stationary one-component model
is 0.179/0.189 = 0.947, and the corresponding ratio of average prediction vari-
ances is 0.167/0.183 = 0.913. The nonstationary covariance thus gives a modest
improvement in prediction accuracy and uncertainty quantification. We also tried
higher values of M and found slight improvements in prediction, but elected to
proceed with M = 5 for model simplicity.

The largest effect of nonstationary is in the measures of prediction uncertainty.
Figure 5 plots the prediction standard deviation for the observations in the vali-
dation set for the stationary model with M = 1 and the nonstationary model with
M = 5. The standard deviation is smaller for the nonstationary model for 72%

TABLE 1
Validation set results. The summaries are mean squared error (MSE), median absolute deviation

(MAD), mean posterior predictive variance (AVE VAR), median posterior predictive standard
deviation (MED SD) and coverage probability of 95% intervals (COV).

All values are multiplied by 100

M

1 2 3 4 5

MSE 18.9 18.6 18.3 18.2 17.9
MAD 23.5 22.7 22.2 22.0 21.4
AVE VAR 18.3 17.0 16.7 16.4 16.7
MED SD 41.9 40.0 39.2 38.8 38.2
COV 95.7 95.5 95.3 95.3 95.2
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FIG. 5. Posterior predictive standard deviation for the observations in the validation set for the
stationary model with M = 1 compared to the nonstationary model with M = 5.

of the observations, and varies far more across observations for the nonstationary
model (roughly from 0.25 to 0.80) compared to the stationary model (roughly 0.35
to 0.65). To show that the conditional coverage remains valid for both models, we
separated the validation set into five equally sized groups based on the ratio of
standard deviations from the models with M = 5 to M = 1. The coverage of 95%
intervals in these five groups (from smallest to largest relative variance) is 0.97,
0.97, 0.96, 0.96 and 0.93 for the stationary model and 0.93, 0.96, 0.94, 0.97 and
0.96 for the nonstationary model.

Table 2 and Figure 6 summarize the covariate effects on the mean and spa-
tiotemporal correlation for the full data set with M = 5. The mean trend accounts
for most of the variability in square root ozone: though the sample variance of
the observations is 1.61 ppb, the posterior means of the spatial effects δ(s) have
variance 0.09 ppb. The statistical significance of the linear and quadratic temper-
ature terms and the positive effect of temperature on variance are consistent with
findings of Nail, Hughes-Oliver and Monahan (2010) and others that ozone con-
centration is a monotone increasing nonlinear function of temperature, and ozone
variance increases with the mean. It is reasonable that spatial correlation decreases
as temperature increases due to the fact that when the solar radiation is conducive
to the chemical reactions that produce ozone, that production is a function of local
emissions, and highly nonlinear in NOx emissions, which vary over space. Sim-
ilarly, it is reasonable that spatial correlation at short spatial lags increases with
wind speed because wind facilitates transport of ozone and its precursors.
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TABLE 2
Summary of the model with M = 5 components. The remaining columns give the posterior means

(95% intervals) for the mean effects βk , the relative variance (�k(0,0)), the relative spatial
correlation at lag 100 km (�̃k(100,0)), and the relative temporal correlation at lag 2 days

(�̃k(0,2)). βk , �k(0,0), �̃k(100,0), and �̃k(0,2) are scaled to represent the effect of a two
standard deviation increase in the predictor

Mean Variance Spatial cor. Temporal cor.
βk �k(0,0) �̃k(100,0) �̃k(0,2)

Temperature (F) 0.333 (0.331,0.358) 1.09 (1.06,1.12) 0.88 (0.86,0.90) 1.09 (1.03,1.16)
Wind speed (m/s) −0.028 (−0.037,−0.019) 0.96 (0.94,0.97) 1.05 (1.04,1.06) 0.97 (0.94,1.00)
Cloud cover (%) −0.154 (−0.173,−0.134) 1.12 (1.07,1.17) 1.05 (1.03,1.06) 0.57 (0.51,0.64)
Elevation (ft) 0.115 (0.078,0.183) 0.98 (0.96,1.01) 1.10 (1.09,1.11) 1.30 (1.24,1.37)
Urban 0.007 (−0.020,0.035) 1.00 (0.98,1.02) 0.95 (0.93,0.96) 0.99 (0.96,1.02)
Rural 0.045 (0.010,0.066) 0.57 (0.43,0.77) 0.94 (0.90,0.97) 1.17 (1.02,1.37)
Year 0.004 (−0.001,0.008) 1.01 (1.00,1.02) 1.03 (1.02,1.03) 0.95 (0.93,0.97)
Longitude 0.096 (0.018,0.187) 0.99 (0.94,1.03) 1.12 (1.10,1.13) 1.53 (1.43,1.62)
Latitude 0.185 (0.089,0.251) 0.70 (0.67,0.74) 1.05 (1.03,1.07) 0.48 (0.40,0.55)
Temp2 0.023 (0.014,0.032) – – –
WS2 0.004 (0.002,0.005) – – –
CC2 −0.020 (−0.029,−0.010) – – –
Temp × WS −0.005 (−0.013,0.003) – – –
Temp × CC 0.055 (0.044,0.068) – – –
WS × CC 0.004 (−0.003,0.012) – – –

As discussed in Section 6.1, the relationship between cloud cover and ozone is
quite complex. We find that cloud cover is negatively associated with the mean
and temporal correlation, and positively associated with variance and spatial cor-
relation. As expected, mean ozone decreases and spatial correlation increases with
cloud cover since ozone levels drop near low, heterogenous background levels in
the absence of solar radiation. A possible explanation for low variance and high
temporal autocorrelation for sunny days is the common southeastern summertime
meteorological regime called the “Bermuda high,” which is characterized by sunny
skies and high atmospheric pressure indicative of a lower atmospheric boundary
layer. The lowered ceiling combined with low wind speed effectively reduce the
volume in which emissions interact, which, combined with high solar radiation,
creates a simmering cauldron of ozone production. Because the Bermuda high
persists over several days and spans regions greater than or equal to the size of
our spatial domain, ozone production is high everywhere, so that the variability is
lower and the temporal correlation is higher.

Figure 6 plots the estimated spatial and temporal covariance for several combi-
nations of the covariates. Figures 6(a) and 6(b) show that the estimated spatial cor-
relation is lower for spatial lags less than 100 km for hot days, and that temperature
is less relevant at larger distances. This plot also shows the mixture of exponential
correlation functions gives a correlation that is significantly different than a simple
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FIG. 6. Posterior mean (thick lines) and 95% intervals (thin lines) of the spatiotemporal correlation
(4) for various combinations of the covariates. “Baseline” assumes that all covariates are zero (the
mean after standardization) for both observations. The other plots assume that all covariates are
zero with the exception of one covariate, which equals two standard deviation units above the mean.
Panel (b) plots the posterior of ratio of the spatial correlations under high temperature and baseline
conditions plotted in panel (a). The spatial correlation is plotted as a function of spatial distance hs

with temporal distance ht = 0, and vice versa.

exponential correlation. The mixture correlation function drops more quickly near
the origin and has a heavier tail than an exponential correlation. Cloud cover also
affects both the spatial covariance and temporal autocorrelation. Figure 6(c) shows
that the variance is higher on cloudy days, but the covariance has smaller spatial
range. Also, the temporal correlation in Figure 6(d) is higher for lags one, two and
three for sunny days.

Figure 7 compares the posterior mean of the stationary one-component model
to that of the nonstationary five-component model, and shows the relationship be-
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FIG. 7. Data and spatial correlation estimates for two days for stationary (M = 1) and nonsta-
tionary (M = 5) models. Panels (b), (d) and (f) plot the posterior mean of the correlation between
the point marked with a dot and the remaining sites.
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tween the spatial covariance of the latter model with temperature and elevation.
Figure 7(b) shows the exponential decay in correlation with increasing distance
from the marked site for the stationary model; this correlation function is the same
for the two days under consideration, June 7, 1997, and July 27, 2005, which
have the minimum and maximum temperatures at the marked site. The temper-
ature contours for those days are plotted in Figures 7(c) and 7(e), and elevation
contours are plotted in Figure 7(a). The spatial correlation contours in the north-
west of Figure 7(d) show the negative effect of elevation on spatial correlation.
The July 27, 2005 position of the maximum temperature peak over the marked site
clearly shows the effect of temperature on the steepness of the decline in correla-
tion at short versus long lags seen earlier in Figure 6(a). The effect of elevation on
correlation is dwarfed by the effect of temperature, likely due to the positioning
of the temperature peak over the marked site combined with the magnitude of the
temperature at that peak.

7. Discussion. In this paper we present a class of spatiotemporal covariance
functions that allows the covariance to depend on environmental conditions de-
scribed by known covariates. Although fitting this, and other sophisticated spa-
tiotemporal models, likely requires expertise in spatial statistics and computing
methods, the method produces interpretable summaries of the effect of each co-
variate on the mean, variance, and spatial and temporal ranges. For the southeast-
ern US ozone data, we find our nonstationary analysis improves prediction error,
reduces prediction variance, and achieves the desired coverage probabilities, while
identifying several interesting covariate effects on both the mean and covariance.

Our covariance model assumes that all nonstationarity can be explained by the
spatial covariates. However, in some cases a more flexible model would be useful.
One approach would be to add more pure functions of space and time as covariates
in the covariance to capture nonstationarity. An even more flexible model would
take the weights to be Gaussian processes, possibly with means that depend on the
covariates, to allow the weights to vary smoothly through the spatial domain while
still making use of the covariate information.
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